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Introduction

It is commonsense in machine learning that structure in the data is an important ingredient for successful learning. Quantifying this statement, and in particular how structure in the features impact the training and generalization errors the most, is an important endeavor in the broad program of "seeing through" the modern machine learning black box. On the theoretical side, there has been some important recent progress in this direction in the context of generalized linear estimation. For instance, a recent line of work on linear regression trained on Gaussian data has shown that good generalization can arise even in the "overparametrized regime" where the training error is exactly zero [START_REF] Peter | Benign over tting in linear regression[END_REF][START_REF] Hastie | Surprises in high-dimensional ridgeless least squares interpolation[END_REF][START_REF] Wu | On the optimal weighted \ell_2 regularization in overparameterized linear regression[END_REF]. This benign over tting property crucially depends on the covariance structure, occurring when the signal components of the target align with a lower-dimensional of the data, leaving space for the noise to spread along the higher-dimensional orthogonal subspace [START_REF] Peter | Benign over tting in linear regression[END_REF]. Analogous conclusions hold, under similar conditions, to generalized linear tasks [START_REF] Vidya Muthukumar | Classi cation vs regression in overparameterized regimes: Does the loss function matter[END_REF][START_REF] Wang | Benign over tting in binary classi cation of gaussian mixtures[END_REF][START_REF] Shamir | The implicit bias of benign over tting[END_REF]. Indeed, this is only one example of many surprising insights learned from the study of generalized linear models on Gaussian data over the past few years [START_REF] Gardner | Optimal storage properties of neural network models[END_REF][START_REF] Krogh | A simple weight decay can improve generalization[END_REF][START_REF] Donoho | Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing[END_REF][START_REF] Emmanuel | The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression[END_REF]. Despite the seemingly constraining assumption on the distribution of the features, a recent line of work provides strong evidence for the Gaussian universality of the training and generalization errors in generalized estimation in di erent settings. These includes rigorous results for non-Gaussian designs [START_REF] Montanari | Universality of the elastic net error[END_REF][START_REF] Panahi | A universal analysis of large-scale regularized least squares solutions[END_REF], random feature maps [START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF][START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Goldt | The gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Hu | Universality laws for high-dimensional learning with random features[END_REF], neural tangent features [START_REF] Montanari | Universality of empirical risk minimization[END_REF], Gaussian mixtures with random labels [START_REF] Gerace | Gaussian universality of linear classi ers with random labels in high-dimension[END_REF], as well as extensive numerical evidence for other feature maps [START_REF] Goldt | The gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] and even real datasets [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF][START_REF] Jacot | Kernel alignment risk estimator: Risk prediction from training data[END_REF][START_REF] Bordelon | Spectrum dependent learning curves in kernel regression and wide neural networks[END_REF]. These works beg the question "when are Gaussian features a good model for learning?". Our aim is to give precise answers to this question in the context of generalized linear estimation on a popular model for multi-modal data, known to be able to approximate any distribution: the Gaussian mixture model.

Main results

Our main contributions in this work are as follows:

• Exact asymptotics of GLMs: We provide the exact asymptotic limit for the training and test errors of a generalized linear model with convex loss in high dimensions, when the data is drawn from a Gaussian mixture model with a single-index target. These asymptotics are based on the so-called replica method from statistical physics, and follow the same line as [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF], which considered instead the task of learning the mixture labels.

• Universality of training and test errors: We provide a set of su cient conditions on the target weights θ 0 such that both the asymptotic training and test errors for a Gaussian mixture model are independent from the cluster means. In particular, these conditions are satis ed by a target whose direction is uniform on S d-1 . In the case of ridge regression, we show an even stronger result: namely, the training loss is also independent from the cluster covariances, and reduces to that of a single Gaussian with identity covariance.

• The importance of Homoscedasticity: In the particular case of a homoscedastic Gaussian mixture (a mixture of Gaussians that share the same covariance matrix), we further demonstrate universality results that can actually be observed on real data after a random feature map (see e.g. Fig. 1 and2). We also unveil the universal behavior of the linear separability transition, a phenomenon studied in detail for pure Gaussian data in [START_REF] Emmanuel | The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression[END_REF] and that appears to be universal for a homoscedastic mixture.

• Breaking universality: In contrast to the results of the previous paragraph, we show that there are two ways to break Gaussian universality. First, strongly heteroscedasticity can break the universal behavior. Second, in the homoscedastic case we show that the correlation between the data and the task matters: even a small correlation between the target weights and the cluster means su ce to break universality, in the sense that the asymptotic errors of a model trained in a Gaussian mixture di ers from the one of a model trained on Gaussian data. Rather than the structure of the data itself, what appears to matter is thus the correlation between this structure and the task to be learned.

Related works

Exact asymptotics: An appealing feature of Gaussian data is that the asymptotic performance of di erent models can be sharply characterized in the proportional high-dimensional limit where n, d → ∞ at xed sample complexity α := n /d. This is particularly the case for ridge regression, because of the close connection to a random matrix theory problem; see e.g. [START_REF] Hastie | Surprises in high-dimensional ridgeless least squares interpolation[END_REF][START_REF] Wu | On the optimal weighted \ell_2 regularization in overparameterized linear regression[END_REF][START_REF] Dobriban | High-Dimensional Asymptotics of Prediction: Ridge Regression and Classi cation[END_REF]. Beyond the quadratic case, there exists many asymptotic rigorous studies, for instance [START_REF] Thrampoulidis | Precise Error Analysis of Regularized $M$ -Estimators in High Dimensions[END_REF] studied M-estimators, [START_REF] Celentano | The lasso with general gaussian designs with applications to hypothesis testing[END_REF] the performance of the LASSO estimator, while [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] provided a general result for convex losses and penalties with arbitrary covariances.

In the case of Gaussian mixtures, most of the e ort has been geared towards classi cation, i.e. recovering the cluster label instead of teacher-generated ones. For binary classi cation, examples include [START_REF] Mai | A Large Scale Analysis of Logistic Regression: Asymptotic Performance and New Insights[END_REF][START_REF] Mignacco | The role of regularization in classi cation of high-dimensional noisy gaussian mixture[END_REF][START_REF] Deng | A model of double descent for high-dimensional binary linear classi cation[END_REF], the latter of which also shows an equivalence between classi cation and a single-index model. In the multi-class setting, [START_REF] Thrampoulidis | Theoretical insights into multiclass classi cation: a high-dimensional asymptotic view[END_REF] studied the performance of ridge regression classi ers; the most general result in this line is [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF], which considers any convex (not necessarily separable) loss.

Gaussian universality: Remarkably, this model is also able to capture the errors of particular classes of non-Gaussian features. This Gaussian universality property (GEP) [START_REF] Goldt | Modeling the in uence of data structure on learning in neural networks: The hidden manifold model[END_REF] was proven to hold for generalized linear estimation with random features [START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF][START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Goldt | The gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Hu | Universality laws for high-dimensional learning with random features[END_REF][START_REF] Schröder | Deterministic equivalent and error universality of deep random features learning[END_REF], neural tangent features [START_REF] Montanari | Universality of empirical risk minimization[END_REF] and kernel features [START_REF] Bordelon | Spectrum dependent learning curves in kernel regression and wide neural networks[END_REF][START_REF] El | Spectrum estimation for large dimensional covariance matrices using random matrix theory[END_REF][START_REF] Mei | Generalization error of random feature and kernel methods: Hypercontractivity and kernel matrix concentration[END_REF][START_REF] Cui | Generalization error rates in kernel regression: The crossover from the noiseless to noisy regime[END_REF][START_REF] Cui | Error rates for kernel classi cation under source and capacity conditions[END_REF]. [START_REF] Ba | High-dimensional asymptotics of feature learning: How one gradient step improves the representation[END_REF] showed that Gaussian universality is preserved on the random features model when the weights are trained at order one steps, but break if an extensive number of steps are taken. Beyond the realm of theorems, [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] provided numerical evidence of Gaussian universality for a broader class of realistic features from trained neural networks. On a close line, [START_REF] Gerace | Gaussian universality of linear classi ers with random labels in high-dimension[END_REF] studied the Gaussian universality for pure random binary labels, which was an important source of inspiration for the present work, while [19-21, 34, 37, 38] has numerically shown that for ridge regression in particular, the Gaussian formula captured the learning curves of some simple real datasets.

Setting & motivation

Let (x ν , y ν ) ∈ R d × Y denote ν = 1, • • • , n
pairs of independently sampled training points. We shall be interested in studying the properties of generalized linear estimation ŷ(x) = f (θ x) with weights θ ∈ R d learned from the training data by minimizing the following empirical risk:

Rλ n (θ) = 1 n n ν=1 y ν , θ x √ d + λr(θ) (1) 
where : Y × R → R + is a convex loss function and r : R d → R is a convex penalty. For example, this includes the particular case of ridge regression where (y, ŷ) = (y -ŷ) 2 and r(θ

) = ||θ|| 2 2 .
The key quantities of interested in the following will be the training and generalization error, de ned as:

ε tr ( θ) = 1 n n ν=1 y ν , θ x ν √ d (2) ε gen ( θ) = E g y new , f θ x new √ d (3) 
where g : Y × R → R + is a performance metric of the choice of the statistician, not necessarily equal to the loss function (y, ŷ). For example, in the case of binary classi cation with Y = {-1, +1}, we can take (y, ŷ) = log(1 + e -y ŷ ) to be the logistic loss, while taking g(y, ŷ) = I [y = ŷ] to be the classi cation error. Note that in eq. ( 3) the expectation is taken over a new data pair (x new , y new ) which we assume is independently drawn from the same distribution of the training data.

In particular, we will be interested in characterizing these errors under the assumption that the labels have been generated by the following target distribution:

y ν ∼ P 0 • θ 0 x ν √ d (4) 
for some xed vector θ 0 ∈ R d and distribution P 0 . A common choice for P 0 is y ν = f 0 θ 0 x ν √ d + ξ for additive Gaussian noise ξ ∼ N(0, ∆). This setting is sometimes refereed to as a teacher-student setting. We will sometimes adopt this convenient terminology, refereeing to the target distribution P 0 as the teacher and θ 0 ∈ R d as the teacher weights. Similarly, we will sometimes refer to the model ŷ as the student and θ ∈ R d the student weights. As previously mentioned, we shall be considering both regression Y = R and binary classi cation Y = {-1, +1}.

This model has been the subject of a plethora of works in the high-dimensional statistics literature over the past few years, in particular under the Gaussian design assumption: Model 2.1 (Gaussian covariate model). In the Gaussian covariate model (GCM), we assume the inputs are independently drawn from a Gaussian distribution:

x ν ∼ N µ √ d , Σ , ν = 1, • • • , n. (5) 
We denote G θ0,Σ,µ the teacher-student problem under this data assumption.

A key motivation for this work is the common intuition that data from standard classi cation tasks such as MNIST are closer to multi-modal distributions than to a single-mode Gaussian. Therefore, in this manuscript we ask ourselves the question: "when is Gaussian data all you need?". In particular, we focus our attention to a prototypical distribution to model multi-modal data (and a universal approximator of densities): the K cluster Gaussian mixture: Model 2.2 (Gaussian mixture model). In the Gaussian mixture model (GMM), we assume the inputs are independently drawn from a mixture of K Gaussians:

x ν ∼ c∈C p c N µ c √ d , Σ c , ν = 1, • • • , n. (6) 
where C := {1, • • • , K} is the set of possible clusters, and p c ∈ [0, 1] is the probability of belonging to cluster c ∈ C, whose means and covariance are given by (µ c , Σ c ).

We note that despite Model 2.1 being a special case K = 1 of Model 2.2 when the labels y ν do not depend on the input cluster, it will be instructive to treat the K = 1 and K > 1 case as two di erent models.

Main theoretical results

In this section, we introduce our main theoretical results concerning universality of high-dimensional generalized linear estimation of GMMs. Our result builds on a long line of works providing an exact asymptotic characterization of empirical risk minimizers (2) on the proportional high-dimensional limit for Model 2.1 [START_REF] Hastie | Surprises in high-dimensional ridgeless least squares interpolation[END_REF][START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF][START_REF] Dobriban | High-Dimensional Asymptotics of Prediction: Ridge Regression and Classi cation[END_REF][START_REF] Thrampoulidis | Precise Error Analysis of Regularized $M$ -Estimators in High Dimensions[END_REF]. In particular, closer to our derivation are the rigorous results in [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF][START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF]. We prove that the training and generalization error concentrate in high-dimensions in a deterministic expression given by the solution of a set of self-consistent equations. Then we Figure 1: An illustration of Gaussian universality with vanishing regularization λ = 0 + for a selection of datasets (MNIST, Fashion-MNIST, Cifar10) with a random teacher function, after a random feature map: Generalization (left) and training (right) errors as a function of the number of samples per dimension α = n/d for ridge regression (top pannels) and logistic classi cation (bottom pannels). The solid purple line is the exact asymptotics formula for Gaussian covariates with identity covariance, while the vertical green lines are the threshold values α (∆) at which an unique minimizer of the loss starts to exist. Dots show numerical simulations for di erent real datasets with random features maps. All data follows the Gaussian predictions for the training loss, illustrating Theorems 3.4 and 3.6. In particular the separability, or interpolation, threshold is the one of the Gaussian model (see corollary 3.5). Each learning task was ran for two di erent value for the noise variance corrupting the labels -crosses are associated to ∆ = 3 while pluses to ∆ = 0.3. Error bars are built using standard deviation over 30 runs.

analyze Gaussian universality, provably characterizing a set of su cient conditions the learning task must respect such that the test and training errors of Model 2.2 asymptotically agrees with the ones from Model 2.1.

Since we deal with sequences of random variables, we will need a rigorous de nition of convergence. For two sequences of numbers (a n ), (b n ), we write

a n b n i lim n→∞ a n -b n = 0. (7) 
Accordingly, for two sequences of random variables (X n ), (Y n ), we de ne closeness in probability by

X n P Y n i X n -Y n P → 0, (8) 
where P → denotes convergence in probability.

Exact asymptotics

Our rst result is to give closed-form asymptotic characterization of the performance of the minimizer of 2 for the Gaussian Mixture model 2.2, generalizing the rigorous results of [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF]: Proposition 3.1. (Exact asymptotics, informal statement) Consider the empirical risk minimization problem introduced in eq. (1) under Gaussian mixture data given by Model 2.2. For any pseudo-Lispchitz performance metric g, the training and generalization errors (2) converge in the high-dimensional limit of n, d → ∞ with xed ratio α = n /d to deterministic expressions which are entirely determined by the solution of a set of self-consistent replica saddle-point equations [START_REF] Mei | Generalization error of random feature and kernel methods: Hypercontractivity and kernel matrix concentration[END_REF].

ε tr ( θ) P ε tr (θ 0 , {µ c } c∈C , {Σ c } c∈C ) ε gen ( θ) P ε gen (θ 0 , {µ c } c∈C , {Σ c } c∈C ) (9) 
The key di erence between Prop. 3.1 and Thm. 1 from [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF] is the distribution of the labels. While the labels in [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF] are given by the GMM cluster index, in Prop. 3.1 we consider labels generated by the target function (4). While we do not provide a formal proof of these results, note that the generic proof scheme from [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF], that maps the solution to the study of a so-called approximate message passing algorithm [START_REF] David L Donoho | Message-passing algorithms for compressed sensing[END_REF], can be readily adapted to our setting. Indeed, the approximate message passing scheme in our scenario is the same, and the only di erence in the proof is to include a teacher in the its asymptotic analysis, similarly as was done in [START_REF] Cornacchia | Learning curves for the multi-class teacher-student perceptron[END_REF].

Once we speci ed the GMM, and properly de ned the ERM in eq. ( 1) we can evaluate the expressions in eqs. ( 2),(3) as a function of low-dimensional quantities which de ne the su cient statistics of the asymptotic errors, and are also known as order parameters. We give the detail of the computation in Appendix A.

Uncorrelated teachers

An in-depth comparison of the asymptotic expressions for the errors of Models 2.1 & 2.2 reveals that their key di erence lies on the way the leading target direction θ 0 correlate with the cluster means and covariances. A rst step towards universality is therefore to characterize under which conditions the asymptotic errors are independent of the means. We make the following assumptions:

Assumption 1. The teacher θ 0 respects, ∀(c, c ) ∈ C × C: lim n,d→∞ θ 0 µ c d = 0 (10) lim n,d→∞ 1 d θ 0 Σ c λ + c∈C V c Σ c -1 µ c → 0 (11) 
where { V c } K c=1 are the xed points of the (replica) saddle point equations describing the centered GMM problem.

Assumption 2. The loss function, and the teacher distribution are both symmetric:

(x, y) = (-x, -y) (12) 
P 0 (y|τ ) = P 0 (-y| -τ ) , (13) 
and the regularization is an 2 penalty λ /2 • 2 2 .

Proposition 3.2. (Mean Universality) Under Assumptions 1 and 2,the cluster means {µ c } c∈C are not relevant in high-dimensional ERM estimation:

ε GMM gen {µ c } K c=1 , {Σ c } K c=1 ε GMM gen 0, {Σ c } K c=1 ( 14 
)
ε GMM tr {µ c } K c=1 , {Σ c } K c=1 ε GMM tr 0, {Σ c } K c=1 (15) 
Therefore, intuitively mean universality can be achieved when the label generation process is uncorrelated with the data structure, see Appendix B for a detailed discussion. The assumptions on the target and loss function are not restrictive, and are easily satis ed by odd target activation f 0 and margin-based losses of the form l(y, z) = (yz). Stronger universality can be shown by doing simplifying assumption on the data structure. Indeed, if the mixture is homogeneous (in the sense that the all the covariance are identical, a condition often called homoscedasticity in statistics) we have Gaussian universality: Theorem 3.3. (Gaussian Universality of homoscedastic GMMs) Under the assumption of 3.2, consider an homoscedastic GMM:

Σ c = Σ ∀c ∈ C
Then for all α and ∆, the errors of the GMM are asymptotically equal to those of a GCM:

ε GMM gen {µ c } K c=1 , Σ ε GCM gen (θ 0 , Σ, 0) (16) 
ε GMM tr {µ c } K c=1 , Σ ε GCM tr (θ 0 , Σ, 0) (17) 
This results follow in a straightforward way from Theorem. 3.2. We have mapped under controllable assumptions a GMM problem to a simpler Gaussian one.

Additionally, if we consider vanishing regularization, we can prove that errors are independent from the shape of the covariance, and therefore we can take an isotropic mixture: The proof of this general result is given in Appendix B. Since the training error for losses such as logistic or hinge characterize the separability transition at λ = 0 + , an interesting consequence of Thm. 3.4 is the following: Corollary 3.5. (Universality of linear separability for homoscedastic GMMs) The location of the separability / interpolation transition α c above which the data stop to be linearly separable is the same for homoscedastic GMMs and the Gaussian model.

This universality is particularly interesting in light of the detailed study of the separability transition for random teacher weights and Gaussian data in [START_REF] Emmanuel | The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression[END_REF]. Similar universality phenomena was observed for the reconstruction transition in linear estimation in [START_REF] Abbasi | Universality in learning from linear measurements[END_REF].

Surprisingly, if we further consider a square loss minimization, the estimation of any GMM (homoscedastic or not!) under mean universality condition can be mapped to those of a trivial Gaussian problem: Theorem 3.6. (Strong universality of the square loss for λ = 0 + ) Consider underparametrized learning of GMMs with general means and covariance respecting the assumptions of Theorem. 3.2. Set in eq. (1): l(y, ŷ) = (y -ŷ) 2 and consider a generic noisy linear teacher activation P 0 (τ ; ∆) = N(τ, ∆), with ξ ∼ N(0, 1). Then, the training error for a GMM estimation problem is given by

ε GMM tr {µ c } K c=1 , {Σ c } K c=1 (α -1)∆ α (18) 
Note that the strong universality statement does not hold for the test error (a counterexample is discussed in Appendix C using a strongly heteroscedastic case). However, as we see from Fig. 1, it seems surprisingly true that random teacher regression on real data follows the Gaussian asymptotic prediction in the underparametrized region. Moreover, we observe in the lower panel of Fig. 1 that even for non-quadratic losses we can draw a similar conclusion, and we investigate this further in next section.

Finally, we note that it the limit of in nite noise and binary labels, our results give back the ones observed for purely random Rachemacher labels proven in [START_REF] Gerace | Gaussian universality of linear classi ers with random labels in high-dimension[END_REF].

Correlated teachers

We now consider the general case where the target weights correlate with the structure in the data, relaxing the assumptions in Theorem. 3.2. Can we still say something? Our rst result shows that the answer is yes. We focus on a simple controlled setting in which we can express the ERM performance in a closed form for any teacher vector: Theorem 3.7. (Exact asymptotics for isotropic covariance) Consider a ridge regression task with a 2-clusters GMM (2.2). Note that, without loss of generality we can take µ + = -µ -= µ. Assume isotropic covariances:

Σ + = Σ -= I d , (19) 
and denote:

ρ = lim d→∞ 1 d θ 0 Σθ 0 , γ = lim d→∞ 1 d ||µ|| 2 2 (20) π = lim d→∞ 1 d µ θ 0 P 0 (τ ; ∆) = N(τ, ∆). ( 21 
)
De ning:

A(η) = (η -1) 2 γη 2 + 2η -1 (∆ + (η -1) 2 ρ) (1 + γη) 2 with (22) η = 1 + 1 2 α -1 + λ -4λ + (α -1 + λ) 2
The asymptotic errors admit a closed form expression in terms of η: where g and t are the asymptotic limit of the generalisation ε GCM gen (θ 0 , I, 0) and training ε GCM tr (θ 0 , I, 0) error for a single Gaussian model with unit covariance and uncorrelated teacher:

ε GMM gen g(α, ∆, ρ, η)(1 -π 2 A(η)) (23) 
ε GMM tr t(α, ∆, ρ, η)(1 -π 2 A(η)) (24) 
g(α, ∆, ρ, η) = α ∆ + (η -1) 2 ρ (α -η 2 ) (25) t(α, ∆, ρ, η) = (α -η) 2 ∆ + (η -1) 2 ρ α (α -η 2 ) (26) 
The full closed form expressions and the extension to covariances of the form Σ = σI d are derived in Appendix C. Note that the correction factor to the Gaussian performance scales with π 2 , a measure of correlation between teacher vector and data structure. Hence, we would be tempted to state that targets that correlate with the data structure, i.e. π = 0, always break Gaussian universality. Although this is usually the case, in the limit of vanishing regularization we are in the position to present an interesting corollary of Theorem. 3.7: Corollary 3.8. (Restoration of universality for λ = 0 + ) Consider the same setting of Theorem. 3.7, further consider underparametrized learning in the limit of vanishing regularization. Then, the test and training errors for a GMM estimation are equal to a Gaussian one for any teacher vector (that is eqs ( 23) and ( 24) at η = 0):

ε GMM gen = ∆ α α -1 (27) 
ε GMM tr = ∆ (α -1) α (28) 
We thus restore Gaussian universality for correlated teachers in the underparametrized regime, in a similar fashion to what Theorem. 3.4 is stating for general convex losses and covariances under the mean universality condition. The universality property for correlated teachers is valid also for more general homoscedastic mixtures with identity covariance. For the sake of brevity we refer to Appendix C where we discuss in detail this interesting extension. 1, we pre-processed grayscale Cifar10 with wavelet scattering (blue dots) or orthogonal hadamard projections (yellow dots), or used directly the raw data (red dots). Using again a random teacher function, the training error is found to agree perfectly with the universal Gaussian asymptotics predictions with identity covariance and λ = 0 + , as for theorem 3.6, but the generalization is found to show clear deviation. This highlight the roles of heteroscedasticity in the data. Error bars are built over 30 runs. we build a series of learning tasks with teacher weights dependent on Ω, namely we take θ 0 (Ω) = Ωµ ⊥ + √ 1 -Ω 2 µ + , with µ + µ ⊥ = 0. We x the dimension to be d = 500, and (α, λ) = (1.2, 0.7). The solid black line is the theoretical prediction coming from Gaussian asymptotics. The solid red line is the theoretical prediction for the GMM performance, while the orange dots are the numerical simulations which agree as expected with the theoretical prediction. In the left panel we have real labels and perform ridge regression, while on the central one we consider binary labels and perform logistic regression. The error bars are built using standard deviation over 30 runs. Right: Geometrical intuition plotted for d = 2. Three hyperplanes (lines in 2D) are displayed correspondent to Ω = {0, 0.5, 1}, respectively in green, blue, and orange. As Ω increase the labels become more uncorrelated with the data structure.

θ 0 (Ω = 0.5) θ 0 (Ω = 1) θ 0 (Ω = 0)

Illustration on synthetic and real datasets

In this section we investigate the consequences of our main theoretical results. First, we consider the case of real data, illustrating the applicability of our universality theorems in cases in which the target is not correlated with the data structure. Based on these observations we move on studying simple synthetic settings described in Theorem 3.7 and for which we can derive analytical results and systematically probe Gaussian universality. All the code used in our experiments are available in a GitHub repository.

Random teacher universality

We analyze Gaussian universality of real data under the random teacher function assumptions of Prop. 3.2. We consider three standard datasets: MNIST, Fashion-MNIST, and grayscale CIFAR-10, as well as synthetic data.

Universality with random feature maps -To go beyond simple linear t, we pre-process the data with a random feature map [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF] as follows: take an image ω ν ∈ R d and map it to x ν = σ(F ω ν ), where the elements F ∈ R d×d are i.i.d drawn from N(0, 1) and σ(•) is an activation function. As shown in [START_REF] Rahimi | Random Features for Large-Scale Kernel Machines[END_REF], for d → ∞ this converge to a kernel method. For each dataset we take a di erent non-linearity (erf,tanh, and sign as described in Fig. 1). We then build new labels by plugging in eq. ( 4) θ 0 ∼ N(0, I d ), and we set for regression tasks f 0 (τ ) = τ + ∆, while for classi cation tasks f 0 (τ ) = sign(τ + ∆).

First, we analyze the vanishing regularization case in Fig. 1: random teacher regression on pre-processed real datasets respects the strong universality of the training loss as stated in Theorem. 3.6. Interestingly, we also observe a perfect match between the Gaussian asymptotics prediction and the simulations in Fig. 1 for the generalization error. This suggests that after the random features maps the data is su ciently close to a homoscedastic mixture. Further, the lower panel of Fig. 1 shows that the strong universality property seems to hold beyond square loss minimization.

We analyze as well the nite regularization setting in Fig. 2: we compare the simulations on real data with the prediction of the exact Gaussian asymptotics: we match the covariance of each pre-processed real dataset and compute the performance of the ERM estimator thanks to the deterministic replica formula. 3.1. The predictions of the Gaussian theory matches the numerical simulations. As discussed for Fig. 1, it seems that the homoscedasticity assumption in Theorem. 3.3 can be sometimes relaxed.

Universality of the double descent phenomena -One nding in modern machine learning that goes against the classical statistical theory wisdom is the double descent behaviour of learning curves [START_REF] Mei | The generalization error of random features regression: Precise asymptotics and double descent curve[END_REF][START_REF] Opper | Statistical mechanics of generalization[END_REF][START_REF] Belkin | Reconciling modern machine-learning practice and the classical bias-variance trade-o[END_REF][START_REF] Spigler | A jamming transition from under-to overparametrization a ects generalization in deep learning[END_REF], see upper panel of Fig. 1: the test error does not deteriorate as the number of parameters is increased with a characteristic divergence at α = 1, known as the interpolation peak. As shown in Fig. 1 and Fig. 2, the generalization error and its characteristic "double descent" behavior for α > 1 is universal for homoscedastic data, while the training error appears universal even for heteroscedastic data (see Fig. 3).

Universality of linear separability -Recently, [START_REF] Emmanuel | The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression[END_REF] investigated the linear separability of Gaussian data with a random teacher and noise ∆, generalizing the classical results by [START_REF] Thomas | Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[END_REF] to a single-index target. [START_REF] Emmanuel | The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression[END_REF] has shown the existence of a critical phase transition α c (∆) that goes continuously from α c (∞) = 2 (for in nite noise) to α c > 2 for nite ∆ (with α c → ∞ as ∆ → 0). As discussed in corollary 3.5, this transition is universal for homoscedastic mixtures. The interest of this transition thus extends way beyond Gaussian data and in fact agrees with the real data experiment in Figs. 1 and2. As for the double descent phenomena, we believe it is a very interesting consequence of our theorems that the theoretical works mentioned above are valid way beyond the simple Gaussian assumption.

Non-universal behavior for generalization -Finally, we implemented di erent transforms beyond random features for the pre-processing step: we considered the wavelet scattering transform [START_REF] Mathieu Andreux | Kymatio: Scattering transforms in python[END_REF], orthogonal random projections [START_REF] Krzysztof | The unreasonable e ectiveness of structured random orthogonal embeddings[END_REF], and even no transform at all. Without the shu ing of the random projection, the fact that the data are complex and probably rather heteroscedastic than homoscedastic, we expected a weaker form of universality. We present the results of ridge regression with labels generated by a random teacher vector in Fig. 3. The strong universality statement in Theorem. 3.6, that did not required any assumption on the data, remains valid and we observed a perfect collapse of the training data. However, as expected, the generalization error shows clear deviations with respect to the Gaussian behavior. Presumably these transforms do not homogenize the data enough such that Gaussian universality for the test error to hold.

Correlated teacher

Previously, we showed that ridge regression with a random teacher model, even when the data is structured, can lead to universal behaviour. We now consider the dual task: take a simple homogeneous model for the data and study correlated target weights. Indeed, some recent works have studied examples of the lack of universality between Gaussian mixtures and Gaussian models [START_REF] Tomasini | Failure and success of the spectral bias prediction for Laplace Kernel Ridge Regression: the case of low-dimensional data[END_REF][START_REF] Ingrosso | Data-driven emergence of convolutional structure in neural networks[END_REF]; we want to follow this direction and use the setting described in Theorem. 3.7: we consider a 2-cluster GMM with opposite means of norm µ and same covariance Σ. We build a series of learning tasks at xed (α, λ) varying the overlap between the teacher vector and the cluster means as follows:

θ 0 (Ω) = Ωµ ⊥ + √ 1 -Ω 2 µ (29) such that µ µ ⊥ = 0 (30) 
The results are presented in Fig. 4 for both ridge and logistic regression. They clearly show that a small correlation between the target weights and the mixture means breaks Gaussian Universality. A neat geometrical intuition of the result is given in Fig. 4: as we decrease Ω, we generate labels which are more and more correlated with the data distribution, and consequently there is a correction factor to the Gaussian prediction as Theorem. 3.7 predicts. We refer to Appendix. C for a more detailed discussion on correlated teachers. We conclude that universality is broken in tasks where the labels are correlated with the structure. Note, however, that as proven in Corollary. 3.8: the discrepancy between the GMM prediction and the Gaussian one goes to zero for any correlation measure Ω as λ → 0 + , where the universality is restored as suggested by Thm. 3.6.

A Replica computation A.1 Formal statement of the theorem

We rst provide the full statement of Proposition 3.1. Consider a minimization problem of the form θ = arg min

θ∈R d 1 n n ν=1 y ν , θ x ν + r(θ), (31) 
where the data (x ν , y ν ) is generated according to the following Gaussian mixture model:

x ν ∼ c∈C p c N µ c √ d , Σ c and y ν ∼ P 0 (• | θ 0 x ν ) (32) 
and assume the following: Then, as n, d → ∞ with n/d → α > 0, we have

ε tr ( θ) P c∈C p c E ω (s) c ,ω (t) 
c ,y

y, prox V c (y,•) (ω (s) c ) =: ε tr (θ 0 , {µ c } c∈C , {Σ c } c∈C ) ε tr ( θ) P c∈C p c E ω (s) c ,ω (t) c ,y y, ω (s) c 
=: ε tr (θ 0 , {µ c } c∈C , {Σ c } c∈C ) (33) 
where ω

(s) c ω (t) c ∼ N π c h c , ρ m c m c q c and y ∼ P 0 • ω (t) c . ( 34 
)
and the prox function is

prox f (x) = min z∈R 1 2 (z -x) 2 + f (z) (35) 
The overlaps used in the equation are de ned as follows:

ρ c = 1 d θ 0 Σ c θ 0 , π c = 1 d θ 0 µ c , (36) 
and (V c , q c , m c , h c ) c∈C are the unique xed point of the following set of self-consistent replica saddle-point equations:

               Vc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc ∂ ω f (y, h c + √ q c ξ c , V c ) qc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) 2 mc = αp c E ξc∼N(0,1) dy ∂ ω Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) ĥc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c )              V c = E {ξc} i.i.d ∼ N(0,I d ) η q-1/2 c Σ 1/2 c ξ c q c = E {ξc} i.i.d ∼ N(0,I d ) η Σ c η m c = E {ξc} i.i.d ∼ N(0,I d ) θ 0 Σ c η h c = E {ξc} i.i.d ∼ N(0,I d ) µ c η (37)
and we have de ned the following auxiliary functions:

Z 0 (y, ω, V ) = dλ √ 2πV P 0 (y|λ) e -(λ-ω) 2 2V (38) f (y, ω, V ) = -V -1 ∂ ω M V (y,•) (ω) = V -1 prox V (y,•) (ω) -ω . (39) 
Finally, the auxiliary variable η is a function of {ξ c , Vc , mc , qc , ĥc }:

η = prox r( Σ-1/2 •) Σ-1/2 c∈C μc + qc Σ 1/2 c ξ c (40) 
with

μc = ĥc µ c + mc Σ c θ 0 and Σ = c∈C Vc Σ c (41) 
We will not prove this theorem, since the proof is virtually equivalent to the one in [START_REF] Loureiro | Learning gaussian mixtures with generalised linear models: Precise asymptotics in high-dimensions[END_REF][START_REF] Cornacchia | Learning curves for the multi-class teacher-student perceptron[END_REF]. Instead, the next sections are dedicated to the derivation of these equations, using the so-called replica method from statistical physics [START_REF] Mezard | Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications[END_REF]. Simpler particular cases of these equations can be found in Appendix A.9.

A.2 Gibbs measure and free energy

The starting point for our replica computation is to de ne the Gibbs measure over the weights W ∈ R K×d :

µ β (θ) = 1 Z β e -β n ν=1 (y ν ,θ x ν )+λr(θ) = 1 Z β e -βr(θ) n ν=1 e -β (y ν ,θ x ν ) (42) 
where β > 0 is a parameter we eventually want to send to β → 0 + , and Z β ∈ R is the partition function (the normalisation of the Gibbs measure). For convenience, we will de ne the following useful notation:

P θ (θ) ≡ e -βr(θ) , P (y ν |θ x ν ) ≡ e -β (y ν ,θ x ν ) (43) 
which allow us to write the Gibbs measure as:

µ β (θ) = 1 Z β P θ (θ) n ν=1 P (y ν |θ x ν ) (44) 
When β → ∞, the Gibbs measure µ β will concentrate around the θ that minimize the empirical risk (1). As a result, the free energy density de ned as

-βf β = lim d→∞ 1 d E log Z β (45) 
where the limit is taken with n/d = α xed, and the expectation is over the distribution of the data, will concentrate around the minimum risk. In order to take the expectation explicitly, we use the replica trick:

log Z β = lim s→0 + 1 s ∂ s Z s β | s=0 (46) 
Therefore, the replica computation boils down to the computation of the averaged replicated partition function:

EZ s β = E R d dθ P θ (θ) n ν=1 P y ν |θ x ν s (47) = n ν=1 E (x ν ,y ν ) s a=1 dθ a P θ (θ a )P y ν |θ a x ν (48) 
A. [START_REF] Wu | On the optimal weighted \ell_2 regularization in overparameterized linear regression[END_REF] Taking the average over the data

The main di erence in this computation with respect to the usual binary Gaussian mixture is that the labels are generated by a teacher target function. In other words, the joint distribution of the data is given by:

P θ0 (x, y) = P 0 (y|τ ) c∈C ρ c N x; µ c √ d , I d (49) 
where P 0 (y|τ ) is the probability induced by the teacher activation f 0 (τ ). The expression in [START_REF] Krzysztof | The unreasonable e ectiveness of structured random orthogonal embeddings[END_REF] can then be written as:

EZ s β = s a=1 dθ a P θ (θ a ) R dy R d dxP 0 (y|θ 0 x)P x (x) s a=1 P y ν |θ a x ν n (50) 
We make a change of variables by introducing the local elds τ = θ 0 x and λ a = θ a x. The distribution of the local elds will be a Gaussian mixture itself, and we can compute the moments for each mode:

π c ≡ E x ν [τ c ] = 1 d θ 0 µ c ρ c ≡ Var x ν [τ c ] = 1 d θ 0 Σ c θ 0 h a c ≡ E x ν [λ a c ] = 1 d θ a µ c q ab c ≡ Cov x ν λ a c , λ b c = 1 d θ a Σ c θ b m a c ≡ Cov x ν [τ c , λ a c ] = 1 d θ 0 Σ c θ a (51) 
Equivalently, the local elds distribution is the following low-dimensional Gaussian mixture distribution:

P (τ, λ) = c∈C p c N π c h c , ρ c m c m c Q c , (52) 
where we have de ned the vectors m, h ∈ R s with entries m a , h a and the matrix Q ∈ R s×s with entries q ab . Therefore, we can factorize the partition function by only integrating over the local eld distribution:

EZ s β = s a=1
dθ a P θ (θ a ) dy dτ P 0 (y|τ ) s a=1 dλ a P (y|λ a ) P (τ, λ|m, h, q) n (53)

A.4 Writing as a saddle-point problem

Note that (π c , ρ c ) are xed inputs in the problem. By Fourier transform arguments, we can write δ m a c -

1 d θ 0 Σ c θ a = iR d ma c 2π e ma c (dm a c -θ 0 Σcθ a ) , (54) 
where the integral is on the imaginary line. By doing the same arguments for the q ab c and h a c , it ensues that rs (m, m,q,q)

(55)

where we have de ned the free energy potential:

Φ (s) rs (m, m, q, q) = c∈C   s a=1 ma c m a c + s a=1 ĥa c h a c + 1≤a≤b≤s qab c q ab c   -αΨ (s) g (m, h, q) -Ψ (s)
θ ( m, ĥ, q) Ψ (s) (m, h, q) ≡ log dy dτ P 0 (y|τ ) s a=1 dλ a P (y|λ a )P (τ, λ|m, h, q)

Ψ (s)
θ ( m, ĥ, q) ≡ Therefore, as we take the d → ∞ limit, we can apply the saddle-point method [START_REF] Mezard | Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications[END_REF] to compute f β -βf β = extr m, m,h, ĥ,q,q lim s→0 + Φ (s) (m, m, h, ĥ, q, q) s (57)

Remark A.1. We have introduced the parameters q, m, ĥ as pure imaginary numbers, but the optimization problem considers them as real numbers. This stems from the fact that the function Φ is holomorphic, so the integral is independent from the contour of integration. More details can be found in [START_REF] Talagrand | What Is a Quantum Field Theory[END_REF].

A.5 Replica symmetric ansatz

In order to make progress with the s → 0 + limit, we make the following replica symmetric ansatz:

m a c = m c ma c = mc , a = 1, • • • , s h a c = h c ĥa c = ĥc , a = 1, • • • , s q aa c = r c , qaa c = - 1 2 rc , a = 1, • • • , s q ab c = q c , qaa c = qc , 1 ≤ a < b ≤ s (58)
for all c ∈ C. Since and r are convex, the function Φ (s) has a unique saddle point, which must therefore coincide with the replica symmetric ansatz. We also de ne

V c = r c -q c , and 
Vc = rc -qc (59) 
By inserting this ansatz above, we can take the s → 0 + limit. This is done through a classical but computationally heavy method known as the Hubbard-Stratonovich transform; details can be found in [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF], Appendix C. We simply reproduce the nal results here:

-βf β = extr {mc, mc,hc, ĥc,qc, qc,Vc, Vc}

Φ rs ({m c , mc , h c , ĥc , q c , qc , V c , Vc }) (60) 
The replicated free energy Φ rs is given by the following formula:

Φ rs ({m c , mc , h c , ĥc , q c , qc , V c , Vc }) = c∈C 1 2 Vc q c -qc V c - 1 2 Vc V c + mc m c + ĥc h c (61) -αΨ ({m c , h c , q c , V c }) -Ψ θ ({ mc , ĥc , qc , Vc }) ( 62 
)
where we have decomposed the contributions coming from the loss (Ψ ) and the regularization (Ψ θ ):

Ψ = c∈C E ξc i.i.d ∼ N(0,1) dyZ 0 y, m c √ q c ξ + π c , ρ - m 2 c q c log Z (y, h c + √ q c ξ c , V c ) (63) 
Ψ θ = 1 d E ξc i.i.d ∼ N(0,I d ) log Z θ c∈C Vc Σ c , c∈C ĥc µ c + mc Σ c θ 0 + qc Σ 1/2 c ξ c , (64) 
and de ned the following auxiliary free energies:

Z /0 (y, ω, V ) = dλ √ 2πV P /0 (y|λ) e -(λ-ω) 2 2V (65) Z θ (A, b) = dθe -βr(θ) e -1 2 θ Aθ+b θ (66) 
A.6 Taking the zero temperature limit

In order to take the β → ∞ limit, we make the following rescalings:

V c → β -1 V c Vc → β Vc qc → β 2 qc mc → β mc . ( 67 
)
It is easy to check how this rescaling a ects β -1 Φ (rs) , so we only need to consider Ψ and Ψ θ . We start with the latter: letting

L θ (θ) = 1 2 θ Aθ -b θ + r(θ)
by the Laplace method for any A, b,

lim β→∞ 1 β log Z θ (βA, βb) = -inf θ L θ (θ) = -L θ (η) (68) 
where

η = prox r(A 1/2 •) (A 1/2 b). ( 69 
)
As a result, every integral involved in Ψ θ (and, later, its partial derivatives) concentrates around its value at η de ned in [START_REF] Cornacchia | Learning curves for the multi-class teacher-student perceptron[END_REF]. For the term Ψ , the term Z 0 is left unchanged, and by the same reasoning as above

lim β→∞ 1 β log Z (y, ω, βV ) = -V -1 M V (y,•) (ω). (70) 

A.7 Saddle-point equations

The saddle-point equations are obtained by taking the derivatives of the free energy potential with respect to the overlap parameters. We obtain a set of self-consistent equations which we should solve in order to nd a xed point:

               Vc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc ∂ ω f (y, h c + √ q c ξ c , V c ) qc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) 2 mc = αp c E ξc∼N(0,1) dy ∂ ω Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) ĥc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) (71)              V c = E {ξc} i.i.d ∼ N(0,I d ) η q-1/2 c Σ 1/2 c ξ c q c = E {ξc} i.i.d ∼ N(0,I d ) η Σ c η m c = E {ξc} i.i.d ∼ N(0,I d ) θ 0 Σ c η h c = E {ξc} i.i.d ∼ N(0,I d ) µ c η (72)
where all the relevant quantities have been de ned in Appendix A.1.

A.8 Training and generalization errors

It now remains to compute the training and generalization errors from the free energy. Recalling that

ε tr ( θ) = 1 n n ν=1 y ν , θ x ν ,
we can write using the de nition of the free energy [START_REF] Spigler | A jamming transition from under-to overparametrization a ects generalization in deep learning[END_REF]:

lim n→∞ ε tr = lim β→∞ ∂ β f β -r( θ).
Computing explicitly the derivative and averaging again over the data yields

lim n→∞ ε tr = -lim β→∞ ∂ β Ψ ,
where Ψ is the free energy contribution of the loss de ned in (63). Writing explicitly this derivative,

-∂ β Ψ = c∈C E ξc∼N(0,1) R dy Z 0 y, ω (0) c , ρ - m 2 c qc Z (y, ω ( ) c , V c ) R dλ √ 2πV c e -(λ-ω ( ) c )V -1 c (λ-ω ( ) c ,Vc))-β (y,λ) (y, λ) Z (y,ω ( ) c ,Vc) (73) 
where

ω (0) c = π c + m c √ q c ξ c and ω ( ) c = h c + √ q c ξ c .
We can now make the change of variables in (67), and use again Laplace's approximation: if ηc) and Z (y, ω ( ) c , V c ) ∼ e -βL(ηc) (y, η c ), and all of the overlaps will concentrate around the solutions of (71), (72). Finally, the term containing Z 0 is an expectation of y according to P 0 (y | τ c ), where

η c = prox V (y,•) (ω ( ) c ) and L(λ) = -(λ -ω ( ) c )V -1 c (λ -ω ( ) c ) -β (y, λ), then Z (y, ω ( ) c , V c ) ∼ e -βL(
τ c = ω (0) c + ρ - m 2 c q c ξ (0) c and ξ (0) 
c is a Gaussian variable independent from everything else. Putting all together, we can write

lim n→∞ ε tr ( θ) = c∈C p c E νc,τc,y y, prox V c (y,•) (ν c ) (74) 
with

ν c τ c ∼ N π c h c , ρ c m c m c q c and y ∼ P 0 (• | τ c ). (75) 
The generalization error is much simpler to obtain: since x new , y new are independent from the estimator θ, we simply have lim

n→∞ ε gen ( θ) = c∈C p c E νc,τc,y [ (y, ν c )] (76) 
where ν c , τ c , y follow the same distribution as above.

A.9 Examples

Ridge penalty Consider a particular case of the general equations reported above: the case of a ridge penalty

r(θ) = λ 2 ||θ|| 2 2 .
We then have:

prox r (x) = (1 + λ) -1 x (77) 
which simplify the prior equations considerably. Indeed, we can now compute every expectation in (72), which yields the following xed-point equations:

               Vc = -αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc ∂ ω f (y, h c + √ q c ξ c , V c ) qc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) 2 mc = αp c E ξc∼N(0,1) dy ∂ ω Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) ĥc = αp c E ξc∼N(0,1) dy Z 0 y, π c + mc √ q c ξ c , ρ - m 2 c qc f (y, h c + √ q c ξ c , V c ) (78) 
                           V c = 1 d tr Σ c λI d + Σ -1 q c = 1 d tr c ∈C qc Σ c + c ,c ∈C μc μ c Σ c λI d + Σ -2 m c = 1 d tr c ∈C μc θ 0 Σ c λI d + Σ -1 h c = 1 d tr c ∈C μc µ c λI d + Σ -1 (79) 
Gaussian covariate model The equations for the Gaussian covariate model can be found in [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF]; they also correspond to taking |C| = 1 in the ones above. We reproduce them here for completeness:

               V = -αE ξ∼N(0,1) dy Z 0 y, π + m √ q ξ, ρ -m 2 q ∂ ω f (y, h + √ qξ, V ) q = αE ξ∼N(0,1) dy Z 0 y, π + m √ q ξ, ρ -m 2 q f (y, h + √ qξ, V ) 2 m = αE ξ∼N(0,1) dy ∂ ω Z 0 y, π + m √ q ξ, ρ -m 2 q f (y, h + √ qξ, V ) ĥ = αE ξ∼N(0,1) dy Z 0 y, π + m √ q ξ, ρ -m 2 q f (y, h + √ qξ, V ) (80) 
                         V = 1 d tr Σ λI d + Σ -1 q = 1 d tr qΣ + μμ Σ λI d + Σ -2 m = 1 d tr μθ 0 Σ λI d + Σ -1 h = 1 d tr μµ λI d + Σ -1 (81) 
where this time μ = ĥµ + mΣθ 0 and Σ = V Σ.

The errors are given by

lim n→∞ ε tr ( θ) = E ν,τ,y y, prox V (y,•) (ν) (83) 
lim n→∞ ε gen ( θ) = E ν,τ,y [ (y, ν)] (84) 
with ν τ ∼ N π h , ρ m m q and y ∼ P 0 (• | τ ). (85) 
Ridge regression We place ourselves in the ridge regression case, where

P 0 (τ |∆) = N(τ, ∆) l(y, ŷ) = (y -ŷ) 2 . ( 86 
)
In this case, the equations in (79) simplify even further, yielding

         Vc = αpc 1+Vc qc = αpc (1+Vc) 2 (ρ c + ∆ + q c -2m c + (h c -π c ) 2 ) mc = αpc 1+Vc ĥc = αpc(πc-hc) 1+Vc (87)                          V = 1 d tr Σ λI d + Σ -1 q = 1 d tr qΣ + μμ Σ λI d + Σ -2 m = 1 d tr μθ 0 Σ λI d + Σ -1 h = 1 d tr μµ λI d + Σ -1 (88) 
The training and generalization error also bene t from a very simple expression

ε tr = c q c α ε tr = c q c (1 + V c ) 2 α . (89) 

B Universality of Gaussian Mixture Models

In this section we prove the main results shown in in Sec. 3 regarding universality properties of Gaussian Mixture Models.

B.1 Mean Universality : proof of Proposition 3.2

Let us rewrite the assumptions here. Let { V c } K c=1 be the xed points of the (replica) saddle point equations describing the centered Gaussian mixture problem, i.e. the solutions of of eqs. (78), (79). We assume that the teacher vector and the data structure respect the following:

lim n,d→∞ θ 0 µ c d = 0 ∀c ∈ C (90) lim n,d→∞ 1 d θ 0 Σ c λ + c∈C V c Σ c -1 µ c → 0 ∀(c, c ) ∈ C × C (91) 
and the loss and teacher are both symmetric:

(x, y) = (-x, -y) (92) 
P 0 (y|τ ) = P 0 (-y| -τ ) . (93) 
In the saddle-point equations ( 78), (79), the mean vectors appear always coupled with the overlaps {h c , ĥc } c∈C . Hence, to prove Prop. 3.2 it su ces to prove the following result:

Lemma B.1. If (a + b + c) hold, then {h c = ĥc = 0} c∈C is a xed point for the problem.
First consider the update equations for {h c } c∈C :

h c = 1 d l tr   ĥl µ l µ c + ml Σ l θ 0 µ c λI d + l Vl Σ l -1   (94) a+c 1 d l tr   ĥl µ l µ c λI d + l Vl Σ l -1   (95) 
By continuity of the saddle-point equations, if at the xed point { ĥ c → 0} c∈C holds, we also easily have that {h c → 0} c∈C . Now assume {h c = 0} c∈C at the xed point. We exploit symmetry argument inherent to the update functions to show that { ĥ c = 0} c∈C under weak assumptions on the teacher and loss functions. We write the updates using assumption c):

ĥc = αE ξ∼N(0,1) dy Z 0 y, m c √ q c ξ + π c , ρ c - m 2 c q c f (y, h c + √ q c ξ, V ) (96) 
hc→0 αE ξ∼N(0,1) dy Z 0 y, m c √ q c ξ, ρ c - m 2 c q c f (y, √ q c ξ, V c ) (97) 
Reminding the de nition of the teacher measure term:

Z 0 (y, ω, V ) = E λ∼N(ω,V ) [P 0 (y|λ)] λ ≡ x θ 0 √ d (98) 
we see that the symmetry conditions impose basic restrictions on the label generation:

f ) E λ∼N(ω,V ) [P 0 (y|λ)] = E λ∼N(-ω,V ) [P 0 (-y|λ)] (99) 
and hence Z 0 is even in its second argument. Additionally, we have

f (y, ω, V ) = 1 V (prox V l(y,•) (ω) -ω) prox V (y,•) (w) = arg min z 1 2V (z -w) 2 + (y, z) (100) 
The symmetry condition on then implies that

prox V (-y,•) (-ω) = -prox V (y,•) (ω), (101) 
so f is odd in its second argument. All that's left to notice is that (97) is an Gaussian integral of an odd function, hence it is equal to 0.

B.2 Gaussian Universality : proof of Proposition 3.3

We proved that the xed point respects {h c , ĥ c = 0, 0} c∈C under the hypothesis of Prop. 3.2. Assume now that the mixture is homogeneous:

Σ c = Σ ∀c ∈ C (102)
Then we have

ε GMM gen {µ c } K c=1 , {Σ} K c=1 ε GMM gen 0, {Σ} K c=1 (103) ε GMM tr {µ c } K c=1 , {Σ} K c=1 ε GMM tr 0, {Σ} K c=1 ( 104 
)
But the right-hand side of those equations corresponds to a distribution of the form

x ∼ c∈C N(0, Σ) = N(0, Σ)!
This proves Proposition 3.3

B.3 Covariance universality

Surprisingly in the limit of vanishing regularization, λ → 0 + , the covariance is not relevant for the high dimensional learning problem. We show that when a unique minimizer of the loss exists, and we can take safely the limit λ → 0 + in the saddle point equations, the covariance Σ disappears completely from the overlap expression. Indeed assuming the minimizer θ is unique, we can safely simplify expression of the type:

lim λ→0 + Σ n (λI d + V Σ) n = 1 V Σ n-n (105) 
Then by plugging in the λ → 0 + simpli cation in eqs. ( 80), (81) we have complete independence from the covariance matrix Σ:

         V = -αE ξ∼N(0,1) dy Z 0 y, mc √ qc ξ, ρ c - m 2 c qc ∂ ω f (y, √ q c ξ, V c ) q = αE ξ∼N(0,1) dy Z 0 y, mc √ q ξ, ρ -m 2 q f (y, √ qξ, V ) 2 m = αE ξ∼N(0,1) dy ∂ ω Z 0 y, m √ q ξ, ρ -m 2 q f (y, √ qξ, V ) (106) 
     V = 1 q = q + ρ m2 m = mρ (107) 
which concludes the proof.

B.4 Strong universality

We never made any speci c assumption on the loss up to now, apart the very general symmetry condition in Assumption 2. In this section we show strong universality for square loss regression for any GMM estimation problem respecting the mean universality property (Prop. 3.2). We assume to consider a ridge regression problem in the underparametrized regime α > 1:

P 0 (τ |∆) = N(τ, ∆) (y, ŷ) = (y -ŷ) 2 (108) 
the replicas then correspond to equations (87), (88). In the λ → 0 + limit, the equation simplify greatly:

     Vc = αpc 1+Vc qc = αpc (1+Vc) 2 (ρ c + ∆ + q c -2m c ) mc = αpc 1+Vc (109)          V c = 1 d tr Σ c ( l∈C Vl Σ l ) -1 q c = 1 d K l∈C tr ql Σ l Σ c ( l ∈C Vl Σ l ) -2 + 1 d (l,l) ∈C×C tr ml ml Σ l θ 0 θ 0 Σ l Σ c ( l ∈C Vl Σ l ) -2 m c = 1 d K l=1 tr ml Σ l θ 0 θ T 0 Σ c ( l Vl Σ l ) -1 (110) 
Consider the equation for the overlaps {q c } c∈C :

q c = 1 d K l=1 tr ql Σ l Σ c ( l Vl Σ l ) -2 + 1 d K l,k=1 tr ml mk Σ l θ 0 θ T 0 Σ k Σ c ( l Vl Σ l ) -2 (111) ≡ R c + G c (112) 
The error metrics can be decomposed as:

ε tr = c∈C p c (1 + V c ) 2 (R c + ∆) + c∈C p c (1 + V c ) 2 (ρ c + G c -2m c ) (113) 
ε gen = c∈C p c (R c + ∆) + c∈C p c (ρ c + G c -2m c ) (114) 
We focus on the second term and show that it is equal to zero. Looking at eqs. ( 110),(109), we note that:

mc = Vc ∀c ∈ C (115) 
By using eq. ( 115) we can simplify the equations for { mc , G c }:

G c = ρ c , m c = ρ c ∀c ∈ C (116) 
Plugging this relations in the saddle point equations we obtain:

Vc = αpc 1+Vc = mc qc = αpc (1+Vc) 2 (∆ + R c ) (117) 
       V c = 1 d tr Σ c ( l∈C Vl Σ l ) -1 q c = 1 d K l=1 tr ql Σ l Σ c ( l Vl Σ l ) -2 + ρ c ≡ R c + ρ c m c = ρ c (118)
The xed point of the equations does not depend on {ρ c } ∈C anymore and we are left with equations only for { Vc , qc , V c , R c } c∈C :

Vc = αpc 1+Vc qc = αpc (1+Vc) 2 (∆ + R c ) (119)    V c = 1 d tr Σ c ( l∈C Vl Σ l ) -1 R c = 1 d K l=1 tr ql Σ l Σ c ( l Vl Σ l ) -2 (120)
The errors can be computed in a closed form with a series of algebraic manipulation. One can verify by algebraic manipulation the following relations:

c V c Vc = c 1 d tr Vc Σ c ( l∈C Vl Σ l ) -1 = 1 (121) c R c Vc -V c qc = 1 d K l=1 tr ql Σ l ( c Vc Σ c )( l Vl Σ l ) -2 - 1 d tr c qc Σ c ( l∈C Vl Σ l ) -1 = 0 (122) 
Now we express everything in eq. ( 121) in terms of the non-hatted overlaps to obtain:

) c αp c 1 + V c V c = 1 (123) #) c αp c (1 + V c ) 2 R c = c αp c (1 + V c ) 2 V c ∆ (124) 
We remark that we can write the training and generalization error can be written as:

ε tr = c qc α ε tr = c q c (1 + V c ) 2 α ( 125 
)
So if we compute the quantity c qc we conclude. By plugging in (#) into the expression above we obtain:

c qc = c αp c (1 + V c ) 2 (R c + ∆) (126) = (#) ∆ c αp c (1 + V c ) 2 + ∆ c αp c (1 + V c ) 2 V c (127) = ∆ c αp c 1 + V c (128) 
and nally using relation ( ) we prove the theorem:

ε tr = c q c α (129) = c q c α ± ∆ α (130) = ( ) ∆(1 - 1 α ) (131) 
On the other hand, the generalization error does not respect the strong universlaity statement as we analyze in the next section (See Fig. 5).

C Non-universality of Gaussian Mixture Models

In the previous section we enumerated a series of results unveiling universality of GMM. Now we want to study the dual task: when GMM model are not universal? We have two ways to break universality: a) allow strong heterogeneity in the data structure; b) consider labels which are strongly correlated with the data structure. The plan for this section is to review more in detail these two processes for universality breaking.

C.1 Strongly heterogeneous mixtures

We proved in Theorem. 3.6 a strong universality statement for the training loss of ridge regression. However in this section we want to clarify that the theorem is not valid beyond its assumption for general mixtures. We prove this by analyzing a counterexample: a strongly heterogeneous 2-clusters Gaussian Mixture:

Σ + = diag(0.1, . . . , 0.1, 1.9, . . . , 1.9) p + = 0.8

Σ -= diag(1.9, . . . , 1.9, 0.1, . . . , 0.1)

p -= 0.2 (133) 
We present in Fig. 5 the comparison of the heterogeneous GMM performance with the Gaussian theory: although the training errors coincide as predicted by Theorem. 3.6, the generalization errors are di erent. However, we remark that real data after preprocessing seem homogeneous enough to obtain a good agreement with the exact Gaussian asymtptotics as we see in Fig. 1.

C.2 Correlated teachers

In this section we investigate in deeper detail the controlled setting of Theorem. 3.7. We do not necessarily consider estimation problems which respects the assumption of mean universality property (Prop. 3.2), and in fact we precisely analyze the consequences if we relax these conditions. We perform ridge regression on a two-mixtures GMM with opposite means and same covariance matrix proportional to I d . In this scenario the exact asymptotics for the performance of the ERM estimator admits a closed form expression. We remind here the main parameters for the theoretical analysis are:

ρ = 1 d θ 0 Σθ 0 = 1 d θ 0 2 2 γ = 1 d ||µ|| 2 2 ∆ = E ξ ξ 2 μ± = ĥ± µ ± + m± Σθ 0 (134) 
In this simple setting we can simplify the general mixture equations in eqs. (80),(81) without doing any assumption on the teacher. We rst map the equation to a single Gaussian problem G θ,I d ,µ . We have to slightly modify the proof of 

ĥ + = -ĥ -, m + = m - → μ + = μ - (135) 
V = V+ + Vq = q+ + q-m = m+ + m-ĥ = ĥ+ -ĥ-

V = V + = V - q = q + = q - m = m + = m - h = h + = -h - (136) 
the xed point of the replica equations for the mixture de ned above are mapped to the one of a single Gaussian problem for the overlaps {V, m, q, h, V , m, q, ĥ}. Now we can simplify them even further by plugging in the assumption on the covariance, all the traces simplify and we get:

             V = 1 λ+ V q = V 2 q + ρ m2 + 2π mĥ + γ ĥ2 m = V ρ m + π ĥ h = V γ ĥ + π m (138) 
These equations are actually solvable! De ne

η := V V = αV 1 + V ;
Now, we know that the generalization error satis es:

V 2 q = V 2 α (1 + V ) 2 ε gen = η 2 α (ε gen ).
We can plug this into the equation for q to get

ε gen = ρ + η 2 α (ε gen ) + ρ(V m) 2 + 2π(V m)(V ĥ) + γ(V ĥ) 2 q -2 ρV m + πV ĥ m +(π -h) 2 (139) 
ε tr = ε gen (1 + V ) 2 (140) 
with the relations:

V = η α -η , V m = η, V ĥ = η(π -h)
and the expression of π -h as a function of η:

π -h = π -V (γ ĥ + π m) = π -γη(π -h) -πη ⇐⇒ π -h = π 1 -η 1 + γη (141) 
we simplify everything in terms only of η to get:

ε gen = α ∆ + (η -1) 2 ρ (α -η 2 ) 1 -π 2 (η -1) 2 γη 2 + 2η -1 (∆ + (η -1) 2 ρ) (1 + γη) 2 (142) 
ε tr = (α -η) 2 ∆ + (η -1) 2 ρ α (α -η 2 ) 1 -π 2 (η -1) 2 γη 2 + 2η -1 (∆ + (η -1) 2 ρ) (1 + γη) 2 (143) 
All that remains is to solve for η using the equations for V and V , which yields

η = 1 + 1 2 α -1 + λ -4λ + (α -1 + λ) 2 . ( 144 
)
Vanishing regularization We can take λ = 0 inside (144) even when α < 1, and we nd

η(λ = 0) = min(α, 1) (145) 
Finally, this yields

ε gen = α∆ α-1 α ≥ 1 π 2 (α-1)(α 2 γ+2α-1) (αγ+1) 2 -(α-1) 2 ρ+∆ α-1 else (146) 
ε train = (α-1)∆ α α ≥ 1 0 else (147) 
We retrieve the results of Corollary. 3.8: even with correlated teachers we show that in the underparametrized regime we have Gaussian universality.

Extension of Corollary. 3.8:

The Gaussian universality result for correlated teacher at vanishing regularization can be extended as well to general balanced mixtures with homoscedastic covariance, i.e. the case where

p c = 1 |C| , Σ c = Σ, λ = 0.
In order to do so, we consider the general saddle point equation for ridge regression in eq. ( 87),(88), and plug in the assumptions:

           V = α |C|(1+V ) qc = α |C|(1+V ) 2 (ρ + ∆ + q c -2m + (h c -π c ) 2 ) m = α |C|(1+V ) ĥc = α(πc-hc) |C|(1+V ) (148)                  V = 1 d tr Σ Σ-1 q c = 1 d tr qc Σ + μμ Σ Σ-2 m = 1 d tr μθ 0 Σ Σ-1 h c = 1 d tr μµ c Σ-1 (149) 
In particular, these assumptions imply that V c , Vc , m c , mc do not depend on the class labels c, and hence Σ = V Σ. 

is is easy to check that they are a xed point of the above saddle-point equations, since then

h c = mπ c V = π c
Plugging in this relation in the expression of the update for {q c } c∈C we obtain:

q c = αp c (1 + V c ) 2 (ρ c + ∆ + q c -2m c + (h c -π c ) 2 ) = αp c (1 + V c ) 2 (ρ c + ∆ + q c -2m c ) (151) 
Hence by looking at the expression of generalization and training error for ridge regression in eq. ( 125) we conclude that they will not depend on the values of the mean overlaps {h c } c∈C and we can prove Gaussian universality in the same way as we did in the proof of Theorem. 3.4.

C.3 Interpolating teachers

Di erent works observed over di erent datasets that if we nd an interpolating teacher vector, in such a way that we can keep the real labels to study ERM performance, the theoretical predictions coming from Gaussian asymptotics would agree with simulations, [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] among others. This observation apparently contradicts the result of Theorem. 3.7 in which we show that correlated labels (as we expect real labels to be) break Gaussian universality. We try to motivate this in the same setting as Theorem. 3.7:

Theorem C.1. (Real labels universality) Consider the same setting of Theorem. 3.7. Fix now the teacher vector to be the maximally correlated one θ = µ and nd an interpolating teacher θ using ñ samples coming from the GMM. If we compare the exact asymptotics of Gaussian and GMM for regularization Λ at xed α = ñ d we obtain a discrepancy:

∆ε gen = 4(E -1)α 2 E 2 γ + 2e -1 (α + 1) 2 (Eγ + 1) 2 (152) 
with E(α,Λ) solution of:

E = 1 + 1 2 α -1 + Λ -4Λ + (α -1 + Λ) 2 . ( 153 
)
The result above solve the apparent contradiction: if we strongly overparametrize the tting model, interpolating teachers can be uncorrelated with the data structure.

The proof of the results relies strongly on the fact that we can analyze analytically the performance in this scenario being it the same as the previous section. Reminding from eq. (145) that in the limit λ → 0 we have in the overparametrized Fit interpolating teacher Perform ridge regression for λ → 0. Take α = n d < 1 so that the ERM estimator will interpolate the data. Run exact asymptotics Compute the theoretical performance of the associated 2-GMM and equivalent GCM from the estimated θ for the same α with a xed regularization parameter Λ. setting η(α, λ = 0) = α, we can write:

h erm = µ θ d = γα γ + 1 1 + γα (155) 
q erm = θ Σ θ d = α - ∆ α -1 - (α -1)π 2 αγ + ρ (156) 
We summarize the algorithmic procedure in in Algorithm. C.3. In order to compute the generalization error from eq. ( 142) we need the quantities {ρ, π}. Note that in Algorithm. C.3 we compute the theoretical curve for the GMM and the GCM from the estimated θ. This translates into the fact that the estimated overlaps from numerical simulations in the previous step become the equivalent to:

π = h erm ρ = q erm (157)
We x the regularization for the theoretical prediction to be Λ, and for simplicity we use the same sample complexity parameter α. We are now in a position to compare Gaussian and GMM theoretical prediction, more precisely we analyze the di erence of the generalization errors for the two data model. Recalling the expression for the generalization error in eq. ( 142), we just need to plug the estimated overalps in eq. ( 157) to obtain: ∆ε gen = 4α 2 (E -1) E 2 γ + 2e -1 (α + 1) 2 (Eγ + 1) 2 (158)

where E(α, Λ) is the solution of eq. ( 144), retrieving the result in Theorem. C.1. For the sake of clarity we stated the theorem in a simple setting, indeed once we estimated θ we could have decided to change the value of the sample complexity, as we are now interested in running theory curves. However, to simplify the equations we assumed to run the theoretical prediction for the same value of α as in the ERM t. We present the results in Fig. 6 for γ = 1: although the true labels are maximally correlated with the data structure, we see that the Gaussian theoretical predictions with the interpolating teacher θ are very close to the GMM one. We remark that the upper-left plot in Fig. 1 is a nice characterization of Theorem. (3.8): as we reach the underparametrized regime we restore Gaussian universality for Λ → 0 + even for correlated teachers.

D Details on real dataset simulations

In this section we report the procedure to create the random regression task on real data, see Algorithm. D. The implementation of the di erent numerical simulations described in this work are available in a GitHub respository.
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 34 (Covariance universality for λ = 0 + ) Under the assumption of Thm. 3.3, assume that it exists an unique minimizer of the empirical risk (1) with zero regularization. Then, the test & training errors a homoscedastic GMM (2.2) estimation problem asymptotically coincide with those of a centered, isotropic Gaussian model G (θ0,I,0) (2.1).

Figure 2 :

 2 Figure 2: An illustration of Gaussian universality with nite regularization λ for a selection of datasets (MNIST, Fashion-MNIST, Cifar10) with a random teacher function, after a random feature map: Generalization (left) and training (right) errors as a function of the number of samples per dimension α = n/d. In the upper panel we show ridge regression on Cifar10 preprocessed with RF and tanh activation, while the lower one is logistic regression on MNIST with RF and erf activation. The dashed curves are the exact asymtotics prediction of the Gaussian theory by matching covariance. The good agreement illustrates the property of theorem 3.3. The di erent colours represents di erent regularization strength λ ∈ {0.1, 1, 10} respectively in yellow, blue, and red. Error bars are built over 30 runs.

Figure 3 :

 3 Figure3: An illustration of Gaussian universality for Training, and lack thereof for Generalization at vanishing regularization. Instead of a random feature maps as in Fig.1, we pre-processed grayscale Cifar10 with wavelet scattering (blue dots) or orthogonal hadamard projections (yellow dots), or used directly the raw data (red dots). Using again a random teacher function, the training error is found to agree perfectly with the universal Gaussian asymptotics predictions with identity covariance and λ = 0 + , as for theorem 3.6, but the generalization is found to show clear deviation. This highlight the roles of heteroscedasticity in the data. Error bars are built over 30 runs.

Figure 4 :

 4 Figure 4: On the importance of the correlation of the task and the structure of the data: Left & Center : Training errors achieved in the ERM for estimation of 2-cluster GMM with µ + = -µ -and Σ + = Σ -= I d , plotted versus a correlation parameter Ω:we build a series of learning tasks with teacher weights dependent on Ω, namely we take θ 0 (Ω) = Ωµ ⊥ + √ 1 -Ω 2 µ + , with µ + µ ⊥ = 0. We x the dimension to be d = 500, and (α, λ) = (1.2, 0.7). The solid black line is the theoretical prediction coming from Gaussian asymptotics. The solid red line is the theoretical prediction for the GMM performance, while the orange dots are the numerical simulations which agree as expected with the theoretical prediction. In the left panel we have real labels and perform ridge regression, while on the central one we consider binary labels and perform logistic regression. The error bars are built using standard deviation over 30 runs. Right: Geometrical intuition plotted for d = 2. Three hyperplanes (lines in 2D) are displayed correspondent to Ω = {0, 0.5, 1}, respectively in green, blue, and orange. As Ω increase the labels become more uncorrelated with the data structure.

1 .

 1 The functions (y, •) and r are continuous and coercive, and the function (y, •) + r(•) is strongly convex, 2. The covariance matrices Σ c are positive de nite, and their spectral norms are uniformly bounded, 3. The means µ c / √ d and the teacher vector θ 0 are uniformly bounded, 4. the number of clusters |C| is nite, 5. the distribution P 0 is sub-gaussian with uniformly bounded norm.

  a P θ (θ) c∈C e s a=1 [ ĥa c θ a µc+ ma θ 0 Σcθ a ]+ 1≤a≤b≤s qab c θ a Σcθ b (56)

Figure 5 :

 5 Figure 5: Training and generalization error for ridge regression on the GMM de ned in eq. (132). Left: We compare the performance of the Gaussian asymtptotics (solid black line) with the GMM one (solid red line), while the orange dots represents simulations which agrees with the theoretical predictionas predicted by Theorem. 3.1. Right: Two dimensional toy plot of 10000 samples coming from the heterogeneous Gaussian mixture.

Figure 6 :

 6 Figure 6: Theoretical prediction from eq. (158) for the di erence between the generalization error computed from the Gaussian theory and GMM one plotted as a function of the number of samples used in the t in Algorithm. C.3. We use di erent regularization strength Λ ∈ {1e -10, 0.1, 1, 10}, increasing clockwise in the gure.

Algorithm 1

 1 Get theoretical learning curves keeping real labels Data generation: Generate the data from the 2-clusters GMM described in C.1 and set:µ + = -µ -= √ γ(1, . . . , 1) , Σ + = Σ -= I d , θ 0 = µ + (154)
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Algorithm 2 Random teacher regression on real data

Data processing: Load data and perform the preprocessing step with a transform matrix F ∈ R d×d , with d dimension of the images in the chosen dataset. We choose for all the gures in this manuscript d = 2000. Match covariance Compute Σ = 1 n XX Create new labels Forget the real labels associated with the dataset and create new label according to:

Run learning curves Fix the regularization parameter λ. for α in a given range do Simulation Solve the ERM in eq. ( 1) using sklearn package LogisticRegression [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] or the Moore-Penrose pseudoinverse for the ridge estimator: