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Abstract

We consider numerical solution of finite element discretizations of the Stokes
problem. We focus on the transform-then-solve approach, which amounts to first
apply a specific algebraic transformation to the linear system of equations arising from
the discretisation, and then solve the transformed system with an algebraic multigrid
method. The approach has recently been applied to finite differences discretisations of
the Stokes problem with constant viscosity, and has recommended itself as a robust
and competitive solution method. In this work, we examine the extension of the
approach to standard finite element discretizations of the Stokes problem, including
problems with variable viscosity. The extension relies, on one hand, on the use
of the successive over-relaxation method as a multigrid smoother for some finite
element schemes. On the other hand, we present strategies that allow us to limit the
complexity increase induced by the transformation. Numerical experiments show
that our method is competitive compared to a state-of-the-art solver based on a
block diagonal perconditioner and MINRES, and suggest that the transform-then-
solve approach is also more robust. In particular, for problems with variable viscosity,
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the transform-then-solve approach demonstrates significant speed-up with respect to
the block diagonal preconditioner.

Key words. solution of discrete Stokes problem, algebraic multigrid for Stokes,
transform-then-solve approach, variable viscosity.
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1 Introduction

We consider iterative solution of large sparse linear systems arising from some finite element
discretizations of the Stokes problem

−∇ · ν
(
∇~u+∇t~u

)
+∇p = ~f in Ω ,

∇ · ~u = 0 in Ω ,
(1.1)

with boundary conditions

~u = ~w on ∂ΩD ,

ν
(
∇~u+∇t~u

)
· ~n− ~np = ~s on ∂ΩN .

Here, ~u represents the velocity, p represents the pressure, ~f is a forcing term , Ω ⊂ Rd is
a bounded two-dimensional (d = 2) or three-dimensional (d = 3) domain, ~n is the unit
outward normal vector to the domains boundary ∂Ω = ∂ΩD ∪ ∂ΩN , and ~w , ~s are known
functions on ∂ΩD and ∂ΩN , respectively; ν is the (kinematic) viscosity. Note that if the
viscosity ν is constant, ∇ · ν (∇~u+∇t~u) can be replaced by ν∆~u and ν (∇~u+∇t~u) · ~n by
ν ∂~u
∂n

; however, in this work we also consider problems with variable viscosity.
The solution of discretized Stokes problem is performed here with the help of multigrid

methods [25, 10]. This choice is motivated by the optimal order convergence properties of
multigrid methods for various PDE problems. These methods are based on the recursive
use of a two-grid method, which itself is a combination of a smoother, typically a greedy
iterative method, and a coarse grid correction, which amounts to solve a related, but smaller
(or coarser) system. A multigrid method is obtained when the coarser system is in turn
solved approximately with one or few iterations of the multigrid method, implying thus
its recursive use; the recursion stops when the coarse system can be solved directly at a
negligible cost. The hierarchy of progressively coarser grids can be obtained by discretizing
the problem on a set of progressively refined meshes (geometric multigrid) or built based
on the system matrix (algebraic multigrid, abbreviated as AMG in what follows). Here
we focus in particular on AMG methods because geometric multigrid methods cannot be
used if the problem is discretized on an unstructured mesh. AMG methods also represent
a more suitable alternative to direct solvers as they do not require interaction between
solver and discretization parts of the code.

Design of multigrid methods for discrete Stokes problems is not a trivial task. This is
because the second equation of (1.1) has no pressure term, and therefore the corresponding
diagonal block in the system matrix is either a zero matrix or a small-in-magnitude sta-
bilization matrix. As a consequence, simple smoothing schemes, such as Jacobi or Gauss–
Seidel iterations, are either undefined or non convergent for Stokes problems. Geometric
multigrid methods get around this difficulty by using specific, more involved, smoothing,
such as the Vanka smoother [26], the Braess-Sarazin smoother [4], incomplete Uzawa proce-
dures [13, 8] or distributive smoothing [5, 31]. On the other hand, AMG methods typically
rely on a simple smoothing scheme. This peculiarity, in addition to the fact that it is not
straightforward to define a hierarchy of coarse systems for discrete Stokes problems, prob-
ably explains why only few attempts have been made to apply AMG methods to Stokes
problems [14, 27, 28].
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Therefore, when geometric multigrid cannot be used, the state-of-the-art alternative is
to rely on block diagonal, block triangular and related preconditioners (see [3, 6, 22] and
works cited therein). In particular, the block diagonal preconditioner with symmetric and
positive definite diagonal blocks as proposed in [6, 9] is attractive because it is proved of
optimal order for finite element discretizations and can be combined with the MINRES
method [23], which provides minimal residual reduction without need of restarting. AMG
methods for discrete Laplacians are then typically used as block solvers for specific blocks.

Recently, a new AMG approach for Stokes problems [20, 21] was proposed by the last
author. The basic idea is to get around the intrinsic difficulty of Stokes problems by
first applying an algebraic transformation which gives each diagonal block a structure of
a discrete Laplacian, and then by solving the transformed system with an AMG method;
in what follows, we refer to this approach as the tranform-then-solve approach. Note that
AMG is used here in an all-at-once fashion since it is applied to the whole transformed
system, and not to some of its blocks. In particular, in [21] the conditions for an optimal
two-grid convergence of an associated multigrid method are established, and a practical
multigrid method is proposed, which relies on a specific version of AGMG software [17] to
solve the transformed system.

Now, the results in [21] cover mainly finite difference discretizations of (1.1) with con-
stant viscosity. When adapting the approach to finite element discretizations, we noted
two main difficulties. First, the Gauss–Seidel smoother used in [21] is not convergent for
some finite element schemes1. Second, the increase in complexity due to the algebraic
transformation is higher than what is observed for finite difference discretizations, calling
into question the competitiveness of the approach. This increase is particularly important
for some finite element schemes or for problems discretized on unstructured grids. On
the other hand, as discussed in the next section, it is difficult to anticipate from previous
results how the method will behave in case of variable viscosity.

In this paper, we address all of these issues. First, we show that robust convergence is
obtained when using successive over-relaxation (SOR) smoothing instead of Gauss-Seidel
in cases where the discretization of the velocity components is based on the Q2 finite
elements. Further, we propose two complementary strategies that significantly reduce the
impact of the complexity increase due to the transformation.

Eventually, we compare this modified transform-then-solve approach to the state-of-
the-art block-preconditioned MINRES method on a varied panel of problems. The re-
sults suggest that the transform-then-solve approach is always competitive while being
significantly more robust on open flow problems. The improvement with respect to block-
preconditioned MINRES is particularly important for problems with varying viscosity,
despite the transform-then-solve approach then generally converges slower than when the
viscosity is constant.

The remaining of the paper is organized as follows. In Section 2 we recall the transform-
then-solve approach. Section 3 contains the description of our benchmark problems. In
Section 4 we show that SOR smoothing schemes should be preferred for some finite element
discretizations, whereas in Section 5 we present strategies that reduce the complexity

1Note that this does not contradict the aforementioned two-grid convergence theory, which holds for
damped Jacobi smoothing. But, in practice, when Gauss–Seidel smoothing works, it brings a significant
improvement.
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increase induced by the transformation. In Section 6 we report on the comparison with
the block-preconditioned MINRES method. Conclusions are drawn in Section 7.

2 Transform-then-solve approach

The transform-then-solve approach amounts to applying an algebraic transformation to
the discretized Stokes problem in order to make each diagonal block suitable for an AMG
method for discrete Laplacians. We therefore briefly recall in Section 2.1 the key AMG
principles, before presenting the transform-then-solve approach in Section 2.2.

2.1 Algebraic multigrid

AMG methods are widely used black-box solvers and preconditioners for the linear systems
Au = b corresponding of various discrete PDEs problems, including discrete Laplacian-
based problems. Like all multigrid methods, AMG achieve an optimal convergence behavior
by using a hierarchy of progressively smaller (or coarser) versions of the problem. In AMG
methods, such hierarchy is constructed in a back-box fashion during the setup stage, before
it is used in the solve stage. More information about AMG methods can be found in [25,
Appendix A].

The key operation during the setup stage is coarsening, that is, a construction of the
coarser version of a problem. First, a prolongation operator P is defined, which establishes
the mapping from the coarse to the fine space:

v = Pvc ,

where v is a n-dimensional fine vector and vc is a nc-dimensional coarse vector; the trans-
pose P T of P is then typically used to map from the fine to the coarse space. The nc × nc
matrix of the coarse problem is then defined with Galerkin formula

Ac = P TAP . (2.1)

The multigrid hierarchy is obtained by starting with the original problem and repeatedly
coarsening the coarsest problem in the hierarchy until this latter is small enough.

In the AMG framework, P is defined automatically based on the information contained
in the matrix A. Focusing on AMG methods for discrete Laplacians, classical AMG ap-
proaches divide the set of all unknowns into two subsets: F the set of unknowns strictly
on the fine grid and C the set of unknowns both on the fine and coarse grid. The matrix
P is then defined in such a way that the variables in C keep the same values on the coarse
and fine grid while the variables in F are interpolated from neighboring values from C.

Alternatively, aggregation-based AMG approaches define P based on small non-overlap-
ping subsets of fine unknowns. Those subsets are called aggregates and a coarse unknown
is associated to each aggregate. The matrix P is then defined in such a way that the
value of each coarse unknown is attributed to all the fine unknowns of the corresponding
aggregate. In this work, we use an aggregation-based AMG method for reasons explained
in [21] and briefly recalled in the next subsection.
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During the solve stage, the application of an AMG preconditioner amounts to combining
at each level the solution of a coarser problem, or coarse-grid correction, with an application
of a greedy iterative method, or smoothing (we speak of pre-smoothing if it precedes the
coarse-grid correction step, and post-smoothing if it follows this step), except for the
coarsest level, where the problem is solved with a (sparse) direct solver. In particular,
Gauss-Seidel iterations is typically used as a smoother in AMG methods; more details on
these are given in Section 4.

2.2 Transform-then-solve

The finite element discretization of (1.1) (see, e.g., [6]) leads to a linear system of the form

A0

(
u
p

)
=

(
F BT

−B C

)(
u
p

)
=

(
bu

bp

)
. (2.2)

In this system, when the viscosity ν is constant, F is typically composed of d decoupled
diagonal blocks, with d = 2 or d = 3, according to the dimensions of Ω ⊂ Rd ; each
such block then corresponds to a scalar discrete Laplacian operator that acts on a velocity
component and, hence, F is a symmetric positive definite (SPD) matrix. B and BT are,
respectively, the discrete divergence and the discrete gradient, and C is either a zero matrix
or a (small-in-magnitude, symmetric nonnegative definite) stabilization term needed for
some discretizations. In particular, when B is not full rank, C is required to be positive
definite on the null space of BT for the matrix A0 to be nonsingular [3]. Note that we
changed the sign of the last block of equations compared with what is considered in most
references.

The transformation proposed in [21] is induced by the following change of variables:(
u
p

)
=

(
I −D−1

u BT

I

)(
û
p̂

)
, (2.3)

where Du is a diagonal matrix, typically the diagonal part of F (or more generally Du =
η diag(F ) for some scaling factor η, but in practice η = 1 appears near optimal). The
system matrix then becomes

A =

(
F (I − F D−1

u )BT

−B C +BD−1
u BT

)
=

(
F B̂T

−B Ĉ

)
. (2.4)

Unlike with the initial system matrix A0 in (2.2), the diagonal blocks F and Ĉ of
the transformed matrix A from (2.4) are both suitable for AMG methods for discrete
Laplacians. Regarding the top left F block, as already said, it is typically block diagonal
with each diagonal block corresponding a scalar discrete Laplacian operator. As of the
bottom right Ĉ = C + BD−1

u BT block, it is dominated by the BD−1
u BT term since C is

either zero or a small-in-magnitude stabilization term. The BD−1
u BT term is essentially

the product of a discrete divergence with a discrete gradient and is therefore similar to a
discrete Laplacian, as explicitly seen in [20].

In [21] is then proposed a relatively standard all-at-once AMG preconditioner for the
transformed matrix A (2.4), using unknown-based coarsening to cope with the fact that the
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matrix stems from coupled PDEs; that is, the different types of unknowns (velocity com-
ponents and pressure) are coarsened separately, each one on the basis of the corresponding
diagonal block in the (transformed) system matrix. The prolongation matrix has thus the
block diagonal form

P =

(
Pu

Pp

)
, (2.5)

and the coarse grid matrix is obtained by the Galerkin formula Ac = P TAP . The ac-
companying two-grid analysis further proves optimal convergence properties of a simpler
variant using a single smoothing step of Jacobi smoother.

It is worth noting that, whereas the approach may in principle be used with any type of
AMG method, some investigations reveal that aggregation-based AMG has to be prioritized
because classical AMG leads to loss of stability at coarser levels [21, 29]. This leads in
[21] to the proposal of solving the transformed system (2.4) with a specific variant of the
AGMG software [17]. Indeed, this software implements an aggregation-based AMG method
(see [15, 18, 19]), while the specific variant enforces unknown-based coarsening and uses
Gauss–Seidel smoothing.

Regarding problems with variable viscosity, little can be anticipated about the results
of the transform-then-solve approach for these problems. Of course, the approach can still
be applied since it is purely algebraic. Moreover, since F is in general still SPD, the main
convergence result in [21] remains valid because it is formulated in an algebraic fashion.
However, it is unclear how do behave the involved constants, since the analyses of these
provided in [20, 21] essentially refer to model problems with constant coefficients.

Moreover, for the approach to be successful, it is important that the AMG method for
the top left block F exhibits an efficient convergence. In case of variable viscosity, the term
whose discretization leads to the F block expands

−∇ · ν
(
∇~u+∇t~u

)
= −∇ · (ν∇~u)−∇ ·

(
ν∇t~u

)
.

Thus, compared with the constant viscosity case, there is an additional term which makes
F typically no longer block diagonal (i.e., all the velocity components are coupled). As a
result, there is in general no guarantee that AMG methods for discrete Laplacians preserve
their efficiency in the presence of this term.

3 Test problems

The transform-then-solve approach is studied here with the help of the test problems that
we now describe. The considered test problems are grouped in two sets, based on the
software used to generate them. The main properties of the problems are given in Table 1.
Note, in particular, that most of the standard finite element schemes for Stokes problems
are represented in the considered test set.

The first set is made up of problems generated with the IFISS software [24]. These are
defined on structured 2D grids with various pairs of finite elements and are described in [6].
Each problem is discretized using four finite element schemes: Q1 − P0, Q1 −Q1, Q2 − P1

and Q2 −Q1. Cavity, Channel and Collide problems are defined on the [−1, 1]× [−1, 1]
square domain, whereas Step problem is defined on a L-shaped domain. Further, Cavity
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Figure 1: Streamlines and pressure field for the Step problem.

problem describes a fluid in a square box (closed flow) whose lid moves from left to right;
all boundary conditions are of Dirichlet type. Channel problem describes a fluid flow
through a square from left to right; the velocity profile is imposed on the left boundary
and a Neumann boundary condition is imposed on the right side (open flow). Collide

problem describes two fluid flows going in opposite directions and colliding in the middle
of the domain; practically, two opposed velocity profiles are imposed on the left and right
boundaries (closed flow). Eventually, Step problem describes a fluid flow over a backward
step; a velocity profile is imposed on the left boundary via a Dirichlet condition while the
outflow is described via a Neumann condition (open flow). Streamlines and pressure field
for Step problem discretized with Q1 − P0 finite elements are illustrated in Figure 1. The
viscosity for all these problems is set to ν = 1 and, hence, constant.

Note that in Table 1 we present the data for the smallest considered mesh size, which
is also the one used whenever not otherwise specified. In some tests reported below, we
check the scalability of the method by including results with mesh size twice as large. This
smaller problem size is then referred to as S1 , whereas the default size is referred to as S2 .

The second set of problems is generated by the Cast3M software [1], developed for
structural mechanics and fluid dynamics modelization. It contains both two and three
dimensional problems discretized on unstructured grids, except for the Weld pool problem
for which the grid is structured but the boundary of the domain is irregular, as illustrated
in Figure 2 (left).

More specifically, Square a and Square b (respectively Cube) problems are defined on
a square (respectively cube) domain and the flow is closed: those problems are similar in
nature to the Cavity problem of IFISS. Their viscosity is also set to ν = 1 .

Further, Arc 2D, Arc 3D a, Arc 3D b, and Weld pool problems arise when modeling
welding processes; in particular, Arc 2D, Arc 3D a, and Arc 3D b problems correspond
to modeling of welding arcs, and are open flow problems, whereas Weld pool models a
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n
105

nnz
n d νmin νmax mesh flow FEu FEp stab.

Cavity Q1 − P0 7.9 12.2 2 1 1 S C Q1 P0 U
Q1 −Q1 7.9 20.4 2 1 1 S C Q1 Q1 U
Q2 − P1 7.2 20.4 2 1 1 S C Q2 P1 S
Q2 −Q1 5.9 24.3 2 1 1 S C Q2 Q1 S

Channel Q1 − P0 7.9 12.2 2 1 1 S O Q1 P0 U
Q1 −Q1 7.9 20.4 2 1 1 S O Q1 Q1 U
Q2 − P1 7.2 20.4 2 1 1 S O Q2 P1 S
Q2 −Q1 5.9 24.3 2 1 1 S O Q2 Q1 S

Collide Q1 − P0 7.9 12.2 2 1 1 S C Q1 P0 U
Q1 −Q1 7.9 20.4 2 1 1 S C Q1 Q1 U
Q2 − P1 7.2 20.4 2 1 1 S C Q2 P1 S
Q2 −Q1 5.9 24.3 2 1 1 S C Q2 Q1 S

Step Q1 − P0 21.7 12.3 2 1 1 S O Q1 P0 U
Q1 −Q1 21.7 20.5 2 1 1 S O Q1 Q1 U
Q2 − P1 19.9 20.5 2 1 1 S O Q2 P1 S
Q2 −Q1 16.3 24.4 2 1 1 S O Q2 Q1 S

Square a 13.3 17.3 2 1 1 U C P2 P1 S
Square b 12.8 16.1 2 1 1 U C P1 P1 U

Arc 2D(cst) 1.1 18.5 2 1 1 U O P1,Q1 P1,Q1 U

Cube 7.6 36.2 3 1 1 U C P1 P1 U
Arc 3D a(cst) 2.2 61.5 3 1 1 U O R1,Q1 R1,Q1 U
Arc 3D b(cst) 5.4 62.6 3 1 1 U O R1,Q1 R1,Q1 U

Weld pool(cst) 13.3 158.5 3 1 1 S C Q2 Q1 S

Arc 2D 1.1 18.5 2 5.8 10−5 2.7 10−4 U O P1,Q1 P1,Q1 U
Arc 3D a 2.2 96.8 3 3.8 10−5 2.7 10−4 U O R1,Q1 R1,Q1 U
Arc 3D b 5.4 99.4 3 3.8 10−5 2.7 10−4 U O R1,Q1 R1,Q1 U

Weld pool 13.3 200.9 3 2.5 10−3 1.7 S C Q2 Q1 S

Table 1: Main properties of the considered test problems, n being the number of unknowns
and nnz the number of nonzero entries of the initial system matrix A0 . Column with d as a
header indicates if the problem is two- (d = 2) or three-dimensionnal (d = 3); νmin and νmax

columns indicate, respectively, minimal and maximal value of viscosity ν , “mesh” column
indicates if the mesh is structured (S) or unstructured (U); “flow” column indicates if the
flow is open (O) or closed (C); columns FEu and FEp indicate the finite element scheme
used for the discretization of, respectively, velocity and pressure; R1 designates the linear-
bilinear shape functions for prismatic elements; “stab.” indicates if the discretization is
stable (S) or has been stabilized by adding a stabilization term to the pressure equation
(U).

weld pool and is a closed flow problem. The involved fluids have viscosity varying with
temperature which is nonuniform during the simulated process; this is illustrated with
Figure 2 (right). Hence these problems naturally present variable viscosity, whose range
depends on the temperature profile. Besides, we found it interesting to also consider the
constant viscosity variant of these problems, although these are artificial. On the one
hand, this allows us to better assess the robustness with respect to variable viscosity. On
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Figure 2: Discretization grid for Weld pool(cst) problem (left) and temperature distri-
bution for Arc 3D b problem (right); in this latter case, the viscosity is related to the
temperature via the relation pictured in figure 3.

Temperature

V
i
s
c
o
s
i
t
y

0.0 0.5 1.0 1.5 2.0 2.5

x10
4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x10
−4

Figure 3: Viscosity of argon as a function of temperature used in Arc 2D, Arc 3D a, and
Arc 3D b problems.

the other hand, the resulting discrete equations are representative of systems that one
may obtain when modeling constant viscosity fluids on unstructured grids with similar
boundary conditions.

4 Smoothing

Here we address the smoother convergence issues encountered with the transform-then-
solve approach for some finite element schemes. We recall that the original transform-
then-solve approach in [21] is based on the AGMG software in unknown-based coarsening

10



SOR (automatic ω) Gauss–Seidel
S1 S2 S1 S2

#it (ω) #it (ω) #it #it
Cavity Q1 − P0 13 (0.68) 17 (0.60) 12 13

Q1 −Q1 14 (0.61) 14 (0.61) 11 12
Q2 − P1 20 (0.52) 18 (0.52) 16 16
Q2 −Q1 22 (0.50) 22 (0.50) > 99 > 99

Channel Q1 − P0 13 (0.68) 14 (0.60) 11 11
Q1 −Q1 13 (0.61) 13 (0.61) 12 11
Q2 − P1 20 (0.52) 20 (0.52) 17 17
Q2 −Q1 23 (0.50) 23 (0.50) > 99 > 99

Collide Q1 − P0 15 (0.68) 19 (0.60) 13 15
Q1 −Q1 16 (0.61) 17 (0.61) 14 14
Q2 − P1 24 (0.52) 24 (0.52) 18 19
Q2 −Q1 24 (0.50) 25 (0.50) > 99 > 99

Step Q1 − P0 17 (0.68) 18 (0.60) 15 16
Q1 −Q1 16 (0.61) 15 (0.61) 13 13
Q2 − P1 24 (0.52) 23 (0.52) 19 19
Q2 −Q1 22 (0.50) 34 (0.50) > 99 > 99
Square a 23 (0.50) 18
Square b 30 (0.56) 36

Arc 2D(cst) 72 (0.69) 80
Cube 29 (0.32) 22

Arc 3D a(cst) > 99 (0.56) 88
Arc 3D b(cst) 39 (0.56) 31

Weld pool(cst) 28 (0.36) > 99

Table 2: Number of iterations for the transform-then-solve approach with SOR and Gauss–
Seidel smoothing; for SOR smoother, the automatically computed value of ω is indicated
under parenthesis.

mode with Gauss-Seidel smoothing. We report in Table 2 the number of iterations needed
by the corresponding solver to reduce the relative residual error by the factor of 10−6 .
Only problems with constant viscosity are considered, since we want the ensure robustness
of the considered method primarily with respect to these problems; methods performance
for variable viscosity problems is assessed in Section 6.

Clearly, the method does not converge within 100 iterations for Q2−Q1 discretizations.
Therefore, in Table 2 we also report the number of iterations when using the default
AGMG smoother for unsymmetric problems, which is SOR with a relaxation parameter ω
automatically computed by the code.

Here it is worth recalling what these methods are. Gauss–Seidel iterations update the
approximate solution u as follows:

Computation of the residual: r = b− Au ;
Update of the approximate solution: ũ = u + v with v = M−1

A r ,
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where MA is either the lower triangular part (forward Gauss–Seidel) or the upper triangular
part (backward Gauss–Seidel) of the system matrix A ; “forward” (resp. “backward”) stems
from the fact that the associated linear system is solved using “forward” (resp. “backward”)
substitution.

In general, a multigrid method can perform well only if its smoother defines a convergent
iterative process. Of course, some error modes will converge very slowly, which motivates
the coarse grid correction. But it is important to avoid any divergent mode. AGMG uses
1 step of forward Gauss–Seidel as pre-smoother and 1 step of backward Gauss–Seidel as
post-smoother, which is always convergent for SPD matrices.

The convergence of Gauss–Seidel is no longer guaranteed for nonsymmetric matrices,
but robustness is in general improved using SOR instead of Gauss–Seidel. With this,
one performs the same iteration, but the diagonal of MA is exchanged for ω−1diag(A) with
ω < 1 ; or, otherwise stated, (ω−1−1)diag(A) is added to the lower or upper triangular part
of A . (Observe that SOR coincides with Gauss–Seidel when ω = 1.) For nonsymmetric
matrices, AGMG automatically computes some relevant ω using some heuristics, which
however tend to favor robustness over speed.

Going back to Table 2, one sees that the transform-then-solve approach with such an
SOR smoother and automatically computed ω is indeed robust except in one case, but often
requires slightly more iterations than Gauss–Seidel, with a notable exception for Q2 −Q1

finite element discretizations.
To better understand the difficulties associated with Q2−Q1 finite elements, we resort

to Local Fourier Analysis (LFA). We refer to [30] for technical details, and just remind
the main philosophy: LFA is a tool which enables a cheap computation of exact quantities
associated with two-grid methods, such as the asymptotic convergence factor; however, to
apply LFA, the problem has to be simplified to a constant coefficient PDE problem on a
uniform, typically Cartesian, grid with periodic boundary conditions. Thus, LFA allows
one to cheaply obtain exact quantities for a nearby problem, including when the mesh size
parameter goes to zero, whereas similar computation for problems with realistic boundary
conditions are restricted to relatively small, and hence not necessarily representative, sizes.
Despite its partly heuristic nature, LFA is recognized as a reliable tool for determining the
potential of multigrid methods [25].

The LFA convergence parameters are given in Table 3 for the case where one uses
model boxwise aggregation for both velocity and pressure components (which is close to
the aggregation generated by AGMG in such cases), while, as in AGMG, the pre-smoothing
consists in a single forward SOR sweep and the post-smoothing – in a single backward SOR
sweep.

The second column gives the LFA asymptotic convergence factor ρSOR of the standalone
SOR smoothing step (i.e. no coarse grid correction is applied here) as a function of relax-
ation parameter ω. Logically, the asymptotic convergence factor ρSOR is at best practically
equal to 1, indicating that the smoother alone cannot converge at an acceptable speed.
However, it is interesting to observe that ρSOR > 1 for ω ≥ 0.9 ; that is, the smoother alone
then does not define a convergent iterative process, which opens the door to the failure
of the associated multigrid method. Since SOR smoothing with ω = 1 coincides with
Gauss–Seidel smoothing, this essentially confirms the previous observations and explains
the convergence issues of the original transform-then-solve approach.
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ω ρSOR ρTG

0.1 1.00 0.89
0.2 1.00 0.80
0.3 1.00 0.73
0.4 1.00 0.67
0.5 1.00 0.64
0.6 1.00 0.62
0.7 1.00 0.58
0.8 1.00 0.57
0.9 1.28 0.57
1.0 1.87 1.60

Table 3: LFA results for Q2 −Q1 discretizations of 2D Stokes problems (and for the mesh
size parameter going to zero) as a function of SOR relaxation parameter ω ; ρSOR and ρTG

are the asymptotic convergence factors of, respectively, the standalone SOR smoothing
step (i.e., a successive application of one forward and one backward SOR iteration) and
the associated two-grid method.

The third column gives the LFA asymptotic convergence factor ρTG of the two-grid
method. The results indicate that the convergence issues of the smoother for ω = 1 do carry
over to the two-grid method. Next, they suggest that the fastest convergence correspond
to the values of ω around 0.7–0.9; the choice ω = 0.9 should however be treated with care,
since the standalone smoother is then already divergent. Further, note that these values
are larger than the automatically computed ω values reported in Table 2, these latter being
around 0.5 for Q2 −Q1 discretizations.

Eventually, in Table 4 the observations based on LFA are corroborated with the actual
convergence of the transform-then-solve approach with SOR smoother for all discretizations
using Q2 for velocities. The results then suggest that SOR with ω = 0.7 is significantly
better than that with the automatically computed value of ω . Since Gauss–Seidel does not
work for Q2−Q1 discretizations, this is the choice approach for such problems. Moreover,
it can be used for all discretizations using Q2 for velocities, the results being equivalent
to that with Gauss-Seidel for Q2 − P1 discretizations. Further results show that this is,
however, not true for other discretizations, where Gauss–Seidel performs better.

We thus end up with the following simple rule: use SOR smoothing with ω = 0.7 if
the discretization of the velocities is based on Q2, and Gauss–Seidel smoothing in all other
cases. Note that usually which discretization has been used is known in the code that
calls the solver for linear system solution; in case it is unknown, we suggest to use SOR
smoothing with ω = 0.7 which is robust in all cases considered here.

5 Improving the computational complexity

Another issue is a significant increase in complexity observed when the transform-then-
solve approach is applied to some problems. It is reflected in the fact that the transformed
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ω Auto 0.6 0.7 0.8 1.0
Cavity Q2 −Q1 22 20 19 35 > 99

Q2 − P1 18 16 15 14 16
Channel Q2 −Q1 23 21 22 36 > 99

Q2 − P1 20 18 17 16 17
Collide Q2 −Q1 25 22 20 30 > 99

Q2 − P1 24 18 20 19 19
Step Q2 −Q1 34 26 21 30 > 99

Q2 − P1 23 22 20 19 19
Weld pool(cst) 28 24 23 > 99 > 99

Table 4: Number of iterations for the transform-then-solve approach with SOR smoothing
for Q2 −Q1 and Q2 − P1 discretizations for various values of the relaxation parameter ω .
Column with “Auto” header corresponds to the automatically computed values of ω; that
with ω = 1.0 corresponds to Gauss–Seidel smoothing.

matrix A may have significantly more nonzero entries than the initial matrix A0 . Since the
cost of the numerical solution with AGMG is roughly speaking proportional to the number
of nonzero entries in the system matrix (in this case A), this increase may penalize the
transform-then-solve approach, compared with other methods that work with the initial
matrix A0 . We define the transformation complexity as

cpl(A) =
nnz(A)

nnz(A0)

=
nnz(F ) + nnz(B) + nnz(B̂) + nnz(Ĉ)

nnz(A0)

= 1 +
nnz(B̂)− nnz(B)

nnz(A0)
+

nnz(Ĉ)− nnz(C)

nnz(A0)

= 1 + cpl(B̂) + cpl(Ĉ) ,

where B̂ , Ĉ are as in (2.4), and where

cpl(B̂) =
nnz(B̂)− nnz(B)

nnz(A0)
, cpl(Ĉ) =

nnz(Ĉ)− nnz(C)

nnz(A0)
.

The values of cpl(A), cpl(B̂) and cpl(Ĉ) are reported in Table 5. The results show that
the penalty is actually important, especially for Q2 − P1 discretizations and unstructured
meshes. Interestingly, in all cases, cpl(Ĉ) remains modest and significantly below cpl(B̂) ,
whose contribution is always “to blame” when cpl(A) goes above 2.

This observation motivates two complementary strategies proposed here to limit the
impact of the transformation on the complexity of the method. The first acts at the fine
level, and is based on a clever implementation of Gauss-Seidel or SOR smoothing iterations
for matrices of the form (2.4), which does not require forming B̂T and allows one to save
most of the computational cost associated with the increase of the number of nonzero
entries in the top right block.
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cpl(A) cpl(B̂) cpl(Ĉ)
Cavity Q1 − P0 1.81 0.65 0.16

Q1 −Q1 1.78 0.52 0.26
Q2 − P1 2.43 1.08 0.36
Q2 −Q1 1.62 0.51 0.11

Channel Q1 − P0 1.81 0.65 0.16
Q1 −Q1 1.78 0.52 0.26
Q2 − P1 2.43 1.08 0.36
Q2 −Q1 1.62 0.51 0.11

Collide Q1 − P0 1.81 0.65 0.16
Q1 −Q1 1.78 0.52 0.26
Q2 − P1 2.43 1.08 0.36
Q2 −Q1 1.62 0.51 0.11

Step Q1 − P0 1.81 0.65 0.16
Q1 −Q1 1.78 0.52 0.26
Q2 − P1 2.43 1.07 0.36
Q2 −Q1 1.62 0.50 0.11
Square a 3.36 1.61 0.75
Square b 1.75 0.50 0.25

Arc 2D(cst) 1.77 0.51 0.26
Cube 2.52 1.13 0.39

Arc 3D a(cst) 2.40 1.04 0.37
Arc 3D b(cst) 2.45 1.07 0.38

Weld pool(cst) ?? 1.83 0.77 0.06

Table 5: Transformation complexity with the contributions of the two transformed blocks.

This strategy cannot be used at coarser levels, since the coarse grid matrices are ob-
tained by the Galerkin formula Ac = P TAP and thus do not have the form (2.4) (see
Section 5.2 for details). However, in multigrid algorithms, we have the flexibility to replace
the coarse grid matrix by a close approximation as long at this does not have a significant
impact on the convergence.

The second strategy exploits this flexibility, and consist in defining the coarse grid
matrix by applying the Galerkin formula to a sparsified version of the transformed system
matrix (2.4). This sparsified version is obtained by replacing in A the top right block B̂T

by the original block BT . In Section 5.2 we justify why this seemingly crude approximation
may indeed have only a limited impact on the convergence rate, while the numerical results
in Section 6 show that it has in practice nearly no impact at all.

Note that, when combining both strategies, the transformed top right block B̂T never
need to be formed explicitly.
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5.1 Fine level

In this section we present an efficient way to implement the Gauss-Seidel and SOR smoo-
thers for the matrices of the form (2.4). This implementation reduces the extra cost

associated with the use of the transformed block B̂T to that of a matrix multiplication
with the lower or the upper triangular part of the top left block F . The extra cost
associated with the transformed block Ĉ is not reduced but, as already noticed, this cost
is anyway not dominant. Note that a similar approach for Jacobi smoother is presented in
[20]; however, since the solver for the transform-then-solve approach converges significantly
faster with Gauss–Seidel or SOR smoothing, the approach in [20] is of limited use for the
present work.

Now, AGMG uses a more advanced implementation of the Gauss–Seidel and SOR
smoothing than that sketched in Section 4. Indeed, instead of computing the residual with
the formula r = b−Au , it uses a more economical residual update, as summarized in the
following two substeps:

Update of the approximate solution: ũ = u + v with v = M−1
A r ;

Update of the residual: r̃ = r− Av = −NAv with NA = A−MA .

As written in the preceding section, MA is either the lower triangular part (forward Gauss-
Seidel) or the upper triangular part (backward Gauss–Seidel) of the system matrix A , or
the same with a diagonal correction (backward or forward SOR). This implies that the
update of the residual is cheaper with the second equation in the second line, since, e.g.,
if MA is the lower triangular part of A , NA is its strict upper part, hence multiplication
by NA costs less that a multiplication by A itself.

In the following, we consider both forward and backward Gauss–Seidel, AGMG using
one forward sweep as pre-smoothing and one backward sweep as post-smoothing. We
consider explicitly only Gauss–Seidel for the clarity of the presentation, the extension to
SOR being straightforward since using SOR instead of Gauss–Seidel requires only to update
the diagonals of MA and NA .

Forward Gauss–Seidel/SOR. Here

MA =

(
LF
−B LĈ

)
, NA =

(
NF (I − F D−1

u )BT

NĈ

)
, (5.1)

where Li is the lower triangular part of the block i and Ni its strict upper part, with
i = F, Ĉ.

Computing M−1
A r in this case does not involve B̂T , hence a straightforward implemen-

tation suffices. On the other hand(
wu

wp

)
= NA

(
vu

vp

)
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can be computed as follows, remembering that F = LF +NF :

ŵu = BTvp

w̃u = D−1
u ŵu

wu = NF (vu − w̃u) + ŵu − LF w̃u

wp = NĈvp .

One sees that the only significant additional cost, compared with the situation where the
top left block of NA would be just BT , is an additional multiplication by LF at the third
line.

Backward Gauss–Seidel. Here

MA =

(
UF (I − FD−1

u )BT

UĈ

)
, NA =

(
NF

−B NĈ

)
, (5.2)

hence only the computation of M−1
A r requires adaptations. Those we propose solve linear

systems

MA

(
vu

vp

)
=

(
ru
rp

)
using

vp = U−1
C rp

w1 = BTvp

w2 = D−1
u w1

vu = w2 + U−1
F (ru −w1 +NFw2) ,

the last equation holding because

U−1
F F w2 = U−1

F (UF +NF )w2 = w2 + U−1
F NFw2 .

Here, compared with the situation where the top right block would be just BT , the only
significant additional cost is a multiplication by NF , i.e., the strict lower part of F .

5.2 Coarse levels

The coarse grid matrix is defined by the Galerkin formula (2.1) which, for the prolongation
P given by (2.5) and for the system matrix A given by (2.4), is computed as

Ac =

(
P T
u

P T
p

)
A

(
Pu

Pp

)
=

(
P T
u F Pu P T

u (I − F D−1
u )BTPp

−P T
p B Pu P T

p Ĉ Pp

)
Clearly, with Fc = P T

u F Pu , Dc = diag(Fc) and Bc = P T
p B Pu, one will in general not

have Pu
T (I−FD−1

u )BTPp equal to (I−FcD−1
c )BT

c . Hence the implementation described
above cannot be used at coarser levels.
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However, multigrid algorithms can remain efficient when the coarse grid matrix is re-
placed by a nearby matrix; in particular, the sparsification of the coarse grid matrix is
discussed in [7]. Here, because most of the increase of the complexity is associated with

the top right block B̂T = (I − F D−1
u )BT , we want to sparsify the corresponding coarse

block P T
u (I − F D−1

u )BTPp . We tested several options and found that overall the best
results were obtained replacing this block with P T

u B
TPp = BT

c . That is, the sparsified
coarse grid matrix Asp,c is still obtained via the Galerkin formula, but applied to a modi-
fied matrix:

Asp,c =

(
P T
u

P T
p

)
Asp

(
Pu

Pp

)
with Asp =

(
F BT

−B Ĉ

)
. (5.3)

As will be seen in the next section, the number of iterations is only mildly affected by
this sparsification, and sometimes it even decreases. This property has likely much to do
with the fact that Asp is always an excellent approximation of A , as show in the following
theorem which proves that all eigenvalues of A−1

sp A are relatively well clustered around 1.

Theorem 5.1. Let A be a n × n nonsingular matrix of the form (2.4) with F and Du

being SPD matrices and C being a symmetric nonnegative definite matrix which is positive
definite on the null space of BT . Further, let Asp be as in (5.3). The eigenvalues λi(A

−1
sp A)

of A−1
sp A are real and there holds

1

1 + γu
≤ λi(A

−1
sp A) ≤ 1 , i = 1, . . . , n , (5.4)

where
γu = λmax(D−1/2

u FD−1/2
u ) (5.5)

is the maximal eigenvalue of D
−1/2
u FD

−1/2
u .

Proof. Since F is non singular, both A and Asp can be factored as follows

A =

(
I

−BF−1 I

)(
F

S

)(
I F−1B̂T

I

)
,

Asp =

(
I

−BF−1 I

)(
F

Ssp

)(
I F−1BT

I

)
,

where S = C + BF−1BT and Ssp = C + BF−1BT + BD−1
u BT . Note that since F and

Du are SPD, and since C is positive definite on the null space of BT , both S and Ssp are
SPD . Hence, we can write

A−1
sp A =

(
I −F−1BT

I

)(
I

S−1
sp S

)(
I F−1B̂T

I

)
=

(
I ∗

S−1
sp S

)
. (5.6)

Denoting with nu and np the dimension of F and C , respectively, the nu first eigenvalues
of A−1

sp A are therefore equal to 1 , and the np remaining eigenvalues are those of S−1
sp S .

Now, since S and S−1
sp are SPD, the eigenvalues of S−1

sp S are real and positive. Further,
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since Ssp − S is symmetric nonnegative, λmax(S−1
sp S) ≤ 1 . On the other hand, using

Courant-Fischer theorem [2], there holds

λmin(S−1
sp S) = min

z∈Rnp

zTS z

zTSsp z
= min

z∈Rnp

zT (C +BF−1BT )z

zT (C +B(D−1
u + F−1)BT )z

≥ min
w∈Rnu

wTF−1w

wT (D−1
u + F−1)w

= min
u∈Rnu

uTD
1/2
u F−1Du

1/2u

uTu + uTDu
1/2F−1Du

1/2u

≥ γu
−1

1 + γu−1
=

1

1 + γu
.

The typical value of γu is around 2; see also the discussion in [20, 21], where this
parameter is used in the theoretical analyses. For such values of γu, the lower bound (5.4)
is around 1/3 , which corresponds to a good clustering.

Of course, ideally, one would need to prove the clustering of the eigenvalues of A−1
sp,cAc

at the coarse level since what is actually done is substituting Ac with Asp,c and not A
with Asp . Unfortunately, we cannot prove such a nice algebraic result for A−1

sp,cAc , but the
results reported in Figure 4 suggest (as heuristically expected) that the initial clustering is
preserved at the coarse level even though the eigenvalues become then complex (but with
a relatively small imaginary part).

6 Numerical results

In this section, we compare the transform-then-solve approach (including its sparsified
version) to a state-of-the-art method for Stokes problems. For constant viscosity prob-
lems, it is the preconditioned MINRES method as described in [6] with block diagonal
preconditioner of the form

M =

(
MF

1
ν
Q

)
, (6.1)

where MF is an approximation of the block F , while Q is the diagonal of the mass matrix on
the pressure space and ν the viscosity. Note that, contrarily to the method presented here,
this preconditioner is not purely algebraic as it requires to adapt the discretization process
to obtain (the diagonal of) the mass matrix on the pressure space, which is otherwise not
needed.

In [6] it is showed that this preconditioner leads to optimal order convergence if MF

is itself an optimal order approximation of F . Because F is block diagonal with discrete
Laplacians as diagonal blocks, such optimal order approximations are usually obtained
with one step of a multigrid method, and in the context of this work it is natural to
consider AMG codes for this purpose. We consider two such codes: AGMG [18, 15, 19]
and BoomerAMG [11] from Hypre [12]. For AGMG, we use the “block” version of the code
that ensure unknown-based coarsening to make sure that different velocity components are
not aggregated together (this has no effect when the F is block diagonal).

All in all, the application of the preconditioner comes then down to one iteration of an
AMG solver (AGMG or BoomerAMG) for the velocity part, and the multiplication by a
diagonal matrix for the pressure part.
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Figure 4: Representation of the spectrum of A−1
sp,cAc in the complex plane for different finite

element discretizations and different problems: the blue “×” represent the eigenvalues,
while the vertical dashed red lines cross the real axis at the value x = 1/(1 + γu) of the
lower bound (5.4) .

For problems with variable viscosity, as discussed in [9] the natural extension of this
preconditioner is obtained by exchanging 1

ν
Q for Qν , the diagonal of the “mass type

matrix” defined by

(M (mass)
ν )i,j =

∫
Ω

1

ν
ψjψidΩ , (6.2)

where ψi are the pressure finite element functions. The diagonal block MF is defined, as
in the constant coefficient case, using one step of an AMG method. However, as noted in
the last two paragraphs of Section 2, the AMG methods used for that purpose may loose
part of their efficiency because of the additional terms in the discrete equations.

Regarding the transform-then-solve approach, we use a modified version of the AGMG
software, implementing the transformation and the features described in Section 5. Here
again, we use the “block” version to enforce unknown-based coarsening, that is, to ag-
gregate separately velocity and pressure, but also the different velocity components. For
nonsymmetric systems AGMG uses GCR and the restart parameter is set to 50.

The test problems are as those described in Section 3. In all cases we solve the linear
system with the zero vector as initial approximation and stop iterations when the relative
residual norm is below 10−6. The computations have been run sequentially on an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz. Results are reported in Tables 6 and 7.

20



Number of iterations Solution time
M+A M+B TaS TaS sp M+A M+B TaS TaS sp

Cavity Q1 −Q1 46 31 12 12 4.3 3.1 2.2 2.2
Q1 − P0 48 31 13 14 4.1 3.0 2.0 2.0
Q2 − P1 44 29 17 17 3.7 3.6 3.1 2.9
Q2 −Q1 57 45 19 20 4.6 5.5 2.7 2.8

Channel Q1 −Q1 56 38 11 12 5.3 3.8 2.2 2.3
Q1 − P0 48 31 14 15 4.1 2.9 2.4 2.4
Q2 − P1 53 34 17 18 4.4 4.3 3.1 3.1
Q2 −Q1 62 50 19 20 4.9 6.1 2.7 2.8

Collide Q1 −Q1 49 33 14 14 4.5 3.3 2.6 2.6
Q1 − P0 50 33 15 16 4.3 3.0 2.3 2.3
Q2 − P1 47 30 20 22 4.0 3.9 3.7 3.8
Q2 −Q1 63 49 20 23 5.1 5.9 2.9 3.2

Step Q1 −Q1 85 50 15 14 22.3 14.5 8.1 7.3
Q1 − P0 91 49 16 17 21.6 12.9 7.5 7.5
Q2 − P1 89 47 21 24 21.5 16.4 10.6 11.6
Q2 −Q1 91 62 21 21 20.6 20.9 8.4 8.1
Square a 56 33 18 20 11.2 7.9 9.6 9.8
Square b 52 34 35 45 8.0 6.1 13.3 17.8

Arc 2D(cst) 204 191 44 41 2.8 2.9 1.5 1.3
Cube 55 52 22 23 10.1 9.0 11.6 9.8

Arc 3D a(cst) 519 855 185 153 32.8 63.3 33.7 23.6
Arc 3D b(cst) 666 882 109 59 97.9 168.8 52.8 23.7

Weld pool(cst) 1657 893 19 21 1401.0 1015.9 34.6 29.4
Arc 2D 411 485 45 73 7.4 10.7 2.2 2.9

Arc 3D a 981 828 184 178 115.6 159.7 42.8 36.2
Arc 3D b 961 848 150 169 296.2 444.9 94.1 91.9

Weld pool 372 328 17 17 725.8 929.6 58.0 52.1

Weld pool(cst) 204 159 21 23 147.8 153.9 32.5 26.6

Table 6: Number of iterations and solution time; “M+A” stands for preconditioned MIN-
RES with AGMG to approximate the F block;, “M+B” stands for preconditioned MINRES
with BoomerAMG to approximate the F block; “TaS” stands for transform-then-solve
method; “TaS sp” stands for transform-then-solve with sparsification of the coarse grid
matrices.

We first discuss the results for problems with constant viscosity; this correspond to all
but the last 4 rows in Tables 6 and 7.

Let us start by comparing the two preconditioners for MINRES. Looking at Table 6, we
see that MINRES associated with AGMG (M+A) requires more iterations than associated
with BoomerAMG (M+B), except for the Arc 3D a(cst) and Arc 3D b(cst) problems.
On the other hand, both variants perform overall similarly regarding the solution time, with
variations from problem to problem. This is in agreement with the fact that BoomerAMG
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Setup time Total time
M+A M+B TaS TaS sp M+A M+B TaS TaS sp

Cavity Q1 −Q1 0.4 1.0 1.5 1.3 4.7 4.1 3.8 3.5
Q1 − P0 0.4 1.0 1.2 0.9 4.5 4.0 3.2 2.9
Q2 − P1 0.4 1.1 1.7 1.1 4.1 4.8 4.8 4.0
Q2 −Q1 0.4 1.1 1.1 0.9 5.1 6.6 3.8 3.6

Channel Q1 −Q1 0.4 0.9 1.6 1.3 5.7 4.8 3.8 3.6
Q1 − P0 0.4 1.0 1.2 1.0 4.5 3.9 3.6 3.3
Q2 − P1 0.4 1.0 1.7 1.1 4.8 5.3 4.8 4.2
Q2 −Q1 0.4 1.0 1.1 0.9 5.4 7.1 3.9 3.6

Collide Q1 −Q1 0.4 1.0 1.5 1.2 4.9 4.3 4.1 3.8
Q1 − P0 0.4 1.0 1.2 0.9 4.7 4.0 3.5 3.2
Q2 − P1 0.4 1.1 1.7 1.1 4.4 5.0 5.4 4.9
Q2 −Q1 0.4 1.1 1.1 0.8 5.6 7.1 4.0 4.1

Step Q1 −Q1 0.9 2.3 4.0 3.3 23.3 16.8 12.2 10.6
Q1 − P0 0.9 2.3 3.1 2.4 22.5 15.2 10.6 9.9
Q2 − P1 1.1 2.5 4.3 2.8 22.7 18.9 14.9 14.4
Q2 −Q1 1.1 2.6 2.9 2.1 21.8 23.4 11.4 10.3
Square a 1.1 2.5 5.5 3.9 12.3 10.3 15.2 13.7
Square b 0.7 2.2 3.9 3.4 8.7 8.3 17.2 21.1

Arc 2D(cst) 0.1 0.2 0.3 0.2 2.9 3.1 1.8 1.6
Cube 1.1 3.5 9.8 7.8 11.2 12.5 21.4 17.6

Arc 3D a(cst) 0.4 1.2 3.5 2.8 33.1 64.5 37.2 26.5
Arc 3D b(cst) 0.9 3.2 9.0 7.2 98.8 172.1 61.8 30.9

Weld pool(cst) 6.4 17.1 18.6 13.2 1407.4 1033.0 53.2 42.7
Arc 2D 0.1 0.3 0.4 0.3 7.5 10.9 2.6 3.2

Arc 3D a 1.0 2.5 3.9 3.2 116.6 162.2 46.6 39.5
Arc 3D b 2.4 7.0 10.3 8.4 298.6 451.9 104.4 100.4

Weld pool 16.2 37.2 26.7 22.8 742.0 966.8 84.6 74.8

Weld pool(cst) 5.5 14.9 15.9 11.6 153.3 168.8 48.7 38.2

Table 7: Setup time and total time (i.e., setup time + solution time); the abbreviations
for the considered methods are the same as in Table 6.

implements a more accurate but more costly preconditioner than AGMG. It is then also
not surprising, as seen in Table 7, that MINRES+AGMG requires lower setup time. All in
all, it turns out that, if one excludes the Arc 3D a(cst) and Arc 3D b(cst) problems, MIN-
RES+AGMG is slightly slower than
MINRES+BoomerAMG if one considers the mean solution time, and slightly faster if one
considers the mean total time. Including the Arc 3D a(cst) and Arc 3D b(cst) problems
makes MINRES+AGMG the clear winner. This lower performance of BoomerAMG on
these configurations confirms the observation made in [16] that BoomerAMG may some-
times lack robustness.

Let us now compare the transform-then-solve (“TaS”) approach with its sparsified ver-
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sion (“TaS sp”). Table 6 indicates that in terms of number of iterations both methods are
essentially similar except, surprisingly, for the Arc 3D b(cst) problem where the sparsified
version is significantly better. This constitutes an a posteriori justification of the analysis
developed in Section 5.2. However, the solution times do not yield a significant difference.
If one excludes the Arc 3D b problem, the mean solution time is only slightly smaller for
the sparsified variant.

However, this latter variant is the clear winner if one includes the Arc 3D b(cst) prob-
lem, and also if one considers the total time, including thus the setup time (see Table 7).
The sparsified approach indeed saves time mostly during the setup phase. This is due to
the fact that the successive coarse grid matrices have significantly fewer entries and are
therefore cheaper to build. Note that this also alleviates the memory requirements of the
method.

Table 6 indicates that, in all cases but one, “TaS sp” converges faster than MINRES
in terms of iterations, but not always fast enough to compensate its higher cost. Looking
more closely at the total times, we see that “TaS sp” is faster for structured 2D prob-
lems (IFISS test suite), especially for the Step problems. When coming to more difficult
configurations, however, the results seem problem dependent. Roughly speaking, if either
of the MINRES variants is able to solve the system in less than 2-3 times the number of
iterations needed by the transform-then-solve approach, it is generally the winner thanks
to its lower cost by iteration and also its lower setup time. This essentially happens for
closed flow problems with unstructured grids Square a, Square b and Cube. In the other
cases, which include all open flow problems, preconditioned MINRES clearly lacks of ro-
bustness while the transform-then-solve approach offers stable performance allowing it to
obtain remarkable gains.

To conclude for constant viscosity problems, preconditioned MINRES is to be recom-
mended only for closed flows problems on unstructured grids for which it is relatively robust
while “TaS sp” is penalized by its higher complexity. In the other cases, “TaS sp” is faster
either because the structure of the grid helps to limit its additional complexity or because
preconditioned MINRES struggles due to an apparent lack of robustness for problems with
open flows and/or complex geometries. In these cases, the speed up offered by “TaS sp”
can be really remarkable.

Regarding problems with variable viscosity, except for the problem Weld pool, “TaS sp”
requires significantly more iterations than for the constant viscosity counterpart, without
too much surprise in view of the discussion in the last two paragraphs of of Section 2.
However, it solves robustly all problems, while preconditioned MINRES struggles even
further, leading in all cases to an increase of the speed up offered by “TaS sp”, which
ranges from 2.4 to 9.2 when comparing with MINRES+AGMG, and from 3.4 to 11.9 when
comparing with MINRES+BoomerAMG.

7 Conclusions

We have proposed an extension of the transform-then-solve approach from [21] to the
finite element discretizations of the Stokes problem. The approach amounts to first apply
a specific algebraic transformation to the linear system of equations, and then solve the
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transformed system with the AGMG method. The extension addresses two issues arising
with the approach in the finite element context. The first issue is the convergence problems
observed for Q2 − Q1 finite element discretizations. The second issue is the complexity
increase related to the use of the algebraic transformation, which is potentially penalizing
for some problems.

We solve the first issue by proposing a simple adaptation of the smoothing strategy,
replacing the original Gauss-Seidel smoother by SOR smoother with ω = 0.7 when Q2

finite elements are used for the velocities.
Regarding the second issue, we identified the top right block as being responsible for

most of complexity increase, and we developed two complementary strategies to alleviate
its impact. At the fine level, we propose an implementation allowing us to save most of
the induced extra cost. At coarse levels, we consider a sparsified version of the matrix.

Numerical results show that our approach is robust for constant viscosity problems,
requiring similar numbers of iterations for a wide range of problems, from standard fluid
dynamics problems to more complicated welding processes. Moreover, the results also
indicate that the convergence of the sparsified version is similar to that of the original
one. Somehow unexpectedly, the sparsified version performs even better than the original
on two of the most challenging problems. As expected, the total time is lower with the
sparsified version.

We finally compare our approach with a state-of-the-art solver based on MINRES with
optimal order block diagonal preconditioner. The results suggest that our approach is
significantly more robust, leading to remarkable improvements when the reference method
does not converge satisfactorily, whereas, otherwise, this latter is competitive thanks to
its lower complexity. In particular, preconditioned MINRES seems to struggle with open
flow problems on complex geometries. Our approach is also to be recommended when
the pressure mass matrix is not available, since then relevant block preconditioners can in
general not be defined.

These conclusions are reinforced when considering problems with variable viscosity.
While the proposed approach exhibits a slower convergence for these problems, the slow-
down is more moderate than for the reference solver, leading to remarkable gains.
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