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H-1117, Budapest, Hungary
{zakaryafarou,tomas.horvath}@inf.elte.hu

2 Science and Technology Campus, Bordeaux Computer Science Laboratory - LaBRI,
University of Bordeaux, 351 Cours de la Liberátion, F-33400, Talence, France
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Abstract. Generative adversarial networks (GANs) could be used ef-
ficiently for image and video generation when labeled training data is
available in bulk. In general, building a good machine learning model re-
quires a reasonable amount of labeled training data. However, there are
areas such as the biomedical field where the creation of such a dataset
is time-consuming and requires expert knowledge. Thus, the aim is to
use data augmentation techniques as an alternative to data collection to
improve data classification. This paper presents the use of a modified
version of a GAN called Gene Expression Generator (GEG) to augment
the available data samples. The proposed approach was used to generate
synthetic data for binary biomedical datasets to train existing super-
vised machine learning approaches. Experimental results show that the
use of GEG for data augmentation with a modified version of leave one
out cross-validation (LOOCV) increases the performance of classification
accuracy.

Keywords: Data generation · Generative adversarial networks · Gene
expression data · Cancer classification

1 Introduction

Automated diagnosis of oncology diseases such as colon cancer is extremely com-
plex and requires special attention. Gene expression profiling is widely adopted
to learn and analyze the conditions of cells and their response to various condi-
tions, which is useful in the pathogenesis of diseases. Gene expression microarrays
can be used for diagnostic purposes as well as for insights into biology. Gene Ex-
pression Data (GED) is a high dimensional data with a high number of features
that indicate gene levels, but with very few records. Usually a satisfying number
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of measurements are available for each tumor sample, with each measurement
belonging to a particular gene.

Obtaining accurate results while training a classifier becomes difficult due to
the lack of available, varied and meaningful data. It is therefore recommended
that additional samples be added to train the classifier more efficiently. Increas-
ing the original data, i.e., generating additional samples from the existing ones,
for the imbalanced class would avoid overfitting situations and improve the clas-
sification process.

1.1 Motivation

Building a satisfying Machine Learning (ML) model usually requires a large
number of samples. In the biomedical field, the collection of such data is very
expensive and time-consuming. Experts must store, examine and annotate the
recorded data (which can be either an image, information or clinical tests)
to obtain a clean, meaningful and useful dataset. Recently, Deep Neural Net-
works (DNNs) [9] has made many improvements in ML, especially when massive
datasets are available. The popularity of DNNs has led to their use also in cases
where only a small number of samples are available, and simpler ML techniques,
requiring less computational effort, would be considerably better or even better
than DNNs. However, in the case of a very limited number of data samples, it is
difficult to train any type of ML model with reasonable performance. Thus, this
work aims to highlight that even the performance of simple classification tech-
niques can be improved by providing the appropriate augmentation technique.

In the classification of cell dysplasia (cancer data), the sensitivity of the data
should be maintained. This means that when new instances are generated using
data augmentation techniques, it is important to ensure that the generated data
is close to the original data, not only in terms of values but also in terms of data
semantics.

Generative Adversarial Networks (GANs) [6], established in recent years,
have attracted the attention of researchers ( Fig. 1). Several variants of GANs
have been proposed to generate high-quality synthetic data, where they have
been used for data augmentation in cases where traditional data augmentation
methods do not yield good results. Thus, the feasibility of using GANs as a
data augmentation technique to improve the performance of classifiers in GED
classification is worth exploring. To our knowledge, the use of GANs in relation
to cancer classification by gene expression has not yet been performed.

1.2 Contributions

As the collection of large amounts of medical data is costly and difficult to ac-
quire due to certain privacy constraints, data generation is an alternative to
data collection, especially when synthetic data can be generated from a small
number of existing samples. To this end, this work provides several contributions.
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First, a modified version of the GAN called Gene Expression Generator
(GEG) is proposed. GEG learns the GED distribution and tries to synthesize
new samples that are consistent with the original data. The GEG discrimina-
tor uses the Wasserstein distance to reflect the similarity between the original
and synthetic data distributions, which allows for greater stability during train-
ing. GEG also uses data restriction, i.e., the discriminator is fed only with data
belonging to a single class, which allows to avoid unnecessary steps leading to
labeled generated data after GEG training. Although in this work GEG was
used only for binary classification, it would also work for multi-class classifica-
tion problems.

Next, the paper introduces a modified version of leave one out cross-validation
(LOOCV) by not merging the synthetic data with the original data but using the
generated instances only for the training of the classifiers. By using the generated
data as an extension of the training samples, testing the model performance with
the original data only and improving the results, more attention is paid to data
sensitivity. The generated data helps the model to better understand the data
without interfering with the original data.

2 Related work

The GAN, introduced by Goodfellow et al. [6], has quickly received increased
interest and researchers have explored its capabilities in a wide variety of applica-
tions [28]. The most successful application of GAN is computer vision, including
image translation [8], image super-resolution [10], image synthesis [29], video
generation [26], face aging [2], 3D object generation [23] or detection of small
objects [30]. Another area of application of GAN concerns natural language pro-
cessing [5], speech processing [13], and text generation [27].

Fig. 1: Cumulative number of GAN-related paper publications/journals per year
since its introduction in 2014
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Several variants of the GAN have been proposed in recent years. A condi-
tional version of the generative adversarial nets called CGAN [18] was intro-
duced to extend the GAN by conditioning the generator and discriminator with
additional information. The Deep Convolutional GAN (DCGAN) [20] has cer-
tain architectural constraints and is powerful while dealing with unsupervised
learning problems. Another variant, called GRAN [7] was proposed to generate
images with recurrent adversarial networks. MGAN [12] is a Markovian GAN, a
technique for training generative neural networks for efficient texture synthesis.
GAN-CLS [21] demonstrated the ability to generate plausible images of birds
and flowers using simple text descriptions. An alternative to the GAN called
VIGAN [22], an extended version of CycleGAN [31], handled missing data im-
putations from the MNIST.

A distributed adversarial network called DAN was proposed in [11] where
the adversarial training relies on the entire sample as a unit and not on its sam-
ple points. Unlike researchers who usually use thousands of images, Marchesi
et al. [16] investigated the possibility of applying GAN to produce high-quality
megapixel images using a limited amount of data. Lu et al. [15] suggested a new
approach called Bi-GAN which uses two generators dedicated solely to generat-
ing synthetic data from Gaussian noise, two evaluators and a discriminator for
data classification. Later, Wang et al. [28] suggested working with a set of gen-
erators against a single discriminator. Finaly, Ian Goodfellow introduced a new
robust and simple to train method called latent adversarial generator (LAG) [3],
which generates high-resolution images using latent spaces.

The review of the GAN and its areas of application reveals that most re-
searchers are focusing on image/video data generation, while there are still some
unexplored areas such as biomedical field, which is a delicate, sensitive and costly
area (in terms of data acquisition). Recently, there have been some attempts to
use GAN for genetic data [17]. Due to the relatively small number of researchers
working on the GAN for genetic data, this work aims to examine the GAN
alongside the GED.

3 Proposed gene expression generator

Generative adversarial networks (GANs) are deep neural networks based on
game theory [6]. They are considered as intelligent and creative machines. Fig. 2
shows that a GAN has two principal components: a generator G and a discrim-
inator D (red boxes); G and D are neural networks. The output of G i.e. x′

where x′ = G(z) is directly linked to the input of D next to the original data x.
G produces synthetic instances x′ starting from random Gaussian noise z such
that x′ and x are consistent. D checks the closeness of the synthetic data to
the original data and returns a probability between 0 and 1 for each instance
created. In the basic GAN, a cross-entropy loss is used to estimate the error
between predicted/actual label of D output and the actual labels.
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Fig. 2: Process of creating synthetic data using GAN

3.1 GEG architecture

The gene expression generator, i.e. GEG, is a variant of GAN that attempts
to reproduce the probability distribution of gene expression. GEG uses original
samples from a single class as input to generate more artificial instances referring
to the same class label. The Wasserstein distanceWD is used as a loss function to
reflect the similarity between the distribution of the original and synthetic data
generated by GEG. When a discriminator uses the Wasserstein loss function, it
does not try to classify the instances by giving them a class label (i.e. synthetic
or real instance), but attaches a number to each instance so that high values
are used for the original data and low values for the synthetic data. However, in
simple GANs, the discriminator gives a probability p for each instance, where
p ∈ [0..1] and, based on a threshold (e.g. 0.5), it can classify the instances either
as artificial (negative) or original (positive) instances.

A GAN can use a unique loss function θ for both G and D. Therefore, one of
them (G or D) should use −θ (the same loss function differing only by the sign).
In this case, GEG uses different loss functions. It uses a generator loss − D(x′)
where G tries to maximize this function; in other words it tries to maximize
the output of the discriminator for its negative instances. Furthermore, it uses
a discriminator loss D(x′)−D(x) where D tries to maximize WD defined as
the difference between D(x) and D(x′); in other words it tries to maximize the
difference between its output on positive instances and its output on negative
instances 4.

The training data of D belongs to two groups, the original data being de-
noted by x and the synthetic data by x′ which is generated by G. During the
training of D, x and x′ are used as positive and negative instances respectively.
It is important to note that during the training of D, G is semi-suspended, i.e. its
weights are kept constant, but at the same time G remains to generate new in-

4 x denotes original (positive) instances, x′ denotes synthetic (negative) instances, z
is a random Gaussian noise. D(x) and D(x′) are discriminator’s outputs for original
and synthetic instances respectively, and G(z) is the generator’s output
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stances to feed D with more training data. The stopping criterion happens when
the critic cannot distinguish between original and synthetic samples; the output
of the critic for negative samples is as high as for positive samples, making WD
very close to 0. When GEG training is complete, an unlabeled synthetic dataset
will be available. For all data belonging to this set, a class label is automatically
added due to the way GEG is trained (class-based data restriction). This greatly
facilitates the process of identifying class label for the synthetic data by avoiding
the additional steps of classifying the unlabeled instances with a semi-supervised
or supervised approach.

Dataset

LOOCV

Training classifiers

Testing classifiers

tstds

Extract a subclass

GEG

x’

Repeat until exhausted Result

x

trnds

Fig. 3: Proposed LOOCV training diagram

3.2 Proposed LOOCV training diagram

Before starting the classification process, it is essential to pre-process the data.
Since GED features (genes) have different ranges, this can influence the classi-
fication accuracy, resulting in misclassification of the data. The normalization
step is integrated to avoid such a situation. Normalization is the process of scal-
ing the values of numerical columns into a single range such as [0, 1] that will
ensure that balanced weights are allocated to each feature. Therefore, normaliza-
tion minimizes the training error, thus demonstrating the classification accuracy.
The gene-level of each feature is normalized using Eq. 1:

newvalue =
actualvalue − valmin

valmax − valmin
(1)

Where, valmax and valmin are the maximal and minimal original value of a
given gene respectively. newvalue is the normalized expression level. After nor-
malization, all genes will be included between [0, 1]. As this is very small and
sensitive data, the leave one out cross-validation (LOOCV) is suitable for vali-
dating model performance. LOOCV is a cross-validation technique where N data
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samples are sliced into two sets: a training set trnds containing N−1 samples and
a test set tstds containing a single sample. A classifier was trained with trnds,
and the constructed model was tested with tstds by adopting any performance
measurement (such as accuracy). The procedure was repeated N times, so that
all instances are used once in trnds and once in tstds, but never again in both
sets simultaneously. Fig. 3 shows the traditional LOOCV training process (with
the gray color). Additionally, it is suggested to improve the training of classifiers
by adding more instances to trnds (purple color in Fig. 3). These instances are
generated using GEG to deepen the learning methods and improve the classi-
fication performance only on the original data. This means that the proposed
models are only tested with the original GED.

4 Experiments, results and discussion

4.1 Datasets description

Publicly available GED 5 for colon cancer tissues and breast cancer tissues [4]
was used during experimentation. These tissues are either healthy (normal his-
tological structure tissues) or belong to one of the subtypes of cell dysplasia
(cancerous tissues), for a better comprehension of gene datasets [14]. As de-
scribed in Table 1, the datasets had expression levels of 6500 and 24,481 genes
measured from 62 and 99 patients respectively. Both datasets are binary clas-
sification datasets. Refined (filtered) datasets were adopted instead of original
datasets as an alternative to feature selection (the refined datasets contain only
important genes that have a high impact factor for GED classification).

Table 1: Description of datasets used for the experiments
Dataset Nbr of original genes Nbr of used genes Classes distribution

Colon cancer 6500 2000 40/22

Breast cancer 24481 4997 44/34

– Colon cancer dataset is composed of 40 different types of dysplasia colon
tumors and 22 normal cell and histological structure of tissue samples from
an Affymetrix oligonucleotide array of 6500 genes. A clustering algorithm
revealed wide consistent patterns that suggest a high degree of organization
underlying gene expression in these tissues [1]. The filtered dataset has 2000
gene expressions (instead of the original 6500 genes).

– Breast cancer dataset consists of 99 tumor samples from breast cancer
patients with an initial gene count of 24,481 genes which decreased to 7,650

5 DNA microarray data: https://homes.di.unimi.it/∼valentini/DATA/
MICROARRAY-DATA/

https://homes.di.unimi.it/~valentini/DATA/MICROARRAY-DATA/
https://homes.di.unimi.it/~valentini/DATA/MICROARRAY-DATA/
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genes in [24]. Based on the estrogen receptor (ER), cancer tumors can be di-
vided into two subgroups. Subjects with ER+ tumors have a better survival
rate than those with ER− because patients with ER+ tumors can benefit
from anti-estrogens, such as tamoxifen. Since breast cancer is highly corre-
lated with ER, only those genes that were linked to ER are considered, so
about 5,000 genes were retained. Of the 99 patients, only 78 were considered.
Of these 78 patients, 34 had a poor prognosis and were therefore labeled as
ER− patients, while 44 had a good prognosis, making them ER+ patients.

4.2 Used methods

The baseline results (simple classifiers without data augmentation) were com-
pared to classifiers using GEG as a data augmentation technique to study the
effect of GEG on classification accuracy. The classifiers used are Support Vec-
tor Machine (SVM), K-nearest Neighbors (KNN) and Decision Trees (DT) [25].
Supervised learning methods were applied as cancer datasets are labeled. The
Sklearn library [19] was used for the implementation of the algorithms, with de-
fault hyper-parameters; where, SVM with a linear kernel and C = 1, KNN with
K = 5, and DT with max depth = 2. It’s important to note that for all exper-
iments performed with GEG, the synthetic samples were only used during the
training stage as additional training data and not as test data. Table 2 provides
details of the samples generated by class.

Table 2: Number of samples generated per class for each dataset using GEG
Dataset Original C1/C2 Generated C1/C2 Total samples

Colon cancer 40/22 10/28 100

Breast cancer 44/34 6/16 100

4.3 Evaluation metric

The classification accuracy was adopted as an evaluation metric to assess the
performance of GEG. Accuracy is a good metric in this case because for each
dataset, every classifier is trained with a balanced dataset (original data + gen-
erated data by a data augmentation technique). Accuracy is defined as the ratio
between the total number of correctly classified instances and the total number
of instances. Formally, accuracy can be calculated using Eq. 2:

Accuracy =
TP + TN

Total
(2)

Where, True Positive (TP) (resp. True Negative (TN)) are correctly classified
positive (resp. negative) samples by the classifier; False Positive (FP)(resp. False
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Negative (FN)) are incorrectly classified negative samples as positive (resp. pos-
itive samples as negative); and Total (Total = TP + FP + FN + TN) is the
total number of samples.

In ML, the dataset is usually divided into a training set and a test set.
The cross-validation was used to give a more accurate estimate of a model’s
performance. Fig. 3 shows the LOOCV training used for the experiments, where
the result of each iteration is the accuracy. The comparative study between the
proposed models and the baseline was carried out using the following formula:

Model accuracy % = 100× 1

N
×

N∑
i=1

Ai (3)

Where, N is the number of samples and Ai is the calculated accuracy of iteration
i, multiplied by 100 to reflect model accuracy in %.

4.4 Classification results

Several classification tests were conducted using different classifiers with different
training approaches. In each case, only original data (OD) was used without data
augmentation and synthetic data generation using the proposed GEG (proposed
approach).

Table 3: Summary of experimental results based on classification accuracy
Dataset Method used SVM KNN DT

Colon OD 87.10 82.26 75.81
cancer GEG 88.71 83.87 83.87

Breast OD 60.26 51.28 57.69
cancer GEG 75.64 57.69 73.08

The results in bold in Table 3 show the used data augmentation, i.e. GEG
improved the classification accuracy compared to the baseline (original data
only). Based on the good results obtained, GEG can be considered as a promising
data augmentation technique to improve the classification accuracy. The results
for each dataset can be summarized as follows:

– Colon cancer dataset: despite using three classifiers, GEG produced the
best results in terms of classification accuracy. The highest result was achieved
using GEG as a data augmentation technique and SVM as a classifier. GEG
was able to achieve 88.71% accuracy and 55 out 62 as the number of cor-
rectly classified instances. The SVM results are due to the linearity of the
data, which means that the data classes are linearly separable, justifyng the
good initial results obtained without the usage of data augmentation. There-
fore, the use of GEG gave a slightly higher result, meaning that the support
vectors used by the SVM were adjusted (due to the use of synthetic GEG
data).
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– Breast cancer dataset: for this dataset, the combination of GEG and SVM
was again a success. It improved the classification accuracy by more than
15% to reach the value of 75.64% and 59 out of 78 as a number of instances
correctly classified compared to the baseline using only SVM. SVM correctly
classified only 47 out of 78 instances. Similar to the colon cancer dataset,
the improvement in the results was due to the adjustment of the support
vectors, and thus the optimal hyper-plane when synthetic GEG-generated
data was used during the training process.

5 Conclusion

The collection of medical data for cancer detection is costly and difficult to ob-
tain due to privacy constraints. Since the available data show a disproportionate
ratio between the number of available instances and the number of features, and
since GED analysis uses only a small number of available samples, this could
lead to inappropriate classification results. To this end, the use of sophisticated
data augmentation approaches such as GANs with appropriate hyper-parameters
could be very beneficial in this application area. As an alternative to data col-
lection, it is suggested to generate synthetic samples and increase the amount of
training data.

However, these generated instances must be very consistent with the original
instances to obtain good results. The results of the classification accuracy of the
duality between GEG and simple supervised learning methods are promising.
The application of GAN to other datasets and its comparison with other data
augmentation techniques remains to be done. Nevertheless, as a first step, it can
be noted that GAN can be successfully used to produce synthetic samples that
are in harmony with real samples, and not only for images, videos and text, but
also for gene expression data.
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