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Semi-discrete analysis of a simplified air-sea
coupling problem with nonlinear coupling
conditions

Simon Clement, Florian Lemarié, and Eric Blayo

1 Introduction

This paper addresses the mathematical properties of a simplified nonlinear coupling
problem representing the air-sea exchanges: it is shown in [4] that there is room for
improvement in the coupling methods of state-of-the-art Earth System Models. Key
ingredients in the ocean-atmosphere coupling are the computation, exchange and
diffusion of turbulent fluxes at the interface. Those ingredients are represented by a
nonlinear coupling condition which depends on the space discretization. We focus
here on showing the existence of strong unsteady solutions of the semi-discrete in
space problem with a nonlinear interface condition. Moreover we study the conver-
gence of Schwarz Waveform Relaxation (SWR) applied to this coupled problem. In
[2], the existence of unsteady solutions of nonlinear turbulent models for oceanic
surface mixing layers is proven with the help of the inverse function theorem. After
introducing the coupled problem in §2, its well-posedness is discussed by applying
the inverse function theorem in §3. A convergence analysis of SWR is then pursued
in §4 and complemented by numerical experiments detailed in §5.
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2 Simplified air-sea coupled problem

We examine the solutions 𝑈𝑎,𝑈𝑜 of coupled 1D linear reaction-diffusion equations
which is a proxy for coupled ocean-atmosphere problems [3, 5]:

(𝜕𝑡 + i 𝑓 )𝑈 𝑗 = 𝜈 𝑗𝜕𝑧𝑧𝑈 𝑗 + i 𝑓 𝑢 𝑗

𝐺
, ( 𝑗 = 𝑎, 𝑜), (1)

where initial, boundary and coupling conditions will be specified together with
the discretization. The reaction-diffusion equation (1) has a constant viscosity 𝜈 𝑗

representing the turbulent vertical mixing and a complex reaction term i 𝑓 accounting
for the Coriolis effect: 𝑈 𝑗 are complex and include the horizontal direction of winds
and currents (e.g. [5]). The Coriolis parameter 𝑓 is a constant determined by the
latitude of the 1D vertical column considered. There is also a nudging term 𝑢

𝑗

𝐺
in (1)

which pulls the solution towards the geostrophic equilibrium, i.e. a balance between
the Coriolis force and the pressure gradient. In this study 𝑢𝑎

𝐺
, 𝑢𝑜

𝐺
are constant.

The coupling between ocean and atmosphere actually excludes from the compu-
tational domains a surface layer Ωsl = [𝑧− 1

2
, 𝑧 1

2
] which is located between the first

grid points of the two domains and contains the interface 𝑧0. The size of this surface
layer being linked with the discretization in space, we investigate the properties of
the semi-discrete in space coupled problem. The solution 𝑈 𝑗 ( 𝑗 = 𝑜, 𝑎) at the grid
point 𝑧𝑚+ 1

2
(𝑚 is the space index) is denoted𝑈 𝑗 ,𝑚+ 1

2
and we denote 𝜙 𝑗 the derivatives

in space which are approximated with finite differences:

𝜙 𝑗 ,𝑚 =
1
ℎ 𝑗

(
𝑈 𝑗 ,𝑚+ 1

2
−𝑈 𝑗 ,𝑚− 1

2

)
, 𝑚 ≠ 0, (2)

where ℎ 𝑗 is the space step assumed constant in each subdomain. The function 𝜙 𝑗 ,0
will be determined by the boundary conditions involved in the coupling. The semi-
discrete in space coupled problem is the following (for 𝐻𝑜

ℎ𝑜
< 𝑚 + 1

2 <
𝐻𝑎

ℎ𝑎
, where

𝐻 𝑗 are the size of the spatial domains):

(𝜕𝑡 + i 𝑓 )𝑈 𝑗 ,𝑚+ 1
2
= 𝜈 𝑗

𝜙 𝑗 ,𝑚+1 − 𝜙 𝑗 ,𝑚

ℎ 𝑗

+ i 𝑓 𝑢 𝑗

𝐺
, 𝑡 ∈]0, 𝑇] (3a)

𝑈 𝑗 ,𝑚+ 1
2

���
𝑡=0

= 𝑈0, 𝑈 𝑗

��
𝑧=𝐻 𝑗

= 𝑈∞
𝑗 , 𝑡 ∈]0, 𝑇] (3b)

𝜈𝑎𝜙𝑎,0 = 𝐶𝐷

���𝑈𝑎, 1
2
−𝑈𝑜,− 1

2

��� (𝑈𝑎, 1
2
−𝑈𝑜,− 1

2

)
, 𝑡 ∈]0, 𝑇] (3c)

𝜌𝑜𝜈𝑜𝜙𝑜,0 = 𝜌𝑎𝜈𝑎𝜙𝑎,0, 𝑡 ∈]0, 𝑇] (3d)

The initial condition𝑈0 is chosen as the steady state (derived in Section 3.1) and the
geostrophic winds and currents are prescribed as boundary conditions: 𝑈∞

𝑗
= 𝑢

𝑗

𝐺
.

The spatial extent of the domains will be considered sufficiently large (𝐻 𝑗 → ∞)
but all the results can be easily extended to finite domains. The coupling conditions
are composed of a quadratic friction law (3c) and of a flux continuity (3d). Those
conditions are representative of the ones that can be found in more realistic models:
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they are simpler, because𝐶𝐷 and 𝜈 𝑗 are assumed to be constant instead of depending
themselves on 𝑈𝑎, 1

2
−𝑈𝑜,− 1

2
. The densities 𝜌 𝑗 are such that 𝜌𝑎

𝜌𝑜
≈ 10−3.

3 Well-posedness

In this section the focus is on the well-posedness of (3). First the steady state is
given, and the existence and uniqueness of solutions are proven in a neighborhood
of this steady state. We assume in this section that 𝑓 ≠ 0: it can be proven that there
is otherwise no bounded steady state of (3).

3.1 Steady state

The derivation of the steady state of (3a) is somewhat similar to [6] and we obtain
𝜙𝑒𝑜,−𝑚 = 𝐴𝑒 (𝜆𝑒𝑜 + 1)𝑚 and 𝜙𝑒𝑎,𝑚 = 𝐵𝑒 (𝜆𝑒𝑎 + 1)𝑚 with 𝜆𝑒

𝑗
= 1

2

(
𝜒 𝑗 −

√
𝜒 𝑗

√︁
𝜒 𝑗 + 4

)
,

𝜒 𝑗 =
i 𝑓 ℎ2

𝑗

𝜈 𝑗
. The continuity of the flux (3d) gives 𝐴𝑒

𝐵𝑒 and finding a steady state solution
amounts to find 𝑥̃ ∈ C such that

𝑥̃ −
(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)
= 𝑑 |𝑥̃ |𝑥̃, (4)

where 𝑑 = 𝐶𝐷

(
𝜆𝑒
𝑎

i 𝑓 ℎ𝑎 + 𝜌𝑎
𝜌𝑜

𝜆𝑒
𝑜

i 𝑓 ℎ𝑜

)
and 𝑥̃ = 𝐴𝑒 𝜌𝑜𝜈𝑜

𝜌𝑎𝐶𝐷
𝑑 +

(
𝑢𝑎
𝐺
− 𝑢𝑜

𝐺

)
. The steady state

corresponds to a solution 𝑥̃ whose modulus |𝑥̃ | is a real and non-negative root of a
polynomial:

|𝑥̃ | = 𝑑𝑅

2|𝑑 |2
±
√
𝜁 + 𝛾

2
± 1

2

√︄
2𝜁 − 𝛾 ± 2𝑑𝑅3 − 2𝑑𝑅 |𝑑 |2

|𝑑 |6
√
𝜁 + 𝛾

, 𝑑𝑅 = ℜ(𝑑), (5a)

𝛾 =

(
𝑠
2 + 1

2

√︁
𝑠2 − 4𝛽3

) 1
3

3|𝑑 |2
+ 𝛽

3|𝑑 |2
(
𝑠
2 + 1

2

√︁
𝑠2 − 4𝛽3

) 1
3
, 𝜁 = − 2

3|𝑑 |2
+ 𝑑𝑅

2

|𝑑 |4
, (5b)

𝑠 = 2 +
(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)2
(
72|𝑑 |2 − 108𝑑2

𝑅

)
, 𝛽 = 1 − 12|𝑑 |2

(
𝑢𝑎𝐺 − 𝑢𝑜𝐺

)2
, (5c)

where the first± and the third one in (5a) are necessarily the same. For our parameters
there is only one combination of ± in (5a) for which |𝑥̃ | is real and non-negative.
There is hence only one steady solution of (3).

Finally we recover 𝑥̃ from (4): 𝑥̃ =
𝑢𝑎
𝐺
−𝑢𝑜

𝐺

1−𝑑 | 𝑥̃ | , then 𝐴𝑒 =
𝐶𝐷𝜌𝑎
𝜌𝑜𝜈𝑜𝑑

(
𝑥̃ − (𝑢𝑎

𝐺
− 𝑢𝑜

𝐺
)
)

and
𝐵𝑒 =

𝜌𝑜𝜈𝑜
𝜌𝑎𝜈𝑎

𝐴𝑒. The steady state 𝑈𝑒
𝑗

is given by
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𝑈𝑒
𝑜,−𝑚−1/2 = 𝑢𝑜𝐺 − 𝜈𝑜𝜆

𝑒
𝑜

i 𝑓 ℎ𝑜
(1 + 𝜆𝑒𝑜)𝑚𝐴𝑒,

𝑈𝑒
𝑎,𝑚+1/2 = 𝑢𝑎𝐺 + 𝜈𝑎𝜆

𝑒
𝑎

i 𝑓 ℎ𝑎
(1 + 𝜆𝑒𝑎)𝑚𝐵𝑒 .

(6)

Fig. 1 shows that this analysis exactly fits the numerical solution.

6 8 10

R(Uea) (m.s−1)

101

102

103

z

0 1 2

I(Uea) (m.s−1)

0.10 0.15

Real part R(Ueo )

−102

−101

−100

z

−0.04 −0.02 0.00

Imaginary part I(Ueo )

−102

−101

−100

Result of 10 Schwarz iterations

Theoretical

Fig. 1 Stationary solution profile in the ocean (bottom) and the atmosphere (top); A numerical
steady state computed with 10 Schwarz iterations is the continuous red lines and the theoretical
steady state obtained is displayed with dashed blue lines. Notice that the surface layer is not explicitly
computed.

3.2 Existence of solutions of the nonlinear semi-discrete in space
problem

The method used by [2] to prove the existence and unicity of a solution in the
neighborhood of a steady state can be used to deal with several types of nonlinearities.
In particular, we can prove the existence and uniqueness of a solution to the problem
(3) close to the steady state (i.e. with initial condition, boundary conditions and
nudging terms close to 𝑈0,𝑈

∞
𝑗
, 𝑢

𝑗

𝐺
), thanks to the following steps:

1. The existence of a steady state 𝑈𝑒 is discussed in §3.1.
2. The well-posedness of the coupled problem with the linearized transmission

conditions is proven in Appendix 6.A of [3].
3. The use of the inverse function theorem can be done in four steps:
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a. concatenate the state vectors in a single vector U = {𝑈𝑎,𝑈𝑜, 𝜙𝑎 |𝑧=0} ∈ U
where U = (𝐿2 ( [0, 𝑇]))𝑀𝑎+𝑀𝑜+1 and 𝑀𝑎, 𝑀𝑜 are the number of grid levels
in the subdomains. The functions 𝜙𝑎 |𝑧≠0 and 𝜙𝑜 are not in U because they can
be expressed as linear combinations of elements of U.

b. Define a mapping 𝚽 : U → Y such that

𝚽(U) = {(𝜕𝑡 + i 𝑓 )𝑈𝑎 − 𝜈𝑎𝜕𝑧𝜙𝑎 − 𝑔𝑎, (𝜕𝑡 + i 𝑓 )𝑈𝑜 − 𝜈𝑜𝜕𝑧𝜙𝑜 − 𝑔𝑜,

𝑈𝑎 (𝐻𝑎, 𝑡) −𝑈∞
𝑎 , 𝑈𝑜 (𝐻𝑜, 𝑡) −𝑈∞

𝑜 , 𝑈𝑎 |𝑡=0 −𝑈𝑒
𝑎, 𝑈𝑜 |𝑡=0 −𝑈𝑒

𝑜 ,

𝜈𝑎 𝜙𝑎 |𝑧=0 − 𝐶𝐷

���𝑈𝑎, 1
2
−𝑈𝑜,− 1

2

��� (𝑈𝑎, 1
2
−𝑈𝑜,− 1

2

)
},

(7)

where 𝜕𝑧𝜙 𝑗 is to be understood in the finite difference sense. Let us draw some
important remarks about 𝚽:
• The equation 𝜙𝑜,0 =

𝜌𝑎𝜈𝑎
𝜌𝑜𝜈𝑜

𝜙𝑎,0 at interface is implicit: in (7), 𝜕𝑧𝜙𝑜 at the

first grid level is 𝜌𝑎𝜈𝑎
𝜌𝑜𝜈𝑜

𝜙𝑎,0 − 1
ℎ𝑜

(
𝑈𝑜,− 1

2
−𝑈𝑜,− 3

2

)
.

• The function 𝚽 is such that 𝚽(U𝑒) = 0 where U𝑒 is the steady state;
• The codomain Y is

Y = (𝐿2 ( [0, 𝑇]))𝑀𝑎−1×(𝐿2 ( [0, 𝑇]))𝑀𝑜−1×(𝐿2 ( [0, 𝑇]))3×R𝑀𝑎+𝑀𝑜 . (8)

• Finding 𝚽−1 (𝑦) is equivalent to solving the nonlinear semi-discrete prob-
lem (3) if the component of 𝑦 corresponding to the interface condition is
zero (the other components correspond to other forcing terms, boundary
conditions and initial condition). The idea of the proof is that if 𝚽 is invert-
ible around U𝑒 then the nonlinear semi-discrete problem (3) is invertible.
Moreover, the inverse function theorem also tells us that 𝚽−1 is continuous:
this means that around the equilibrium state, the problem (3) is well-posed:
it has a unique solution that depends continuously on the initial data.

c. Prove that 𝚽 is 𝐶1 in a neighborhood of U𝑒. The function 𝚽 is linear except
for the transmission condition. Besides, the nonlinearity in this transmission
condition is the function 𝑥 ↦→ |𝑥 |𝑥, which is continuously differentiable in
a ball that does not contain zero. It is then straightforward to show that 𝚽
is 𝐶1 and that its differential 𝐷𝚽(U𝑒) is given by the linearized problem (a
rigourous proof that can be directly adapted here is given in [2]).

d. Prove that 𝐷𝚽(U𝑒) is an isomorphism: this is where the well-posedness of
the coupled problem with linearized transmission conditions intervenes. The
differential 𝐷𝚽(U𝑒) corresponds indeed to the linearized problem with addi-
tional input data.

The next section uses the idea of considering the linearized problem around the
steady state in the context of examining the convergence of a SWR algorithm.
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4 Convergence analysis

In this section we conduct a convergence analysis of the SWR algorithm applied to
the coupled problem (initial and boundary conditions are similar to (3) and omitted):

(𝜕𝑡 + i 𝑓 )𝑈𝑘

𝑗,𝑚+ 1
2
= 𝜈 𝑗

𝜙𝑘
𝑗,𝑚+1 − 𝜙𝑘

𝑗,𝑚

ℎ 𝑗

+ i 𝑓 𝑢 𝑗

𝐺
, (9a)

𝜈𝑎𝜙
𝑘
𝑎,0 = 𝐶𝐷

���𝑈𝑘−1
𝑎, 1

2
−𝑈𝑘−1

𝑜,− 1
2

��� (𝑈𝑘−1+𝜃
𝑎, 1

2
−𝑈𝑘−1

𝑜,− 1
2

)
, (9b)

𝜌𝑜𝜈𝑜𝜙
𝑘
𝑜,0 = 𝜌𝑎𝜈𝑎𝜙

𝑘
𝑎,0, (9c)

where 𝑘 is an iteration index and 𝑈𝑘−1+𝜃
𝑎,1/2 = (1 − 𝜃)𝑈𝑘−1

𝑎,1/2 + 𝜃𝑈𝑘
𝑎,1/2. 𝜃 > 0 is a

relaxation parameter: the goal of the convergence analysis pursued in this section is
to find an adequate value of 𝜃 leading to a fast convergence. The time windows is also
assumed to be of infinite size: this hypothesis is necessary to carry a Fourier analysis
of the convergence; finite time windows were handled at the semi-discrete in time
level [1] but the method is not straightforward to extend to discretized equations in
space.

The analysis of the SWR algorithm with the nonlinear transmission condition
cannot be directly pursued through a Fourier transform. We thus consider the lin-
earization of the problem around a steady state 𝑈𝑒

𝑗
, 𝜙𝑒

𝑗
defined in (6). Assuming

that 𝑈𝑘
𝑗

is in a neighborhood of 𝑈𝑒
𝑗
, the modulus in (9b) is non-zero and is thus

differentiable (close to zero, one could also smooth the modulus). Differences with
the steady state at the interface are noted 𝛿𝜙𝑘

𝑗
= 𝜙𝑘

𝑗,0 − 𝜙𝑒
𝑗,0, 𝛿𝑈𝑘

𝑎 = 𝑈𝑘

𝑎, 1
2
−𝑈𝑒

𝑎, 1
2

and

𝛿𝑈𝑘
𝑜 = 𝑈𝑘

𝑜,− 1
2
−𝑈𝑒

𝑜,− 1
2

(note that we omit the 1
2 in 𝛿𝑈𝑘

𝑗
).

The linearized transmission operator involves the complex conjugate 𝛿𝑈𝑘−1
𝑗

:

𝜈𝑎𝛿𝜙
𝑘
𝑎 = 𝛼𝑒

((
3
2
− 𝜃

)
𝛿𝑈𝑘−1

𝑎 + 𝜃 𝛿𝑈𝑘
𝑎 − 3

2
𝛿𝑈𝑘−1

𝑜 +R
𝑒

2
𝛿𝑈𝑘−1

𝑎 − 𝛿𝑈𝑘−1
𝑜

)
(10)

with 𝛼𝑒 = 𝐶𝐷

���𝑈𝑒
𝑎,1/2 −𝑈𝑒

𝑜,−1/2

��� and R𝑒 =
𝑈𝑒

𝑎,1/2−𝑈
𝑒
𝑜,−1/2

𝑈𝑒
𝑎,1/2−𝑈

𝑒
𝑜,−1/2

. The relation (10) is used in

the convergence analysis instead of (9b).
We now follow [6] to derive a convergence factor of the SWR method applied

to the linearized transmission condition. It yields notably that the Fourier transform
of 𝑈𝑘

𝑎,𝑚+1/2 is 𝑈𝑘
𝑎,𝑚+1/2 = 𝐵𝑘 (𝜆𝑎 + 1)𝑚 with 𝜆 𝑗 =

1
2 ( 𝜒̃ 𝑗 −

√︁
𝜒̃ 𝑗

√︁
𝜒̃ 𝑗 + 4) and 𝜒̃ 𝑗 =

( 𝑓 +𝜔)iℎ2
𝑗

𝜈 𝑗
. We find that the evolution of 𝐵𝑘 is:

𝐵𝑘+1 (𝜔) = 𝑎1 (𝜔)𝐵𝑘 (𝜔) + 𝑎2 (𝜔)𝐵𝑘 (−𝜔), where 𝑎1 = 𝛼𝑒
3
2 𝜇(𝜔) − 𝜃

𝜈𝑎
ℎ𝑎

(𝜆𝑎 − 𝜒̃𝑎) − 𝛼𝑒𝜃
,

𝑎2 = 𝛼𝑒
R𝑒

2 𝜇(−𝜔)
𝜈𝑎
ℎ𝑎

(𝜆𝑎 − 𝜒̃𝑎) − 𝛼𝑒𝜃
and 𝜇(𝜔) = 1 − 𝜆𝑎 − 𝜒̃𝑎

𝜆𝑜
𝜖
𝜈𝑎ℎ𝑜

𝜈𝑜ℎ𝑎
.
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Note that the variable i𝜔 = −i𝜔 appears when using the Fourier transform on
𝛿𝑈𝑘−1

𝑎 − 𝛿𝑈𝑘−1
𝑜 . As a consequence, the convergence factor 𝜉𝑞 in the linearized

quadratic friction case differs from one iteration to another: it is a function of
𝐵𝑘−1 (−𝜔)
𝐵𝑘−1 (𝜔) . We need to examine the evolution of both 𝐵𝑘+1 (𝜔), 𝐵𝑘+1 (−𝜔):(

𝐵(𝜔)

𝐵(−𝜔)

)
𝑘+1

= M

(
𝐵(𝜔)

𝐵(−𝜔)

)
𝑘

, M =

(
𝑎1 (𝜔) 𝑎2 (𝜔)

𝑎2 (−𝜔) 𝑎1 (−𝜔).

)
(11)

The singular values (shown in Fig. 2) of M can be studied instead of the convergence
factor. One can see on Fig. 2 that its two singular values 𝜉1 and 𝜉2 are different for
small frequencies, especially around the frequencies 𝑓 and − 𝑓 .

One can hence expect that for frequencies close to 𝑓 and − 𝑓 the “convergence
factor”

√︃
|𝐵𝑘 (𝜔) |2+|𝐵𝑘 (−𝜔) |2

|𝐵𝑘−1 (𝜔) |2+|𝐵𝑘−1 (−𝜔) |2 will be different from one iteration to another and
will be between 𝜉1 and 𝜉2.

We optimize only the maximum over the frequencies of the largest singular value
𝜉1 (see Fig. 3) and find that the optimal value of 𝜃 is slightly smaller than 1.5. It is

Fig. 2 Singular values 𝜉1 (𝜔) , 𝜉2 (𝜔)
of M. The observed “convergence fac-
tor” at the first iteration 𝜉obs =√︃

|𝐵2 (𝜔) |2+|𝐵2 (−𝜔) |2
|𝐵1 (𝜔) |2+|𝐵1 (−𝜔) |2 is in purple. The nu-

merical validation 𝜉obs fits the convergence
analysis since 𝜉2 ≤ 𝜉obs ≤ 𝜉1:

−10−2 −10−3 −10−4 0 10−4 10−3 10−2

ω

0.0

0.1

0.2

0.3

0.4

ξ̃

−f, f−f, f

ξ̃1

ξ̃2
ξobs

Fig. 3 Singular values 𝜉1, 𝜉2 of M maxi-
mized over the set of discrete frequencies
{− 𝜋

Δ𝑡
, ..., 𝜋

𝑇
, 0, 𝜋

𝑇
, ..., 𝜋

Δ𝑡
} as a function

of 𝜃 . The vertical dashed line highlights the
minimum of max 𝜉1. The windows length
𝑇 is one day and Δ𝑡 = 60 s .

0.5 1.0 1.5 2.0 2.5

θ

0.0

0.5

1.0

m
ax
ω

(ξ̃
)

maxω(ξ̃1)

maxω(ξ̃2)

also seen in Fig. 3 that for 𝜃 < 1
2 , 𝜉1 > 1, which means that the SWR algorithm does

not converge. On the contrary, for 𝜃 larger than 1
2 both singular values are smaller

than one for all the frequencies, and the convergence factor is then bounded by 𝜉1.
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5 Numerical experiments

Parameters of the numerical experiments are𝐶𝐷 = 1.2×10−3, ℎ𝑎 = 20 m, ℎ𝑜 = 2 m,
𝐻𝑜 = 𝐻𝑎 = 2000 m. The Coriolis parameter is 𝑓 = 10−4 s−1 and the diffusivities are
𝜈𝑎 = 1 m2 s−1, 𝜈𝑜 = 3 × 10−3 m2 s−1. The boundary conditions and nudging terms
𝑈∞

𝑗
= 𝑢

𝑗

𝐺
are set to constant values of 10 m s−1 in the atmosphere and 0.1 m s−1

in the ocean, while the initial condition is the steady state 𝑈0 (𝑧) = 𝑈𝑒
𝑗
(𝑧). SWR is

initialized at the interface with a white noise around the interface value of the steady
state. Fig. 1 and Fig. 2 show that with those parameters, the theoretical results are
coherent with the numerical experiments. Moreover Fig. 4 shows the evolution of the

Fig. 4 Evolution of the 𝐿2 norm of the er-
rors for 𝜃 = 1

2 (green) and 𝜃 = 3
2 (purple).

The singular value 𝜉1 gives an upper bound
of the error represented by dashed lines.

2 4 6 8 10

Iteration

10−6

10−4

10−2

100

E
rr

or
||
·|
| 2

θ = 0.5

maxω(ξ̃1)k)

θ = 1.5

maxω(ξ̃1)k)

error for two choices of 𝜃. As it is expected the choice 𝜃 = 1
2 leads to a convergence

rate of approximately 1 whereas a relatively fast convergence is obtained with 𝜃 = 3
2 .
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