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Abstract According to the principles of commu-
nity ecology, sympatric species may suffer a selec-
tive pressure to decrease their niche overlap through 
mechanisms of niche partitioning. However, there is 
still a gap in knowledge of the main drivers influenc-
ing niche differentiation, particularly in communities 
composed by small-sized and inconspicuous species. 
The coastal epipelagic community structure of mid-
trophic level species in the Northeast Atlantic was 
examined using stable isotope analysis to (1) deci-
pher intrinsic and extrinsic factors promoting niche 

partitioning and (2) examine species divergence in 
the use of resources. A total of 474 individuals from a 
guild of 11 species were sampled during three years, 
and the influence of potential drivers of isotopic 
divergence was assessed. The niche partitioning was 
mainly determined by the taxonomic group in accord-
ance with the fundamental principles of niche theory, 
which was consistent for both δ13C (i.e. habitat) and 
δ15N (i.e. prey). Body size was highly important in 
driving niche partitioning within species. Our results 
show that the predominant species in the guild were 
the most generalist, when compared with more spe-
cialised species with which they coexist. This study 
reveals that the intrinsic factors are determinant to 
decrease inter- and intra-specific niche overlap at the 
community level.

Keywords Assemblage · Competition · Fish · Niche 
segregation · Squid

Introduction

Understanding the main drivers of niche partition-
ing among species, particularly when species belong 
to the same guild, i.e. share similar traits and habitat 
characteristics, and how their trophic interactions may 
evolve through time has been a central theme in com-
munity ecology (Chesson, 2000). The fundamental 
principles of niche theory suggest that absolute con-
current niche overlap is not evolutionarily possible 
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(Hardin, 1960), and sympatric species must partition 
their limiting resources to alleviate interspecific com-
petition (Petalas et al., 2021).

Since Darwin’s theory on the ‘The Origin of Spe-
cies’, niche partitioning (also termed niche differen-
tiation or niche segregation) was conjectured in an 
array of studies across a wide range of taxa, and there 
is a vast number of studies using models and assump-
tions on the maintenance of species diversity (Ches-
son, 2000). Niche segregation between sympatric spe-
cies has been observed in several communities in the 
marine environment, from apex predators (e.g. Con-
nan et  al., 2019) to plankton (e.g. Williams, 1988), 
through small epipelagic and mesopelagic fish (e.g. 
Cherel et  al., 2010), demersal fish assemblages (e.g. 
Colloca et  al., 2010) or sympatric cephalopods (e.g. 
Golikov et al., 2020). In this sense, the long-ago exist-
ing theory of niche partitioning to decrease overlap 
among sympatric species is corroborated by an array 
of studies in the field and empirical models. However, 
the thorough investigation of the main drivers influ-
encing niche differentiation in natural populations has 
been overlooked (Svanbäck & Bolnick, 2007). Some 
studies focussed on the factors influencing dietary dif-
ferentiation in fish (mostly based on prey selection) 
using conventional and modern methodologies (e.g. 
Amundsen et al., 2003; Helland et al., 2008; Quevedo 
et al., 2009; Colloca et al., 2010; Schulze et al., 2012; 
Knickle and Rose 2014), but these are limited to the 
identification of specific drivers in one species or 
in the interaction of a few species and often in con-
trolled experiments. The use of modern techniques 
such as biochemical analyses and robust statistical 
approaches can significantly increase our knowledge 
on the ecological niche and niche overlap (Swanson 
et  al., 2014). Recent studies have demonstrated that 
both spatial (e.g. Jessopp et  al., 2020) and temporal 
(e.g. Watabe et al., 2022) variations drive niche par-
titioning in natural populations. This is of main inter-
est for the scientific community in the field of ecol-
ogy, especially considering elusive and ecologically 
important communities composed by small-sized and 
very abundant organisms, such as those including 
mid-trophic level species in the marine realm (Brandl 
et al., 2020). In fact, small pelagic mid-trophic level 
species are important because they play a major role 
in neritic ecosystems as consumers and prey. Due to 
their high abundance, they are key species occupy-
ing intermediate trophic levels with both bottom-up 

and top-down control roles (Bode et  al., 2007), and 
excellent candidates to better understand the drivers 
of niche differentiation. In highly productive marine 
ecosystems, such as shelf waters of the temper-
ate North Atlantic influenced by upwelling regimes, 
trophic interactions are typically controlled by this 
guild of forage fish (i.e. “wasp-waist” control; Cury 
et al., 2000).

Sympatric fish species may partition habitat and 
resources in many ways (Ross, 1986), and this niche 
partitioning flexibility depends on the type of spe-
cialization of different species (Schulze et al., 2012). 
The trade-off between specialist vs. generalist species 
(i.e. their relative abundances in the communities and 
respective partition of resources) is thought to rep-
resent a central mechanism of co-existence (Wilson 
& Yoshimura, 1994). Thus, the width of ecologi-
cal niche and how it segregates plays a central role 
in species adaptation to the marine environment and 
in trophic relationships between ecologically related 
species (e.g. interspecific competition). However, this 
also occurs among individuals of the same species 
(e.g. intra-specific competition) through niche seg-
regation induced by sex, morphology (e.g. size), age 
(e.g. ontogenetic stages), or individual specialization 
(Van Valen, 1965; Bolnick et  al., 2002; Amundsen 
et  al., 2003). In fact, the combined effect of extrin-
sic and intrinsic factors may explain the partitioning 
of resources between and within species (Schoener, 
1974).

Small mid-trophic level species such as sardines, 
anchovies, mackerels, and squids are among the most 
common pelagic species in upwelling systems world-
wide, such as in the west Iberian coast (Bode et al., 
2007). There is a relatively good knowledge of these 
species from a commercial use perspective (Leitão 
et  al., 2014), and in terms of diet (Garrido et  al., 
2008, 2015; Garrido & Murta, 2011; Costalago et al., 
2012). However, their trophic relationships within the 
communities and niche occupancy from an ecological 
point of view are less understood (Bode et al., 2007; 
da Silva et  al., 2020, 2022). In this context, recent 
biochemical methods, such as analyses of stable iso-
topes, are relevant tools to investigate the trophic rela-
tionships of co-occurring species with a high degree 
of ecological similarity (da Silva et  al., 2020, 2022; 
Golikov et al., 2020), thus presenting great potential 
for deciphering food web structure and function in 
marine systems (Ceia et al., 2022).
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Stable isotope analysis bypassed some limitations 
of the conventional approaches to investigate niche 
segregation. This method is used routinely at low 
costs, allowing the analysis of a large number of sam-
ples and it has a great potential to study the trophic 
ecology of populations and interactions within com-
munities (Newsome et  al., 2007; Ceia et  al., 2022). 
This method also has the advantage of investigating 
the feeding ecology of organisms over the short- to 
the long-term, depending on the tissue sampled (Ceia 
et al., 2012). Different tissues have different isotopic 
turnover rates: in fish the isotopic signature of mus-
cle is representative of the isotopic niche during the 
previous weeks (half-lives in the order of 2–8 weeks) 
preceding sampling (Boecklen et  al., 2011). Thus, 
this is a powerful method to estimate trophic niches 
and overcomes the limitations of the traditional 
approaches (e.g. stomach analyses, direct observa-
tions). Such conventional techniques typically indi-
cate a ‘snapshot’ of what the individual consumed 
recently, and may not be suitable to study a large 
number of elusive organisms such as small fish. How-
ever, stable isotopes rarely provide diet information at 
a high taxonomic resolution, i.e. to the species level 
(Ceia et al., 2022).

In marine systems, stable isotopes are frequently 
used to assess species isotopic niches (i.e. a proxy 
of the ecological niche), reflecting the scenopoetic 
(i.e. habitat; δ13C) and bionomic (i.e. prey; δ15N) 
axes in the multivariate Hutchinson’s space ecologi-
cal niche (Hutchinson, 1957; see reviews Newsome 
et  al., 2007; Swanson et  al., 2014). There is a natu-
ral variation in stable isotope values of consumers 
exploiting different resources and inhabiting different 
ecosystems, and such variation is related to the iso-
topic composition of their prey and respective habi-
tats. This variation is reflected from the base of the 
food web to the consumer levels, and may occur at 
spatial, temporal, and/or trophic dimensions (Nav-
arro et  al., 2013). Differences of isotopic composi-
tion are often linked to environmental drivers such as 
temperature, chlorophyll a concentration, or bathym-
etry (Ceia et al., 2018). In addition to these extrinsic 
drivers of isotopic variance, intrinsic factors, such as 
body mass and size, can affect the ecological role of 
organisms within and between species, and thus influ-
ence their isotopic niches (Colloca et al., 2010). Since 
mid-trophic level species commonly cluster in dense 
shoals, sharing similar habitats and food sources, and 

reflecting directly baseline variations in isotope val-
ues, a good model of the community can be achieved 
by analysing its’ structure and inter-specific connec-
tions (Cherel et al., 2010). This provides an excellent 
opportunity to study the most important drivers of 
niche divergence for mid-trophic level communities 
within complex marine food webs.

In this study, we determined stable isotopes con-
tent to investigate niche partitioning within a commu-
nity of 11 co-occurring small pelagic fish and squid 
species in the North Atlantic. We have selected a set 
of potential drivers of isotopic composition, including 
taxonomic group (e.g. species, genus), spatial (e.g. 
latitudinal, distance to coast), temporal (e.g. year, 
season), environmental (e.g. chlorophyll a concentra-
tion, sea surface temperature) and intrinsic (e.g. size, 
body mass) predictors of such composition, to report 
the main drivers of resource partitioning. The main 
objectives of this study are to (1) assess the most 
important drivers promoting trophic dissimilarities, 
from the community to species level and (2) exam-
ine species divergence in the use of resources. While 
reporting niche partitioning related with any of the 
selected potential drivers, we expect to observe segre-
gation of isotopic niches and variance in niche width 
of different species in accordance with the fundamen-
tal principles of niche theory (Hardin, 1960).

Materials and methods

Study area and sampling

The Portuguese continental coast, in the northeast 
Atlantic, is a relatively large continental shelf system 
characterized by shallow waters (< 200  m), through 
a coastal extension of around 800 km (Fig. 1). It has 
high productivity, especially in the north-western 
coast of Portugal, which is influenced by winter-
intensified runoff of several rivers (Santos et  al., 
2004) and coastal upwelling regimes that last from 
April to September, although more intense in summer 
(i.e. from July to September) (Fiuza et al., 1982; Gar-
rido et al., 2008; Sousa et al., 2008).

Fishes (nine species) and cephalopods (two spe-
cies) were collected along the west and south Ibe-
ria (Portuguese coast), during 2014, 2016 and 2017 
(Fig.  1), by the research vessel (RV) “Noruega” of 
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the Portuguese Institute for the Sea and Atmosphere 
(Massé et  al., 2018). Two seasonal oceanographic 
surveys were conducted each year to sample pelagic 
mid-trophic level species during spring and autumn 
(see Supplementary Material Table  S1). Specimens 
were captured with trawl hauls, and information on 
date, time, position of capture (latitude and longi-
tude, and respective distance to coast) and depth (m) 
were recorded. A total of 59 transects were performed 
parallel to the coast, during 47 pelagic and 12 deep 
trawls. All trawls were performed between 11 and 
169 m depth within the continental shelf.

A total of 474 individuals from 11 species were 
sampled (Table  1): European pilchard Sardina pil-
chardus (Walbaum, 1792) (Family: Clupeidae), Euro-
pean anchovy Engraulis encrasicolus (Linnaeus, 
1758) (Engraulidae), Atlantic horse mackerel Trachu-
rus trachurus (Linnaeus, 1758) (Carangidae), Blue 
jack mackerel Trachurus picturatus (Bowdich, 1825) 
(Carangidae), Mediterranean horse mackerel Trachu-
rus mediterraneus (Steindachner, 1868) (Carangi-
dae), Atlantic mackerel Scomber scombrus Linnaeus, 

1758 (Scombridae), Atlantic chub mackerel Scomber 
colias Gmelin, 1789 (Scombridae), Bogue Boops 
boops (Linnaeus, 1758) (Sparidae), European hake 
Merluccius merluccius (Linnaeus, 1758) (Merluccii-
dae), European squid Loligo vulgaris Lamarck, 1798 
(Loliginidae) and Alloteuthis spp. Wülker, 1920 (Lol-
iginidae). For each fishing event, five individuals of 
each species were collected, whenever possible, and 
immediately frozen at − 20 °C. We focussed on small 
and medium-sized specimens (very small and large 
individuals were not collected) in order to standardize 
sampling for a more consistent and robust compari-
sons of niche widths among species.

The body mass (to 0.01  g) and total length (in 
fishes; to 1 mm) or mantle length (in squids; to 1 mm) 
were recorded for each individual (Table  1). Total 
length of fish specimens ranged from 6.8 to 33.1 cm 
and mantle length of squids from 3.2 to 9.8 cm. The 
body mass varied between 2.4 and 264.3 g in fish, and 
between 1.1 and 25.4 g in cephalopods.

Fig. 1  Sampling scheme—each point represents one sampling position. Pelagic and deep trawls for sampling were performed in 
spring and autumn during 2014, 2016 and 2017
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Stable isotope analyses (SIA)

Stable isotopes of carbon (δ13C) and nitrogen (δ15N) 
were analysed in the muscle of each individual 
(n = 474). Muscle tissue was grounded to fine pow-
der in a mill (Mixed Mill MM 400 (Retsch, Haan, 
Germany)). Lipids were removed from samples by 
successive rinses in a 2:1 chloroform–methanol solu-
tion (Cherel et al., 2005) and dried at 50 °C for 48 h. 
The average C:N mass ratios of the delipidated sam-
ples were 3.1 ± 0.2 (mean ± SD), thus below the 3.5 
threshold value that corresponds to low lipid con-
centrations in tissues (Post et  al., 2007). However, 
individual values ranged from 2.8 to 4.1. Hence, we 
included C:N mass ratio as an intrinsic explanatory 
variable (see Supplementary Material Table  S2) to 
check for potential effects of remaining lipids on δ13C 
and δ15N values, as there are evidences that variation 
in lipid content has the potential to introduce bias into 
stable isotope values, particularly δ13C (Cherel et al., 
2005; Post et al., 2007).

Stable isotopes were performed on approximately 
0.3  mg of homogenized muscle tissue by loading it 
into tin cups and combusting it at 1,800 °C in a Flash 
EA1112 Series elemental analyser (Thermo Italy, 
Rhodano, Italy) coupled on line via a Finnigan con-
flo II interface to a Thermo Delta V mass spectrom-
eter (Bremen, Germany). Isotope ratios are presented 
in the usual δ notation based on the Vienna-PeeDee 
Belemnite (V-PDB) for carbon and atmospheric 
 N2 (AIR) for nitrogen and expressed as ‰. δ13C or 
δ15N = [(Rsample/Rstandard) − 1], where R = 13C/12C 
or 15N/14N, respectively. Replicate measurements 
of internal laboratory standards (acetanilide STD, 
Thermo scientific-PN 33836700) in every batch indi-
cate precision < 0.2 ‰ for both δ13C and δ15N.

Data analyses

A set of 17 predictor variables (see Supplementary 
Material Table S2), including three taxonomic group 
categories (species, genus and order), three spatial 
(latitude, distance to coast and depth), three environ-
mental (chlorophyll a concentration, Chl a; sea sur-
face temperature, SST; and type of trawl, i.e. pelagic 
or demersal), three temporal (year, season and con-
tinuous time) and five intrinsic variables (total length, 
body mass, body mass index, lipid content and sam-
ple size), were selected to identify the most important 

drivers promoting isotopic differences at the com-
munity and species level. Three different taxonomic 
group categories were chosen to test the influence of 
taxon in resource partitioning because closely related 
species typically show similar morphological, physi-
ological and behavioural characteristics. Monthly 
composites of remote sensing data (i.e. Chl a and 
SST), from the corresponding months of capture 
between 2014 and 2017 (see Supplementary Material 
Table  S2), were used in the model to test the effect 
of these environmental variables on isotopic niche of 
individuals. The type of trawl was used as a poten-
tial proxy of habitat use in the water column, noticing 
however that most fish species can move vertically 
and the type of trawl does not necessarily correspond 
to the vertical position of the shoals. Universal (i.e. 
continuous) time was chosen in complement to cat-
egorical year and season variables to evaluate poten-
tial variations of niche partitioning throughout time. 
The standard residuals of the relationship between 
body mass and total length within each species were 
used to estimate body mass index, an index primarily 
reflecting body condition of individuals. Sample size 
was included as an intrinsic variable to control for the 
potential effect of different sampling among species 
in the community structure.

Random Forest modelling was used to evaluate 
which variables should be more prone to drive niche 
partitioning among and within species (i.e. in both 
δ13C and δ15N values). Only appropriate explanatory 
variables were included in each model. We ran mod-
els for the pooled data (i.e. the community) and also 
separately for the five most representative species (i.e. 
S. pilchardus, E. encrasicolus, T. trachurus, S. scom-
brus and S. colias). Other species were in insufficient 
number to run models independently. Random For-
est is a classification technique based on regression 
trees, which is able of modelling and showing a con-
sensus prediction of the response variable from a set 
of explanatory variables (Breiman, 2001). The num-
ber of trees needs to be sufficiently high, therefore a 
total of 5,000 trees were performed for each model. 
Random Forest models handle quite well-correlated/
redundant variables, having the flexibility in captur-
ing non-linear relationships. Overall, this method 
attributes a rank of importance of each variable 
for each model performed, enabling the evaluation 
of the most important drivers of niche divergence, 
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considering the 17 above nominated explanatory vari-
ables. These analyses were performed using Statistica 
10.0.

Stable isotope data were analysed in the context 
of isotopic niche width using seven isotopic met-
rics accounting for variability between individu-
als. Three isotopic richness metrics (i.e. accounting 
for the amount of isotopic space filled by a group of 
organisms) were estimated using a Bayesian frame-
work (Stable Isotope Bayesian Ellipses in R: SIBER; 
Jackson et al., 2011). The area of the standard ellipse 
(SEAc, an ellipse obtained by Bayesian inference 
containing 40% of the data regardless of sample size 
and corrected for small sample sizes) was adopted to 
compare niche width and overlap between species. 
The overlap in isotopic niches between species ranges 
from 0 to 1, where 0.00–0.29 indicate no overlap, 
0.30–0.60 a medium overlap, and 0.61–1.00 a large 
overlap and indicating potential competition (Lang-
ton, 1982; Golikov et  al., 2020). Bayesian standard 
ellipse areas  (SEAB) were calculated from 10,000 
iterations of Markov-chain Monte Carlo (MCMC) 
simulation using rjags to test for differences in niche 
widths among species (i.e. the proportion of draws of 
the posterior distribution of the  SEAB in which the 
area of one species was smaller than that of other spe-
cies). The Layman metric of convex hull area (TA; 
Layman et al., 2007, also termed isotopic richness, i.e. 
IRic; Cucherousset & Villéger, 2015) was calculated 
as a measure of total isotopic niche area. Since TA (or 
IRic) is influenced by the number of individuals due 
to the increasing probability of having extreme val-
ues and therefore higher convex hulls, a bootstrapping 
approach, using 10 samples per species, was applied 
(Cucherousset & Villéger, 2015). Additionally, four 
isotopic diversity metrics (i.e. accounting for the dis-
tribution of points within the convex hull) comple-
mentary to the above stated isotopic richness metrics 
were estimated following Cucherousset and Villéger 
(2015). These metrics included isotopic divergence 
(IDiv), dispersion (IDis), evenness (IEve) and unique-
ness (IUni), and are independent of the number of 
individuals analysed. All these metrics range from 
0 to 1 and quantify different components of isotopic 
diversity among individuals within species (see Cuch-
erousset & Villéger, 2015). Succinctly, IDiv is close 
to 0 when most individuals are close to the centre 
of gravity of the convex hull. IDis equals 0 when all 
organisms have the same stable isotope values. IEve 

tends to 0 when most individuals concentrate within a 
small region of convex hull, while a few others are far 
from this cluster. IUni tends to 0 when each organism 
has at least one other organism with the same stable 
isotope values. All isotopic metrics were calculated in 
R 4.0.3 (R Core Team, 2020) by adapting the compu-
tational codes supplied by Jackson et  al. (2011) and 
Cucherousset and Villéger (2015). A principal com-
ponent analysis (PCA) was then run considering six 
isotopic metrics: SEAc, IRic (bootstrapped), IDiv, 
IDis, IEve and IUni, to help in the assessment of spe-
cies divergence in the use of resources and identifi-
cation of ecological grouping based on isotopic rich-
ness and isotopic diversity. Differences in SIA were 
assessed among species (11), genus (8) and orders 
(4), using an ANOVA and followed by Fisher’s Least 
Significant Difference test for multiple comparisons 
between species. Data were tested for normality (Sha-
piro–Wilk test) and homogeneity of variances (Lev-
ene’s test).

Results

Random forest models and predictor variables

The two models reflecting scenopoetic (i.e. habitat; 
δ13C, Fig. 2A) and bionomic (i.e. prey; δ15N, Fig. 2B) 
components of niche width showed similar outputs in 
the identification of the main predictors as elementary 
taxonomic groups (i.e. species followed by genus). 
This clearly suggests that taxa (at the lowest taxo-
nomic level) are the most important driver of trophic 
dissimilarities within the community. Overall, envi-
ronmental variables (SST and Chl a), universal time 
and latitude showed a moderate influence on both 
δ13C and δ15N values. However, the remaining spatial 
(distance to coast and depth), and temporal (year and 
season) variables had lower importance, according 
to the same models. The sample size and C:N mass 
ratio had little influence on both models, indicating, 
respectively, that these outputs were not influenced by 
different number of individuals per species nor by the 
lipid content that may have remained in the samples 
after delipidation.

Considering each species separately, Random 
Forest models identified, in general, the intrin-
sic biometric variables (i.e. total length and body 
mass) as the main predictors of both δ13C and δ15N 
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values (Supplementary Material Fig. S1). This sug-
gests that, at the species level, the size of organisms 
has an important influence on the resource parti-
tioning of the populations. However, this pattern 
was not always observed for the five species con-
sidered in these analyses. Specifically, environmen-
tal (SST and Chl a) variables, and, sporadically, 

spatial (latitude and depth) and temporal variables 
(time, year) showed strong and/or moderate influ-
ence on δ13C (for S. scombrus and S. colias) and 
δ15N values (for S. pilchardus, E. encrasicolus, T. 
trachurus and S. colias) (Supplementary Material 
Fig. S1).

Fig. 2  Variance importance 
plot for the predictor vari-
ables used in the Random 
Forest model for muscle (A) 
δ13C and (B) δ15N values 
of 11 fish and squid species 
from the western Iberian 
shelf. See Table S2 for a 
description of each explana-
tory variable
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Trophic ecology and isotopic niche

Overall, the isotopic niche space of this community 
of mid-trophic level organisms ranged from -20.5 to 
-16.1 ‰ in δ13C, and from 8.5 to 13.5 ‰ in δ15N 
values (Table  1; Fig.  3A). Species differed in both 
δ13C (ANOVA: F10,463 = 21.8, P < 0.001; Alloteuthis 

spp. > L. vulgaris > B. boops > M. merluccius > T. 
trachurus > S. pilchardus > T. mediterraneus > T. pic-
turatus > S. scombrus > S. colias > E. encrasicolus) 
and δ15N values (ANOVA: F10,463 = 38.4, P < 0.001; 
T. trachurus > T. mediterraneus > M. merluccius > B. 
boops > S. scombrus > T. picturatus > E. encrasico-
lus > S. pilchardus > Alloteuthis spp. > S. colias > L. 

Fig. 3  (A) Individual muscle δ13C and δ15N values and the 
corresponding standard ellipses (SEAc, 40%) and (B) stand-
ard ellipse areas (SEAb, 50%, 75% and 95% credible intervals) 

estimated with a Bayesian framework from 11 fish and squid 
species from the western Iberian shelf. Crosses in (B) represent 
the area of the standard ellipse (SEAc)
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vulgaris) (see Supplementary Material Table  S3 for 
multiple comparisons between species). Muscle δ13C 
and δ15N values also differed among genus (ANOVA: 
δ13C, F7,466 = 25.7, P < 0.001; δ15N, F7,466 = 42.0, 
P < 0.001; Supplementary Material Fig. S2) and 
orders (ANOVA: δ13C, F3,470 = 12.0, P < 0.001; δ15N, 
F3,470 = 44.6, P < 0.001; Supplementary Material Fig. 
S3).

Although the bulk of species displayed their iso-
topic niches at around an overall mean (and median) 
of -17.8 ‰ in δ13C and 11.0 ‰ in δ15N, SIBER out-
puts showed a general segregation based on SEAc 
(Fig. 3A). The overlap between species was generally 
low or medium, and there was no overlap in numer-
ous instances (see Supplementary Material Table S4 
for overlap between species SEAc). A large overlap 
only occurred between: T. mediterraneus, M. merluc-
cius and B. boops with T. trachurus; S. scombrus with 
T. picturatus; and B. boops with M. merluccius. The 
niche width also varied among species, with S. colias 
presenting a significantly higher niche width than all 
the other species (Fig. 3B). On the other hand, L. vul-
garis showed a significantly smaller niche width than 
S. pilchardus, T. trachurus, S. colias, E. encrasicolus 
and Alloteuthis spp.

Isotopic diversity metrics indicated that all spe-
cies exhibited relatively similar isotopic diver-
gence (min.– max.: 0.70–0.79), moderately variable 

dispersion (0.35–0.64) and evenness (0.68–0.85), 
and relatively high variable isotopic uniqueness 
(0.18–0.70) (Table 2). The PCA did not highlight any 
structuring of the 11 species into taxonomic groups 
(Fig. 4 and Supplementary Material Fig. S4); in fact, 
species belonging to the same genus, such as Trachu-
rus spp. and Scomber spp., grouped in different clus-
ters. On the other hand, the most abundant species 
from the same trawls, i.e. S. pilchardus, E. encrasi-
colus, T. trachurus and S. colias, clustered together, 
sharing high isotopic richness and moderate isotopic 
diversity, denoting almost similar foraging strategies.

Discussion

Although the isotopic divergence and niche par-
titioning among species can be driven by spa-
tial, temporal and/or environmental factors, this 
study illustrates that trophic dissimilarities within 
a community of marine mid-trophic level species 
are mostly determined by the taxonomic group, 
in accordance with the fundamental principles of 
niche theory (Hardin, 1960). Furthermore, when 
considering species-specific isotopic niches, intrin-
sic variables such as the size of organisms must 
be carefully evaluated because these are important 
drivers of niche partitioning within species, a trait 

Table 2  Isotopic metrics for 11 fish and squid species from the western Iberian shelf

The area of the standard ellipse (SEAc), Bayesian approximation of the standard ellipse area (SEAb), TA (or IRic), IDiv, IDis, IEve 
and IUni were estimated following Jackson et al. (2011) and Cucherousset and Villéger (2015). Both TA and IRic represent convex 
hulls (although at different scales) but the IRic was estimated applying a bootstrapping approach, using 10 samples per species (see 
methods for more details on these indices)

SEAc Total convex 
hull area (TA/
IRic)

Isotopic richness 
(IRic, boot-
strapped)

Isotopic 
divergence 
(IDiv)

Isotopic 
dispersion 
(IDis)

Isotopic 
evenness 
(IEve)

Isotopic 
uniqueness 
(IUni)

Sardina pilchardus 1.45 6.90/0.31 0.11 0.744 0.415 0.749 0.182
Engraulis encrasicolus 1.16 4.51/0.20 0.09 0.750 0.373 0.755 0.304
Trachurus trachurus 1.59 7.75/0.35 0.12 0.715 0.366 0.765 0.185
Trachurus picturatus 0.95 2.20/0.10 0.07 0.708 0.473 0.830 0.561
Trachurus mediterraneus 0.53 0.93/0.04 0.04 0.717 0.513 0.712 0.367
Scomber scombrus 0.90 3.92/0.18 0.07 0.712 0.406 0.771 0.243
Scomber colias 1.42 5.10/0.23 0.10 0.771 0.349 0.768 0.218
Boops boops 0.72 1.62/0.07 0.06 0.697 0.440 0.683 0.361
Merluccius merluccius 0.99 1.78/0.08 0.08 0.721 0.577 0.811 0.582
Loligo vulgaris 0.51 1.08/0.05 0.04 0.725 0.546 0.852 0.568
Alloteuthis spp. 1.18 1.89/0.09 0.08 0.786 0.637 0.814 0.703
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which helps to reduce competition between conspe-
cifics (Van Valen, 1965). Ultimately, the combined 
effect of both intrinsic and extrinsic factors is the 
key to explain partitioning of resources in ecologi-
cal communities, as suggested by Schoener (1974).

Drivers of niche partitioning

Species can segregate along both the spatial and 
temporal dimensions of their ecological niche (e.g. 
Jessopp et  al., 2020; Watabe et  al., 2022), but those 
belonging to the same guild can pursue specific 
microhabitats and foods as the principal factors that 
regulate the structure of the community (Ross, 1986; 

Moreno & Castro, 1995; Brandl et al., 2020; Colloca 
et al., 2010). The feeding and foraging preferences of 
different taxa were potentially driven by specific feed-
ing capabilities and behavioural traits (see below), 
supported by evidence that species followed by genus 
were the most important drivers of niche partitioning 
within the community. This was consistent for both 
scenopoetic (i.e. habitat; δ13C) and bionomic (i.e. 
prey; δ15N) dimensions in Hutchinson’s space ecolog-
ical niche (Hutchinson, 1957). However, environmen-
tal variables (SST and Chl a) also had a moderate to 
high influence on both δ13C and δ15N values, and this 
was also evident in the models conducted for each 
species separately. Temperature and chlorophyll a 
concentration are known to influence the distribution 

Fig. 4  Principal component analysis (PCA) using metrics related to isotopic richness (IRic bootstrapped and SEAc) and isotopic 
diversity (IDiv, Idis, IEve and IUni). The analysis included 11 fish and squid species from the western Iberian shelf
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of both isotopes in marine environments (MacKen-
zie et  al., 2011, 2014; Magozzi et  al., 2017), espe-
cially in areas where enhanced primary productivity 
is supported by nutrients from continental runoff and 
upwelling events like our study region (Sousa et al., 
2008; Ceia et al., 2018).

Considering temporal drivers, and although the 
year and the season had little influence on the dynam-
ics of isotopic values for most of the models per-
formed, the continuous timeline (i.e. universal time) 
cannot be neglected. Ceia et al. (2018) show that at a 
much smaller spatial scale (i.e. < 100 km), both δ13C 
and δ15N values can be highly driven by temporal 
drivers in the study region. The influence of univer-
sal time in driving isotopic variance, but not the year 
or season, was somehow unexpected because both 
δ13C and δ15N values can be highly driven by differ-
ent years in top predators (Ceia et al., 2018). Conse-
quently, temporal drivers associated with a continu-
ous timeline (during the course of this study), and not 
to year or season, might be related with stabilizing 
mechanisms of maintenance of species diversity in 
the community through time (Chesson, 2000). The 
population dynamics within the communities results 
from balance mechanisms of inter- and intra-specific 
interactions (e.g. competition, predation), and avail-
ability and specificity of resources (de Villemereuil & 
López-Sepulcre, 2011; Tadesse, 2018). Thus, stabiliz-
ing mechanisms are essential for species co-existence, 
and may drive isotopic variance and resource par-
titioning in species from the same guild in order to 
allow them to adapt to each other and to environmen-
tal factors in space and time (Chesson, 2000).

Our outputs show an overall small importance 
of spatial variables in influencing isotopic variance 
within the community. Several studies have demon-
strated that latitude at large spatial scales and con-
trast inshore versus offshore environments are often 
associated with isotopic baseline patterns (especially 
δ13C values) that are reflected along the food webs 
(Roscales et al., 2011; Chouvelon et al., 2012; Ceri-
ani et al., 2014). Although there is a slight latitudinal 
gradient in δ13C values along the Portuguese coast 
and especially between inshore vs. offshore environ-
ments (Ceia et  al., 2018), spatial variables were not 
very meaningful in the current study. The fact that all 
organisms inhabit the continental shelf supposedly 
did not drive a higher isotopic variance in the com-
munity (Chouvelon et al., 2014), which is consistent 

with more homogeneous values in this region (Ceia 
et al., 2018).

Body size is an important driver of niche partition-
ing within species. In fact, niche partitioning between 
fish species can be much lower than the intra-specific 
dissimilarities between conspecifics (e.g. between 
ontogenetic stages, Amundsen et al., 2003). There is 
evidence that the trophic level is positively related 
with length in myctophid fishes (Cherel et al., 2010), 
or that fish size and prey size are strongly correlated 
(Colloca et  al., 2010), thus pointing out for a struc-
turing effect of body size. The effect of body size 
driving niche partitioning in our study was expected, 
although extrinsic variables such as SST and Chl a 
showed to have a high influence on some models, a 
pattern also verified in predatory fish such as blue 
sharks Prionace glauca (Linnaeus, 1758) (Maxwell 
et al., 2019). However, the effect of body size should 
be much higher when considering a large spectrum of 
size classes, at least for species experiencing ontoge-
netic niche shifts and long-life span with continuous 
growth.

Species divergence in the use of resources

The productive shelf environment of the western Ibe-
rian waters supports an abundant trophic pyramid, as 
well as large fisheries targeting mid-trophic level spe-
cies. The studied species occur here in large densities 
and abundances and are often commercially exploited 
(Leitão et  al., 2014). Consequently, this is a poten-
tial competitive environment for small pelagic fishes 
inhabiting this ecosystem (Bode et al., 2007), which 
should favour the evolution of adaptations to reduce 
niche overlap (Hardin, 1960). Our results denote a 
relatively low overall variation in the isotopic val-
ues of the whole community within the study area 
(i.e. 4.4 ‰ in δ13C and 5.0 ‰ in δ15N), considering 
the large number of samples analysed in this study 
(i.e. 474 individuals from 11 species). However, the 
observed segregation of isotopic niches and variance 
in niche width resulted in species divergence in the 
use of resources (see below), a mechanism to reduce 
niche overlap and allow co-existence (Schulze et al., 
2012; Knickle & Rose, 2014; Petalas et al., 2021).

Our results point to an overall segregation in iso-
topic niches and variance in niche width among most 
species. In a community where several mid-trophic 
level species coexist in large abundances, even 
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small divergences in dietary foraging characteristics 
would potentially alleviate overlap in isotopic niches 
and hence competition, which can result in eco-
logical differentiation among closely related species 
(Brandl et al., 2020). This gains further relevance in 
a community where species of the same genus coexist 
because they have similar structure and habits, which 
increases competition if they share the same spati-
otemporal and trophic dimensions (Hardin, 1960; 
Knickle & Rose, 2014). For instance, the Atlantic 
horse mackerel (T. trachurus), the blue jack mackerel 
(T. picturatus) and the Mediterranean horse mack-
erel (T. mediterraneus) share morphological charac-
teristics and have overlapping habitats. However, T. 
trachurus is much more abundant in the study area, 
although T. picturatus occurs in higher densities in the 
southwest of Portugal, and T. mediterraneus is found 
especially in the south (which may explain its higher 
degree of foraging specialization, Fig. 4) (Gonçalves 
et  al., 2013). Similarly, the Atlantic mackerel (S. 
scombrus) and the Atlantic chub mackerel (S. colias) 
are very common pelagic fish species in the Iberian 
Peninsula coast, but S. scombrus is more abundant 
in the colder waters of the north and S. colias in the 
south (Martins et al., 2013). Thus, along with physi-
ological adaptative traits such as species adaptations 
to warm versus cold waters, species-specific forag-
ing strategies (either spatiotemporal or trophic) are 
crucial to allow the cohabitation of different species 
within the same guild. In this context, we highlight 
that the opportunistic behaviour and feeding plasticity 
should favour the co-existence of these species.

All the most captured species in this study, i.e. 
Trachurus spp., Scomber spp., S. pilchardus and E. 
encrasicolus are pelagic/semi-pelagic and opportun-
istic planktivorous species that show specific feed-
ing traits (da Silva et al., 2020, 2022; Garrido et al., 
2015). Species-specific feeding characteristics should 
be relevant for survival when sharing the same envi-
ronment. For instance, the predominant consumption 
of meso and macrozooplankton by Trachurus spp. 
and S. scombrus (such as copepods and teleost lar-
vae, but also shrimps, cephalopods, crustaceans and 
small pelagic fish), in contrast with a higher impor-
tance of microzooplankton and higher occasionally 
phytoplankton (such as diatoms and dinoflagellates) 
by S. pilchardus, E. encrasicolus and S. colias (Gar-
rido & Murta, 2011; Costalago et al., 2012; Garrido 
et  al., 2015), is reflected in higher δ15N values (and 

respective trophic level) in the former group. Moreo-
ver, S. pilchardus and S. colias also exert intraguild 
predation, actively preying on each other’s eggs and 
larvae (Garrido et al., 2015). Some species such as S. 
pilchardus, E. encrasicolus and Scomber spp. can use 
two feeding modes, i.e. filter feeding in the presence 
of smaller or highly concentrated prey and particulate 
feeding for larger particles of food or less abundant 
prey (Macy et al., 1998; Garrido et al., 2008; Costa-
lago et al., 2012), which will increase their potential 
food spectrum. These feeding characteristics will 
alleviate competition by differentiating trophic ecol-
ogy as our results highlight the general small poten-
tial competition (i.e. small niche overlap) between the 
species within this community. Thus, the flexibility 
to niche differentiation depends also on the type of 
specialization of each species, and its extent might be 
dependent on the species’ trophic specialisation along 
the specialists-to-generalists axis (Schulze et  al., 
2012).

The isotopic diversity and richness metrics here 
calculated provide a comprehensive assessment of 
the type of specialisation based on organisms func-
tional traits and variability between individuals (Jack-
son et  al., 2011; Cucherousset and Villéger 2015). 
Although we did not find any structuring of the 11 
species into taxonomic groups along the specialists-
to-generalists axis, this is thought to represent a cen-
tral mechanism in the co-existence of species (Wil-
son & Yoshimura, 1994; Schulze et  al., 2012). As 
discussed before, species from the same genus are 
unlikely to share the same spatiotemporal and trophic 
dimensions (Hardin, 1960), and thus to display simi-
lar strategies in their trophic ecology that would 
increase competition. In this study, we found that 
the most abundantly caught species (S. pilchardus, 
E. encrasicolus, T. trachurus and S. colias) showed 
higher generalisation of foraging strategies, suggest-
ing that these four species represent an established 
piscivorous guild in the epipelagic neritic habitats 
of the North Atlantic. The other less abundant spe-
cies showed their own trophic strategies in direction 
to a lower isotopic richness and/or diversity, and 
respective higher specialization. These results sug-
gest that in a community of mid-trophic level species, 
the more generalist species, with higher flexibility 
to niche partitioning, should be predominant in the 
guild. However, more specialized species living in the 
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same environment might have their own differenti-
ated niches able to coexist and form a multi-species 
assemblage.

Conclusions

In this study, we examined the drivers of isotopic 
divergence and niche partitioning in a community of 
mid-trophic level species, considering both intrinsic 
(taxa, body size) and extrinsic (environmental, spa-
tial, temporal) factors. Using a guild of common spe-
cies from the North Atlantic composed by nine fish 
and two squid species, this study illustrates that the 
main driver of niche partitioning is determined by the 
taxonomic group, in accordance with the fundamen-
tal principles of niche theory (Hardin, 1960). Poten-
tial competition was limited to a very few interactions 
between species within the community. Moreover, the 
fact that body size can have a strong influence in driv-
ing isotopic variability within species, highlights that 
intrinsic factors are essential in the partitioning of 
resources within communities since these surpassed 
any environmental, temporal and/or spatial drivers 
considered here. However, the environment is central 
in determining isotopic variance of the food webs, 
and extrinsic factors should have a crucial role in the 
partitioning of resources of species/populations from 
different ecological communities, habitats and dur-
ing long timeframes (as a stabilizing mechanism of 
maintenance of species diversity through time). These 
results suggest that intrinsic variables should be more 
relevant than extrinsic variables in driving niche par-
titioning at a smaller spatiotemporal scale. However, 
at a larger scale, the combined effect of both intrinsic 
and extrinsic factors is essential to support partition-
ing of resources and respective isotopic variance in 
ecological communities, and drive the adaptation and 
evolution of species.
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