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Abstract :  

Strengthening concrete beams by prestressed or not prestressed composite plates has become 

one of the widely used techniques in civil engineering with the aim of improving the durability 

of infrastructures, specifically against seismic solicitations. However, this type of reinforcement 

is quite new for prestressed concrete beams. Before using a composite plate for strengthening 

prestressed concrete beams, it is important to know its dynamic characteristics. In this paper, 

an analytical model based on the high-order theory and the laminate theory is proposed in order 

to well determine the free vibration characteristics of presetressed composite plate. The 

presence of prestressing tension effort in the composite plate, which was not taken into 

consideration in earlier studies for slender composite plates, is the main innovation of the 

current research. Parametric studies varying prestressing effort and fiber orientations are carried 

out in aim to find the best way to use the composite plate in the reinforcing of prestressed 

concrete beams. For comparative purposes, a finite element model is carried out in order to 

explore the behavior of the composite plate under several boundary conditions (B.Cs). As an 

important result, this research reveals that prestressing effort stiffens the composite plate and 

makes it a strong choice for reinforcing prestressed concrete beams by increasing natural 

frequencies and reducing deflexion. 

 

Keywords: prestressed composite plates; laminate theory; high order theory, prestressed 

concrete beams, natural frequencies, finite element model. 
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1. Introduction  

For any modern society, the road network represents the main vein of economy and 

development. Bridges are essential elements of the road network and are mainly built in 

prestressed concrete in order to overcome the most important obstacles. Due to their high cost, 

it is imperative to protect them and guarantee their sustainability utilizing various methods, 

including bonding an externally laminated composite plate. 

In fact, the use of laminated plates is very popular in several fields, such as space, automotive, 

and the reinforcement of civil engineering structures. This wide use is due to several advantages 

like lightness, mechanical and chemical resistance, reduced maintenance, and freedom of shape. 

Like any civil engineering structure, prestressed concrete beams require reinforcement for 

rehabilitation purposes or to increase flexural strength and shear capacity, especially under 

dynamic load cases. 

Reinforcement of RC beams by external bonding of composite plates is a very popular 

technique in the field of reinforcement. Indeed, many scientists produced several papers dealing 

with various fields of FRP (fiber reinforced polymer) composite material use.  

Indeed, Muhammad Aslam et al. [1] give a thorough literature review that highlights the 

flexural performance of reinforced RC beams made of prestressed FRP. Among other findings, 

it has been highlighted that CFRPs are more likely to exhibit the benefits of other FRP types 

and that prestressed CFRPs increase the structure's flexural strength and ductility. An 

experimental study has been carried out by Jingsi Huo et al. [2] for a reinforced concrete beam 

strengthened by CFRP composite material under static and impact loads. The study showed that 

the arrangement and amount of CFRP as well as the impact energy have a crucial role in the 

dynamic behavior of the studied RC beams. The fatigue behavior has also been investigated 

experimentally by Huang. H et al. [3] who tested posttensioned prestressed CFRP sheets 

strengthening RC beams. The developed technique presented a good improvement in the fatigue 
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behavior of the system. Additionally, Wang. G. et al. [4] conducted an experimental 

investigation of the bending and fatigue behavior of RC beams bonded to  prestressed FRP 

composite plates with two different anchorage systems. The results showed that the load-

carrying capacities were improved up to 30%, and the stiffness was also improved, especially 

under fatigue loading.  

The anchorage system plays a significant role in the strengthening and repair of existing 

structures in prestressed carbon fiber reinforced polymer (CFRP) plates. That is why Mohee, F. 

M. and A. Al-Mayah [5] developed a numerical design method for a friction-based mechanical 

anchor. Also, Li. C and G. Xian [6] conducted a novel experimental study by proposing a new 

wedge-bond anchor in aim to improve the bearing capacity of the anchorage system and reduce 

the interfacial stresses through the adhesive layer at the anchorage zone. 

These studies lead us to explore the effect of different B.Cs. on the dynamic behavior of 

prestressed composite plates. 

A prestressed FRP reinforcement-enhanced RC beam is fully analyzed in an experimental 

program by Justas Slaitas et al. [7] under the influence of an external load. The effectiveness of 

RC beams reinforced with prestressed basalt fiber-reinforced polymer (BFRP) laminates was 

parametrically investigated by Xinquan Chang et al [8], who came to the conclusion that 

strengthening with prestressed BFRP laminates significantly increases the cracking load of RC 

beams. These studies made it clear how crucial it is to use composite plates to reinforce RC 

beams under static, dynamic, and long-term behavior. 

In a theoretical point of view, several studies have been developed. Y.M. Ghugal and R. P. 

Simpi [9] group them together, citing the different theories of isotopic plates from the well-

known Classical Plate Theory (CPT) developed by G.R. Kirchhoff [10], which is based on the 

hypothesis that the deflection caused by shear deformation can be neglected compared to the 

deflection generated by the curvature of the plate. Also, First-order Shear Deformation Theory 
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(FSDT) which presumes that the transverse shear strain is constant across the thickness of the 

plate, and the Higher-order Shear Deformation Theory (HSDT), which is based on the power 

series expansion for displacements with respect to the thickness coordinate. More refined 

theories have been proposed in aim to give more accuracy in the determination of the FRP plate 

behavior. Indeed, T. Houari et al. [11] proposed a new quasi-3D HSDT bending plate theory, 

and A. Bouhadra et al. [12] dealt with the effect of thickness stretching. 

Furthermore, Lazreg Hadji and Fabrice Bernard [13] developed a new simple higher order shear 

and normal deformation theory for bending and free vibration analysis of functionally graded 

material (FGM) beams resting on an elastic foundation, considering the effect of the porosity. 

This study constitutes the basis for our paper insofar as the elastic foundation may represent the 

adhesive layer usually used for bonding composite plates to a concrete beam. Other studies on 

the vibration of composite plates have been carried out in order to propose more accurate 

analytical models predicting the dynamic behavior of advanced materials. 

Emrah Madenci[14] The purpose of his study is to ascertain how the pultruded GFRP responds 

to vibration, buckling stresses, and flexure responses while taking fiber and layer combinations 

into account. To achieve this goal, Comprehensive experimental, numerical, and analytical 

studies have been carried out. Emrah Madenci et al. [15] have also investigated the flexure 

performances of pultruded glass FRP (P-GFRP) composite beams. 

P. Malekzadeh and A. R. Vosoughi [16] studied the large amplitude free vibration of thin and 

moderately thick angle-ply laminated rectangular plates using classical plate theory and the first 

order shear deformation plate theory, and solved the governing equation with the differential 

quadrature method (DQM) method. E. Asadi and S. J. Fariborz [17] studied the effect of various 

B.Cs. using higher-order shear deformation theory to obtain the governing equations of 

composite plates under dynamic excitation. A non-polynomial zigzag theory is recently 

proposed by Aniket Chanda and Rosalin Sahoo [18] to study the free vibration and transient 
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responses of multilayered laminated composites and sandwich plates subjected to various time-

dependent loads and different forms of blast loads. A. Rahmani et al. [19] dealt with the 

vibrational behavior of anti-symmetric laminated composite plates resting on visco-elastic 

foundations and taking into account the temperature effect. Several B.Cs are also treated. 

In a numerical point of view, P. Dey et al. [20] developed a finite element for the free vibration 

analysis of composite plates representing high orders of displacement with few degrees of 

freedom. The elements procure satisfaction in terms of accuracy and cost of computation. 

All these studies have been carried out under static and dynamic loadings. However, few studies 

have been done on the vibration behavior of the laminated plates in the presence of the initial 

stress. In fact, for the reinforcement of bridge beams, which are relatively longer, the 

prestressing of the reinforcement plate is indispensable, so the effect of the reinforcement on 

the vibration of the structural element will be significant. Hence, studying the dynamic behavior 

of the reinforcement plate in free vibration becomes very important. There are few papers in 

the literature investigating this subject, C.M. Wang et al. [21] presented in their article a variety 

of methods for the derivation of the governing equations and B.Cs. for prestressed beams in 

free vibration using Erigen’s nonlocal elasticity theory and Timoshenko beam theory. Brunelle, 

E.J., and Robertson [22], Yamaki and Chiba [23], Chen and al. [24], all investigated the 

nonlinear vibration analysis of Functionally Graded Plates under arbitrary initial stress 

conditions. The effect of prestress force on the vibration characteristics has been curried-out by 

Orlowska A.et al. [25] for the eccentrically prestressed glass fiber reinforced polymer 

composite beams. The study is based on a theoretical background, a numerical model, and an 

experimental program involving varying the prestress level. The most important result is that 

the natural frequencies of the first bending mode increase and the two subsequent bending 

frequencies decrease due to the prestressing force. Jalala Chafik et al. [26] in this study, the 

author used a specific machine to perform tensile tests on carbon/epoxy, basalt/epoxy, 
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glass/epoxy, and hybrid/epoxy composites to determine the ultimate strength and stress-strain 

relationship. 

It has been well demonstrated that the external bonding of a composite plate to an RC beam 

causes a high level of stress at the interface. In fact, utilizing laminate theory, A. Tounsi and S. 

Benyoucef [27] created an analytical technique to forecast the distributions of interfacial 

stresses in concrete beams reinforced by composite plates. Using analytical and numerical 

methods, Krour et al. [28] investigated the bearing capacity of an RC beam while accounting 

for interfacial stresses and fiber orientations. This research served as the impetus for our 

decision to investigate how the fiber orientation parameter affects the dynamic behavior of FRP 

plates because it may be the difference between strong interfacial pressures and debonding 

failure. 

The external bonding of a prestressed FRP laminated composite plate, which creates additional 

pre-stressing, is the fundamental method of reinforcing prestressed concrete bridge girders. This 

paper will focus on the study of the vibratory behavior of a laminated composite plate using a 

refined displacement field and the laminate theory under prestressing force.  

The key originality of the present work in comparison to other studies is the merging of the two 

approaches and the inclusion of the prestressing force for a composite plate designed to support 

a prestressed concrete beam. In addition, unlike the other studies, more than one FRP are tested. 

Additionally, different B.Cs. are taken into account in order to well represent the anchorage 

system. Furthermore, the elastic foundations are considered in order to predict vibratory 

behavior in the presence of an adhesive layer. A finite element model is carried out for 

comparison purposes with the present analytical model. A non-dimensional comparison is also 

performed to situate our model in relation to the existing literature. 

 

2. Theory and formulations:  
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The studied plate is a composite laminate composed of N perfectly bonded layers, each of 

which is composed of an isotopic polymer reinforced by fibers as shown in the figure (Fig. 1). 

 

Fig. 1. Coordinate system and prestressed laminated plate 

2.1. Constitutive relations 

In this study, the fibers are distributed throughout the volume of the layer. The calculation of 

the physical properties of the layer may be obtained using the following relationship, as 

described by V.V. Vasiliev, E. Morozov [29]: 
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Where, E11f and G12f are the Young’s modulus and shear modulus, respectively, of the fiber, 

‘Em‘ and ’Gm’ are the engineering properties of the polymer matrix, ’Vf ‘and ‘Vm’ are the 

volume fractions of the fiber and the polymer matrix, respectively. Given the volume fractions 

’Vi’, the density and the Poisson’s ratio can be calculated as follows, using the same rules: 
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      With          1f mV V+ =             (2) 

The subscripts (f,m) represent fiber and matrix respectively. 

2.2. Kinematics 
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Due to the geometry of the studied cases, a laminated composite beam is investigated. The 

components of the displacement field along x and z directions of any point within the beam are 

based on the refined high-order beam theory, which is under the following assumptions: 

• The in plane displacement u in the x direction is composed of the extension 

 component, the bending component, and the shear component.  

• The transverse displacement w consists of the bending component wb and the shear 

component ws, which are functions of the coordinate x only. 

• The in-plane displacement in the y direction is neglected because the dimension in 

 the x direction is much more important in comparison with the dimension in the y 

direction.  

Therefore, the displacement field can be expressed as: 

 0 , ,( , , ) ( , ) . ( , ) ( ) ( , )
( , , ) ( , ) ( , )

b x s x

b s

u x z t u x t z w x t z w x t
w x z t w x t w x t

ψ= − −


= +
         (3) 

Where, “u0” represents the beam’s mid-plane displacements along the x direction, ‘wb’ and 

‘ws’ represents the bending and shear components of transverse displacement in z direction, 

respectively. Besides, ψ(z) is a shape function that covers the shear strain and stress towards 

thickness via a particular profile. 

In this research, the Third Order Shear Deformation Theory (TSDT), developed by Reissner 

([30], [31]), Krishna Murty [32], Lewinski ([33],[34]), and generalized by Reddy [35], is 

implemented. The shear stress distribution is represented by: 

 
3

2
1 5( )
4 3

zz z
h

ψ
 

= − −  
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            (4) 
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It should be noted that, unlike the first-order shear deformation theory, this theory does not 

require shear correction factors. The total strain vector associated with the displacement field 

equation (3) is expressed as: 
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      (5.a) 

With: 

 ( ),( ) 1 ( )xz zξ ψ= −           (5.b) 

2.3. Equations of motion 

Herein, Hamilton’s principle is used to get the equations of motion of the stratified beam 

resting on an elastic foundation. The principle can be expressed as follows: 

 ( )
2

1

0
t

t

U W K dtδ δ δ+ − =∫             (6) 

where ‘δU’,’δW’ and ’δK’ are the strain energy variation, the variation of the work of the 

external load, and the variation of the kinetic energy, respectively. Since the stratified beam is 

resting on an elastic foundation, the variation in the strain energy can be stated as follows: 

 b fU U Uδ δ δ= +              (7) 

Knowing that ‘δUb’ and ‘δUf’ are the variations of strain energy of the stratified beam and 

foundation, respectively, the strain energy of the beam is calculated as: 
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The virtual potential energy of the elastic foundation is expressed as follows: 

 ( )0 0 0, 0,f w s x x
L

U k w w k w w dxδ δ δ= +∫          (10) 

With: ‘kw’ and ’ks’ are the Winkler and shearing layer spring constants, respectively. The plate 

is subjected to an axial compressive load; the variation of the potential energy of the prestress 

loads is as C.M. Wang et al. [21] expressed: 

 0 0, 0,
0

. .
pL

x xV A w w dxδ σ δ= ∫           (11) 

where σ0 is the initial tensile elastic stress by assuming a positive value for tension.  

The virtual kinetic energy is taking the following form: 
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By substituting the expressions of energies δU, δW and δK eq. (7)-(11)-(12) in the eq. (6) we 

obtain the following governing equations: 
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To obtain the equations of motion in terms of displacements (u0(x,t); w0(x,t)) by considering 

linear elasticity behavior defined by the generalized Hooke's law and using a stiffness matrix 

connecting the strain field to the stress field as it’s shown below: 

     { } [ ] { }.Cσ ε=                   (14.a) 

From where:      11

55

xx xx

xz xz

Q

Q

σ ε

σ γ

=

=
                      (14.b) 

The laminated beam is produced by many layers; the direction of the fibers may change from 

one layer to another. To study the behavior of these laminates, it is necessary to transform each 

layer from the local axis to the global axis of the entire plate. Reporting the elastic behavior of 

each layer to the global system (x,y,z) is gotten from the following relationships, improved by 

J.R. Vinson and R.L. Sierakowski [36]: 

 ( )
( )

4 4 2 2
11 11 22 12 66

2
55 13 23

( cos sin 2 sin cos )

cos sin ²

Q Q Q Q Q

Q G G

θ θ θ θ

θ θ
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Where θ is the angle between the local x-axis and the global x-axis of each layer. 

The stiffness coefficients’ Qij ‘, the components of the ‘[C]’matrix can be calculated using the 

material properties from equations (1) and (2) ,and they are expressed as follows: 
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Substituting equations (8), (13) and (14) into equation (12) the equations of motions become as 

follows: 
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Where:     
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3. Analytical solution: 

For a very close solution of the equilibrium equations and in order to evaluate the vibratory 

behavior of the beam, the shape functions, which are also  functions of the B.Cs. are proposed 

to satisfy the embedding and simple support at the edges, which are simplified as follows: 

For simply support edge condition:    ( ) ( ) x0, 0, = M =0b sw L w L=      (19) 

For clamped edge condition:      ( ) ( ) ( )0 0, 0, 0, =0 b su L w L w L= =     (20) 

The Navier’s solution procedure is employed in the present study to derive the characteristics 

of the embedded and the simply supported plate at both ends and resting on an elastic 

foundation. Indeed, the use of an elastic foundation may represent the stiffness of the adhesive 

layer usually employed in the reinforcement of a prestressed concrete beam. The used B.Cs. 

may represent the anchorage system used for prestressing the composite plate at its end. Thus, 
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the solution form for ‘u(x, t)’,’wb(x, t)’ and ‘ws(x, t)’ that satisfies those conditions takes the 

following form: 
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∑

∑

∑

          (21) 

Where: ‘Un’, ’Wbn’ and ‘Wsn’ are arbitrary parameters to be determined. Analytically, the spatial 

displacement function for both B.Cs. are: 

Simply supported simply supported plate strip (S-S): 

( )( ) sin .nX x xλ=           with         n
n
L

λ π=          (22) 

Clamped Clamped plate strip (C-C): 

( ) ( ) ( ) ( )( )( ) sinh . sin . . cosh . cos .n n n n nX x x x x xλ λ α λ λ= − + −                                               (23) 

With:     ( ) ( )
( ) ( )

sin . sinh .
cos . cosh .

n n
n

n n

L L
L L

λ λ
α

λ λ
+

=
+

        and      2. 1
2.n
n

L
λ π+

=                                  (24) 

Substituting eq. (21) into the governing equations (17), we get next closed-form solution of 

vibration problem of the FRP: 

 [ ] [ ]² 0K Mω− =            (25) 

Where: 

 [ ]
k k k

K k k
sym k

 
 =  
  

11 12 13

22 23

33

;  [ ]
m m m

M m m
sym m

 
 =  
  

11 12 13

22 23

33

      (26) 

The stiffness and masse matrices are given as bellows: 
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( )

( )

( )

2
11 0

3
12

3
13

2
22 1 0

4 2
23 0

2
33 0

s

s

s s

k A N

k B
k B

k D N

k D N

k H A N

α

α

α

α

α α

α

 = − +


=
 =


= − +
 = − −
 = − +

     ;   

11 0

12 1

13 1
2

22 2 0
2

23 2 0
2

33 2 0

m I
m I
m J

m I I

m J I

m K I

α
α

α

α

α

= −
 =
 =
 = − −
 = − −

 = − −

      (27) 

To get the eigenfrequencies of the prestressed plate, we fix N0 the prestress force since it’s 

involved in the stiffness matrix and the determinant of the equation (25) is set equal to zero. 

 

4. Results and discussions: 

In this study, the reinforcing fibers of the plate were varied for the same polymer matrix. We 

have chosen three fibers that are of different natures and have different characteristics, as shown 

in table 1: 

Table. 1. Fibers and matrix characteristics 
Proprieties E1 (GPa) E2 (GPa) ρ (kg/m3) νf 

Fibers type 
Carbon 390 12 1800 0.35 
Glass R 86 86 2500 0.25 
Aramid 130 130 1450 0.4 

Polymer matrix 3.1 3.1 1200 0.3 
Fiber and matrix volume fractions are determined to be 54% and 46%, respectively, for each 

layer of the plate. The geometric properties of the composite laminated plate projected for 

strengthening a bridge girder are summarized in Table 2. 

Table. 2. Geometric properties 
 Length (L) m Width (b) m Thickness (h) mm 

FRP Plate 20 0.3 5 
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4.1. Comparison study 

This section contrasts the suggested analytical model with models from the literature and a 

finite element model produced with the general-purpose package Abaqus [37]. 

The finite element shell S8-R is used to simulate the plate. This element has eight nodes, using 

reduced integration, with a mesh size of 5 mm and is a doubly curved thick shell. 

Figure 2 shows a comparison of the shapes of the three first modes for a 0° stratified CFRP 

plate strip between the analytical and finite element model. A plate with the dimensions    

(250x25x5) mm was the subject of the experiment, which was conducted under various 

boundary conditions. It is evident that there is good agreement between the two models in terms 

of mode shapes. 

0.0 0.2 0.4 0.6 0.8 1.0

 

 

W
(x)

X/L

 mode1 S-S
 mode2 S-S
 mode3S-S

 

(a) Analytic three first modes shape of the simply supported Plate  
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(b) Numeric three first modes shape of the simply supported  Plate tripe 
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(c) Analytic three first modes shape of the embedded Plate  
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(d) Numeric three first modes shape of the embedded Plate stripe 

Fig.2. First fundamental three modes analytical and numerical under various B.Cs 

Table.3 shows the Eigen frequencies for the first three fundamental modes and under different 

boundary conditions. According to these results, we can conclude that the proposed model 

which is a closed-form solution seems in a substantial matching with the FEM results.  

Table. 3. The comparison of natural frequencies (Hz) of the CFRP 

Boundary conditions Modes Frequency  Hz  Error 
(%) FEM Present 

S-S 

Mode1  2.6780 2.6936 0.57 % 

Mode2 10.7120 10.7728 0.56 % 

Mode3 24.1020 24.2332 0.54 % 

C-C 
Mode1 6.0806 6.0615 0.31 % 
Mode2 16.7540 16.8277 0.51 % 
Mode3 32.8330 33.3202 0.55 % 

 

The proposed model and those of Reddy et al. [38] and Drici et al. [39] are compared for a non-

dimensional problem, and the results are in good match, as shown in Table 4. These results 

show the influence of the geometric dimensions on the non-dimensional natural frequencies, 

which rise with an increase in the ratio L/h. and  
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Table. 4. The comparison of non-dimensional natural frequencies ( )2. . / .L h E Iϖ ω ρ=  of an 

isotropic beam (L=10, E=30x106, ν=0.3, ρ=1) 
L/h Reddy 2007 Drici et al  Present  
10 9.7454 9.7077 9.7075 
20 9.8381 / 9.8281 

100 9.8683 / 9.8679 
 

4.2. Effect of the prestress on the natural frequencies 

In this part, the results of free vibration of a stratified composite plate stripe with four 

unidirectional layers of carbon fibers, Glass Fibers and Aramid Fibers (Table.1), under 

prestress forces for both B.Cs (C-C, S-S) are presented. Table. 5 shows the influence of the 

variation of the prestress force, under different modes of vibration and for different B.Cs, on 

the periods and frequencies of a CFRP plate. The case of no prestress applied to the composite 

plates is presented in the same table.  

Table. 5. Effect of prestress on the CFRP plate eigenvalues 

 

Where P0 is the prestress force 

In tables 6 and 7, the results of free vibration of the unidirectional, four-layered composite plate 

of Glass-R fibers and Aramid fibers, respectively, under different modes of vibration and for 

different B.Cs are presented. The increase in frequencies is also directly proportional to the 

increase in prestress force. 

 

Boundary 
conditions P0*(kN) 

Mode 01 Mode 02 Mode 03 
Periods  

(s) 
Frequency 

(s-1) 
Periods  

(s) 
Frequency 

(s-1) 
Periods  

(s) 
Frequency 

(s-1) 

S-S 

0 14.8268 0.0674 3.7067 0.2698 1.6475 0.6070 
50 0.4945 2.0223 0.2468 4.0513 0.1641 6.0937 
100 0.3498 2.8591 0.1747 5.7230 0.1163 8.5964 
150 0.2856 3.5013 0.1427 7.0066 0.0951 10.5196 
200 0.2474 4.0428 0.1236 8.0890 0.0824 12.1420 

C-C 

0 6.5897 0.1518 2.3723 0.4215 1.2104 0.8262 
50 0.4438 2.2535 0.2280 4.3865 0.1550 6.4514 
100 0.3141 3.1833 0.1616 6.1891 0.1101 9.0858 
150 0.2566 3.8972 0.1320 7.5742 0.0900 11.1126 
200 0.2223 4.4992 0.1144 8.7426 0.0780 12.8231 
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Table. 6. Effect of prestress on the GFRP plate eigenvalues 

 

Table. 7. Effect of prestress on the Aramid FRP plate eigenvalues 

It can be seen clearly that the increase in Eigen frequencies of the composite plate is directly 

proportional to the increase in the prestress force, as shown in figure 5 for kw=0. 

It can also be noted that the frequencies increase by 126%, 56%, and 36% when switching from 

simple support to embedding for the 1st, 2nd, and 3rd modes, respectively, depending on the pre-

stressing. 

When prestressing force is present, the increase in the first mode is approximately 8%, 11%, 

and approximately 5%, respectively, with a minor drop in this rate when prestressing force is 

increased. This justifies a convergence of the frequency value for both cases of B.Cs. 

Boundary 
conditions P0*(kN) 

Mode 01 Mode 02 Mode 03 
Periods  

(s) 
Frequency 

(s-1) 
Periods  

(s) 
Frequency 

(s-1) 
Periods 

 (s) 
Frequency 

(s-1) 

S-S 

0 34.8103 0.0287 8.7026 0.1149 3.8678 0.2585 
50 0.5535 1.8068 0.2766 3.6150 0.1843 5.4259 
100 0.3914 2.5550 0.1957 5.1111 0.1304 7.6690 
150 0.3196 3.1292 0.1598 6.2592 0.1065 9.3908 
200 0.2768 3.6133 0.1384 7.2272 0.0922 10.8425 

C-C 

0 15.4712 0.0646 5.5697 0.1795 2.8416 0.3519 
50 0.4973 2.0107 0.2560 3.9068 0.1745 5.7298 
100 0.3518 2.8428 0.1811 5.5222 0.1235 8.0953 
150 0.2872 3.4814 0.1479 6.7620 0.1009 9.9117 
200 0.2488 4.0198 0.1281 7.8074 0.0874 11.4432 

Boundary 
conditions P0*(kN) 

Mode 01 Mode 02 Mode 03 
Periods 

 (s) 
Frequency 

(s-1) 
Periods  

(s) 
Frequency 

(s-1) 
Periods  

(s) 
Frequency 

(s-1) 

S-S 

0 23.7592 0.0421 5.9398 0.1684 2.6399 0.3788 
50 0.4625 2.1621 0.2311 4.3267 0.1539 6.4961 
100 0.3271 3.0574 0.1635 6.1165 0.1089 9.1791 
150 0.2671 3.7444 0.1335 7.4902 0.0890 11.2388 
200 0.2313 4.3236 0.1156 8.6484 0.0771 12.9757 

C-C 

0 10.5597 0.0947 3.8015 0.2631 1.9395 0.5156 
50 0.4155 2.4066 0.2138 4.6772 0.1457 6.8623 
100 0.2939 3.4021 0.1513 6.6094 0.1032 9.6910 
150 0.2400 4.1661 0.1236 8.0927 0.0843 11.8635 
200 0.2079 4.8103 0.1070 9.3434 0.0730 13.6956 
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When comparing the behavior of CFRP, GFRP, and Aramid FRP plates, it can be seen that 

these plates (CFRP, GFRP, and Aramid FRP) behave differently without prestress and seem to 

have almost the same behavior in the presence of the prestress force. 

4.3. Effect of the prestress on the amplitude 

Figure 3 presents the effect of the prestress force on the amplitude of the composite plate in 

different modes of vibration. These results are found by applying a unit load along the plate 

under different values of prestress. We notice from these results that the amplitudes of the plate 

are inversely proportional to the prestress force. It can be noted that the results are very close 

in terms of values, as mentioned in the previous paragraph; therefore, the results for the CFRP 

plate embedded at its ends are presented. 
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(b) Second mode amplitude 
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(c) Third mode amplitude 

Fig.3. Amplitude of CFRP at “ t= T/2 ”under various prestress values 
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4.4 Effect of the fiber orientation on the natural pulsation 

The figure.4 presents the evolution of the Eigen frequencies according to the variation of the 

prestress applied to the laminated Four-layered unidirectional [0°] composite plate and to the 

laminated Four-layered plate oriented as [0°/90°/0°/90°] with respect to its longitudinal axis. It 

can be clearly seen that the frequencies of the two studied cases are very close to each other. 

This results is interesting since it is well demonstrated by Krour et al [28] that when layers are 

oriented as [0°/90°/0°/90°] gives a weak level of interfacial stresses at the adhesive layer and 

procure a good reinforcement. We can also notice that the results are so similar even if we 

change the fiber type. 
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Fig.4. Variation of the frequencies of the CFRP in function of the variation of prestress values 
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4.5 Effect of plates theories 

In this part, the effect of the variation of the function shape ψ(z) is investigated. For simplicity 

we take the classical plate theory to be compared to the used theory, the displacement field is 

as described by Euler–Bernoulli beam theory [38]: 

 0 0,

0

( , , ) ( , ) . ( , )
( , , ) ( , )

xu x z t u x t z w x t
w x z t w x t

= −


=
       (28) 

By following the same work path, we got the results listed in Table.8, which presents a 

comparison of the periods “T” and frequencies “f” of the C-C composite prestressed plate for 

the two theories, the TSDT developed by Reddy [31] and the Euler–Bernoulli beam theory.  

The obtained results are perfectly identical. Consequentially, due to its simplicity, it is practical 

to use the classical plate theory for studying such slender plates. 

Table. 8. Frequencies of C-C CFRP plate under TSDT and CBT theories  

P0 (kN) 
T ( s ) f ( s-1 ) 

CPT TSDT CPT TSDT 

0 6.5897 6.5897 0.1518 0.1518 

50 0.4438 0.4438 2.2535 2.2535 

100 0.3141 0.3141 3.1833 3.1833 

150 0.2566 0.2566 3.8972 3.8972 

200 0.2223 0.2223 4.4992 4.4992 

 

4.6. Effect of elastic foundation 

As described in the governing equations, the elastic foundation can be part of the solution, 

representing, in the case of the reinforcement of a prestressed concrete beam, the stiffness of 

the adhesive layer. Thus, the behavior of the composite plate reposing on an elastic foundation 

is investigated, with or without the presence of prestressing force. Figure.4 shows the variation 
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of the natural frequencies of the simply supported plate in relation to the variation of the 

prestress force under various values of the transverse elastic foundation stiffness. Depending 

on the pre-stressing, it can be seen that the Winkler parameter representing transverse stiffness 

increases the free vibration frequencies considerably. This increase becomes less and less 

important with the increase of the prestressing force, which expresses the convergence of the 

results for the highest prestressing forces in the figure 5. However, the Pasternak parameter 

representing shear stiffness weakly decreases the natural period comparing to the Winkler 

parameter. In presence of the prestress force, the role played by the elastic foundation is less 

important. It is essentially due to the prestress force effect which is preponderant. 
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Fig.5. variation of the proper pulsation of the CFRP in function of the variation of prestress 

for different values of the elastic foundation stiffness 

 

 

 

 

5. Conclusion 
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In the present paper, a study of the free vibration of a prestressed composite plate was performed 

using a refined theory. In order to investigate the dynamic performance of the plate, the effect 

of prestress force on the Eigen frequencies, boundary conditions, fiber orientation, and the 

presence of the elastic foundation, is investigated. To validate this model, a comparative study with 

other studies was carried out, as well as numerical modeling using finite element coding software 

(ABAQUS). From the above discussions, it can be concluded that: 

• The applied prestress force significantly increases the frequency of the plate, which 

results a decrease in the deflection of the plate. Consequently, the bending stiffness 

of the composite plate is well improved, more so considering that even a change in 

boundary conditions has no discernible effect on the results. 

• The bending stiffness of the fibers and the application of the prestressing force both 

affect the plate's Eigen frequency. It is clear that these plates respond differently in 

the absence of prestress and appear to behave nearly identically when prestress is 

applied. 

• The prestress force also eliminates the effect of the variation in fiber orientation. 

• The importance of the elastic foundation's involvement diminishes as the prestressing 

force rises since this increase becomes less and less significant. It is essentially due 

to the prestress force effect, which is preponderant. 

Based on the above conclusions, this technique of prestressing the composite plate may be a 

good solution for strengthening structural elements such as prestressed concrete beams by 

minimizing their deflection, stiffening the plate, and ensuring additional external pre-stress. 

As perspectives, future research will examine the impact of using this prestressed laminated 

plate on a prestressed concrete beam's dynamic behavior under forced and free vibration as well 

as potential enhancements. 
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