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Abstract

Let (xi, yi)i=1,...,n denote independent samples from a general mixture distribution
∑

c∈C ρcP
x
c , and

consider the hypothesis class of generalized linear models ŷ = F (Θ>x). In this work, we investigate
the asymptotic joint statistics of the family of generalized linear estimators (Θ1, . . . ,ΘM ) obtained
either from (a) minimizing an empirical risk R̂n(Θ;X,y) or (b) sampling from the associated Gibbs
measure exp(−βnR̂n(Θ;X,y)). Our main contribution is to characterize under which conditions the
asymptotic joint statistics of this family depends (on a weak sense) only on the means and covariances
of the class conditional features distribution Px

c . In particular, this allow us to prove the universality of
different quantities of interest, such as the training and generalization errors, redeeming a recent line of
work in high-dimensional statistics working under the Gaussian mixture hypothesis. Finally, we discuss
the applications of our results to different machine learning tasks of interest, such as ensembling and
uncertainty quantification.

1 Introduction

A recurrent topic in high-dimensional statistics is the investigation of the typical properties of signal processing
and machine learning methods on synthetic, i.i.d. Gaussian data, a scenario often known under the umbrella of
Gaussian design [Bartlett et al., 2020, Candès et al., 2020, Donoho and Tanner, 2009, Korada and Montanari,
2011, Monajemi et al., 2013]. A less restrictive assumption arises when considering that many machine
learning tasks deal with data partitioned into a fixed number of classes. In these cases, the data distribution is
naturally described by a mixture model, where each sample is generated conditionally on the class. In other
words: data is generated by first sampling the class assignment and then generating the input conditioned on
the class. Arguably the simplest example of such distributions is that of a Gaussian mixture, which shall be
our focus in this work.

Gaussian mixtures are a popular model in high-dimensional statistics since, besides being an universal
approximator, they often lead to mathematically tractable problems. Indeed, a recent line of work has
analyzed the asymptotic performance of a large class of machine learning problems in the proportional
high-dimensional limit under the Gaussian mixture data assumption, see e.g. Kini and Thrampoulidis [2021],
Loureiro et al. [2021b], Mai and Liao [2019], Mignacco et al. [2020], Refinetti et al. [2021], Taheri et al.
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[2020], Wang and Thrampoulidis [2021]. The key goal of the present work is to show that this assumption,
and hence the conclusions derived therein, are far more general than previously anticipated.

We build on a recent line of works [Goldt et al., 2022, Hu and Lu, 2022, Montanari and Saeed, 2022]
that have proven the asymptotic (single) Gaussian equivalence of generalized linear estimation on non-linear
feature maps satisfying certain regularities conditions, a topic that has started with the work of El Karoui
[2010] on kernel matrices. Furthermore, there is strong empirical evidence that Gaussian universality holds
in a more general sense [Loureiro et al., 2021a]. A crucial limitation of the results in Hu and Lu [2022],
Montanari and Saeed [2022], however, is the assumption of a target function depending on linear projections
in the latent or feature space. Instead, we consider a rich class of mixture distributions, allowing arbitrary
dependence between the class labels and the data.

Here, we extend this line of works and provide rigorous justification for universality in various settings
such as empirical risk minimization (ERM), sampling, ensembling, etc. for general mixture distributions.
Namely, we shall show that the statistics of generalized estimators obtained either from ERM or sampling
on a mixture model asymptotically agrees (in a weak sense) with the statistics of estimators from the same
class trained on a Gaussian mixture model with matching first and second order moments. In particular, this
implies the universality of different quantities of interest, such as the training and generalization errors.

Our main contributions are as follows:
• We extend the Gaussian universality of empirical risk minimization theorems in Goldt et al. [2022], Hu
and Lu [2022], Montanari and Saeed [2022] to generic mixture distribution and an equivalent mixture of
Gaussians. In particular, we show that a Gaussian mixture observed through a random feature map is also a
Gaussian mixture in the high-dimensional limit, a fact used for instance (without rigorous justification) in
Loureiro et al. [2021b], Refinetti et al. [2021].
• A consequence of our results is that, with conditions on the matrix weights, data generated by conditional
Generative Adversarial Networks (cGAN) behave as a Gaussian mixture when observed through the prism of
generalized linear models (kernels, feature maps, etc...), as illustrated in Figs 1 and 2. This further generalizes
the work of Seddik et al. [2020] that only considered the universality of Gram matrices for GAN generated
data through the prism of random matrix theory.
• We consider setups involving multiple sets of parameters arising from simultaneous minimization of
different objectives as well as sampling from Gibbs distributions defined by the empirical risk. This provides
a unified framework for establishing the asymptotic universality of arbitrary functions of the set of minimizers
or samples from different Gibbs distributions. For instance, it includes ensembling [Loureiro et al., 2022])
and uncertainty quantification [Clarté et al., 2022a,b] settings.
• We finally show how, in common setups, universality holds for a large class of functions, leading to the
equivalence between the distributions of the minimizers themselves, and provide a theorem for their weak
convergence.

Related work — Universality is an important topic in applied mathematics, as it motivates the scope of
tractable mathematical models. It has been extensively studied in the context of random matrix theory [Tao
and Vu, 2011, 2012], signal processing problems [Abbara et al., 2020, Abbasi et al., 2019, Donoho and Tanner,
2009, Dudeja et al., 2022, Korada and Montanari, 2011, Monajemi et al., 2013, Montanari and Nguyen, 2017,
Panahi and Hassibi, 2017] and kernel methods [El Karoui, 2010, Lu and Yau, 2022, Misiakiewicz, 2022].
Closer to us is the recent stream of works that investigated the Gaussian universality of the asymptotic error
of generalized linear models trained on non-linear features, starting from single-layer random feature maps
[Dhifallah and Lu, 2020, Gerace et al., 2020, Hu and Lu, 2022, Montanari et al., 2019] and later extended
to single-layer NTK [Montanari and Saeed, 2022] and deep random features [Schröder et al., 2023]. These
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results, together with numerical observations that Gaussian universality holds for more general classes of
features, led to the formulation of different Gaussian equivalence conjectures [Goldt et al., 2019, 2022,
Loureiro et al., 2021a]. A complementary line of research has investigated cases in which the distribution of
the features is multi-modal, suggesting a Gaussian mixture universality class instead [Louart et al., 2018,
Seddik et al., 2020, 2021]. A bridge between these two lines of work has been recently investigated for
generalized linear estimation with random labels in Gerace et al. [2022].

2 Setting and motivation

Consider a supervised learning problem where the training data (xi, yi) ∈ Rp × Y , i ∈ [n] := {1, · · · , n} is
independently drawn from a mixture distribution:

xi ∼
∑
c∈C

ρcP
x
c , P(ci = c) = ρc, (1)

with ci a categorical random variable denoting the cluster assignment for the ith example xi. Let µc, Σc

denote the mean and covariance of Pxc , and k = |C|. Further, assume that the labels yi are generated from the
following target function:

yi(X) = η(Θ>? xi, εi, ci), (2)

where Θ? ∈ Rk×p and εi is an i.i.d source of randomness. It is important to stress that the class labels (2) are
themselves not constrained to arise from a simple function of the inputs xi. For instance, the functional form
in (2) includes the case where the labels are exclusively given by a function of the mixture index yi = η(ci).
This will allow us to handle complex targets, such as data generated using conditional Generative Adversarial
Networks (cGANs).

In this manuscript, we will be interested in the hypothesis class defined by the following parametric
predictor ŷ = F (Θ>x), where Θ ∈ Rk×p are the parameters and F : Rk → Y an activation function. For
a given loss function ` : Rk × Y → R+ and regularization term r : Rk×p → R+, define the (regularized)
empirical risk over the training data:

R̂n(Θ;X,y) :=
1

n

n∑
i=1

`(Θ>xi, yi) + r(Θ), (3)

where we have defined the feature matrixX ∈ Rp×n by stacking the features xi column-wise and the labels
yi in a vector y ∈ Yn. In what follows, we will be interested in the following two tasks:
(i) Minimization: in a minimization task, the statistician’s goal is to find a good predictor by minimizing the
empirical risk (3), possibly over a constraint set Sp:

Θ̂erm(X,y) ∈ arg min
Θ∈Sp

R̂n(Θ;X,y), (4)

This encompasses diverse settings such as generalized linear models with noise, mixture classification, but also
the random label setting (with η(x, ε) = ε). In the following, we denote R̂?n(X,y) := minΘ R̂n(Θ;X,y)
(ii) Sampling: here, instead of minimizing the empirical risk (3), the statistician’s goal is to sample from a
Gibbs distribution that weights different hypothesis according to their empirical error:

ΘBayes(X,y) ∼ PBayes(Θ) ∝ exp
(
−βnR̂n(Θ;X,y)

)
dµ(Θ) (5)
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where µ is reference prior measure and β > 0 is a parameter known as the inverse temperature. Note that
minimization can be seen as a particular example of sampling when β →∞, since in this limit the above
measure peaks on the global minima of (4).

Applications of interest— So far, the setting defined above is quite generic, and the motivation to study
this problem might not appear evident to the reader. Therefore, we briefly discuss a few scenarios of interest
which are covered this model.
(i) Conditional GANs (cGANs): were introduced by Mirza and Osindero [2014] as a generative model to
learn mixture distributions. Once trained in samples from the target distribution, they define a function Ψ that
maps Gaussian mixtures (defining the latent space) to samples from the target mixture that preserve the label
structure. In other words, conditioned on the label:

∀c ∈ C, z ∼ N (µc,Σc) 7→ xc = Ψ(z, c) ∼ Pxc (6)

The connection to model (1) is immediate. This scenario was extensively studied by Louart et al. [2018],
Seddik et al. [2020, 2021], and is illustrated in Fig. 1. In Fig. 2 we report on a concrete experiment with a
cGAN trained on the fashion-MNIST dataset.
(ii) Multiple objectives: Our framework also allows to characterize the joint statistics of estimators
(Θ1, . . . ,ΘM ) obtained from empirical risk minimization and/or sampling from different objective functions
R̂mn defined on the same training data (X,y). This can be of interest in different scenarios. For instance,
Clarté et al. [2022a,b] has characterized the correlation in the calibration of different uncertainty measures
of interest, e.g. last-layer scores and Bayesian training of last-layer weights. This crucially depends on the
correlation matrix Θ̂ermΘ>Bayes ∈ Rk×k which fits our framework.
(iii) Ensemble of features: Another example covered by the multi-objective framework above is that of
ensembling. Let (zi, yi) ∈ Rd × Y denote some training data from a mixture model akin to (1). A popular
ensembling scheme often employed in the context of deep learning [Lakshminarayanan et al., 2017] is to
take a family of M feature maps zi 7→ x

(m)
i =ϕm(zi) (e.g. neural network features trained from different

random initialization) and train M independent learners:

Θ̂
(m)
erm ∈ arg min

Θ∈Sp

1

n

n∑
i=1

`(Θ>x
(m)
i , yi) + r(Θ) (7)

Prediction on a new sample z is then made by assembling the independent learners, e.g. by taking their
average ŷ = 1/M

∑M
m=1 Θ̂

(m)>
erm ϕm(z). A closely related model was studied in d’Ascoli et al. [2020], Geiger

et al. [2020], Loureiro et al. [2022].
Note that in all the applications above, having the labels depending on the features X would not be

natural, since they are either generated from a latent space, as in (i), or chosen by the statistician, as in
(ii), (iii). Indeed, in these cases the most natural label model is given by the mixture index y = c itself,
which is a particular case of (2). This highlights the flexibility of the our target model with respect to prior
work [Montanari and Saeed, 2022]. Instead, Hu and Lu [2022] assumes that the target is a function of a latent
variable, which would correspond to a mismatched setting. The discussion here could be generalized also to
this case, but would require an additional assumption, which we discuss in Appendix B.

Universality — Given these tasks, the goal of the statistician is to characterize different statistical properties
of these predictors. These can be, for instance, point performance metrics such as the empirical and population
risks, or uncertainty metrics such as the calibration of the predictor or moments of the posterior distribution
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Figure 1: Illustration of Corollary 2: high-dimensional data generated by generative neural networks starting
from a mixture of Gaussian in latent space (z ∈ RH ) are (with conditions on the weights matrices) equivalent,
in high-dimension and for generalized linear models, to data sampled from a Gaussian mixture. A concrete
example is shown in Fig. 2.

(5). These examples, as well as many different other quantities of interest, are functions of the joint statistics
of the pre-activations (Θ>? x,Θ

>x), for x either a test or training sample from (1). For instance, in a
Gaussian mixture model, where x ∼

∑
c∈C ρcN (µc,Σc), the sufficient statistics are simply given by the

first two moments of these pre-activations. However, for a general mixture model (1), the sufficient statistics
will generically depend on all moments of these pre-activations. Surprisingly, our key result in this work is to
show that in the high-dimensional limit this is not the case. In other words, under some conditions which are
made precise in Section 3, we show that expectations with respect to (1) can be exchanged by expectations
over a Gaussian mixture with matching moments. This can be formalized as follows. Define an equivalent
Gaussian data set (gi, yi)

n
i=1 ∈ Rp × Y with samples independently drawn from the equivalent Gaussian

mixture model:

gi ∼
∑
c∈C

ρcN (µc,Σc), yi(G) = η(Θ>? gi, εi, ci). (8)

We recall that µc, Σc denotes the mean and covariance of Pxc from (1). Consider a family of estimators
(Θ1, · · · ,ΘM ) defined by minimization (3) and/or sampling (5) over the training data (X,y) from the
mixture model (1). Let h be a statistical metric of interest. Then, in the proportional high-dimensional limit
where n, p→∞ at fixed k, k,M ∈ Z+ sample complexity α=n/d > 0, and where 〈·〉 denote the expectation
with respect to the Gibbs distribution (5), we define universality as:

EX [〈h(Θ1, · · · ,ΘM )〉X ] '
n→∞

EG [〈h(Θ1, · · · ,ΘM )〉G] (9)

The goal of the next section is to make this statement precise.

3 Main results

We now present the main theoretical contributions of the present work and discuss its consequences. We
work under the following regularity and concentration assumptions:

Assumption 1 (Loss and regularization). The loss function ` : Rk+1 → R is nonnegative and Lipschitz, and
the regularization function r : Rp×k → R is locally Lipschitz, with constants independent from p.

5
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Figure 2: Illustration of the universality scenario described in Fig.1. Logistic (left) & ridge (right) regression
test (up) and training (bottom) errors are shown versus the sample complexity α = n/d for an odd vs. even
binary classification task on two data models: Blue dots data generated from a conditional GAN [Mirza and
Osindero, 2014] trained on the fashion-MNIST dataset [Xiao et al., 2017] and pre-processed with a random
features map x 7→ tanh(Wx) with Gaussian weights W ∈R1176×784; Red dots are the 10- clusters Gaussian
mixture model with means and covariances matching each fashion-MNIST cluster conditioned on labels (`2
regularization is λ=10−4). Details on the simulations are discussed in Appendix D.

Assumption 2 (Boundedness and concentration). The constraint set Sp is a compact subset of Rk×p. Further,
there exists a constant M > 0 such that for any c ≥ 0,

sup
θ∈Kp,‖θ‖2≤1

‖θ>x‖ψ2 ≤M, sup
θ∈Kp,‖θ‖2≤1

‖Σ1/2
c θ‖2 ≤M, and ‖µc‖2 ≤M (10)

where ‖·‖ψ2 is the sub-gaussian norm, and Kp ⊆ Rp is such that Sp ⊆ Kkp .

Assumption 3 (Labels). The labeling function η is Lipschitz, the teacher vector Θ belongs to Sp, and the
noise variables εi are i.i.d subgaussian with ‖εi‖ψ2 ≤M for some constant M > 0.

Those three assumptions are fairly technical, and it is possible that the universality properties proven
in this article hold irrespective of these conditions. The crucial assumption in our theorems is that of a
conditional one-dimensional CLT:

Assumption 4. For any Lipschitz function ϕ : R→ R,

lim
n,p→∞

sup
θ∈Kp

∣∣∣E [ϕ(θ>x)
∣∣ cx = c

]
− E

[
ϕ(θ>g)

∣∣ cg = c
]∣∣∣ = 0, ∀c ∈ C (11)

where x and g denote samples from the given mixture distribution and the equivalent gaussian mixture
distribution in equations (1) and (8) respectively.
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3.1 Universality of Mixture Models

We start by proving the universality of the free energy for a Gibbs distribution defined through the objective
R̂n(Θ;X,y) for the data distribution defined in (2) and its equivalent Gaussian mixture distribution (8).

Theorem 1 (Universality of Free Energy). Let µp(Θ) be a sequence of Borel probability measures with
compact supports Sp. Define the following free energy function:

fβ,n(X) =

∫
exp

(
−βnR̂n(Θ;X,y(X))

)
dµp(Θ) (12)

Under Assumptions 1-4 on X and Sp, for any bounded differentiable function Φ with bounded Lipschitz
derivative, we have:

lim
n,p→∞

|E [Φ (fβ,n(X))]− E [Φ (fβ,n(G))]| = 0.

When µp corresponds to discrete measures supported on an ε-net in Sp, using the reduction from Lemma
1 to Theorem 1 in Montanari and Saeed [2022], we obtain the following corollary:

Corollary 2. [Universality of Training Error GMM] For any bounded Lipschitz function Φ : R→ R:

lim
n,p→∞

∣∣∣E [Φ(R̂?n(X,y(X))
)]
− E

[
Φ
(
R̂?n(G,y(G))

)]∣∣∣ = 0

In particular, for any E ∈ R, and denoting P−→ the convergence in probability:

R̂?n(X,y(X))
P−→ E if and only if R̂?n(G,y(G))

P−→ E , (13)

The full theorem, as well as its proof, is presented in Appendix A. In a nutshell, this theorem shows that
the multi-modal data generated by any generative neural network is equivalent to a finite mixture of Gaussian
in high-dimensions: in other words, a finite mixture of Gaussians leads to the same loss as for data generated
by (for instance) a cGAN. Since the function ` : Rk+1 → R need not be convex, we can take

`(xout, y) = `′(Ψ(xout), y),

where Ψ is an already pretrained neural network. In particular, if x is the output of all but the last layer of a
neural net, we can view Ψ as the averaging procedure for a small committee machine.

Note that Corollary 2 depends crucially on assumption 4 (the one-dimensional CLT), which is by no
means evident. We discuss the conditions on the weights matrix for which it can be proven in section 3.4.
However, one can observe empirically that the validity of Corollary 2 goes well beyond what can be currently
proven. A number of numerical illustrations of this property can be found in the work of Louart et al. [2018],
Seddik et al. [2020, 2021], who already derived similar (albeit more limited) results using random matrix
theory. Additionally, we observed that even with trained GANs, when we observed data through a random
feature map [Rahimi and Recht, 2007], the Gaussian mixture universality is well obeyed. This scenario is
illustrated in Fig.1, with a concrete example in Fig.2. Even though we did not prove the one-dimensional
CLT for arbitrary learned matrices, and worked with finite moderate sizes, the realistic data generated by our
cGAN behaves extremely closely with those of generated by the corresponding Gaussian mixture.

A second remark is that the interest of the Corollary lies in the fact that it requires only a finite mixture
to approximate the loss. Indeed, while we could use the standard approximation results (e.g. the Stone-
Weierstrass theorem) to approximate the data density to arbitrary precision by Gaussian mixtures, this would
require a diverging number of Gaussian in the mixture. The fact that loss is captured with finite C is key to
our approach.
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Proof sketch and remarks — While we provide a complete proof of these results in App. A, we believe it
is useful to present a short intuitive presentation explaining why these results hold.
(i) A crucial first remark is that Theorem 1 and Corollary 2 do not require that the data generated by GANs
are Gaussians mixtures: rather, it is their one-dimensional projections along the directions in Sp that should
behave as such. The first, intuitive, explanation, is that indeed in high dimension, for a randomly chosen
vector θ ∈ Sp, it is natural to expect that θ>x) behaves like a Gaussian mixture. Indeed, if we condition on a
given label, then z is Gaussian, the random variable x = Ψnn(z), has a well defined mean and variance (at
least if Ψ is a Lipschitz function), so that the central limit theorem shows that θ>x) converges to a Gaussian
variable.

(ii) We require, however, a slightly stronger condition in eq. (11): Indeed, it should be that, conditioned on a
label, θ ∈ Sp is Gaussian for all θ ∈ Sp, not a randomly chosen one (since we do certainly do not chose our
weights randomly). This condition might appear strong. However, such one-dimensional CLTs have been
the subject of many recent works which proved them for many cases [Goldt et al., 2022, Hu and Lu, 2022,
Montanari and Saeed, 2022], including random features and two-layers neural tangent kernels. We extend
the proof of the one-dimensional CLT to mixture models in section 3.4. We also provide further formal
arguments in App. C. In particular, we argue that a large class of distributions, including deep generative
models, do satisfy this condition that can also be checked empirically in simulations [Goldt et al., 2022,
Seddik et al., 2021].

(iii) The one-dimensional CLT now implies that E
[
R̂n (Θ;X,y(X))

]
' E

[
R̂n (Θ;G,y(G))

]
for any

fixed choice of Θ, independent from the data. There is another, additional difficulty: when one performs
empirical risk minimization, the minimizer Θ̂(X) strongly depends on the dataX , and the naive 1d-CLT
simply does not apply! Solving the problem of the dependence of the estimator over the data is the main
mathematical difficulty in proving Thm. 2. This is achieved in the Appendix by using a method due to
Montanari and Saeed [2022], that leverage on the Guerra interpolation techniques used to prove the validity
of the replica method Guerra [2003]. The idea is to define a t-dependent model that uses n dataset points at
t = 0, and GMM ones at t = 1, and to show that the free energy (and all observables) remains constants at
all “times” t ∈ [0, 1]). This establishes fully the universality advocated in our theorem.

3.2 Convergence of expectations for Joint Minimization and Sampling

Our next result establishes a general relationship between the differentiability of the limit of expected training
errors or free energies for empirical risk minimization or free energies for sampling and the universality of
expectations of a given function of the parameters.

Setup Consider a sequence of M risks

R̂(m)
n (Θ;X(m),y(m)) :=

1

n

n∑
i=1

`m(Θ>x
(m)
i , y

(m)
i ) + rm(Θ), m ∈ [M ] (14)

with possibly different losses, regularizers and datasets. For simplicity, we assume that the objectives are
defined on parameters having the same dimension Θ ∈ Rp×k. We aim to minimize M1 of them:

Θ̂(m)(X) ∈ arg min
Θ∈S(m)

p

R̂(m)
n (Θ;X(m),y(m)), m ∈ [M1] (15)

8



and the M2 remaining parameters are independently sampled from a family of Gibbs distributions:

Θ(m) ∼ Pm(Θ) ∝ exp
(
−βmR̂(m)

n

(
Θ;X(m),y(m)

))
dµm(Θ), m ∈ [M1 + 1,M ], (16)

where M = M1 +M2. The joint distribution of the xi = (x
(1)
i , . . . ,x

(M)
i ) is assumed to be a mixture of the

form (1). However, we assume that the labels y(m)
i only depend on the vectors x(m)

i :

y
(m)
i (X(m)) = η(Θ

(m)>
? x

(m)
i , ε

(m)
i , ci). (17)

The equivalent Gaussian inputs gi = (g
(1)
i , . . . , g

(M)
i ) and their associated labels y(G) are defined as in (8).

Statistical metric and free energy — Our goal is to study statistical metrics for some function h :
RM×k×p → R of the form h(Θ(1), · · · ,Θ(M)). For instance, the metric h could be the population risk (a.k.a.
generalization error), or some overlap between Θ and Θ?. We define the following coupling free energy
function:

fn,s(Θ[1 : M1],X,y) = − 1

n
log

∫
e−sn h(Θ

(1),...,Θ(M))dP (M1+1):M , (18)

where P (M1+1):M denotes the product measure of the Pm defined in (16). This gives rise to the following
joint objective:

R̂n,s(Θ[1 : M1],X,y) =

M1∑
m=1

R̂(m)
n (Θ(m);X(m),y(m)) + fn,s(Θ[1 : M1],X,y). (19)

In particular, when s = 0 we have fn,0 = 0 and the problem reduces to the joint minimization problem in
(15). Our first result concerns the universality of the minimum of the above problem:

Proposition 3 (Universality for joint minimization and sampling). Under Assumptions 4 For any s > 0 and
bounded Lipschitz function Φ : R→ R, and denoting R̂?n,s(X,y) := min R̂n,s(Θ;X,y):

lim
n,p→∞

∣∣∣E [Φ(R̂?n,s(X,y(X))
)]
− E

[
Φ
(
R̂?n,s(G,y(G))

)]∣∣∣ = 0

The proof is an easy reduction to Theorem 2, and can be found in Appendix A.5.
The next result concerns the value of h at the minimizers point (Θ̂(1), . . . , Θ̂(M)). We make the following

additional assumptions:

Assumption 5 (Differentiable Limit). There exists a neighborhood of 0 such that the function

qn(s) = E
[
R̂?n,s(G,y(G))

]
(20)

converges pointwise to a function q(s) that is differentiable at 0.

For a fixed realization of the dataset X , we denote by
〈
h(Θ(1), · · · ,Θ(M))

〉
X

the expected value of
h when (Θ̂(1), . . . , Θ̂(M1)) are obtained through the minimization of (15) and (Θ(M1+1), . . . ,Θ(M)) are
sampled according to the Boltzmann distributions (16).

Assumption 6. With high probability onX,G, the value
〈
h(Θ(1), · · · ,Θ(M))

〉
X

(resp. the same forG) is
independent from the chosen minimizers in (15).

In other words, the metric h respects the symmetries of the problem. Then the following holds:

Theorem 4. Under assumptions 1-6, we have:

lim
n,p→∞

∣∣∣E [〈h(Θ(1), · · · ,Θ(M)
)〉

X

]
− E

[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]∣∣∣ = 0, (21)
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Proof Sketch: Our proof relies on the observation that qn(s) is a concave function of s. We further have:

q′n(0) = E
[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]
. (22)

Subsequently, we utilize a standard result from convex analysis relating the convergence of a sequence
of convex or concave functions to the convergence of the corresponding derivatives. The above result
shows that the expected value of h

(
Θ(1), · · · ,Θ(M)

)
for a multi-modal data satisfying the 1d CLT is

equivalent to that of a mixture of Gaussians. It generalizes the universality of generalization error in Hu
and Lu [2022], Montanari and Saeed [2022]to arbitrary function of parameters arising from an arbitrary
number of Hamiltonians for mixture models. The full theorem is presented and proven in App. A. While
we prove our result for convergence in expectations and assumption 5, the result can be generalized using
standard techniques to convergence in probability and other related assumptions. We refer to the alternative
assumptions in Theorem 3 of Montanari and Saeed [2022] for more details.

3.3 Universal Weak Convergence

Theorem 4 provides a general framework for proving the equivalence of arbitrary functions of parameters
obtained by minimization/sampling on a given mixture dataset and the equivalent gaussian mixture distribution.
However, it relies on the assumption of a differentiable limit of the free energy (assumption 5). If the
assumption holds for a sequences of functions belonging to dense subsets of particular classes of functions,
it allows us to prove convergence of minimizers themselves, in a weak sense. We illustrate this through a
simple setup considered in Loureiro et al. [2021b], which precisely characterized the asymptotic distribution
of the minimizers of empirical risk with GMM data in the strictly convex case. Consider the following setup:(

ŴX , b̂X
)

= arg min
W ,b

n∑
i=1

`

(
Wxi√
d

+ b,yi

)
+ λr(W ), (23)

whereW ∈ R|C|×d, b ∈ R|C| and yi ∈ R|C| is the one-hot encoding of the class index ci. For simplicity, we
restrict ourselves to diagonal bounded covariances and bounded means.

Assumption 7. All of the covariance matrices Σc are diagonal, with strictly positive eigenvalues (σc,i)i∈[d],
and there exists a constant M > 0 such that for any c ∈ C

σc,i ≤M and ‖µc‖2 ≤M. (24)

Secondly, since we aim at obtaining a result on the weak convergence of the estimators, we assume the
same weak convergence for the means and covariances, and that the regularization only depends on the
empirical measure ofW .

Assumption 8. The empirical distribution of the µc and Σc converges weakly as follows:

1

d

d∑
i=1

∏
c∈C

δ(µc −
√
dµc,i)δ(σc − σc,i)

L−−−→
d→∞

p(σ,µ) (25)

Assumption 9. The regularizer r(·) is of the following form:

r(W ) =
d∑
i=1

ψr(Wi), (26)

for some convex and twice differentiable function ψr : R→ R.
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Under these conditions, the joint measure of the minimizers and of the data moments converges weakly
to a fixed limit, independent of the data-distribution:

Theorem 5. Assume that conditions 1-9 hold, and further that the function `(•, y) + r(•) is convex and
coercive. Then, for any bounded-Lipschitz function: Φ : R3|C| → R, we have:

E

[
1

d

d∑
i=1

Φ({(ŴX)c,i}c∈C , {µc,i}c∈C , {σc,i}c∈C)

]
d→+∞−−−−→ Ep̃ [Φ(w,µ,σ)] , (27)

where p̃ is a measure on R3|C|, that is determined by the so-called replica equations.

Proof Sketch Let Θ denote the combined set of parameters {W , b}. We first show that for h(Θ) having
bounded second derivatives, the perturbation term sh(Θ) can be absorbed into the regularizer, while main-
taining the assumptions in Loureiro et al. [2021b]. Next, we show that the sequence of solutions converge in
a suitable sense, and are described through the limits of the replica equations from Loureiro et al. [2021b].
This allows us to prove that assumption 5 holds for functions that can be expressed as expectations w.r.t the
joint empirical measure in 27. More details can be found in Appendix A.8.

3.4 One-dimensional CLT for Random Features

We finally show a conditional one-dimensional CLT for a random features map applied to a mixture of
gaussians, in the vein of those shown in Goldt et al. [2022], Hu and Lu [2022], Montanari and Saeed [2022].
Concretely, we consider the following setup:

xi = σ(F>zi), zi ∼
∑
c∈C
N (µzc ,Σ

z
c ), (28)

where the feature matrix F ∈ Rd×p has i.i.d N (0, 1/d) entries. This setup is much more permissive than the
ones in Hu and Lu [2022], Montanari and Saeed [2022], that restrict the samples z to standard normal vectors.
However, we do require some technical assumptions:

Assumption 10. The activation function σ is thrice differentiable, with ‖σ(i)‖ ≤M for some M > 0, and
we have

Eg∼N (0,1) [σ(g)] = 0. (29)

The cluster means and covariances of z satisfy for all c ∈ C

‖µzc ‖ ≤M, ‖Σz
c ‖op ≤M (30)

for some constant M > 0.

We also place ourselves in the proportional regime, i.e. a regime where p/d ∈ [γ−1, γ] for some γ > 0.
For simplicity, we will consider the case k = 1; and the constraint set Sp as follows:

Sp =
{
θ ∈ Rd

∣∣∣ ‖θ‖2 ≤ R, ‖θ‖∞ ≤ Cp−η
}

(31)

for a given η > 0. We show in the appendix the following theorem:

Theorem 6. Under Assumption 10, and with high probability on the feature matrix F , the dataX satisfy the
concentration assumption 2, as well as the one-dimensional CLT of Assumption 4. Consequently, the results
of Theorems 1 and 4 apply toX and their Gaussian equivalentG.
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Proof Sketch Our proof constructs a reduction to the one-dimensional CLT for random features in Goldt
et al. [2022], Hu and Lu [2022], Montanari and Saeed [2022]. We first note that the one-dimensional CLT in
Goldt et al. [2022], Hu and Lu [2022], Montanari and Saeed [2022] holds even when the activation functions
differ across neurons. Subsequently, we proceed by defining the following neuron-wise activation functions:

σi,c(u) = σ(u+ f>i µc). (32)

However, the above activation functions depend on the means and the dimensions of the inputs. Our proof
involves controlling the effect of this dependence. Additionally, we handle the effect of the covariance by
observing that the features x can be equivalently generated by applying the modified weights Σ

z1/2
c F to

isotropic Gaussian noise. Further details can be found in Appendix A.7.
While we prove the above result for random weights, we note, however that the non-asymptotic results in

Goldt et al. [2022], Hu and Lu [2022] also hold for deterministic matrices satisfying approximate orthogonality
conditions. Therefore, we expect the one-dimensional CLT to approximately hold for a much larger class
of feature maps. Finally, we also note that the above extension of the one-dimensional CLT to mixture of
gaussians also provides a proof for the asymptotic error for random features in Refinetti et al. [2021].

4 Conclusion

We demonstrate the universality of the Gaussian mixture assumption in high-dimension for various machine
learning tasks such as empirical risk minimization, sampling and ensembling, in a variety of settings including
random features or GAN generated data. We also show that universality holds for a large class of functions,
and provide a weak convergence theorem. These results, we believe, vindicate the classical theoretical line of
works on the Gaussian mixture design. We hope that our results will stimulate further research in this area.
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A Proofs of Main Results

A.1 Notation

We follow the setting defined in section 2. Throughout, we work in the so-called proportional high-
dimensional limit, where n, p go to infinity with

n

p
→ α > 0,

while C stays fixed.
Throughout this section, ‖ · ‖ will denote the spectral norm of a matrix, while ‖ · ‖q for q > 0 will refer to

the element-wise q-norms. For a subgaussian random variable Y , its sub-gaussian norm ‖Y ‖ψ2 is defined as

‖Y ‖ψ2 = inf

{
t > 0

∣∣∣∣ E [exp

(
Y 2

t2

)]
≤ 2

}
.

A.2 State of the art

There have been many recent progress on Gaussian-type low-dimensional CLT and universality recently
Goldt et al. [2022], Hu and Lu [2022], Montanari and Saeed [2022]. We shall leverage on these results to
prove our first theorem.

In particular, the starting point for our mathematical proof will use the recent result of Montanari and
Saeed [2022] which we shall now review. Consider the minimization problem (4), with (xµ, yµ) i.i.d random
variables; the goal is to replace the xµ by their Gaussian equivalent model

gi
i.i.d∼ N (µ,Σ) where µ = E [x] , Σ = E

[
xx>

]
. (33)

Montanari and Saeed [2022] make the following assumptions:

Assumption A1 (Loss and regularization). The loss function ` : Rk+1 → R is nonnegative and Lipschitz,
and the regularization function r : Rp×k → R is locally Lipschitz, with constants independent from p.

Assumption A2 (Concentration on the directions of Sp). We have

sup
θ∈Sp,‖θ‖2≤1

‖θ>x‖ψ2 ≤M, sup
θ∈Sp,‖θ‖2≤1

‖Σ1/2θ‖2 ≤M, and ‖µ‖2 ≤M (34)

for some constant M > 0.

Assumption A3 (One-dimensional CLT). For any bounded Lipschitz function ϕ : Rk → R,

lim
p→∞

sup
θ∈Sp

∣∣∣E [φ(θ>x)
]
− E

[
φ(θ>g)

]∣∣∣ | = 0. (35)

Assumption A4 (Labels). The yµ are generated according to

yi = η(Θ∗xi, εi, ci), (36)

where η : Rk∗+1 → R is a Lipschitz function, Θ∗ ∈ Sk∗p , and the εµ are i.i.d subgaussian random variables
with

‖εi‖ψ2 ≤M
for some constant M > 0.
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Building on those assumptions, Montanari and Saeed [2022] prove the following:

Theorem 7 (Theorem 1. in Montanari and Saeed [2022]). Suppose that Assumptions A1-A3 hold. Then, for
any bounded Lipschitz function Φ : R→ R, we have

lim
n,p→∞

∣∣∣E [Φ(R̂?n(X,y(X))
)]
− E

[
Φ
(
R̂?n(G,y(G))

)]∣∣∣ = 0

In particular, for any ρ ∈ R,

R̂?n(X,y(X))
P−→ ρ if and only if R̂?n(G,y(G))

P−→ ρ

Free energy approximation A crucial component of the proof in Montanari and Saeed [2022] is the
approximation of the minimizer through a free energy function. Define the discretized free energy

fε,β(X) =
1

nβ

∑
Θ∈N kε

exp
(
−β R̂n(Θ;X,y(X))

)
, (37)

where Nε is a minimal ε-net of Sp.

Lemma 8 (Lemma 1 in Montanari and Saeed [2022]). For any bounded differentiable function Φ with
bounded Lipschitz derivative, and any ε > 0 we have:

lim
n,p→∞

|E [Φ (fε,β(X))]− E [Φ (fε,β(G))]| = 0.

Subsequently, using classical arguments from both the theory of ε-nets and statistical physics, the authors
show that ∣∣∣fε,β(X)− R̂n(Θ;X,y(X)

∣∣∣ ≤ C1(ε) +
C2(ε)

β
, (38)

and the same inequality holds forG. Since C1, C2 do not depend on n, p, it is possible to choose first ε, then
β so that the RHS of (38) is as small as desired.

Montanari and Saeed [2022] therefore used the universality of the free energy as an intermediate step
wards proving the universality of the training error. We generalize this result to the free energy defined for a
general class of Boltzmann distributions, allowing us to prove universality in applications related to sampling.

A.3 Sketch of proof of Lemma 8, adapted from Montanari and Saeed [2022]

Interpolation path For any 0 ≤ t ≤ π/2, define

Ut = cos(t)X + sin(t)G

Then Ut is a smooth interpolation path with independent columns, ranging from U0 = X to Uπ/2 = G. We
can write, for any differentiable function ψ,

|E [ψ(fε,β(X))]− E [ψ(fε,β(G))]| ≤
∫ π/2

0

∣∣∣∣E [dψ(fε,β(Ut)))

dt

]∣∣∣∣ dt,
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and by the dominated convergence theorem it suffices to show that the integrand converges to 0 for any t.
The chain rule gives:

dψ(fε,β(Ut)))

dt
= ψ′(fε,β(Ut)))

 n∑
µ=1

(
dut,µ
dt

)>
∇ut,µfε,β(Ut)

 , (39)

and the dependency in ψ can be easily controlled. Since all columns of Ut are i.i.d, we are left with
showing

lim
n,p→∞

nE(1)

[(
dut,1
dt

)>
∇ut,1fε,β(Ut)

]
= 0 a.s., (40)

where E(1) denotes the expectation with respect to (x1, g1, ε1).

Showing (40) Imagine for a moment that x1 is Gaussian; then ut,1 and dut,1/dt are also jointly Gaussian,
and we have

E

[(
dut,1
dt

)>
ut,1

]
= E

[
(− sin(t)x1 + cos(t)g1)

>(cos(t)x1 + sin(t)g1)
]

= 0,

since x1 and g1 have the same covariance by definition. Therefore, they are independent, and we have

E(1)

[(
dut,1
dt

)>
∇ut,1fε,β(Ut)

]
= E(1)

[(
dut,1
dt

)]>
E(1)

[
∇ut,1fε,β(Ut)

]
= 0.

On the other hand, it is possible to show that x1 only appears in (40) through scalar products with Θ or Θ∗.
As a result, we can leverage Assumption 4 to replace x1 by a Gaussian vector w independent from g1 as
p→∞. Then, the reasoning above can be repeated with w and g1 to conclude the proof.

A.4 Proof of Theorem 2

In order to prove our theorem 2, we now aim to adapt the proof from Montanari and Saeed [2022] to the
following case where the distribution of x can be a mixture of several other distributions, each with different
mean and covariance. For a discrete set C, we consider a family of distributions (νc)c∈C on Rp, with means
and covariances

µc = Ez∼νc [z] and Σc = Ez∼νc [zz>]

Given a type assignment σ : [n]→ C, each sample xi is then drawn independently from νσ(i). The equivalent
Gaussian model is straightforward: we simply take

gi ∼ N (µσ(i),Σσ(i)),

independently from each other. An important special case of this setting is when σ is itself random,
independently from the xi and gi: the law of gi is then a so-called Gaussian Mixture Model. Note that in the
Gaussian mixture setting, the existence of the labeling function σ implies that we coupled the labels forX
andG.

The main differences between our Assumptions 1-4 and Assumptions A1-A3 are the following:
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(i) Assumption 1 is unchanged.

(ii) We relax (36) in Assumption 3 into

yi = ησ(i)(Θ
∗xi, εi, ci),

when η a Lipschitz function in its first two parameters. This allows in particular to incorporate
classification problems in our setting, at no cost in the proof complexity.

(iii) We assume a more general setup where the constraint set Sp is not necessarily a product set. This slight
generalization will be useful while proving a reduction to multiple objectives in Theorem 4.

(iv) We suppose that Assumptions 2 and 4 hold for any possible distribution νc for c ∈ C and its associated
Gaussian equivalent model.

(v) We allow the reference measures to be any sequence of Borel measures with support on Sp, instead of
only the Dirac measure on the ε-net Nε.

We now go through the proof of the previous section, highlighting the important changes.

Free energy approximation This section goes basically unchanged; the approximation between R̂∗n(X,y(X))
and fε,β(X) relies on Lipschitz arguments and concentration bounds on the xi and gi, which are satisfied by
our modification of Assumption 2.

General Reference Measures Our proof for the universality of free energy in Theorem 2 is a generalization
of the proof of Lemma 1 in Montanari and Saeed [2022]. Compactness of the supports ensures that the
corresponding free energy:

fβ,n(Z) =

∫
exp (−βnRn(Θ;Z,y)) dµ(Θ), (41)

is finite for any Z.
The corresponding Boltzmann measures can then be defined by setting the Radon-Nikodym deriva-

tive/density to be:
dµ̃

dµ
= exp

(
−βnR̂n(Θ;X,y)

)
. (42)

The measure µ̃ is then a Borel measure with support lying in Sp. Therefore, through dominated convergence
theorem, we can interchange differentiation and expectations w.r.t µ in the proof of Lemma 1 in Montanari
and Saeed [2022]. For instance, equation (39) can be expressed as:

E
[
∂

∂t
ψ(fβ,n(Ut))

]
= E

[
ψ′(fβ,n(Ut))

n

n∑
i=1

∫
ũ>t,id̂t,i(Θ)e−nβRn(Θ;Z,y)dµp∫

e−nβRn(Θ;Z,y)dµp

]
. (43)

Similarly we substitute
∑

Θ by
∫
dµ in the remaining arguments in the proof of Lemma 1 in Montanari

and Saeed [2022].
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Interpolation path Recall that the important property of Ut is that

E

[(
dUt
dt

)>
Ut

]
= 0. (44)

To this end, we set
ut,i = µσ(i) + cos(t)(xi − µσ(i)) + sin(t)(gi − µσ(i)),

and it is easy to check that (44) is satisfied. Another problem is that the columns of Ut are not i.i.d anymore,
so we have to control

1

n

n∑
i=1

∣∣∣∣∣E(i)

[(
dut,i
dt

)>
∇ut,ifε,β(Ut)

]∣∣∣∣∣ , (45)

where this time E(i) is the expectation w.r.t (xi, gi, εi). However, (45) is a weighted average over all values
of σ(µ), and since C is finite is suffices to show (40) for any value of σ(1).

Showing (40) This section again relies on concentration properties of the xi and gi, as well as Assumption
4. The arguments thus translate directly from Montanari and Saeed [2022].

A.5 Proof of Proposition 3

We define the following free energy of the system:

fn,s,ε(X,y) = − 1

n
log

∫
e−n

∑M
m=1 βm R̂

(m)
n (Θ(m);X(m),y(m))−sn h(Θ(1),...,Θ(M))dµ1:M1

ε dµ(M1+1):M , (46)

where the µm are the reference measures for the Boltzmann distributions in (16), and µmε is the uniform
measure supported on a minimal ε-net of S(i)p :

µmε =
1

|Nm
ε |

∑
Θ∈Nmε

δΘ, (47)

where δΘ denotes the Dirac measure at Θ. We establish the following result:

Lemma 9 (Universality of the joint free energy). Under Assumptions 1-4, for any fixed ε > 0 and any
bounded differentiable function ψ with bounded Lipschitz derivative we have.

lim
n→∞

|E [ψ(fn,s,ε(X,y))]− E [ψ(fn,s,ε(X,y))]| = 0.

Proof. We construct a reduction from the free energy of the form in equation 46 to the universality of free
energy for a single objective in Theorem 1.

We construct an equivalent objective on the pM × kM dimensional space. Consider the following
mapping:

Θ =


Θ(1) 0 0 · · ·

0 Θ(2) 0 · · ·
· · · · · · · · · · · ·
0 0 · · · Θ(M)

 (48)

22



. Let SpM be the set obtained by applying the mapping in equation 48 to S(1)p , · · · ,S(M)
p . Let X =

(X(1), · · · ,X(M)) denote the combined input matrix with each row of dimension pM . We note that SpM is
a product of kM compact sets, each satisfying the assumption 2. Similarly, we have the combined output
vector:

y =

 y
(1)

...
y(M)

 (49)

We define ` : Rk′M × RkM → R by:

`(u,y) =
M∑
m=1

βm`m(u[(k − 1)m : km],y[(k − 1)m : km]). (50)

Similarly, we define the total regularization as:

r(Θ) =
M∑
m=1

βmrm(Θ[(m− 1)p : mp, (m− 1) : k,mk])

+ sh(Θ[0 : p, 0 : k], · · · ,Θ[(M − 1)p : Mp, (M − 1)k : Mk]).

(51)

Let R̂n(Θ;X,y) denote the following objective on the combined vector Θ:

R̂n(Θ;X,y) =
1

n

n∑
i=1

`(Θ>xi,yi) + r(Θ) (52)

Then, using all the definitions above, we have

R̂n(Θ;Z,y) =

M∑
m=1

βm R̂(m)
n (Θ(m);X(m),y(m)) + s h(Θ(1), · · · ,Θ(M)) (53)

Therefore, we obtain that:

fn,s,ε(X,y) = − 1

n
log

∫
e−n

∑M
m=1 βm R̂

(m)
n (Θ(m);X(m),y(m))−sn h(Θ(1),...,Θ(M))dµ1:M1

ε dµ(M1+1):M

= − 1

n
log

∫
e−nR̂n(Θ;X,y)dµ1:M1

ε dµ(M1+1):M .

(54)

We further note that the constraint sets on Θ, and the joint means, covariances onX satisfy the assumptions
A2. Therefore, using Theorem 1, we obtain that:

lim
n→∞

|E [ψ(fn,s,ε(X,y))]− E [ψ(fn,s,ε(X,y))]| = 0

The proof of Proposition 3 then follows using the ε-net approximation in (38) for Θ[1 : M1].
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A.6 Proof of Theorem 4

Our proof relies on the following result:

Lemma 10. For any n ∈ N, qn(s) is a concave function of s, that is differentiable at 0, and

q′n(0) = E
[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]
. (55)

Proof. Consider the joint free energy in Equation (18):

fn,s(Θ[1 : M1],X,y) = − 1

n
log

∫
e−sn h(Θ

(1),...,Θ(M))dP (M1+1):M , (56)

Let 〈·〉M1+1:M denote the expectation w.r.t the product measure

dµ̃(Θ[1 : M1],X,y) = e−sn h(Θ
(1),...,Θ(M))dP (M1+1):M .

We observe that:
dfn,s
ds

(Θ[1 : M1],X,y) = 〈h(Θ(1), . . . ,Θ(M))〉M1+1:M . (57)

Differentiating w.r.t s again, and using the dominated convergence theorem, we obtain:

− 1

n

d2fn,s
ds2

(Θ[1 : M1],X,y) = 〈h(Θ(1), . . . ,Θ(M))2〉M1+1:M − 〈h(Θ(1), . . . ,Θ(M))〉2M1+1:M . (58)

Since the R.H.S equals the variance of the variable h(Θ(1), . . . ,Θ(M)) w.r.t µ̃(M1+1):M , we have:

d2fn,s(Θ[1 : M1],Z, s)

ds2
≤ 0. (59)

Therefore, for fixed Θ[1 : M1], we obtain that the function:

R̂n,s(Θ[1 : M1],X,y) =

M1∑
m=1

R̂(m)
n (Θ(m);X(m),y(m)) + fn,s(Θ[1 : M1],X,y). (60)

is concave in s. Next, we recall that pointwise infimum of arbitrary collections of concave functions is
concave [Rockafellar, 1970]. Therefore, we obtain that the function:

qn(s) = E
[

min
Θ[1:M1]

R̂n,s(Θ[1 : M1],G,y)

]
, (61)

is concave in s. Then, by Danskin’s theorem, the subdifferential of qn at zero is the set{
〈h(Θ(1), . . . ,Θ(M))2〉M1+1:M ,Θ[1 : M1] ∈ arg min R̂n,0(Θ[1 : M1],X,y)

}
But by Assumption 6, this set only has one element, and hence qn is differentiable at 0.

Next, we relate the convergence of the above functions to the expectation of h(Θ(1), . . . ,Θ(M)), through
the following standard result from Convex Analysis:
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Theorem 11. (Theorem 25.7. in Rockafellar [1970]): Let C be an open convex set, and let f be a convex
function which is finite and differentiable on C. Let f1, f2, . . ., be a sequence of convex functions finite and
differentiable on C such that limn→∞ fn(x) = f(x) for every x ∈ C. Then

lim
n→∞

∇fn(x) = ∇f(x), ∀x ∈ C.

By Assumption 5,
lim
n→∞

qg,n(s) = q(s). (62)

Applying theorem 11 to the sequence qg,n(s) yields:

lim
n→∞

q′n(0) = q′(0). (63)

Now, consider the corresponding free energy for the data distribution px:

qx,n(s) = E
[

min
Θ[1:M1]

R̂n,s(Θ[1 : M1],X,y)

]
. (64)

We again have that qx,n(s) is a concave, differentiable function in s, with:

q′x,n(0) = E
[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
X

]
. (65)

Now, Proposition 3 and equation (62) imply that

lim
n→∞

qx,n(s) = lim
n→∞

qn(s) = q(s). (66)

Therefore, Theorem 11 applied to the sequence of functions qx,n(s) implies that:

lim
n→∞

q′x,n(0) = q′(0). (67)

By equations 65 and Lemma 10, we then obtain:

lim
n,p→∞

∣∣∣E [〈h(Θ(1), · · · ,Θ(M)
)〉

X

]
− E

[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]∣∣∣ = 0. (68)

A.7 Proof of Theorem 6: One-dimensional CLT for Random Feature Models

Our proof relies on a reduction to Theorem 2 in Hu and Lu [2022] and the proof of corollary 2 in Montanari
and Saeed [2022]. We first notice that it suffices to show the result when z ∼ N (µz,Σz) is a Gaussian
variable; and upon rescaling of σ we shall assume that tr(Σz) = p.

Let V = Σz1/2F . We express z as z = µz + Σz1/2z′ where z ∼ N (0, I). Therefore, we have:

x = σ(F>z) = σ(F>µz + V >z′). (69)

We define the following events:

A1 =

{
sup
i,j∈[d]

∣∣∣v>i vj − δij∣∣∣ ≤ C1

(
log d

d

)1/2
}

A2 =

∑
i∈[d]

∣∣‖vi‖2 − 1
∣∣ ≤ C2


A3 = {‖F ‖op ≤ C3} A4 = {‖V ‖op ≤ C4}
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Since the fi are independent and sub-gaussian, Lemma 22 in Montanari and Saeed [2022] implies that there
exists constants C1, C2, C3, C4 such that B = A1 ∩ A2 ∩ A3 ∩ A4 is a high-probability event. Now, for
i ∈ [d], we define

σi(u) = σ(u+ f>i µ
z). (70)

Now, as in Montanari and Saeed [2022], we argue that the proof of Theorem 2 in Hu and Lu [2022] still
applies to our setting. Indeed:

• since z does not have identity covariance, we replace the conditions on F by the exact same ones on
V .

• the Stein’s method they use proceeds term by term, so using a different σi in each term does not matter
as long as they satisfy the boundedness assumptions above.

• since we match the means of g and those of x, the requirement that σ be odd is unimportant in our
setting.

In particular, for bounded Lipschitz test functions ϕ, the proof of Lemma 2 in Hu and Lu [2022] shows that
for any θ ∈ Rd, ∣∣∣E [ϕ(θ>x)

]
− E

[
ϕ(θ>g)

]∣∣∣ ≤ C‖θ‖∞ polylog(p)

ν2
(71)

where ν2 is the variance of θ>x:
ν2 = θ>Σθ. (72)

We now place ourselves in the setting where θ ∈ Sp where Sp is defined in (31), and we consider two cases:

(i) if ν2 > p−2η/3, then (71) reduces to∣∣∣E [ϕ(θ>x)
]
− E

[
ϕ(θ>g)

]∣∣∣ ≤ C polylog(p)

pη/3
. (73)

(ii) if instead ν2 > p−2η/3, then by the Lipschitz property of ϕ we have∣∣∣E [ϕ(θ>x)
]
− ϕ(µ)

∣∣∣ ≤ C√ν2 =
C

pη/3
, (74)

and the same holds for g.

In both cases, the bounds goes to 0 uniformly over the whole constraint set Sp, which shows that Assumption
4 holds.

We now move to checking Assumption 7; Lemma 8 in Hu and Lu [2022] (more precisely, eq. (159))
exactly shows that for θ ∈ Sp, the random variable θ>x− θ>µ is C-subgaussian for an absolute constant C.
Hence, we only need to show that µ is uniformly bounded. Recall that

µi = E
[
σ(f>i z)

]
= E

[
σ
(
f>i µ

z + (1 + τi)z̃
)]

where z̃ is a standard normal variable and

τi = ‖vi‖ − 1.
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Then, we can write using the Lipschitz property of σ

σ(f>i z) = σ(z̃) + (f>i µ
z + τiz̃)σ̃(f>i z)

where σ̃ is a uniformly bounded function. By assumption, σ(z̃) has zero mean, and hence by the Cauchy-
Schwarz inequality

‖µ‖2 ≤ C

∑
i∈[d]

(f>i µ
z)2 + (‖vi‖ − 1)2


≤ C

‖F ‖2op‖µz‖2 +
∑
i∈[d]

∣∣‖vi‖2 − 1
∣∣

≤ C ′

under the high-probability event B.

A.8 Proof of Theorem 5

Our proof utilizes the results in Loureiro et al. [2021b] that describe the asymptotic limits of the estima-
tors obtained through empirical risk minimization on the mixture of gaussians dataset. We note that the
assumptions A1-A5 of their Theorem 1 are satisfied by our setting.

Let W ? denote the minimizer of the objective in equation 23, and let Z? = XW ?. Let ξk∈[K] ∼
N (0, IK) , Ξk ∈ RK×d be sets of K-dimensional vectors and dimensional matrices respectively, with i.i.d
entries sampled from N (0, 1).

Then, Theorem 1 in Loureiro et al. [2021b] proves that for any pseudo-lipschitz functions of finite order,
φ1 : RK×d → R, φ2 : RK×n → R:

φ1(W
?)

P−−−−−−→
n,d→+∞

EΞ [φ1(G)] , φ2(Z
?)

P−−−−−−→
n,d→+∞

Eξ [φ2(H)] (75)

HereG andH are functions of certain finite dimensional parameters

u := (Qk ∈ RK×K ,Mk ∈ RK ,Vk ∈ RK×K , Q̂k ∈ RK×K , m̂k ∈ RK , V̂k ∈ RK×K)k∈[K]

and the random vectors ξk∈[K],Ξk∈[K]. The matrixH is obtained by concatenating the following functions
hk, ρkn time for each k:

hk = V
1/2
k Prox

`(ek,V
1/2
k •)(V

−1/2
k ωk) ∈ RK , ωk ≡Mk + b+Q

1/2
k ξk , (76)

Similarly, the matrixG ∈ RK×d is described by:

G = A
1
2 � Prox

r(A
1
2�•)

(A
1
2 �B), A−1 ≡

∑
k

V̂k ⊗Σk, B≡
∑
k

(
µkm̂

>
k +Ξk �

√
Q̂k⊗Σk

)
.

Further define the function: fk ≡ V −1k (hk −ωk). The equivalent bias vector b? is defined through the linear
equation: ∑

k

ρkEξ [Vkfk] = 0, (77)
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and is therefore, unique, differentiable in u. The parameters u satisfy the following equations:
Qk= 1

dEΞ[GΣkG
>]

Mk= 1√
d
EΞ[Gµk]

Vk= 1
dEΞ

[(
G�

(
Q̂k ⊗Σk

)− 1
2� (IK ⊗Σk)

)
Ξ>k

]

Q̂k= αρkEξ

[
fkf

>
k

]
V̂k= −αρkQ

− 1
2

k Eξ
[
fkξ

>]
m̂k= αρkEξ [fk] .

(78)

.
We observe that the system of equations (78) can be expressed as a multi-dimensional fixed point equation:

u = Fn(u). (79)

We make the following assumption, which is slightly stronger than (A5) in Loureiro et al. [2021b]:

Assumption A5. The fixed point equations u = Fn(u) have unique solutions ∀n ∈ N. Let ûn be the unique
solution to u = Fn(u). We further assume the solutions are uniformly bounded, i.e:

‖ûn‖ ≤ K (80)

for some constant K, and the jacobian of the fixed point equations I − dFn
du is invertible. Furthermore, we

assume that the same assumptions hold for the limiting equations u = F (u).

Remark: While we assume the above conditions, as noted in Loureiro et al. [2021b], the fixed point
equations 78, correspond to the optimality conditions of a strictly convex-concave problem. This can be
rigorously proven using the properties of Bregman envelopes, as in Celentano et al. [2020], Loureiro et al.
[2021a]. The strict convexity-concavity then implies the uniqueness of the fixed points as well as the
differentiability of the limits.

We now prove the following result:

Lemma 12. Under assumption 8, the system of equations (78) converge uniformly to a limiting system of
equations u = F (u).

Proof. We first show that the coordinates of the equivalent minimizerG can be expressed as follows:

Gi = g({µc,i}c∈C , {σc,i}c∈C , ξi,u) (81)

Where g is a differentiable function and ξi denote independent Gaussian random variables. Indeed, from the
separability assumption on r, and the definition of the prox operator, we have

Prox
r(A

1
2�•)

(A
1
2 �B) = arg min

z
r(A1/2 � z) +

1

2
‖z− (A1/2 �B)‖2 (82)

= arg min
z

d∑
i=1

ψr((A
1/2 � z)i) +

1

2

d∑
i=1

(zi − (A1/2 �B)i)
2. (83)

u therefore only depends on the ith entry of (A1/2 �B). Further, since all Σc are assumed diagonal, the
entries of (A1/2 � z)i and (A1/2 �B)i only depend on zi, {µc,i}c∈C , {σc,i}c∈C , ξi, and the parameters u .
The differentiability of g then follows from the implicit function theorem applied to ψr(A1/2 � •) + 1/2(• −
(A1/2 �B)i)

2 . The same holds for the matrixH .
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We next observe that each coordinate of Fn of the above system of equations 78 can be expressed as an
expectation of a fixed continuous function w.r.t the joint empirical measure of ({µc,i}c∈C , {σc,i}c∈C). For
instance, consider the (i, j)th entry ofQk. We have:

Qk,ij = Fq,i,j,n =
1

d

d∑
`=1

EΞ[Gi`(Σk)``G`j ]. (84)

Using equation (81), we have that Gi` only depends on the `th coordinates of the means, covariances.
Therefore, for fixed ûn,Qk,ij is an expectation w.r.t the joint empirical measure of ({µc,i}c∈C , {σc,i}c∈C) of
a continuous function. By Assumption 8, we have that

lim
n→∞

Fq,i,j,n = Fq,i,j ,

where Fq,i,j denotes the expectation of EΞ[Gi`(Σk)``G`j ] w.r.t the joint empirical measure.
To show that the convergence is uniform, we utilize assumptions 7 and A5. Since each term in Fn can be

expressed as:

F jn(u) =
1

d

d∑
i=1

Φj(u, {µc,i}c∈C , {σc,i}c∈C), (85)

for some function Φj with Lipschitz constant Lj . Therefore, for any n ∈ N ,F jn(u) is Lj Lipschitz. This
implies the uniform convergence of Fn to F .

We now use the above result to prove convergence of the sequence of solutions ûn.

Lemma 13. Under Assumptions 8 and A5:

lim
n→∞

ûn = û, (86)

where û is the solution to the limiting equations u = F (u).

Proof. By assumption, ûn are bounded. Therefore, by the Bolzano–Weierstrass theorem, there exists a
convergent subsequence. Let ûnj be any such subsequence with corresponding limit ũ. We have:

‖F (ũ)− ũ‖ ≤ ‖F (ũ)− F (ûnj )‖+ ‖F (ûnj )− Fnj (ûnj )‖.

By uniform convergence of Fn to F (Lemma 12, we have that ‖F (ûnj )− Fnj (ûnj )‖ → 0 while ‖F (ũ)−
F (ûnj )‖ → 0 from the convergence of ûnj to ũ and the continuity of F . Therefore, we must have
F (ũ)− ũ = 0 and thus ũ = û. Therefore, any convergence subsequence of ûn converges to û. Since ûn
are bounded, this implies that limn→∞ ûn = û.

Now, let Φ be a twice differentiable test function with a Hessian having bounded spectral norm. We
define:

hd(W ) =
1

d

d∑
i=1

Φ({Wc,i}c∈C , {µc,i}c∈C , {σc,i}c∈C). (87)

Let û(s) denote the solution to the limiting equation u = Fs(u) defined in Lemma 12 for regularization

rs(W ) =
λ

n
rd(W ) + shd(W )
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By Assumption A5, I − dFs
du is invertible in a neighbourhood of 0. Therefore, by implicit function theorem

and uniqueness of the fixed points, û(s), is a continuously differentiable function of s.
Using equation (81), we obtain that G is a differentiable function of s. We now consider the perturbed

training loss:

R̂(W , b, s) =
1

n

n∑
i=1

`

(
Wxi√
d

+ b,yi

)
+ rs(W ). (88)

By the boundedness of the Hessian of Φ, R̂(W , b, s) satisfies the assumptions of strict convexity, coercivity
for small enough s. We first note from (75) and Theorem 2 in Loureiro et al. [2021b], the expected training
error converges to the following limit:

EX

[
1

n

n∑
i=1

`

(
Wxi√
d

+ b,yi

)]
−−−−−−→
n,d→+∞

K∑
k=1

ρkEξ[`(ek,hk)]. (89)

Similar to equation (81), we have that hk are continuous, differentiable functions of û(s).
From Assumption 9 and the form of the perturbation 87, we further have that λr(W ) + sh(W ) is a

pseudo-Lipschitz function ofW of finite order. Therefore, Equation (75) gives:

EX
[

1

d
λr(W ∗) + sh(W ∗)

]
−−−−−−→
n,d→+∞

EΞ

[
1

d
λrd(Gn) + shd(Gn)

]
. (90)

Define:

qn(s,u) =
1

d

d∑
i=1

EΞ

[
ψr(g({µc,i}c∈C , {σc,i}c∈C ,Σk

i , ξi,un))
]

(91)

+ s
1

d

d∑
i=1

EΞ

[
Φ(g({µc,i}c∈C , {σc,i}c∈C ,Σk

i , ξi,u), {µc,i}c∈C , {σc,i}c∈C)
]
. (92)

From assumption 9 and equation 81, we have:

EΞ

[
1

d
λrd(Gn) + shd(Gn)

]
= qn(s, ûn(s)). (93)

Similar to the proof of Lemma 12, we obtain that qn(s,u) converges uniformly to q(s,u) given by the
corresponding expectation w.r.t the limiting empirical measure:

q(s,u) = Ep(σ,µ)
[
EΞ

[
Φ(g({µc,i}c∈C , {σc,i}c∈C ,Σk

i , ξi,u), {µc,i}c∈C , {σc,i}c∈C)
]]
. (94)

Due to the uniform convergence, we further have:

lim
n→∞

qn(s, ûn(s)) = q(s, û(s)). (95)

We conclude that:

EX

[
1

n

n∑
i=1

`

(
W ∗xi√

d
+ b∗,yi

)
+

1

d
λr(W ∗) + sh(W ∗)

]
→

K∑
k=1

ρkEξ[`(ek,hk)] + q(s, û(s)). (96)
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Since the RHS is a differentiable function in s, Assumption 5 is satisfied for the perturbation h(W ).
Due to the coercivity of `(y, •X) + r(•), there exists a sequence of fixed compact subsets containing the
minimizers W ∗ with high probability as n → ∞ (see Lemma 8 in Loureiro et al. [2021a]). Furthermore,
since the input distribution is given by a mixture of gaussians with bounded means, Assumption 8 is satisfied
for any such sequence of constraint sets. Therefore, the validity of assumption 5 through Equation 5 allows
the applicability of Theorem 4 for the statistic hd(W ). Through standard approximation technniques or the
Stone–Weierstrass theorem, the restriction of differentiability and bounded Hessian of Φ can be removed.
This completes the proof of Theorem 5 for general bounded Lipschitz Φ.

B Assumptions on the target function

In this section, we discuss possible generalizations of the assumptions on the target function. In (2), we
assume a target function depending on a small number of linear projections in the input space, along with
the class labels. However, when the inputs are generated through feature maps x = ψ(z), one may instead
consider target functions depending directly on the latent vectors z. This was the setup considered in Hu and
Lu [2022] for random feature maps. For mixture models considered in our work, one may assume:

yi(X) = η(Θ>? zi, εi, ci). (97)

We conjecture that our results can be generalized to the above setup through the use of the following
stronger assumption:

Assumption A6. For any Lipschitz function ϕ : R→ R,

lim
n,p→∞

sup
Θ1∈Sxp ,Θ2∈Szd

∣∣∣E [ϕ(Θ>1 x,Θ
>
2 z)

∣∣ cx = c
]
− E

[
ϕ(Θ>1 g,Θ

>
2 z)

∣∣ cg = c
]∣∣∣ = 0, ∀c ∈ C. (98)

Here Sxp is the constraint set for the training parameters Θ1 while Szd denotes a suitable constraint set on
Rd where d denotes the dimension of the latent vectors. Under the above assumption

Such an assumption has been discussed in Goldt et al. [2019] under the term “Hidden Manifold Model",
and was proven in Hu and Lu [2022] for random feature maps acting on Gaussian noise.

C One-dimensional gaussian approximation

Although Theorem 7 is a powerful result, it still relies on very strong assumptions. In particular, given a
distribution ν for the inputs xi, characterizing the set of vectors θ such that Assumption 4 holds is in general
a difficult task.

Rigorous results When the entries of x are i.i.d subgaussian, a classical application of the Lindeberg
method [Lindeberg, 1922] shows that Assumptions 2 and 4 are satisfied with

Sp = {θ ∈ Rp | ‖θ‖∞ = op(1)}.

More recently, this result (often used under the name “Gaussian Equivalence Theorem”) was extended to
general feature models with approximate orthogonality constraints [Goldt et al., 2022, Hu and Lu, 2022], for
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the same choice of Sp. Montanari and Saeed [2022] also provides a central limit theorem result for the Neural
Tangent Kernel of [Jacot et al., 2018], for a more convoluted parameter set Sp. While these papers provide a
strong basis for the one-dimensional CLT, those rigorous results only concern (so far) a very restricted set of
distributions.

Concentration of the norm Another, more informal line of work originating from Seddik et al. [2020],
argues that most distributions found in the real world satisfy some form of the central limit theorem. The
starting point of this analysis is the following theorem, adapted from Bobkov [2003]:

Theorem 14 (Corollary 2.5 from Bobkov [2003]). Let x ∈ Rp be a random variable, with E ∗ xx> = Ip,
and ηp the smallest positive number such that

P
(∣∣∣∣‖x‖2√p − 1

∣∣∣∣ ≥ ηp) ≤ ηp. (99)

Then for any δ > 0, there exists a subset Sp of the p-sphere Sp−1 of measure at least 4p3/8e−cpδ
4
, such that

sup
θ∈Sp

sup
t∈R

∣∣∣P(θ>x ≥ t)− Φ(t)
∣∣∣ ≤ δ + 4ηp,

where Φ is the characteristic function of a standard Gaussian, and c is a universal constant.

If both δ and ηp are o(1), Theorem 14 implies that Assumption 4 is satisfied for any compact subset
S ′p ⊆ Sp. This suggests that the norm concentration property of (99) is a convenient proxy for one-dimensional
CLTs. However, the proof of this theorem uses isoperimetric inequalities, and is thus non-constructive; as a
result, characterizing precisely the set Sp remains an open and challenging mathematical problem.

Concentrated vectors In Seddik et al. [2020], the authors consider the concept of concentrated random
variables, as defined in Ledoux [2001]:

Definition 15. Let x ∈ Rp be a random vector. x is called (exponentially) concentrated if there exists two
constants C, c such that for any 1-Lipschitz function f : Rp → R, we have

P(|f(x)− Ef(x)| ≥ t) ≤ Ce−ct2 .

Since the norm function is 1-Lipschitz, it can be shown that any concentrated isotropic vector x satisfies
(99), with

ηp ∝
(

log(p)

p

)1/2

The converse is obviously not true; an exponential random vector still has ηp → 0, but is not concentrated.
However, even if it is stronger that (99), the concept of concentrated vectors has two important properties:

(i) a standard Gaussian vector x ∼ N (0, Ip) satisfies Definition 15 with constants C, c independent from
p,

(ii) if x ∈ Rp is a concentrated vector with constants C, c and Ψ : Rp → Rq is an L-Lipschitz function,
then Ψ(x) is also a concentrated vector, with constants only depending on c, C and L.
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Towards real-world datasets The real-world data considered in machine learning is often composed of
very high-dimensional inputs, corresponding to p � 1 in our setting. However, it is generally accepted
that this data actually lies on a low-dimensional manifold of dimension d0: this is the idea behind many
dimensionality reduction techniques, from PCA [Pearson, 1901] to autoencoders [Kramer, 1991]. Another,
more recent line of work (see e.g. Facco et al. [2017]) studies the estimation of the latent dimension d0;
results for the MNIST dataset (p = 784) yield d0 ≈ 15, while CIFAR-10 (p = 3072) has estimated intrinsic
dimension d0 ≈ 35 [Spigler et al., 2020].

Following this heuristic, the most widely used method to model realistic data is to learn a map f : Rd0 →
Rp, usually through a deep neural network, and then generate the xi according to

x = f(z) with z ∼ N (0, Id0) (100)

Examples of functions f include GANs [Goodfellow et al., 2014], variational auto-encoders [Kingma
and Welling, 2013], or normalizing flows [Rezende and Mohamed, 2015]. This ansatz has been studied
theoretically, and the results compared with real-world datasets, in Goldt et al. [2019], Loureiro et al. [2021a];
the results indicate significant agreement between generated inputs and actual data.

Finally, we argue that for a large class of generative networks, the learned function f is actually Lipschitz,
with a bounded constant. This is even often a design choice; indeed, theoretical results such as Bartlett et al.
[2017] imply that a smaller Lipschitz constant improve the generalization capabilities of a network, or its
numerical stability [Behrmann et al., 2021]. As a result, regularizations aimed at controlling the Lipschitz
properties of a network are a common occurrence; see e.g. Miyato et al. [2018] for the spectral regularization
of GANs. This indicates that concentrated vectors are indeed a good approximation for real-world data.

D Details on the numerical simulations

In this appendix we expand on how Fig. 2 was generated. This closely follows the pipeline illustrated in
Fig. 1.

Step 1: Training of the cGAN — The first step consists on training a cGAN on the real data set. For
Fig. 2, we have used a PyTorch [Paszke et al., 2019] implementation of the architecture in Chen et al. [2016]
publicly available at the pytorch-generative-model-collections repository. The cGAN was trained on the
fashion-MNIST dataset Xiao et al. [2017] following the default procedure in the repository: i.e. training for
50 epochs and batch size 64 using Adam with learning rate 0.0002 and (β1, β2) = (0.5, 0.999) on the binary
cross entropy (BCE) loss (equal for both generator and discriminator). The evolution of the training loss
during training is given in Fig. 3, and samples from the generator during different epochs are shown in Fig. 4.

Step 2: Evaluating the class means and covariances — With the trained cGAN in hands, we can generate
as many fresh samples as needed for our experiments. Moreover, a feature map can be easily added on the top
of the cGAN architecture, as illustrated in Fig. 1. For Fig. 2, we have added a random feature map [Rahimi
and Recht, 2007] x 7→ tanh(Fx) with projection matrix F ∈ R1176×784 with entries Fij ∼ N (0, 1/d). In
order to compare the performance of a model trained on cGAN+RF samples vs. the equivalent Gaussian
mixture model, we need to compute the class-wise means and covariances (µc,Σc). For Fig. 2, this was
done with a standard Monte Carlo scheme over 106 samples.
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Figure 3: Evolution of the binary cross entropy training loss for the generator (orange) and discriminator
(blue) during training.

Step 3: Learning curves — The last step consists of computing the curves for the test error of logistic
and ridge regression trained on the cGAN+RF features. Each point in Fig. 2 corresponds to a fixed sample
complexity α = n/p. For each α, we generate fresh n = α× p training features either from the cGAN+RF
model (blue points) or from the equivalent Gaussian mixture model (red points). For the binary classification
task, we split the samples over even vs. odds class labels. The SciPy [Virtanen et al., 2020] implementation
of both ridge and logistic regression were used to train a classifier on the training data, from which both
training error and test error were computed, using another batch of fresh samples for the latter. Finally, to
reduce finite-size effects this procedure was repeated over 10 different seeds, with the average and standard
deviation reported in Fig. 2.
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Figure 4: Fake fashion-MNIST Samples from the cGAN generator at the end of epoch 1 (left), 25 (middle)
and 50 (right).
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