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Benchmark proposal for the FVCA8
conference : Finite Volume methods for the
Stokes and Navier-Stokes equations

Franck Boyer and Pascal Omnes

Abstract This benchmark proposes test-cases to assess innovative finite volume
type methods developped to solve the equations of incompressible fluid mechanics.
Emphasis is set on the ability to handle very general meshes, on accuracy, robustness
and computational complexity. Two-dimensional as well as three-dimensional tests
with known analytical solutions are proposed for the steady Stokes and both steady
and unsteady Navier-Stokes equations, as well as classical lid-driven cavity tests.

Key words: Finite volume methods, general meshes, incompressible fluids, Navier-
Stokes equations, benchmark
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1 Introduction

1.1 Presentation

The aim of this benchmark is to compare various finite volume space discretization
for the equations of incompressible viscous flows. We are particularly interested in
evaluating accuracy, robustness, complexity and the ability to handle various given
families of unstructured, possibly non-conforming meshes, in 2D and in 3D. Note
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that this is intentionally not a high-performance computing benchmark with very
demanding test cases from the computational resources point of view.

We mention that the present benchmark is the third of a series organised at the
occasion of FVCA conferences:

• Benchmark on 2D anisotropic diffusion problems, FVCA5, 2008, see [7].
• Benchmark on 3D anisotropic diffusion problems, FVCA6, 2011, see [5].

It is specified that participants are free to choose only a part of the test cases. All
significant contributions will be considered for publication.

1.2 The set of equations

According to the value of θ and χ below, we shall consider the steady (θ = 0) or
unsteady (θ = 1) incompressible Stokes (χ = 0) or Navier-Stokes (χ = 1) equations

θut −ν∆u+χ(u ·∇)u+∇p = f, (t,x) ∈ (0,T ]×D ,

∇ ·u = 0, (t,x) ∈ (0,T ]×D ,∫
D

p(t,x)dx = 0, t ∈ (0,T ]

(if θ = 1) u(0,x) = u0(x), x ∈D

that model the motion of a viscous incompressible fluid under the action of external
forces.

The domain D will always be the unit square or the unit cube, the final time T and
the boundary conditions will be specified in the various test-cases below. Boundary
conditions will always be Dirichlet (either homogeneous or not) conditions on the
velocity.

1.3 The meshes

Since one of the aims of this benchmark is to assess the capacity of recent schemes
to handle various types of meshes, in particular non conforming ones, we propose
several families of meshes1 that are available in the Benchmark’s GitHub repository,
see [2].

The format of the files are described in the README.md files respectively in the
2D and 3D folders.

1 mostly taken from the previous FVCA5 and FVCA6 benchmarks.
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• 2D triangular meshes : mesh tri i for i ∈ {1, ...,6}

• 2D uniform Cartesian meshes : mesh cart i for i ∈ {1, ...,7}

• 2D quadrangles meshes : mesh quad i for i ∈ {1, ...,7}

• 2D locally refined Cartesian meshes : mesh ref i for i ∈ {1, ...,5}2

• 3D hexahedral meshes : mesh hexa i for i ∈ {1, ...,5}

• 3D tetrahedral meshes : mesh tetra i for i ∈ {0, ...,6}

2 We finally decided to add two finer meshes in this family mesh ref 6 and mesh ref 7 that
were not present when we launched the benchmark proposal



4 Franck Boyer and Pascal Omnes

• 3D prismatic meshes : mesh prism i for i ∈ {1, ...,4}

1.4 Expected outputs

Each time an exact solution is known (Sections 2 to 4), the participants will ver-
ify the accuracy and order of convergence of the schemes on the given families of
meshes. Some estimation of the complexity of the schemes will also be provided.

The choice of the time-integration scheme and of the time-step in the unsteady
tests is left to the participants but should be clearly indicated. Participants should
also indicate the way they solve the non-linearity of the equations (Newton iterations
for example), and how many such non-linear iterations were needed to reach the
presented results, as well as the stopping criterion of such iterations.

More precisely, for each test case in sections 2, 3 and 4, tables like Tab. 1 and
Tab. 3 should be filled with the following quantities (one complexity table for each
mesh family, and one accuracy table for each value of the viscosity coefficient and
each mesh family):

Accuracy table

• mesh # : Number of the mesh in the mesh family. Quantities below will be labeled
by i with reference to the mesh number. Growing i means finer meshes.

• errgu =
[ ∫

D |∇(u−uex)|2∫
D |∇uex|2

]1/2
(for θ = 0) or

[ ∫ T
0
∫
D |∇(u−uex)|2∫ T

0
∫
D |∇uex|2

]1/2
(for θ = 1) or any

other quantity, to be specified by the participants, quantifying the error in the
velocity derivatives L2 norm.

• ordgu = −d ln(errgui)−ln(errgui−1)
ln(nuui)−ln(nuui−1)

, where d = 2 or 3 is the space dimension, and
nuu is the number of velocity unknowns.
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• erru =
[ ∫

D |u−uex|2∫
D |uex|2

]1/2
(for θ = 0) or

[ ∫ T
0
∫
D |u−uex|2∫ T

0
∫
D |uex|2

]1/2
(for θ = 1), or any other

quantity, to be specified by the participants, quantifying the error in the velocity
L2 norm.

• ordu = −d ln(errui)−ln(errui−1)
ln(nuui)−ln(nuui−1)

, where d = 2 or 3 is the space dimension, and nuu
is the number of velocity unknowns.

• errp =
[ ∫

D |p−pex|2∫
D |pex|2

]1/2
(for θ = 0) or

[ ∫ T
0
∫
D |p−pex|2∫ T

0
∫
D |pex|2

]1/2
(for θ = 1), or any other

quantity, to be specified by the participants, quantifying the error in the pressure
L2 norm.

• ordp = −d ln(errpi)−ln(errpi−1)
ln(npui)−ln(npui−1)

, where d = 2 or 3 is the space dimension, and npu
is the number of pressure unknowns.

• errdivu =
[∫

D |∇ · u|2
]1/2

(for θ = 0) or
[∫ T

0
∫
D |∇ · u|2

]1/2
(for θ = 1) or any

other quantity, to be specified by the participants, quantifying the error in the
velocity divergence L2 norm. This quantity will be useful to measure mass con-
servation violation, especially for penalized methods.

• orddivu = −d ln(errdivui)−ln(errdivui−1)
ln(nuui)−ln(nuui−1)

, where d = 2 or 3 is the space dimension,
and nuu is the number of velocity unknowns. This order of convergence is mean-
ingful only if errdivu is different from zero.

mesh # errgu ordgu erru ordu errp ordp errdivu orddivu
1 – – – – – – – –
2 – – – – – – – –
3 – – – – – – – –
4 – – – – – – – –
5 – – – – – – – –

Table 1 Accuracy table : Example

Complexity table

• nuu : Number of velocity unknowns.
• npu : Number of pressure unknowns.
• nnzu : Number of non-zero terms in the velocity – velocity matrix.
• nnzp : Number of non-zero terms in the pressure – pressure matrix (for penalized

methods)
• nnzup : Number of non-zero terms in the velocity/pressure matrix.
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mesh # nuu npu nnzu nnzp nnzup
1 – – – – –
2 – – – – –
3 – – – – –
4 – – – – –
5 – – – – –

Table 2 Complexity table : Example

2 Steady Stokes tests

2.1 The 2D Bercovier-Engelman test case

One of the interests of this quite classical test case is that the gradient part of the
source term is small compared to the curl part, and thus it is interesting to check
whether a numerical method will capture the pressure correctly.

2.1.1 Exact solution

uex = (u1(x,y),−u1(y,x))
T with u1(x,y) =−256x2(x−1)2y(y−1)(2y−1) and

pex = (x−1/2)(y−1/2)

2.1.2 Parameters

D = [0,1]2, θ = 0, χ = 0, homogeneous Dirichlet boundary conditions,
f = ( f1(x,y)+(y−1/2),− f1(y,x)+(x−1/2))T

with f1(x,y) = 256
[
x2(x−1)2(12y−6)+ y(y−1)(2y−1)(12x2−12x+2)

]
.

Viscosity: ν = 1

2.2 3D Taylor Green Vortex

This is a widely explored test-case in the non-linear unsteady setting because, with a
quite simple initial condition, it enables to study vortex dynamics, transition to tur-
bulence, turbulent decay and energy dissipation. However, the initial velocity profile
has also been used as a simple analytic solution for testing numerical methods for
the Stokes system.

2.2.1 Exact solution
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uex =

−2cos(2πx)sin(2πy)sin(2πz)
sin(2πx)cos(2πy)sin(2πz)
sin(2πx)sin(2πy)cos(2πz)


and pex =−6π sin(2πx)sin(2πy)sin(2πz)

2.2.2 Parameters

D = [0,1]3, θ = 0, χ = 0, non homogeneous Dirichlet boundary conditions, ν = 1
and f = (−36π2 cos(2πx)sin(2πy)sin(2πz),0,0)T .

3 Steady Navier-Stokes tests and robustness with respect to
viscosity coefficient value

The exact solution here is a simple vortex that balances the pressure gradient, and
the solution does not depend on the value of the viscosity. The aim of the test is to
verify the behavior of the numerical solution for decreasing values of the viscosity
coefficient.

3.1 Steady 2D tests

3.1.1 Exact solution

uex = (y,−x)T and pex =
1
2 (x

2 + y2)− 1
3

3.1.2 Parameters

D = [0,1]2, θ = 0, χ = 1, non homogeneous Dirichlet boundary conditions, f = 0.
Viscosity: ν = 10−1, ν = 10−2 and ν = 10−3.

3.2 Steady 3D tests

3.2.1 Exact solution

uex = (y− z,z− x,x− y)T and pex = (x2 + y2 + z2)− xy− xz− yz− 1
4
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3.2.2 Parameters

D = [0,1]3, θ = 0, χ = 1, non homogeneous Dirichlet boundary conditions, f = 0.
Viscosity: ν = 10−1, ν = 10−2 and ν = 10−3.

4 Unsteady Navier-Stokes tests

4.1 Unsteady 2D tests

4.1.1 Exact solution

Let us define ψ = e−5νπ2t cos(πx)cos(2πy). Then:
uex = (∂yψ,−∂xψ) and pex =− 1

4 e−10νπ2tπ2(4cos(2πx)+ cos(4πy)).

4.1.2 Parameters

D = [0,1]2, θ = 1, χ = 1, T = 1
10ν

, non homogeneous Dirichlet boundary condi-
tions, f = 0 and u(t = 0) = uex(t = 0).
Viscosity: ν = 10−1 and ν = 10−2.

4.2 Unsteady 3D tests

4.2.1 Exact solution (generalized Beltrami flow)

uex = e38νt

 e2x−5y−5z(−2ex+7z +3e8y)
e−5x+2y−5z(−2e7x+y +3e8z)
e−5x−5y+2z(−2e7y+z +3e8x)

 ,

pex =
19
5

e76νt(5e−3(x+y+z)(e8x+y + e8y+z + ex+8z)+ sinh2+ sinh3− sinh5)

4.2.2 Parameters

D = [0,1]3, θ = 1, χ = 1, T = 1
20ν

, inhomogeneous Dirichlet boundary conditions,
f = 0 and u(t = 0) = uex(t = 0).
Viscosity: ν = 10−1 and ν = 10−2.
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5 Robustness with respect to the invariance property

The solutions of the incompressible Navier–Stokes equations verify a fundamental
invariance property, if the boundary conditions are independent of the pressure (e.g.,
pure homogeneous or non-homogeneous Dirichlet boundary conditions for u):

If (u, p) is solution of the equations with right-hand side f, then (u, p+ψ) is
solution of the equations with right-hand side f+∇ψ .

The aim of this test is to verify if a given discretization verifies this property or
how far it deviates from it.

5.1 Test on the 2D steady Stokes system

By linearity of the Stokes equations, this test amounts to verify that, for homoge-
neous Dirichlet conditions on the velocity field, if f = ∇ψ , then u = 0 and p = ψ .
We propose to test this by choosing ψ(x,y) = exp(−10(1− x+2y)), for which the
local refinement of the third 2D mesh family in the bottom right corner should play
a positive role on the accuracy of the computations. This test should be performed
for ν = 10−1 and ν = 10−2.

5.2 Test on the 2D steady Navier-Stokes system

For the complete Navier-Stokes equations, we propose to use the lid driven cavity
tests of section 6. More precisely, we will choose ν = 1

400 and for any given mesh
we shall compare the solution obtained without source term to the one obtained
with a source term f = ∇ψ and the same ψ = exp(−10(1− x+2y)) as before. This
will create an artificial pressure gradient in the source term whose magnitude is
comparable to the natural pressure gradient in the cavity.

5.3 Expected outputs

Let (u0, p0) be the solution obtained with right-hand side f = 0 and (uψ , pψ) the
solution obtained with a right-hand side f = ∇ψ . In each case, a comparison table
like the sample table Tab. 3 should be filled with the following quantities

Comparison table

• mesh # : Number of the mesh in the mesh family.
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• devgu =
[∫

D |∇uψ |2
]1/2

(for Section 5.1) or
[ ∫

D |∇(uψ−u0)|2∫
D |∇u0|2

]1/2
(for section 5.2)

or any other quantity, to be specified by the participants, quantifying the devia-
tions in the velocity derivatives L2 norm.

• codgu = d ln(devgui)−ln(devgui−1)
ln(nuui)−ln(nuui−1)

, where d = 2 or 3 is the space dimension, and
nuu is the number of velocity unknowns.

• devu =
[∫

D |uψ |2
]1/2

(for Section 5.1) or
[ ∫

D |uψ−u0|2∫
D |u2

0|

]1/2
(for section 5.2) or any

other quantity, to be specified by the participants, quantifying the deviations in
the velocity L2 norm.

• codu = d ln(devui)−ln(devui−1)
ln(nuui)−ln(nuui−1)

, where d = 2 or 3 is the space dimension, and nuu
is the number of velocity unknowns.

• devp =
[ ∫

D |pψ−Πψ|2∫
D |ψ|2

]1/2
(for Section 5.1) or

[ ∫
D |pψ−p0−Πψ|2∫

D |p0+ψ|2

]1/2
(for section

5.2) or any other quantity, to be specified by the participants, quantifying the
deviations in the pressure L2 norm, and where Πψ is some projection of ψ to be
specified by the participants.

• codp = d ln(devpi)−ln(devpi−1)
ln(npui)−ln(npui−1)

, where d = 2 or 3 is the space dimension, and npu
is the number of pressure unknowns.

mesh # devgu codgu devu codu devp codp
1 – – – – – –
2 – – – – – –
3 – – – – – –
4 – – – – – –
5 – – – – – –

Table 3 Comparison table : Example

6 2D Lid driven cavity tests

Lid driven cavity examples are very popular since they contain many real flows
features while being posed in a simple geometry. Since no exact solution is known
for such flows, we rely here on the numerous results and discussions published for
instance in [1, 3, 4, 6, 9, 8].

6.1 Setup

We set D = [0,1]2, θ = 0 and χ = 1 (full steady Navier-Stokes equations). There
are no-slip conditions at the boundaries x = 0, x = 1, and y = 0: there, u = (0,0)T
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is imposed. The velocity at y = 1 is chosen to be u = (1,0)T . Notice that, in [3], the
authors choose u = (−1,0)T at y = 1 to ensure that the primary vortex is positive.
Of course, this choice simply modifies the results by symmetry.

For this setting, it is recognized in the literature that stable steady-state solutions
exist up to a critical Reynolds number, which is located around ν ≈ 1

8000 .
We propose here to compare the results obtained for ν = 1

100 , ν = 1
400 , ν = 1

1000
and ν = 1

5000 with the available results in the literature.

• On the uniform Cartesian meshes mesh cart *, the comparisons will be quite
easy since most of the available reference results are given for such grids (and
obtained in general with quite high order schemes).

• We propose to perform also the computations on the non uniform grids mesh tri *
and mesh quad * to investigate whether or not the method can be expected to
be robust and accurate in more general geometric situations for which Cartesian
grids are not available.

• Finally, we propose to use the locally refined grid mesh ref * that should be
adapted to an improved accuracy of the computation around the secondary vortex
(that appears in the lower right corner of the cavity, at least for high Reynolds
numbers).

6.2 Expected outputs

For each simulation provided, one should try to give an idea of the complexity of
the method, for instance by providing the kind of linear/nonlinear solver which is
used and the number of iterations required to get the results.

6.2.1 Stream function

The participants should compute (an approximation of) the stream-function ψ de-
fined by

u = ∂yψ, v =−∂xψ, ψ(x,0) = 0, ∀x ∈ (0,1).

The formula used to compute ψ from the solution of the scheme has to be given.
In order to see if the primary (resp. secondary) vortex is accurately computed,

the participants are asked to give the minimal (resp. maximal) value of ψ and the
coordinates of the point where those values are achieved, see Tab. 4.

Note that, with our choice of the boundary condition, the stream-function is neg-
ative in the primary vortex.

If the participants want to plot the computed streamlines (for instance only for
the more accurate simulation), they are encouraged to use the following contour
values for ψ
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mesh # xmin ymin ψmin xmax ymax ψmax
1 – – – – – –
2 – – – – – –
3 – – – – – –
4 – – – – – –
5 – – – – – –

Table 4 Stream function table : Example

-1.175e-1 -1.15e-1 -1.1e-1 -1e-1 -9e-2 -7e-2 -5e-2 -3e-2 -1e-2 -3e-3
-1e-3 -3e-4 -1e-4 -3e-5 -1e-5 -3e-6 -1e-6 -1e-7 -1e-8 -1e-9

-1e-10 0 1e-10 1e-9 1e-8 1e-7 1e-6 3e-6 1e-5 3e-5
1e-4 3e-4 1e-3 3e-3 1e-2 2e-2 4e-2 6e-2 8e-2 1e-1

Table 5 Contour values to be used for the stream function

6.2.2 Velocities

In order to compare the velocity profiles in the computed flow, we ask the partici-
pants to report on the horizontal velocity u along the vertical line passing through
the center of the cavity, that is y 7→ u(0.5,y), and the vertical velocity v along the
vertical line passing through the center of the cavity, that is x 7→ v(x,0.5).

The results should be given in a table where the values of the coordinates x1,x2, ...
and y1,y2, ... at which the velocities are computed are precised, as in Tab. 6 and
Tab. 7 (the coordinates xi and yi presented in those tables are taken from [3] and
should be used if possible).

Mesh #
∣∣ y 0.0000 0.0625 0.1016 0.2813 0.5000 0.7344 0.9531 0.9688 1.0000

1 – – – – – – – – –
2 – – – – – – – – –
3 – – – – – – – – –
4 – – – – – – – – –
5 – – – – – – – – –

Table 6 Hor. velocity y 7→ u(0.5,y): Example

Mesh #
∣∣ x 0.0000 0.0703 0.0938 0.2266 0.5000 0.8594 0.9453 0.9609 1.0000

1 – – – – – – – – –
2 – – – – – – – – –
3 – – – – – – – – –
4 – – – – – – – – –
5 – – – – – – – – –

Table 7 Ver. velocity x 7→ v(x,0.5): Example
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6.2.3 Vorticity and Pressure

In the above references, one can also find many reference values for the pressure
and vorticity fields. For concision reasons, we do not ask the participants for such
values. However, they are free to give them if they find that it is of some particular
interest. In such a case, one can use for instance the pressure/vorticity contour lines
values given in [3].
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