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Expectation consistency for calibration of neural networks

Despite their incredible performance, it is well reported that deep neural networks tend to be overoptimistic about their prediction con dence. Finding e ective and e cient calibration methods for neural networks is therefore an important endeavour towards be er uncertainty quanti cation in deep learning. In this manuscript, we introduce a novel calibration technique named expectation consistency (EC), consisting of a post-training rescaling of the last layer weights by enforcing that the average validation con dence coincides with the average proportion of correct labels. First, we show that the EC method achieves similar calibration performance to temperature scaling (TS) across di erent neural network architectures and data sets, all while requiring similar validation samples and computational resources. However, we argue that EC provides a principled method grounded on a Bayesian optimality principle known as the Nishimori identity. Next, we provide an asymptotic characterization of both TS and EC in a synthetic se ing and show that their performance crucially depends on the target function. In particular, we discuss examples where EC signi cantly outperforms TS.

Introduction

As deep learning models become more widely employed in all aspects of human society, there is an increasing necessity to develop reliable methods to properly assess the trustworthiness of their predictions. Indeed, di erent uncertainty quanti cation procedures have been proposed to measure the con dence associated with trained neural network predictions [START_REF] Abdar | A review of uncertainty quanti cation in deep learning: Techniques, applications and challenges[END_REF][START_REF] Gawlikowski | A survey of uncertainty in deep neural networks[END_REF]. Despite their popularity in practice, it is well known that some of these metrics, such as interpreting the last-layer so max scores as con dence scores, lead to an overestimation of the true class probability [START_REF] Guo | On calibration of modern neural networks[END_REF]. As a consequence, various methods have been proposed to calibrate neural networks [START_REF] Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF][START_REF] Guo | On calibration of modern neural networks[END_REF][START_REF] Maddox | A simple baseline for bayesian uncertainty in deep learning[END_REF], Minderer et al., 2021].

In this work, we propose a novel method for the post-training calibration of neural networks named expectation consistency (EC). It consists of xing the scale of the last-layer weights by enforcing the average con dence to coincide with the average classi cation accuracy on the validation set. is procedure is inspired by optimality conditions steaming from the Bayesian inference literature.

erefore, it provides a mathematically principled alternative to similar calibration techniques such as temperature scaling, besides being simple to implement and computationally e cient. Our goal in this work is to introduce the expectation consistency calibration method, illustrate its performance across di erent deep learning tasks and provide theoretical guarantees in a controlled se ing. More speci cally, our main contributions are:

• We introduce a novel method, Expectation Consistency (EC) to calibrate the post-training predictions of neural networks, see Algorithm 1. e method is based on rescaling the last-layer weights so that the average con dence matches the average accuracy on the validation set. We provide a Bayesian inference perspective on expectation consistency that grounds it mathematically.

• While calibration methods abound in the uncertainty quanti cation literature, we compare EC to a close and widely employed method in the deep learning practice: temperature scaling (TS). Our experiments with di erent network architectures and real data sets show that the two methods yield very similar results in practice.

• We provide a theoretical analysis of EC in a high-dimensional logistic regression exhibiting overcondence issues akin to deep neural networks. We show that in this se ing EC consistently outperforms temperature scaling in di erent uncertainty metrics. e theoretical analysis also elucidates the origin of the similarities between the two methods.

Algorithm 1: Expectation consistency (EC)

Input: Validation set (x i , y i ) n val i=1 , classi er f : X → R K Compute the logits z i = f (x i ) ∈ R K and output ŷi = arg max k z ik Compute the accuracy on validation set A val = 1 n val i δ(y i = ŷi ) Determine T EC such that 1 n val i max k σ (k) ( zi /T ) = A val Output: Temperature T EC , and probabilities on new samples max k σ (k) ( z new /TEC), e code used in this project is available at the repository: h ps://github.com/SPOC-group/expectationconsistency

Related work

Calibration of neural networks -e calibration of predictive models, in particular neural networks, has been extensively studied, see [START_REF] Abdar | A review of uncertainty quanti cation in deep learning: Techniques, applications and challenges[END_REF], [START_REF] Gawlikowski | A survey of uncertainty in deep neural networks[END_REF] for two reviews. In particular, modern neural network architectures have been observed to return overcon dent predictions [START_REF] Guo | On calibration of modern neural networks[END_REF], Minderer et al., 2021]. While their overcon dence could be partly a ributed to their over-parametrization, some theoretical works [START_REF] Bai | Don't just blame over-parametrization for overcon dence: eoretical analysis of calibration in binary classi cation[END_REF], Clarté et al., 2022b,a] have shown that even simple regression models in the under-parametrized regime can exhibit overcon dence.

ere exists a range of methods that guarantee calibration asymptotically (i.e. when the number of samples is su ciently large) without assuming anything about the data distribution, see e.g. [START_REF] Gupta | Distribution-free binary classi cation: Prediction sets, con dence intervals and calibration[END_REF]. However, for a limited number of samples, it is less clear which of the proposed methods provides the most accurate calibration.

Temperature scaling - [START_REF] Guo | On calibration of modern neural networks[END_REF] proposed Temperature Scaling (TS), a simple post-processing method consisting of rescaling & cross-validating the norm of the last-layer weights. Due to its simplicity and e ciency compared to other methods such as Pla scaling [START_REF] Pla | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] or histogram binning [START_REF] Zadrozny | Obtaining calibrated probability estimates from decision trees and naive bayesian classi ers[END_REF], TS is widely used in practice to calibrate the output of neural networks [START_REF] Abdar | A review of uncertainty quanti cation in deep learning: Techniques, applications and challenges[END_REF]. Moreover, Clarté et al. [2022a] has shown that in some se ings, TS is competitive with much more costly Bayesian approaches in terms of uncertainty quanti cation. While [START_REF] Gupta | Distribution-free binary classi cation: Prediction sets, con dence intervals and calibration[END_REF] has shown that without any assumption on the data model, injective calibration methods such as TS cannot be calibrated in general, [START_REF] Guo | On calibration of modern neural networks[END_REF] conclude that: "Temperature scaling is the simplest, fastest, and most straightforward of the methods, and surprisingly is o en the most e ective." is justi es why TS is used so widely in practice.

Bayesian methods -Bayesian methods such as Gaussian processes allow estimating the uncertainty out of the box for a limited number of samples under (at least implicit) data distribution assumptions. When the data-generating process is known, the best way to estimate the uncertainty of a model is to use the predictive posterior. However, Bayesian inference is o en intractable, and several approximate Bayesian methods have been adapted to neural networks, such as deep ensembles [Lakshminarayanan et al., 2017a] or weight averaging [START_REF] Maddox | A simple baseline for bayesian uncertainty in deep learning[END_REF]. On the other hand, the strength of posthoc methods like temperature scaling is that it applies directly to the unnormalized output of the network, and does not require additional training. A comparable Bayesian approach has been developed in [START_REF] Kristiadi | Being bayesian, even just a bit, xes overcon dence in ReLU networks[END_REF], where a Gaussian distribution is applied to the last-layer weights. Bayesian methods typically involve sampling from a highdimensional posterior [START_REF] Ma Ei | A parsimonious tour of bayesian model uncertainty[END_REF], and di erent methods have been proposed to compute them e ciently [Graves, 2011[START_REF] Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF], Lakshminarayanan et al., 2017b[START_REF] Maddox | A simple baseline for bayesian uncertainty in deep learning[END_REF]. 

Notation -We denote [n] := {1, • • • , n}; 1(A)

Setting

Consider a K-class classi cation problem where a neural network classi er is trained on a data set

(x i , y i ) i∈[n] ∈ R d ×[K].
Without loss of generality, for a given input x ∈ R d we can write the output of the classi er as a Kdimensional vector z(x) = W ϕ(x) ∈ R K , where we have denoted the last-layer features by ϕ : R d → R p and the read-out weights W ∈ R K×p . We de ne the con dence of the prediction for class k as:

f (x, k) := σ (k) (z(x)) = e z k (x) l∈[K] e z l (x) ∈ (0, 1) (1) 
where σ : R K → (0, 1) K is the so max activation function. In short, f (x, k) de nes a probability, as estimated by the network, that x belongs to class k. For a given x ∈ R d , the nal prediction of the model is then given by ŷ

(x) = arg max k f (x, k) ∈ [K],
and the associated prediction con dence f (x) = max k f (x, k) = f (x, ŷ(x)) ∈ (0, 1). As it is common practice, in what follows we will be mostly interested in the case in which the network is trained by minimizing the empirical risk (ERM) with the cross-entropy loss:

( f (x), y) = -log f (x, y) = K k=1 δ(y = k) log σ (k) (W φ(x)),
although many of the concepts introduced here straightforwardly generalize to other training procedures. e quality of the training is typically assessed by the capacity of the model to generalize on unseen data. is can be quanti ed by the test misclassi cation error and the test loss:

E g = E x,y [δ (ŷ(x) = y)] , L g = -E x,y log f (x, y)
ese are point performance measures. However, o en we are also interested in quantifying the quality of the network prediction con dence. Di erent uncertainty metrics exist in the literature, but some of the most current ones are the calibration, expected calibration error (ECE) and Brier score (BS), de ned as:

         ∆ p = p -P x,y ŷ(x) = y| f (x) = p ECE = E x,y |∆ f (x) | BS = E x,y K k=1 ( f (x, k) -δ(y = k)) 2
(2)

Note that the Brier score is a proper loss, meaning that it is minimized when f (x, k) is the true marginal distribution P(y = k|x). is is not the case of the ECE: indeed, the estimator de ned as f (x, k) = P(y = k) has 0 ECE but does not correspond to the marginal distribution of y conditioned on x and has suboptimal test error. Finally, we introduce the con dence function with temperature T > 0:

fT (x, k) = σ (k) ( W ϕ(x) /T ).
(3) 3 Expectation consistency calibration e method proposed in this work acts similarly as the temperature scaling method [START_REF] Guo | On calibration of modern neural networks[END_REF] discussed in the related work section, with a key di erence in how the temperature parameter is chosen. e popular and widely adopted temperature scaling (TS) procedure will also serve as the main benchmark in what follows.

Temperature scaling -Although the score-based con dence measure introduced in (1) might appear natural, numerical evidence suggests that for modern neural network architectures, it tends to be overcon dent [START_REF] Guo | On calibration of modern neural networks[END_REF]. In other words, it overestimates the probability of class belonging. To mitigate overcondence, [START_REF] Guo | On calibration of modern neural networks[END_REF] has introduced a post-training calibration method known as temperature scaling (TS) [Minderer et al., 2021, Wang et al., 2021]. Temperature scaling consists of rescaling the trained network output z → z /T by a positive constant T > 0 (the "temperature") which is then be tuned to adjust the prediction con dence. Equivalently, TS can be seen as a re-scaling of the norm of the last-layer weights W . [START_REF] Guo | On calibration of modern neural networks[END_REF] has found that choosing T that minimizes the cross-entropy loss on the validation set {(x i , y i ) i∈[n val ] :

T TS = arg min T >0 - n val i=1 ( fT (x i , y i )) (4) 
results in a be er calibrated rescaled predictor fT TS . To get a feeling for its e ect on the con dence, it is instructive to look at the two extreme limits of TS. On one hand, if T 1, the so max will be dominated by the class with the largest con dence, eventually converging to a hard-thresholding T → 0 + . is will typically lead to an overcon dent predictor. On the other hand, for T 1, the so max will be less and less sensitive to the trained weights, converging to a uniform vector at T → ∞. is will typically correspond to an undercon dent predictor. erefore, by tuning T , we can either make a predictor less overcon dent (by lowering the temperature T < 1) or less undercon dent (by increasing the temperature T > 1).

Temperature scaling is a speci c instance of matrix/vector scaling, where the logits z i are multiplied by a matrix/vector before the so max. Despite being more general, matrix and vector scaling have been observed in [START_REF] Guo | On calibration of modern neural networks[END_REF] to perform worse than TS. Di erent variants of TS have been developed. Similarly to vector scaling, class-based temperature scaling [START_REF] Frenkel | Network calibration by class-based temperature scaling[END_REF] computes one temperature per class and nds the best temperature by minimizing the validation ECE instead of the validation loss. While TS can be naturally applied to the last-layer output of neural networks, [START_REF] Kull | Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with dirichlet calibration[END_REF] has extended TS to more general multi-class classi cation models.

Expectation consistency -In this work, we introduce a novel calibration method, which we will refer to as Expectation Consistency (EC). As for TS, the starting point is a pre-trained con dence function f which we rescale fT by introducing a temperature T > 0. e key di erence resides in the procedure we use to tune the temperature. Instead of minimizing the validation loss (4), we search for a temperature such that the average con dence is equal to the proportion of correct labels in the test set. In mathematical terms, we de ne T EC such that the following is satis ed:

1 n val n val i=1 fT EC (x i ) = 1 n val n val i=1 1(ŷ(x i ) = y i ) (5) 
e intuition behind this choice is the following: a calibrated classi er is such that for all p ∈ (0, 1), ∆ p = 0.

is condition is not achievable by tuning the temperature parameter T , so a less strict condition is to enforce it in expectation E x ∆ f (x) = 0, ensuring that the classi er is calibrated on average. is is equivalent to enforcing the average con dence to be equal to the probability of predicting the correct class on a validation set. Note that the fact that we directly compare to the con dence on the validation set is analogous to what is done in the conformal prediction [START_REF] Papadopoulos | Inductive con dence machines for regression[END_REF] methods to estimate prediction sets (as opposed to calibration that we are aiming at here). We refer to Algorithm 1 for a pseudo-code of expectation consistency.

It is instructive to consider a Bayesian perspective on EC. For the sake of this paragraph, assume that both the training and validation data were independently drawn from a parametric probability distribution p(x, y|θ). If we had access to the distribution of the data (but not the speci c realization of the parameters θ), the Bayes-optimal con dence function would be given by the expectation of f (x|θ) = p(y|x, θ) with respect to the posterior distribution of the weights given the training data p(θ|(x i , y i ) i∈ [n] ). In this case, one would not even need a validation set since the expected test accuracy would be predicted by the uncertainties under the posterior. In Section 5.1 we illustrate this discussion for concrete data distribution. is expectation consistency property of the Bayes-optimal predictor is known as the Nishimori condition in the information theory and statistical physics literature [START_REF] Iba | e nishimori line and bayesian statistics[END_REF][START_REF] Méasson | e generalized area theorem and some of its consequences[END_REF][START_REF] Zdeborová | Statistical physics of inference: resholds and algorithms[END_REF]. erefore, from this perspective requesting condition (5) to hold can be seen as enforcing the Nishimori conditions for the rescaled con dence function.

e Nishimori conditions are also used within the expectation-maximization algorithm for learning hyperparameters Dempster et al. [1977]. We describe in Section 5 how to interpret both temperature scaling and expectation consistency as learning procedures for the hyperparameter T . e main idea behind the EC method proposed here is that even in the absence of knowledge of the data-generating model, the expectation consistency (5) relation should hold for a calibrated uncertainty quanti cation method.

Note that T EC exists and is unique. Indeed, the average con dence is a decreasing function of the temperature, converging to one when T → 0 + and to zero when T → ∞. erefore, there is a unique T EC that satis es the constraint (5), and in practice, it can be found by bisection. We refer to Figure 2 for an illustration of the uniqueness of T EC . Moreover, note that expectation consistency is more exible than temperature 

Experiments on real data

In this section, we present numerical experiments carried out on real data sets and compare the performance of EC and TS. As we will see, both methods yield similar calibration performances in practical scenarios.

Experimental setup -We consider the performance of the calibration methods from Section 3 in image classi cation tasks. Experiments were conducted on three popular image classi cation data sets:

• SVHN Netzer et al. [2011] is made of colored 32 × 32 labelled digit images. Train/validation/test set sizes are 65931/7325/26032.

• CIFAR10 and CIFAR100 data sets [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], consisting of 32 × 32 colored images from 10/100 classes (dog, cat, plane, etc.), respectively. Train/validation/test sets sizes are 45000/5000/10000 images for CIFAR10, 50000/5000/5000 for CIFAR100.

We consider di erent neural network architectures adapted to image classi cation tasks: ResNets [START_REF] Associates | Deep residual learning for image recognition[END_REF], DenseNets [START_REF] Huang | Densely connected convolutional networks[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and RepVGG [START_REF] Ding | Repvgg: Making vgg-style convnets great again[END_REF]. For CIFAR100, pre-trained models available online were employed. More details on the training procedure are available in Appendix A.

Results -We refer to Table 1 for a comparison of TS and EC on the various data sets and models discussed above. Curiously, we observe that both EC and TS yield very similar temperatures across the di erent tasks and architectures, implying a similar ECE and Brier score. In particular, note that both methods give T > 1, consistent with the fact that the original networks were overcon dent. erefore, as expected, both methods improve the calibration of the classi ers. e right panel of Figure 2 shows the reliability diagram of the ResNet 20 trained on CIFAR10: we observe that before applying TS and EC, the accuracy is lower than the con dence. In other words, the model is overcon dent and both TS and EC improve the calibration of the model.

Note that both methods improve the Brier score and yield very similar results. From the computational cost perspective, EC is as e cient to run as TS, and requires only a few lines of code, see the GitHub repository where we provide the code to reproduce the experiments discussed here. However, we believe expectation consistency is a more principled calibration method, as it constrains the con dence of the model to correspond to the accuracy and has a natural Bayesian interpretation. Moreover, as we will discuss in Section 5, we can derive explicit theoretical results for EC.

Our experiments suggest that the similarity between TS and EC is independent of the accuracy of the model. Indeed, in Figure 3, we observe the accuracy and ECE of a ResNet model trained on di erent amounts of data. As expected, the accuracy of the model increases with the amount of training data. We observe in the middle and right panels that the temperatures and ECE obtained from both methods are extremely similar, independently of the accuracy of the model. Finally, we plot in the middle panel of Figure 2 the ECE as a function of the temperature and observe that neither T T S nor T EC is close to the minimum of ECE. However, as we have discussed in Section 3, ECE is only one uncertainty quanti cation metric and is not a proper loss, so we wish not to optimize the temperature for this metric in particular.

eoretical analysis of the expectation consistency algorithm

As we have seen in Section 4, our experiments with real data and neural network models suggest that despite their di erent nature, EC and TS achieve a similar calibration performance across di erent architectures and data sets. In this section, we investigate EC and TS in speci c se ings where we can derive theoretical guarantees on their calibration properties. For concreteness, in the examples that follow we will focus on binary classi cation problems for which, without loss of generality, we can assume y ∈ {-1, +1}. In this encoding, the so max function is equivalent to the logit σ(t) := (1 + e -t ) -1 , and the hard-max is given by the sign function. Further, we assume that both the training (x i , y i ) i∈[n] and validation set (x i , y i ) i∈[n val ] were independently drawn from the following data generative model:

f (x) := P(y µ = 1|x µ ) = σ w * x µ T x µ ∼ N (0, 1 /dI d ), w * ∼ N (0, I d ) (6) 
with σ : R → (0, 1) an activation function and T * > 0 explicitly parametrizing the norm of the weights. First, in Section 5.1 we provide a Bayesian interpretation of both the TS and EC methods, in an example where T TS = T EC = T . Next, in Section 5.2 we analyze a misspeci ed empirical risk minimization setting where they yield di erent results. Finally, we discuss in Section 5.3 one case in which EC consistently outperforms TS.

Relation with Bayesian estimation

Consider a Bayesian inference problem: given the training data D := {(x i , y i ) i∈[n] }, what is the predictor that maximizes the accuracy? If the statistician had complete access to the data generating process (6), this would be given by integrating the likelihood of the data over the posterior distribution of the weights given the data:

f bo (x) := P(y = 1|D, x) = dw σ w x T * p(w|D, T )
where the posterior distribution is explicitly given by:

p(w|D, T ) ∝ N (w|0, I d ) i∈[n] σ * y i w x i T . (7) 
e Bayes-optimal predictor above is well calibrated [Clarté et al., 2022b], and consequently satis es the expectation consistency condition: its average con dence equates to its accuracy. Consider now a scenario where the statistician only has partial information about the data-generating process: she knows the prior and likelihood but does not have access to the true temperature T . In this case, she could still write a posterior distribution but would need to estimate the temperature T from the data.

is can be done by nding the T that minimizes the classi cation error, or equivalently the generalisation loss, yet equivalently this would correspond to expectation maximization as discussed e.g. in [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF][START_REF] Krzakala | Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices[END_REF]. is estimation of the temperature would lead to T = T * and recovers the Bayes-optimal estimator f bo . Hence, in the well-speci ed Bayesian se ing, doing temperature scaling amounts to expectation consistency, providing a very natural interpretation of both the temperature scaling and expectation consistency methods in a Bayesian framework.

Note that in this paper we are concerned with frequentist estimators trained via empirical risk minimization. In that case, even in the well-speci ed se ing, neither TS nor EC will recover the correct temperature T * in the high-dimensional limit. is impossibility to recover T * comes from the fact that we are not sampling a distribution anymore but instead consider a point estimate and do not have enough samples to be in the regime where point estimators are consistent.

Misspeci ed empirical risk minimization

Consider now the case in which the statistician only has access to the training data D, with no knowledge of the underlying generative model. A popular classi er for binary classi cation in this case is logistic regression, for which:

ferm (x) = σ( ŵ x) (8)
and the weights are obtained by minimizing the empirical risk over the training data ŵ = argmin Rn (w) where:

Rn (w) = - i∈[n] log σ(w x) + λ /2 w 2 (9)
and we remind that σ is the sigmoid/logit function. In this se ing, the calibration is given by ∆ = -

E x f * (x)| ferm (x) =
, and the ECE by E x |∆ ferm(x) | . Note that logistic regression can also be seen as the maximum likelihood estimator for the logit model, which given the data model ( 6) for σ = σ is misspeci ed. [START_REF] Sur | A modern maximum-likelihood theory for high-dimensional logistic regression[END_REF] have shown that even in the well-speci ed case σ = σ, non-regularized logistic regression yields a biased estimator of w in the high-dimensional limit where n, d → ∞ at a proportional rate α = n /d, which [START_REF] Bai | Don't just blame over-parametrization for overcon dence: eoretical analysis of calibration in binary classi cation[END_REF] has shown to be overcon dent. Clarté et al. [2022b] characterized the calibration as a function of the regularization strength and the number of samples, and has shown that overcon dence can be mitigated by properly regularizing. e goal in this section is to leverage these results on high-dimensional logistic regression in order to provide theoretical results on the calibration properties of TS and EC. In particular, we will be interested in comparing the following three choices of data likelihood function σ :

     σ logit (z) = 1 1+e -z σ affine (z)= 0 if z < -1, 1 if z > 1, t+1 2 else σ constant = 0 if z < -1, 1 if z > 1, 1 /2 else (10)
Asymptotic uncertainty metrics -e starting point of the analysis is to note that the uncertainty metrics of interest (2) only depend on the weights through the pre-activations (w x, ŵ x) on a test point x. Since the distribution of the inputs is Gaussian, the joint statistics of the pre-activations is Gaussian: . Dashed white lines represent the accuracy as a function of the con dence, the red line is the diagonal. e di erence between red and white lines corresponds to the calibration. ECE of ferm is, from le to right: 2.1 %, 1.2 %, 1.0 %. We have T T S = 1.24, T EC = 1.35.

(w x, ŵ x) ∼ N 0 2 , 1 /d||w || 2 2 1 /dw ŵerm 1 /dw ŵerm 1 /d|| ŵerm
As discussed above, di erent recent works [START_REF] Sur | A modern maximum-likelihood theory for high-dimensional logistic regression[END_REF][START_REF] Bai | Don't just blame over-parametrization for overcon dence: eoretical analysis of calibration in binary classi cation[END_REF], Clarté et al., 2022b] have derived exact asymptotic formulas for these statistics in di erent levels of generality for logistic regression. In particular, the following theorem from Clarté et al. [2022b], which considers a general misspeci ed model will be used for the analysis: eorem 1 ( m. 3.2 from Clarté et al. [2022b]). Consider the logit classi er (8) trained by minimizing the empirical risk (9) on a data set (x i , y i ) i∈[n] independently sampled from model (6). en, in the high-dimensional limit when n, d → ∞ at xed α = n /d:

( 1 /dw ŵerm , 1 /d|| ŵerm || 2 2 ) ---→ d→∞ (m, q) (11) 
where (m, q) ∈ R 2 + are explicitly given by the solution of a set of low-dimensional self-consistent equations depending only on (α, λ, σ, σ * ), and which for the sake of space are discussed in Appendix B.

Leveraging on m. 1, we can derive an asymptotic characterization for the asymptotic limit of the uncertainty metrics de ned in (2).

Proposition 1. Under the same assumptions of eorem 1, the asymptotic limit of the uncertainty metrics de ned in (2) is given by:

∆ (m, q) = -Z (1, m /qσ -1 ( ), 1 -m 2 /q) ECE(m, q) = ∞ 0 dz|∆ σ(z) (m, q)|N (z|0, q)
where (m, q) ∈ R 2 + are the asymptotic limits of the correlation functions in (11) and

Z (y, ω, V ) = E ξ∼N (ω,V ) [σ ( yξ /T )] (12) 
e proof of this result is given in Appendix B. Proposition 1 provides us with all we need to fully characterize the calibration properties of TS and EC in our se ing. In the next paragraphs, we discuss its implications.

In practice, the 2 regularization parameter λ in the empirical risk ( 9) is optimized by cross-validation. Clarté et al. [2022b,a] has shown that appropriately regularizing the risk not only improves the prediction accuracy but also the calibration and ECE of the logistic classi er. In particular, it was shown that crossvalidating on the loss function yields di erent results from cross-validation on the misclassi cation error, with a larger di erence arising in the case of misspeci ed models. Curiously, Clarté et al. [2022a] has shown that in this case, good performance and calibration can be achieved by combining a 2 penalty with TS. In the following, we discuss how this compares with EC. Note that the exact asymptotic characterization from m. 1 allows us to bypass cross-validation, allowing us to nd the optimal λ by directly optimizing the lowdimensional formulas. We thus de ne λ error (respectively λ loss ) as the value of λ such that w erm yields the lowest test misclassi cation error (respectively test loss).

Expectation consistency outperforms temperature scaling

In Section 4, we have numerically observed that EC and TS yield almost the same temperature and thus have similar performance in terms of di erent uncertainty quanti cation metrics for di erent architectures trained on real data sets. Figure 5 shows the relative di erence δT = |TT S -TEC | /TTS between the two methods for logistic regression on the synthetic data model ( 6) for the di erent choice of target activation σ ∈ {σ logit , σ affine , σ constant } de ned in (10). Contrary to the real data scenario in Section 4, we observe a signi cant di erence between the two methods for σ ∈ {σ affine , σ constant }. For instance, for the piece-wise constant function σ = σ constant , δT is a non-decreasing function of the sampling ratio α, and is around 30% at α = 20.

Figure 4 shows that expectation consistency yields a lower ECE than Temperature scaling in all the se ings considered in Section 5. On one hand, the e ect is small in the well-speci ed case where the target and model likelihoods are the same: the ECE of Temperature scaling is higher by around 0.01%.

is is quite intuitive from the discussion in Section 5.1, since in this case, we are closer to the Bayesian se ing where both methods were shown to coincide. On the other hand, this di erence increases in the misspeci ed se ing, suggesting that model misspeci cation plays an important role in these calibration methods. In particular, note that in all cases considered here, EC has a lower ECE than TS for all three regularizations considered: λ = 10 -4 , λ error , λ loss .

Figure 6 shows the joint probability density function of the variables (f (x), ferm (x)) ∈ [0, 1] 2 . In particular, we show in white-dashed lines the conditional mean E f * (x)| ferm (x) which corresponds to the accuracy-con dence chart in Figure 2. As in the real data case, we observe that the ERM estimator is consistently overcon dent, i.e ∀ 1 /2, ∆ 0. Moreover, we see that a er TS and EC, the conditional mean gets closer to the diagonal (red curve), implying that the model is more calibrated.

e phenomenology of the simple data model seems to correspond to what we observe with real data and suggests that expectation consistency is a be er approach to calibration.

Interpretation of the results -Temperature scaling corresponds to rescaling the outputs of the network by minimizing the validation loss. In the literature, the cross-entropy loss is one of the most widespread choices, both for training and for measuring uncertainty scores (with the so max). From a Bayesian perspective, minimizing the cross-entropy loss corresponds to maximizing the likelihood under the assumption that the has been generated from a so max (a.k.a. multinomial logit) model. Hence, the underlying assumption behind temperature scaling is that the labels are generated using a so max likelihood. erefore, we expect it to perform be er when this assumption is met. Indeed, our experiments in Section 5 con rm this intuition. In the case where the ground truth model is indeed given by a logit, TS performs well and is close to EC. However, in the misspeci ed case, where this assumption does not hold, TS performs worse than EC.

For completeness, let us note that in most se ings we tried EC was equivalent or outperforming TS. We searched for a case where the opposite would happen and found one where TS is very slighly be er than EC, that we present in the Appendix C.

Conclusion and future work

In this work, we introduced Expectation Consistency, a new post-training calibration method for neural networks. We have shown that EC is close to temperature scaling across di erent image classi cation tasks, giving almost the same expected calibration error and Brier score, while having comparable computational cost. We provided an analysis of the asymptotic properties of both methods in a synthetic se ing where data is generated by a ground truth model, showing that while EC and TS yield the same performance for well-speci ed methods, EC provides a be er and more principled calibration method under model misspecication.

Our experiments on simple data models showed that when there is a discrepancy between our linear model and the true data model, EC performs be er than TS. However, our experiments on real data show a very similar performance across di erent architectures, data models and overall model accuracy. In future work, we aim to understand be er why both methods are so similar in practical scenarios. A Details on training procedure SVHN For the SVHN dataset [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF], the Resnet20 model of depth 20 and containing 0.27M parameters was trained for 50 epochs, using SGD with a learning rate η = 0.1, weight decay 1e -4 and momentum 0.9. 90% of data points were used for training and the rest was used for validation.
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CIFAR10 ResNet models (of depth 20, 56 with Resnet56 having 0.85M parameters) were trained for 50 epochs, using SGD with a learning rate η = 0.1, weight decay 1e -4 and momentum 0.9. e DenseNet 121 (containing 7.9 parameters) was trained with the same parameters as the ResNets, except for the learning rate η = 0.01. As in He et al. [2016], images in the training set were randomly cropped and ipped horizontally.

CIFAR100 On CIFAR100, we used pre-trained models from the Github repository https://github.com/ chenyaofo/pytorch-cifar-models. ese models were trained on the entirety of the training set, so the test set containing 10000 images was split in half into a validation and test set, containing 5000 images each.

A.1 Additional plots

In Figure 7, we plot the reliability diagram of Resnet20 and Resnet56 on SVHN and CIFAR10 respectively. We observe that the uncalibrated models are overcon dent (as the con dence is higher than the corresponding accuracy), and both TS and EC mitigate this overcon dence. 

B State evolution equation

In this section, we focus on the data model introduced in Section 5. Recall that we consider a dataset of n samples D = (x µ , y µ ) n µ=1 generated by

x ∼ N (0, I d /d), w * ∼ N (0, I d ), P(y = 1|w * x) = σ (w * x) (13) 
and we t the following logistic regression model, with σ the sigmoid function:

ferm (x) = σ(w erm x) (14) 
by minimizing the following empirical risk

R(w, D, λ) = n µ=1 log σ(y µ w x) + λ /2 w 2 (15) 
we thus have w erm = arg min w R(w, D, λ). For a new sample x, we are interested in the joint distribution of f * (x) and ferm (x). As these two functions only depend on the scalar products w * x, w erm x it su ces to compute the joint distribution of these scalar products. By the Gaussianity of x, we just need to compute the overlaps m = w * w erm and q = w erm 2 . In the high-dimensional limit where n, d → ∞ but where we keep the sampling ratio constant n /d = α, it is possible to compute the value of m and q. e idea is to introduce the distribution µ β,D,λ (w) = 1 Z β exp (-βR(w, D, λ))

where Z β is a normalization constant. In the limit β → ∞, µ β,D,λ converges to a Dirac distribution peaked at w erm = arg min R(w, D, λ). To compute m, q, one needs to compute the expression of log Z β and its limit when β → ∞. In the high-dimensional regime where both the dimension and number of samples diverge with a xed ratio, this can be done using the replica method from statistical physics [START_REF] Zdeborová | Statistical physics of inference: resholds and algorithms[END_REF]. As these computations are not the focus of the present paper, we refer to Loureiro et al. [2021], Clarté et al. [2022b] for the detailed computations. In the end, if we de ne

Z * (y, ω, v * ) = dzσ * (y × z)N (z|ω, v * ) (17) f (y, ω, v) = arg min z (z -ω) 2 2v -log σ(z) (18) 
then m, q are the solution of the following self-consistent equations:

     m = m λ+v q = q+ m2 (λ+v) 2 v = 1 λ+v ,   
  m = αE ξ∼N (0,q) dy∂ ω Z * (y, m /qξ, v * )f (y, ξ, v) q = αE ξ∼N (0,q) dyZ * (y, m /qξ, v * )f 2 (y, ξ, v) v = -αE ξ∼N (0,q) dyZ * (y, m /qξ, v * )∂ ω f (y, ξ, v)

with v * = ρ -m 2 /q.

Calibration in the high-dimensional regime Once we obtained the overlaps m, q, we can derive the expression the calibration ∆ :

∆ = E f * (x)| ferm (x) = P y = 1| ferm (x) = dzσ (z)N (z| m q f -1 erm (x), ρm 2 /q) (20)

e second line comes from the fact that the scalar product w * x conditioned on w erm x = σ -1 ( ) follows a Gaussian distribution with mean m /qξ and variance ρ -m 2 /q. As a consequence, the expression of ECE is

ECE = E x |∆ ferm(x) | = E ξ=w erm x |∆ σ(ξ) | = dξ|∆ σ(ξ) |N (ξ|0, q) (21) 
C Setting where temperature scaling outperforms expectation consistency

In the great majority of cases we tried EC was giving the same or be er performance than TS. We found one case where TS very very slightly outperforms EC that we present here for completness.

In the well-speci ed se ing in Section 5.3, the data was generated by a teacher w * ∼ N (0, I d ) using a logit model. In this section, we consider a teacher sampled from N (0, 1 /ρ 2 I d ). e parameter ρ will adjust the norm of the teacher, as w * = ρ and thus controls the amount of noise in the data (also called aleatoric uncertainty). Taking ρ = 10, we apply temperature scaling and expectation consistency to ferm using λ = 1/ρ 2 . With this choice of λ, ferm corresponds here to maximum a posteriori estimation. We compare the ECE of TS and EC in Figure 8 and observe that in this se ing, EC fares slightly worse than TS. Hence, note that the ECE di er by 0.001% and it is unlikely that this di erence would be observable in practice. e two values are very close and the curves are indistinguishable on the plot. Note that ECE increases with the sampling ratio. Right: Di erence between the ECE of EC and TS. We observe that EC has here a slightly worse ECE than TS.

  the indicator function of the set A; N (x|µ, Σ) the multivariate Gaussian p.d.f. with mean µ and covariance Σ.

Figure 2 :

 2 Figure 2: Le : e validation loss and average con dence of the model, as a function of the temperature T , model is DenseNet121 trained on CIFAR10. e dark dashed line is the accuracy for the validation set. Orange (respectively blue) cross corresponds to T EC , T T S . Middle: ECE of the model as a function of T , blue and orange dots respectively correspond to TS and EC. Right: Reliability diagram of Resnet20 trained on CIFAR10, before and a er Temperature scaling. e reliability diagram a er EC is indistinguishable from the one of TS.

Figure 3 :

 3 Figure 3: Le : Accuracy of Resnet20 model (Le ), the temperature returned by TS and EC (Middle) and ECE of the model (Right) as a function of the size of the training set α = ntrain /50000. e model is trained with the same hyperparameters as in Figure 1. Again we see that the two methods are comparable even at largely di erent sample sizes..

Figure 4 :

 4 Figure 4: ECE of regularized logistic regression with three di erent values of λ (10 -4 , λ error , λ loss ): uncalibrated, a er temperature scaling, and a er expectation consistency. From le to right: σ = σ logit , σ affine , σ constant respectively.

Figure 5 :

 5 Figure 5: Relative di erence |TEC -TT S | /TTS as a function of the sampling ratio α with three di erent σ , and λ = 10 -4 . We observe that when σ di ers more from σ, EC and TS yield di erent results. Points are simulations done at d = 200.

Figure 6 :

 6 Figure 6: Plots of the density of ( ferm (x), f (x)) (Le ), a er Temperature scaling (Middle) and expectation consistency (Right), for the sampling ratio n /d = 20 and regularization λ = 10 -4 . Dashed white lines represent the accuracy as a function of the con dence, the red line is the diagonal. e di erence between red and white lines corresponds to the calibration. ECE of ferm is, from le to right: 2.1 %, 1.2 %, 1.0 %. We have T T S = 1.24, T EC = 1.35.

Figure 7 :

 7 Figure 7: Reliability diagram of Resnet20 on the SVHN dataset (Le ) and Resnet56 on the CIFAR10 dataset (Right). Before calibration, both methods are overcon dent. TS and EC improve calibration and mitigate overcon dence.

  ) -ECE(T S)

Figure 8 :

 8 Figure 8: Le : Relative di erence of the temperatures ∆T = |TT S -TEC |) /T S. Middle: ECE of TS and EC.e two values are very close and the curves are indistinguishable on the plot. Note that ECE increases with the sampling ratio. Right: Di erence between the ECE of EC and TS. We observe that EC has here a slightly worse ECE than TS.
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