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Abstract

Blockchain technology has gained widespread acceptance in industries such as e-commerce, en-
ergy trading, healthcare services, and asset management. Ethereum is an open-source blockchain
computing platform with contract functionality. To manage digital assets, it executes bytecode on
a simple Solidity stack machine, which is difficult due to Ethereum’s openness that allows both
programs and anonymous users to call into the public methods of other programs. In such cases,
combining trusted and untrusted code for large applications can be risky and lead to catastrophic
failure. For example, TheDAO is hacked by an attacker by examining EVM semantics to transfer
50 million USD in Ether. In this chapter, we outline a framework for analysing, verifying, and
implementing smart contracts while maintaining functional correctness and required safety prop-
erties in Event-B using a correct by construction approach. The refinement approach is used to
reduce the complexity of smart contract verification. The Rodin tool is used to develop formal
models of smart contract specifications. Furthermore, the developed Event-B models are used
to generate smart contracts in Solidity using our developed tool EB2Sol. For prototype develop-
ment, the development architecture and code generation rules are described in detail. Finally, we
demonstrate the scalability and effectiveness of our proposed framework through a case study.

Keywords: Formal methods, Refinement and Proofs, Blockchain, Smart Contracts, Solidity,
Code generation, Event-B

1. Introduction

Ethereum [1] is an open-source computing platform, also known as the Ethereum Virtual Ma-
chine (EVM), for blockchain technology with contract functionality. The blockchain technology
has been adopted successfully in different business sectors, such as e-commerce, banking, finance,
insurance, energy trading, healthcare services, and asset management. Manipulation of critical
transactions, as well as management of digital assets, making them attractive targets for security
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threats and attacks, which may result in financial losses and data leakage. EVM, on the other
hand, executes bytecode of smart contracts written in Solidity [2, 3], a JavaScript-like language,
on a simple stack machine to handle and transfer digital assets, which is extremely difficult due to
Ethereum’s openness, allowing both programs and anonymous users to call into the public meth-
ods of other programs. In such cases, the use of trusted and untrusted code together in a large and
complex application, particularly one involving financial management or privacy data, can be dan-
gerous. For example, TheDAO is hacked by an attacker by examining EVM semantics to transfer
50 million USD in Ether [4].

Since software plays an important role in the blockchain technology, we need effective ways
to evaluate smart contracts in order to certify and ensure safe transactions. The blockchain com-
munity and industrial partners are looking for better technology and methods to provide safe and
secure transactions. Furthermore, smart contracts must meet safety and security standards. We
believe that formal methods have the potential to develop safe and secure systems that are also
certifiable with required features that can be used to verify and certify smart contracts.

This chapter contributes a framework for analysing, verifying, and implementing smart con-
tracts while maintaining functional correctness and required safety properties through incremental
refinement in Event-B [5]. We use the Rodin [6] tool to develop formal models of smart contract
specifications. The primary use of this formal development is to assist in the construction, clari-
fication, and validation of the smart contract requirements. Furthermore, the developed Event-B
models are used to generate smart contracts in Solidity using our developed tool EB2Sol. This
developed tool covers a subset of the Event-B modelling language in order to generate a Solidity
subset. In this chapter, we will go over technical details about implementation as well as design
decisions made during prototype development. Finally, we use a case study to demonstrate the
scalability and effectiveness of our proposed framework.

In summary, the main contributions of this chapter are :

1. a framework for using formal methods to develop smart contracts from requirements analy-
sis to code generation;

2. smart contracts (in Solidity) are generated from the proven Event-B formal models.
3. EB2Sol is developed to generate Solidity code.
4. the proposed framework is used for developing several case studies in order to formalise the

development of smart contracts.

The rest of the chapter is as follows. Section 2 reviews related work. Section 3 briefly
overviews key elements of Event-B modelling language, including refinement, and Solidity smart
contract. A framework for developing formal Solidity smart contract in Event-B is presented in
Section 4. Section 5 outlines the translation principle and development architecture of EB2Sol.
Section 6 describes a case study to demonstrate the applicability of the proposed framework, in-
cluding implementation of Solidity smart contract. In Section 7, we provide an assessment and
Section 8 concludes the paper with future work.

2. Related work

Solidity smart contracts are widely used on the Ethereum platform for blockchain technology.
Following several attacks [7, 4] in recent years, formal methods are now regarded as first-class
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citizens for mitigating potential risks through formal reasoning on defined contracts. Several ap-
proaches based on formal methods for the development of smart contracts have been proposed in
recent years.

Palina et al. [8] provided a comprehensive overview of formal models and smart contract spec-
ifications. They also highlighted some of the identified challenges and gaps in order to guide future
research in the area of formal methods for developing trustworthy smart contracts.

In [9], the authors proposed EVM semantics in the K Framework based on the ERC20 Stan-
dard Token for formalising and analysing smart contracts. Hirai et al. [10] defined EVM in Lem
language that can be translated into many standard interactive theorem provers. In particular, they
prove interesting safety properties of Ethereum smart contracts in Isabelle/HOL. The ConCert
framework [11] was developed for verifying smart contracts in Coq in order to detect vulnerabil-
ity.

In [12], the authors proposed a lazy approach to determining input conditions under which the
contract terminates or not by statically proving conditional termination and non-termination of a
smart contract. This is accomplished by ensuring in advance that both the current state and the
contract’s input satisfy the termination conditions.

Wang et al.[13] presented VERISOL, a formal verification tool for smart contracts verifi-
cation based on semantic conformance of smart contracts against a state machine model with
access-control policy. They discovered some previously unknown bugs in the published smart
contracts, then fixed the bugs and would be able to perform model checking-based verification
with VERISOL. In [14], the authors described an SMT-based formal verification module inte-
grated with the Solidity compiler for identifying potential bugs during the compile time, such as
arithmetic overflow/underflow, unreachable code, trivial conditions, and assertion fails.

In [15], the authors presented a framework for analysing and veryfing the runtime safety prop-
erties as well as functional correctness of Ethereum contracts using the F* functional programming
language. In [16], the authors showed small-step semantics of EVM bytecode in F*. They vali-
dated the executable code against the Ethereum test suite. Furthermore, they identified some bugs
and defined several security properties to prevent them, such as call integrity and atomicity. In
a similar vein, [17] presented a mechanism for translating Solidity contracts to Event-B models
by defining transfer functions covering a subset of the Solidity language. Further, the produced
Event-B model can be refined at different abstraction levels to verify properties associated with
Solidity contracts using Rodin [6].

A structured approach to smart contracts verification based on refinement in the Event-B mod-
elling language proposed in [18]. Our work is also in this vein, as we propose a framework based
on Event-B formal methods for specifying, analysing, verifying, and implementing smart contracts
through refinement by preserving the required safety properties. In addition, we have developed a
prototype tool, EB2Sol, to generate Solidity smart contracts from verified Event-B models. As far
as we know, this is the first tool for translating Event-B models into Solidity smart contracts.
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3. Background

3.1. Event-B Modelling Framework
This section summarises the core components of the Event-B modelling language [19], includ-

ing modelling concepts. The Event-B language has two main components, which are described
in Table 1: context and machine. A context describes the static structure of a system, including
carrier sets s and constants c, as well as axioms A(s, c) and theorems Tc(s, c) that state their prop-
erties. A machine defines a system’s dynamic structure, which includes variables v, invariants
I(s, c, v), theorems Tm(s, c, v), variants V (s, c, v), and events evt. Terms like refines, extends,
and sees are used to describe the relation between components of Event-B models. In a machine,
events are used to modify state variables by providing appropriate guards.

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt

any x
where G(s, c, v, x)
then
v : |BA(e)(s, c, v, x, v′)

end
END

Table 1: Model structure

Theorems A(s, c)⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)⇒ Tm(s, c, v)

Invariant A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BAP (s, c, v, x, v′)
preservation ⇒ I(s, c, v′)
Event A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
feasibility ⇒ ∃v′.BAP (s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BAP (s, c, v, x, v′)
progress ⇒ V (s, c, v′) < V (s, c, v)

Table 2: Some of the associated proof obligations
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3.1.1. Modelling Actions over States
An Event-B model is characterised by a set of state variables that can be modified by a set

of events. An invariant I(s, c, v) expresses the required safety properties that the variable v must
satisfy during event activation. An event is a state transition in a dynamic system that contains
guard(s) and action(s). A guard, predicate based on state variables, is required for an event to
be enabled. A action, also known as a before-after predicate, is a generalised substitution that
describes how the occurrence of an event changes one or more state variables. An event evt can
be defined in three ways: the first is BEGIN v : |BAP (s, c, v, v′) END, in which the action,
BAP (s, c, v, v′), is not guarded and is always enabled; the second is WHEN G(s, c, v) THEN v :
|BAP (s, c, v, v′)) END, in which the action, BAP (s, c, v, v′), is guarded by G(s, c, v), and the
guard must be satisfied to enable the action; and the final is ANY x WHERE G(s, c, v, x) THEN v :
|BAP (s, c, v, x, v′) END, where the action, BAP (s, c, v, x, v′), is guarded by G(s, c, v, x) and
depends on the local state variable x to describe non-deterministic events.

The Rodin platform generates proof obligations (POs) [20]. Event-B supports a variety of POs
(see Table 2), such as invariant preservation, non-deterministic action feasibility, variant, well-
definedness, and so on. Invariant preservation ensures that each invariant is preserved by each
event; non-deterministic action feasibility shows the feasibility of the event e with respect to the
invariant I; variant ensures that each convergent event decreases the proposed numeric variant;
and well-definedness ensures that each axiom, theorem, invariant, guard, action, and variant is
well-defined.

3.1.2. Refinement
To model a complex system, the Event-B modelling language supports a stepwise refinement

technique. The refinements allow us to gradually model a system and provide a way to strengthen
invariants, introducing more detailed system behaviour. By modifying the state description, this
refinement method converts an abstract model into a more concrete version. The refinement pro-
cess adds new events to a list of state variables by refining each abstract event to a concrete version,
or by simply refining each abstract event to a concrete version. These refinements preserve the re-
lationship between an abstract model and its concrete model while introducing new events and
variables to specify more concrete system behaviour. Gluing invariants connect the abstract and
concrete state variables. Each abstract event is correctly refined by its concrete version, thanks to
the generated POs. Table 3 shows some of the important POs associated to refinement, such as
event simulation, guard strengthening and invariant preservation. The simulation ensures that each
action in a concrete event simulates the corresponding abstract action; the guard strengthening in a
refinement ensures that the concrete guards in the refining event are stronger than the abstract ones;
and the invariant preservation ensures that each invariant is preserved by each refined event. These
POs contain axiom A(s, c) invariant I(s, c, v), gluing invariant J(s, c, v, w), guard H(s, c, y, w),
witness W (s, c, x, w, y, w′) and before-after predicate BAP (s, c, w, y, w′).

A set of new events introduced in a refinement step is referred to as hidden events because
they are not visible to the environment of the system being modelled. These introduced events are
beyond the environment’s control. Skip is refined by new events that are not visible in the abstract
model. Any number of executions of an internal action may occur between each execution of a
visible action. By strengthening the guards and/or predicates, the refined model reduces the degree
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Event A(s, c) ∧ I(s, c, v) ∧ ∧J(s, c, v, w) ∧H(s, c, y, w) ∧W (s, c, x, w, y, w′)
simulation ∧BAP (s, c, w, y, w′)⇒ BAP (s, c, v, x, v′)
Guard A(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, y, w) ∧W (s, c, x, w, y)
strengthing ⇒G(s, c, v, x)
Invariant A(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, y, w) ∧W (s, c, y, w, v′, w′)∧
preservation BAP (s, c, w, y, w′)⇒ I(s, c, v′, w′)

Table 3: Refinement POs

of nondeterminism. The refinement of an event e by an event f implies that the event f simulates
the event e, ensuring that the set of traces of the refined model includes (up to stuttering) the traces
of the resulting model.

3.1.3. Rodin
Rodin [20] is an open source Eclipse-based integrated development environment (IDE) for de-

veloping Event-B models. Rodin is a foundational collection of plug-ins for project management,
formal development, syntactic analysis, proof assistance, and proof-based verification. Further-
more, it supports extension points for a variety of additional plugins that provide various func-
tionalities and features related to model checking, animation, code generation, additional proof
capabilities using SMTs and external theorem provers (i.e., Why3, Isabelle), UML-B, Theory
plug-ins, composition and decomposition, refactoring framework, and model editors.

3.1.4. Applications
The Event-B method has been used successfully to design critical systems for a variety of

applications, including the control system for the Meteor line 14 in Paris and the VAL shuttle
for Paris CDG airport [21, 22, 23], as well as medical devices [24, 25, 26], autonomous sys-
tems [27, 28], security protocols [29, 30], control-command systems [31, 32, 33], and distributed
protocols [34, 35, 36, 37, 38]. More information can be found in [39].

3.2. Solidity
Solidity is a programming language designed specifically for developing smart contracts that

compiled into byte-code executable by Ethereum platform’s execution engine, often known as
Ethereum Virtual Machine (EVM). Smart Contracts are programs that execute on a decentralized
network without the intervention of a central authority. Solidity enables developers to create self-
enforcing business logic via smart contracts, resulting in a trustworthy and authoritative record of
transactions. The syntax of Solidity is quite similar to those of scripting languages like JavaScript,
and it is heavily influenced by C++, Python. Solidity extensively utilizes programming techniques
derived from other languages. It features variables, static typing, functions, libraries, and inter-
faces. In addition, it offers a range of control structures such as for, while, do-while, and if-else.
In case of an object-oriented programming language like Java, programmers work with classes,
whereas Solidity programmers deals with contracts. Each contract can define various Solidity
constructs such as state variables, functions, function modifiers, events, errors, structure types,
and enum types. This subsection outlines the major Solidity constructs that are relevant to our
goal. More information about Solidity programming language can be found in [2].

6



3.2.1. Solidity Types, Special Functions and Variables
Solidity is a statically typed programming language, which means that variable types are de-

clared explicitly and thus determined at compile time. In Solidity, numerous elementary types
exist that can be combined to form more sophisticated types. Solidity offers an extensive range
of types, notably value types, reference types such as arrays and structures, mapping types, user-
defined types and it also supports elementary type conversion. Solidity does not support undefined
or null values, newly declared variables always have a default value based on their type. Table 4
summarises the most frequently used value types.

Value Types Keyword Description
Boolean Type bool possible values true and false

Integer Types intX signed integers where X varies from 8 to 256 in steps of 8
uintX unsigned integers where X varies from 8 to 256 in steps of 8

Address Types address Ethereum address of 20 bytes
address payable additional members like transfer and send

Byte Arrays (Fixed Size) bytesX X varies from 1 to 32

Byte Arrays (Dynamic Size) bytes similar to bytes1[] but skips padding
string similar to bytes, but don’t allow length or index access

Enumerated Type enum default value is the first member

Table 4: Solidity Value Types

In the global namespace, special variables and functions exist at all times and are primarily
used to relay information about the blockchain or to perform general-purpose utility operations.
Table 5 lists some of the most frequently used variables and functions from the global namespace
of Solidity. Additionally, solidity supports various denomination of Ethereum cryptocurrency such
as wei, gwei, and ether, as a suffix to number literals.

Type Variable/Function Description
address msg.sender sender of the message (current call)
uint msg.value number of wei sent with the message
- assert(bool) used for internal errors
- require(bool, [message]) used for checking condition on input
- revert([message]) abort execution and revert state changes
uint < address > .balance balance of the address in wei
- < address payable > .transfer(uint) send given amount of wei to Address
bool < address payable > .send(uint) send wei to address, returns false

on failure
Contract this refers to the current contract
uint now current block timestamp
address payable tx.origin sender of the transaction

Table 5: Frequently Used Special Variables and Functions

Errors are handled in Solidity using state-reverting exceptions. This exception nullifies any
state changes made during the execution of the code and notifies the caller of an error. The assert
and require functions enable programmers to check for conditions and throw exceptions if they
are not met. The assert function should be preferred exclusively to check for internal errors and
invariants. The require function supports optional error message and should be used to ensure
the existence of valid conditions that must be identified during contract execution. This includes
conditions on input values or the return values of external contract calls. The revert function
is another mechanism available in the global namespace for reporting errors and undoing state
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changes during contract code execution. Additionally, this function accepts and returns an optional
message containing details about the error to the caller.

3.2.2. Function Modifiers
Modifiers in Solidity are analogous to the Object-Oriented Programming decorator patterns. A

modifier controls how a function behaves at run-time. In the example provided in Code Snippet 1,
the modifier validate(int) restricts the execution of the increment function if the parameter value
of increment function is less than one.

1 pragma solidity >=0.6.0;
2

3 contract ModifierExample {
4

5 int public number;
6

7 modifier validate(int value){
8 require(value>0, "value of incrementBy must be greater than 0");
9 _;

10 }
11

12 function increment(int incrementBy) validate(incrementBy) public{
13 number += incrementBy;
14 }
15

16 }

Code Snippet 1: Modifier Example

Multiple modifiers can be applied to a function or constructor by specifying them in a whitespace-
separated list and are evaluated from left to right. Modifiers are inheritable properties of contracts
and may be overridden by derived contracts. The symbol ′ ;′ in modifier body returns the flow of
execution to the original function code. It applies to various contexts, such as providing an easy-
to-understand approach to express certain guards, confirming specific conditions after the function
execution.

4. Formal framework for Solidity smart contracts

Fig. 1 depicts a modelling framework for formalising and implementing Solidity smart con-
tracts that support the correct by construction approach. In this proposed framework, there are
three main important process blocks: (1) Event-B model, (2) formal verification, and (3) Solidity
implementation. The Event-B model block deals with complex modelling of smart contracts, and
building a formal model of smart contracts may require several iterations. Starting from an initial
model, it is gradually enhanced by adding design decisions and handling requirements. Note that
the progressive safe enrichment allows to add the required safety properties and low level system
requirements related to smart contracts. These refinements preserve the relationships between an
abstract model and its corresponding concrete model while introducing low-level details and new
properties to specify more concrete behaviour of a system. This incremental development ensures
the correctness of concrete behaviour of a smart contract system in relation to the abstract model.
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EB2Sol 
Generator

Rodin 
Platform

Event-B Model
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Figure 1: A framework for developing formal Solidity smart contracts.

Rodin tools are used to verify the abstract and refined Event-B models. The analysed models
provide feedback to the original Event-B model, which is depicted in Fig. 1.

The second block of Fig. 1 is concerned with formal verification, which is an important step in
proving and disproving the correctness of a formalized system’s intended behavior under the given
safety properties and assumptions. In the process of system verification, we can use an automated
theorem prover to check the consistency and correctness of the generated formal model. Using
mathematical operators, a formal notation can be analyzed and manipulated, and mathematical
proof procedures can be used to test (and prove) the internal consistency (including data conser-
vation) and syntactical correctness of the specifications. The formal verification ensures that the
model is correctly designed, that the developed formal specification has the required properties,
and that the generated models are free of errors, oversights, and bugs. The Rodin development
framework can be used for project management as well as model verification via syntactical and
refinement checking. Furthermore, this tool can be used to discharge the generated proof obliga-
tions. If any inconsistencies in the model are discovered during the system verification process,
we can modify the model obtained in the previous step of the development process. We can iterate
until we get a correct model.

The final block in our framework is related to Solidity implementation using our developed tool
EB2Sol. This is the last stage of our framework proposal. From the formalised, proved, and vali-
dated formal models, it generates Solidity language code for system implementation. This phase
of development includes the major executable components, concrete data structure definitions, and
some auxiliary structures or functions that may be assumed in a design. However, it is also critical
to rigorously review the system implementation in relation to the specified system requirements
and selected design. Automatic code generation has become standard practice in developing ver-
ified code in a target language corresponding to the given specification, required configurations,
and platform information without any human intervention in the new age of software development
and automation of the development life-cycle.

In our proposed framework, we use our developed tool EB2Sol, an extension of EB2ALL [40,
41], to generate source code in Soldity language from the verified formal specification. Section 5
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describes the basic architecture of this tool as well as the development process. This automa-
tion process has several advantages. For example, the automatic code generation tool produces
executable software with far fewer implementation errors than a human programmer. Manually
implementing the formal specification can be time-consuming and error-prone. In automatic code
generation, code maintenance and successive changes are simple to handle, and the consistency
between the generated code and the given formal specification is always maintained. However,
there are some drawbacks to automatic code generation. For example, automatically generated
codes can be difficult to understand, excessive code can be generated, and incorrect code is still a
possibility.

5. EB2Sol: Event-B to Solidity

In this section, we describe the development architecture for our developed tool EB2Sol, which
is an extension of EB2ALL [41], developed as a new plugin for generating Solidity smart contracts
from Event-B models. Fig. 2 depicts the overall architecture of the EB2Sol automatic code gener-
ation tool. The given boxes show different steps of the code generation process. The first block is
associated with the Event-B model, which serves as an input to the code generation tool.

Event-B Model

Lexical Analysis

Syntax Analysis

Solidity Smart 
Contract

Solidity
Context File

Discharging 
Generated POs

Error Handler

Pre-processing

Semantic Analysis

Figure 2: Development architecture of EB2Sol

5.1. Preprocessing and generated POs
Most of the time, systems fail due to a run-time error. Overflow and underflow of bounded

integers, for example, are types of run-time errors that should be checked before producing the
Solidity code. There is a pre-processing step in the code generation process that allows for the
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Event-B type Formal Range Solidity type
tl int8 −27..27 − 1 int8
tl int16 −215..215 − 1 int16
tl int24 −223..223 − 1 int24

. . . . . . . . .
tl int256 −2255..2255 − 1 int256
tl uint8 0..28 − 1 uint8
tl uint16 0..216 − 1 uint16
tl uint24 0..224 − 1 uint24

. . . . . . . . .
tl int256 0..2256 − 1 uint256

Table 6: Signed and Unsigned Integers

introduction of a context file based on the Solidity language to provide a deterministic range for
data types in order to make the Event-B model deterministic [42]. To obtain the deterministic
model, we can use vertical refinement to refine the previous concrete model, which provides de-
terministic definitions of constants and variables. For this, we can introduce a Solidity context file
which contains bounded integer data types. Table 6 shows a map between Event-B and Solidity
types for signed and unsigned integers. Note that the Solidity context file is an Event-B context
file, which is required to generate correct code. Adding a new context file may generate new set of
POs that must be proved before generating the Solidity code as well as to verify the specification
in order to ensure the system’s consistency.

5.2. Translation of Event-B to Solidity
The main objective is to translate the Event-B model into a semantically observationally equiv-

alent standard Solidity smart contracts. The developed translator is based on a set of transforma-
tion rules that map between the Event-B and Solidity constructs. In fact, the transformation func-
tions allow to produce code in target language applying a set of rules when matching the inputs
from the source language. We define a set of transformation functions to generate Solidity code
from the Event-B model. These transformation rules are given in Table 7.

Tdecl : Datatype and Constant declaration translation function
Tst : State variables translation function
Taxm : Axioms translation function
Tpred : Predicate translation function
Tthm : Theorem translation function
Tevt : Events translation function
Tgrd : Event’s guards translation function
Tact : Event’s actions translation function
Texp : Expressions translation function

Table 7: Transformation function

A set of supported symbols of EB2Sol tool is given in Table-8. This table shows a subset of
Event-B syntax to equivalent Solidity smart contracts. All constants defined in a model’s context
must be replaced with their literal values. We consider Event-B formal notations available at [5]
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and capture the Event-B grammar in a Abstract Syntax Tree (AST). This translation tool accepts
conditional, arithmetic, and logical formal model expressions. Event-B model that contains ma-
chines and contexts are translated to Solidity contracts. Below we provide the translation process
for dealing with context and machine models.

Event-B Solidity Comment
const x ∈ N ∧ cons x=120 int256 constant const x = 120 Constant declaration

x ∈ Z int256 x Signed integer variable declaration
x ∈ N uint256 x Unsigned integer variable declaration

x ∈ tl int16 int16 x; Signed integer variable declaration
b ∈ BOOL bool b; Boolean variable declaration

x ∈ n..m→ Z int [m+1] x; Array declaration
x = y if(x==y) { . . .} Conditional statement
x 6= y if(x!=y) { . . .} Conditional statement
x < y if(x<y) { . . .} Conditional statement
x ≤ y if(x<=y) { . . .} Conditional statement
x > y if(x>y) { . . .} Conditional statement
x ≥ y if(x>=y) { . . .} Conditional statement

(x>y) ∧ (x≥z) if ((x>y) && (x>=z) { . . .} Conditional statement
(x>y) ∨ (x≥z) if ((x>y) ‖ (x>=z) { . . .} Conditional statement
¬x<y if(!(x<y)){ . . .} Logical not
X⇒Y if(!X ‖ Y){ . . .} Logical Implication
X⇔Y if((!X ‖ Y) && (!Y ‖ X)){ . . .} Logical Equivalence

x := y + z x = y + z; Arithmetic assignment
x := y - z x = y - z; Arithmetic assignment
x := y * z x = y * z; Arithmetic assignment
x := y ÷ z x = y / z; Arithmetic assignment
x := a(y) x = a[y]; Array assignment

x := y x = y; Scalar action
a := a C− {x7→y} a[x] = y; Array action

a := a C− {x7→y} C− {i 7→j} a[x]=y; a[i]=j; Array action
fun ∈ N× N→ N function fun name(uint256 arg1,

uint256 arg2) public returns(arg) Function definition
{ . . .}

Table 8: Event-B to Solidity

5.2.1. Context models
The context of an Event-B model consists of sets, enumerated sets, constants, arrays and

functions, all of which are associated with their respective type. For translation purposes, the
translation tool supports all types of context components. The observational equivalence is based
on the equivalence of Event-B values and the values of Solidity smart contracts. This equivalence
on values is naturally extended to context instances. In Table-9, the observational equivalence
between Event-B sets and Solidity smart contracts types is given.

Event-B types Solidity language
Enumerated sets Enumerated types
Basic integer sets Predefined integer types
Event-B array types Solidity array type
Function Solidity function structure

Table 9: Equivalence between Event-B and Solidity smart contracts

Constants, sets and enumerated sets of the Event-B model are translated into constants, type
declaration and enumerated sets of the Solidity contracts using the translation function Tdecl and
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Taxm. An Event-B enumerated sets are semantically equivalent to Solidity contracts enumerated
types, thus it is simple to translate.

For the efficiency of the generated code and the correctness of the translation, the link between
Event-B and Solidity contracts for integer values have been regarded significant. We recommend
to use preprocessing step by introducing Solidity context file. Similarly, the Event-B constant are
also directly translatable due to direct typing correspondence between Event-B integer types and
Solidity language integer types. For example, if Event-B use a data type given in Table 6.

The translation for the declaration of Event-B array type and the Solidity array type is not
straightforward. In Event-B, an array can be defined as a total function, whereas in Solidity, they
relate to a contiguous memory zone (coded as the beginning address of the array and its size).
The semantical correspondence between an array element arr(i) in Event-B and the value at the
position arr[i] in Solidity, can be easily translate.

The translation for the Event-B function into Solidity function is also very complex. Only
the Event-B total function is supported by the current prototype tool. Solidity function input
and output arguments can be easily identified by looking at the left and right sides of the total
function symbol (→) in the Event-B function specification. The Event-B function definition can
be translated in a Solidity function structure.

The context model elements are declared global in the generated code. The type information
for context elements is derived from the context axioms used for type definition, such as it can
be used to express as integer ranges, specifically supported bit-map types, or arrays of the defined
mapping functions.

5.2.2. Machine models
A machine model consists of variables, invariants, events. The Event-B variables can be used

to generate Solidity attributes, and the Event-B invariants can be used to extract typing informa-
tion. All the generated variables or attributes have default property public. Note that the Event-B
machine may also contain function and array declaration that can also translate similarly to trans-
lation rule for function and array given in context model. The required typing information can be
extracted from the Event-B invariants.

There are two types of variables in the Event-B specification: global variables and local vari-
ables. Global variables are produced directly from the variable declarations, and all of these vari-
ables have global scope. Local variables are derived from any clause of an event and are com-
pletely local to the corresponding event. All local variable declarations are placed as a list of input
arguments of the function when the function structure is generated.

The translation tool uses a recursive method to generate Solidity contracts for each event of
the Event-B specification. The translation tool always checks for the ’null’ event (i.e. the guard
of a false condition), never generates the source code for such event, and inserts a relevant note
into the generated code for traceability. For example, if an event has a single guard with a false
condition, the Solidity code does not produce for that event. This automatic reduction occurs to
avoid the production of inaccessible run-time code.

The initialization event of Event-B machine is translated as a constructor, and all variables are
initialized with default values in the constructor body which are directly derived from the action
predicates of the Event-B initialization event.
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Guard handling in Event-B is extremely ambiguous due to different meanings, such as local
variable type definition, assignment of a value to a local variable, condition statements using nega-
tion (¬), conjunction (∧), disjunction (∨), implication (⇒), and equivalence (⇔) operators. We
build a recursive technique for parsing and identifying different elements of the Event-B guard for
translation purposes. For example, an implication (⇒) and equivalence (⇔) operator, the trans-
lator tool automatically rewrites the predicate in an equivalent form using conjunction (land),
disjunction (∨), and negation (¬) operators, an equal relation may signify an assignment or equal-
ity comparison, and the precise meaning (and thus the resulting translation) deduced from the type
and scope of implication (⇒).

Another interesting point to discuss is the definition of a functional-image relation, which can
be used to represent a data array or an external function. Once the guards of an event have been
classified, the guards that confer local variable type information are utilized to generate variable
declarations in the function, while the remaining guards are used to generate local assignment and
conditional statements. In addition, local variable type information is derived in the same way as
global variables from guard information.

Event-B events are translated into functions, and event parameters are passed as function and
modifier arguments. In order to effectively call each function, modifiers are added to each gen-
erated function. These associated modifiers are also defined as a function using required/assert
statements derived from Event-B guard predicates.

Actions are triggered concurrently in Event-B, and any state modification in the actions is only
valid in the whole event post-condition. As a result, dependency checks must be conducted to
guarantee that no state variable used as an action assignee has been updated to its post-condition
before to usage. As a guard statement, a similar kind of parsing is used on the Event-B action
statement. At last, the event actions are directly translated in the form of assignment statements
in the function body. Assignments to scalar variables, override statements acting on array-type
variables, and arithmetic complicated expressions are all supported through an action translation.

6. Case Study

To assess the proposed methodology and developed tool EB2Sol, we use several small and
large examples. For example, we developed the formal specification of arithmetic operations (in-
crement and decrement), cardiac pacemaker and smart purchase. In this section, we apply our
proposed methodology for developing smart purchase case study, and discuss its formal develop-
ment, including code generation in Solidity.

6.1. Informal description of smart purchase
Purchasing goods over the internet necessitates the trust of several parties. A basic example

with seller and buyer is available in [2]. However, it becomes more complicated when a courier is
included in the system, as it is challenging to detect an item’s delivery to its intended recipient. Fig.
3 illustrates a process of purchasing goods. In this example, we have included a seller, courier, and
buyer with the ability to return the product within a return window. The seller can execute actions
such as listing an item for sale, revoking it, processing an order, and initiating settlement. On the
other hand, the buyer can purchase the item, confirm delivery, and request a return. Services like
pickup and pickup return are available for a courier.
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Figure 3: Smart Purchase Example

6.2. Formal Development
For developing a formal model of the smart purchase, we develop a context model to express

static behaviour, properties of the system, while the dynamic behaviour and properties are mod-
elled in a machine model. Below we describe both the context and machine models.

6.2.1. Context model
In the context model of smart purchase, we declare a set ADDRESS to represent address

type that is unique in Solidity contracts. An enumerated set ProductState is defined to encode all
possible states of different processes in axm1. A new constant timeInSec is defined in axm2 to
represent time duration. The next two axioms (axm3 and axm4) are used to define balance and
now constants to represent initial balance and time value. The last axiom defines a constant this
as an address type to indicate one’s own address.

axm1 : partition(ProductState, {InStock}, {Booked}, {Packed}, {Transite},
{ReturnReq}, {ReturnAck}, {Delivered}, {Closed})

axm2 : timeInSec ∈ N
axm3 : balance ∈ N1

axm4 : now ∈ N
axm5 : this ∈ ADDRESS

6.2.2. Machine model
A machine model is developed to specify the dynamic behaviour of smart purchase including

all possible operations. In this model, we introduce 8 state variables (inv1-inv8). A variable
address list is defined to record all the addresses who call the smart purchase contract. The next
three variables seller, buyer and courier are defined as address types belonging to address list.
A transfer function is defined in inv5. The variable state represents possible product states when
purchasing goods. The next variable price is used to define the product’s cost and the last variable
returnWindow is used to define product’s return time duration.
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inv1 : address list ⊆ ADDRESS
inv2 : seller ∈ address list
inv3 : buyer ∈ address list
inv4 : courier ∈ address list
inv5 : transfer ∈ ADDRESS 7→ N
inv6 : state ∈ ProductState
inv7 : price ∈ N
inv8 : returnWindow ∈ N

In this machine, we introduce 12 events, including INITIALISATION event. The INITIALI-
SATION event is used to set the initial value for each declared variable.

EVENT INITIALISATION
BEGIN
act1: address list := {this}
act2: seller := this
act3: buyer := this
act4: courier := this
act5: transfer := ∅
act6: state := InStock
act7: price := 0
act8: returnWindow := timeInSec

END

Other events are: initiateSeller- to initiate seller of contract; revoke- to revoke the product
and reclaim the deposited ethers; confirmPurchase- to confirm the purchase; processOrder-
to be called by the seller after the product has been booked; pickup- to be called by the courier
at the time of pickup; confirmDelivery- to confirm delivery of the item; initiateReturn- to
initiate the process of product return; pickupReturnedProduct- to pay the product price to the
seller; FnFSettlement−AfterDelivery- to confirm the buyer’s full and final settlement for the
purchased item; FnFSettlementAfterReturnAccepted- to confirm full and final settlement for
the purchased item when the buyer returns the purchased item; and new account- to add a new
address that invokes the smart purchase contract.

In the event initiateSeller, we define three parameters and five guards. The first two guards
define the local parameters msg value and msg sender. The following guard defines value and
ensures that it equals msg value/3. The grd4 states that msg value is three times value, and the
last guard states that seller is not equal to msg sender. These guards keep the required condition
for initiating seller. In this event, two new actions are introduced, and these actions are used to
initiate the seller and price variables based on the selected address msg sender and msg value,
respectively.
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EVENT initiateSeller
ANY value,msg value,msg sender
WHERE
grd1: msg value ∈ N1

grd2: msg sender ∈ address list \ {this}
grd3: value ∈ N ∧ value = msg value/3
grd4: msg value = 3 ∗ value
grd5: seller 6= msg sender

THEN
act1: seller := msg sender
act2: price := msg value/3

END

Similarly, another event confirmPurchase is defined to confirm the purchase, which can
only be called by the buyer if the product is in stock. In this event, we define two parameters and
four guards. The first two guards define the local parameters msg value and msg sender. The
next guard (grd3) states that the state is InStock. The last guard shows that the msg value is
three times the price. These guards keep the required condition for confirming purchase. Two new
actions are introduced in this event, and these actions are used to set the state as Booked and the
buyer is updated by msg sender.

EVENT confirmPurchase
ANY msg value,msg sender
WHERE
grd1: msg value ∈ N1

grd2: msg sender ∈ address list \ {this}
grd3: state = InStock
grd4: msg value = 3 ∗ price

THEN
act1: state := Booked
act2: buyer := msg sender

END

Other remaining events are formalised in a similar way. A complete formal development of
the smart purchase case study is available at 1.

6.2.3. Model validation and analysis
Formal modelling and verification are carried out using the open source integrated development

framework Rodin. In this section, we summarise the generated proof obligations generated by the
Rodin prover. The generated proof obligations are related to well-definedness, feasibility and
invariant. The generated proof obligations ensure consistency checking and it guarantees that the
modelled events always preserve the given invariants. The formal development of smart purchase
is presented in a single machine, but it can be developed incrementally through an abstract model
and a series of refinement models. This development results in 22 proof obligations (POs), in

1http://singh.perso.enseeiht.fr/BAC-2021/SmartPurchaseModel.pdf
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which 19 (87%) are automatically proved and the remaining 3 (13%) are proved interactively
using the Rodin prover and other associated tools, such as SMT solvers (CVC4, Z3, and veriT).
By achieving the required functional behavior for the smart purchase model, we have successfully
discharged all of the generated proof obligations that ensure consistency checking.

The model analysis is carried out with the help of the ProB [43] model checker, which can
be used to explore traces of Event-B models. The ProB tool can detect potential deadlocks and
supports automated consistency checking and constraint-based checking. In this work, we use the
ProB tool as a model checker to show the absence of errors (no counterexample exists) and the
absence of deadlock. It is worth noting that the ProB employs all of the described safety properties
during the model checking process in order to report any violations of safety properties against the
formalized system behavior. We also use the ProB tool for animating the models to validate the
developed smart purchase model. This validation approach entails gaining confidence that the
developed models are in accordance with the requirements.

6.3. Code Generation in Solidity
In this section, we will use our developed tool EB2Sol to generate Solidity smart contracts

from the formal Event-B model of smart purchase. EB2Sol is an Eclipse-based plug-in for code
generation in the Solidity language for the Rodin platform. A detailed description of the automatic
code generation is given in section 5.

A screen shot of the EB2Sol in the Rodin environment is shown in Fig. 4. After installing this
plug-in successfully, the menu Translator/EB2Sol and a tool button on the toolbar will appear. To
generate Solidity source code for any formal model, a user can select it from the EB2Sol menu
or tool button, and a dialog box will appear. This dialog box displays a list of currently active
projects. Any project can be chosen by the user to generate Solidity contracts, including a log file
containing information about the code generation process.

Figure 4: EB2Sol plug-in in the Rodin IDE
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In our case study, we generate Solidity source code from the proven smart purchase model us-
ing the EB2Sol plug-in. Before using this tool, we refine our concrete model by introducing a new
context containing Solidity type definitions (see Table 6) and removing the abstract operations and
non-supported symbols via data refinement. By defining some glueing invariants, this refinement
makes the smart purchase model deterministic. All new generated POs must be discharged before
generating smart contracts.

Smart contract generation from an Event-B model is straightforward. The EB2Sol tool gener-
ates Solidity smart contract files from the concrete model. Constants, type definitions, variables,
modifiers, and functions are all included in the generated smart contracts that are extracted from
the smart purchase model. The translated constants, type definitions, and variables are taken from
the generated code shown in code snippet 2.

1 enum ProductState {InStock,Booked,Packed,Transite,ReturnReq,
2 ReturnAck,Delivered,Closed} // Enumerated definition
3

4 int256 constant _timeInSec = 10;
5 //Solidity datatype declaration when constant is given
6 int256 constant balance = 500;
7 //Solidity datatype declaration when constant is given
8 ...
9 ...

10 uint256 price;
11 //Solidity datatype declaration when variable is given
12 uint256 returnWindow;
13 //Solidity datatype declaration when variable is given
14 ...

Code Snippet 2: Generated type declaration

The formalised smart purchase model yields a set of functions. These functions are generated
from events by analyzing various elements such as local parameters, guards, and actions. Event-B
events are converted into functions, and event parameters are used as function arguments. Modi-
fiers are added to each generated function in order to effectively call it. These associated modifiers
are defined as a function as well, using required/assert statements derived from Event-B guard
predicates.

The event actions are directly translated equivalent to Solidity assignment expressions. To
execute a set of actions in any function, all of the given modifiers must be TRUE. If the given
modifiers do not satisfy, the function body statements are skipped. The only excerpt from the
generated code equivalent to the given events is given in code snippet 3.

1 ...
2 modifier MOD_initiateSeller {
3 uint256 value = msg.value/3;
4 require((msg.value==3*value)&&(seller!=msg.sender));
5 _;
6 }
7 modifier MOD_confirmPurchase{
8 require((state==InStock)&&(msg.value==3*price));
9 _;

10 }
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11 ...
12 ...
13 function initiateSeller() MOD_initiateSeller public{
14 // Actions
15 seller = msg.sender;
16 price = msg.value / 3;
17 returnWindow = _timeInSec;
18 }
19 function confirmPurchase() MOD_confirmPurchase public{
20 // Actions
21 state = ProductState.Booked;
22 buyer = msg.sender;
23 }
24 ...

Code Snippet 3: Generated modifiers and functions

7. Discussion

This chapter has presented a framework for analysing, verifying and implementing the Solid-
ity smart contracts based on formal methods. Furthermore, the case study that we have presented
demonstrated the viability of our framework. This section discusses the main benefits and limita-
tions of our approach.

7.1. Benefits
Our proposed framework has the potential to improve blockchain system safety and quality,

including assisting in the system certification process for developing smart Solidity contracts. To
support the proposed framework, we use the Event-B modelling language to specify smart con-
tracts requirements. The main advantages of this approach are that it improves the process of
abstractly specifying smart contract requirements, formal development using correct by construc-
tion, and detecting potential flaws through rigorous analysis. This may enable us to analyse and
validate the important properties of consistency, deadlock-freedom and safety of complex transec-
tions. The main advantages of our approach are described in the following section.

7.1.1. Progressive development of smart contracts
For a long time, stepwise refinement has been used to model complex systems. Our proposed

framework adopted the key concepts of refinement for designing complex smart contracts. This
gradual development enables us to introduce concrete details and the required safety properties
associated with blockchain technology. The use of refinement reduces the complexities of design
and proof efforts by increasing proof automation.

7.1.2. Improving smart contract error detection
Our proposed framework included modelling and verification approaches for rigorous analysis

to ensure the functional behaviour of the designed smart contracts, as well as their refinement
steps. We can detect inconsistencies in the given requirements and refinement relations using
formal verification, where we must discharge all generated proof obligations. In addition, we may
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use the ProB model checker to validate the modelled contracts and ensure the absence of any
counter examples.

7.1.3. Minimising smart contract development cost
Errors are always less expensive to identify earlier in the development phase. Our framework

enables to analyse complex operations in order to define smart contracts. The use of formal rea-
soning in the design of complex smart contacts always results in a lower overall cost. Moreover,
the use of design patterns and refinement can be applied to the development of other similar smart
contracts.

7.2. Limitations
The proposed framework consists of formal modelling, verification and implementation. We

used the Event-B modelling language for modelling, Rodin tools for verification, and EB2Sol for
generating Solidity smart contacts. Here, we will go over some of the limitations of our approach
and the tools we have chosen.

7.2.1. Need careful analysis in modelling and implementation
We have used Rodin tools for verification and EB2Sol code generation in our work. In fact,

we must ensure the consistency of the designed smart contracts as well as the generation of the
Solidity smart contracts, as we use Solidity context file to derive a deterministic model manually.
All newly generated POs must be discharged before code generation. Currently, a user may need
to provide a Solidity context file and refined the model, including proof process, but this can be
automated in the future.

7.2.2. Need powerful theorem provers for smart contracts
In the current work, we discharged the generated POs using Rodin-supported proof tools.

Most proofs can be discharged automatically, but human interaction is inevitable when proofs
are complex. We need powerful theorem provers to automate the proof process when dealing with
complex and large smart contract requirements.

7.2.3. No standard in the generated smart contracts
The Solidity smart contracts must be expressive and optimised in order to use the least amount

of gas. Currently, the prototype tool EB2Sol does not take into account the required standard for
producing Solidity smart contracts. We need to improve our developed tool so that it can meet
the required standard for reducing gas consumption. Otherwise, Solidity smart contracts can be
generated manually from the last deterministic model in accordance with the preferred standards.

8. Conclusion

In this chapter, we presented a framework for analysing, verifying and implementing Solidity
smart contracts using the correct by construction approach in Event-B. The framework relies on
incremental development, which allows for the abstract modelling of Solidity contracts and then
further it can be refined to introduce concrete details, including the required safety and security
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properties. The refinement enables for the gradual modelling of complex transaction scenarios,
and the required properties can be added in a step-by-step approach.

For the implementation of Solidity smart contracts, we developed the prototype tool EB2Sol,
which generates source code automatically from verified and proven Event-B models. EB2Sol is a
new plugin for the Rodin platform for generating Solidity contracts. Development architecture and
a set of transformation functions are defined. The translation tool has been meticulously devel-
oped with safety properties preservation. The results detailed in this chapte are an architecture of
the translation process, to generate Solidity code from Event-B models following syntax directed
translations. Despite its limited syntax, it already covers the most of numerical applications and
supports powerful static-analysis methods. The current prototype tool has covered a subset of the
Event-B modelling language in order to generate Solidity subset.

We used a case study to better demonstrate the practicability of our proposed framework from
abstract modelling to implementation. The selected case study is successfully developed and
proven in the Rodin platform, and finally Solidity smart contracts are produced using our tool
EB2Sol.

Our current approach is based on first-order logic and refinement in order to develop a safe and
secure Solidity contracts that allow us to verify complex properties. Our developed tool currently
supports a subset of the Event-B modelling language. Due to the richness of the Event-B mod-
elling language, we intend to extend the current subset of Event-B modelling language for EB2Sol
in order to provide modeling and reasoning flexility as well as the ability to generate Solidity
contracts from any refinement level. Furthermore, we intend to expand our EB2Sol tool to cover
the remaining Solidity language constructs. Another important future task will be to validate the
defined translation principals for EB2Sol. We plan to develop a meta model in HOL to check the
correctness of translation rules. It may aid to certify the generated Solidity smart contracts.

[1] G. Wood, Ethereum: A secure decentralised generalised transaction ledger EIP-150 REVISION,
http://gavwood.com/paper.pdf (2014).

[2] Solidity Documentation, https://solidity.readthedocs.io.
[3] Solidity Github, https://github.com/ethereum/solidity.
[4] X. Zhao, Z. Chen, X. Chen, Y. Wang, C. Tang, The DAO attack paradoxes in propositional logic, in: 2017

4th International Conference on Systems and Informatics (ICSAI), 2017, pp. 1743–1746. doi:10.1109/
ICSAI.2017.8248566.

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, 1st Edition, Cambridge University Press,
New York, NY, USA, 2010.

[6] Project RODIN, Rigorous Open Development Environment for Complex Systems, http://rodin-b-
sharp.sourceforge.net/ (2004).

[7] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts sok, in: Proceedings of
the 6th International Conference on Principles of Security and Trust - Volume 10204, Springer-Verlag, Berlin,
Heidelberg, 2017, p. 164?186. doi:10.1007/978-3-662-54455-6_8.
URL https://doi.org/10.1007/978-3-662-54455-6_8

[8] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, Z. Li, A survey of smart contract formal specification and verification,
ACM Comput. Surv. 54 (7). doi:10.1145/3464421.
URL https://doi.org/10.1145/3464421

[9] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Ste-
fanescu, G. Rosu, Kevm: A complete formal semantics of the ethereum virtual machine, in: 2018 IEEE 31st
Computer Security Foundations Symposium (CSF), 2018, pp. 204–217. doi:10.1109/CSF.2018.00022.

[10] Y. Hirai, Defining the ethereum virtual machine for interactive theorem provers, in: M. Brenner, K. Rohloff,

22

http://dx.doi.org/10.1109/ICSAI.2017.8248566
http://dx.doi.org/10.1109/ICSAI.2017.8248566
https://doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/3464421
http://dx.doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
http://dx.doi.org/10.1109/CSF.2018.00022


J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, M. Jakobsson (Eds.), Financial
Cryptography and Data Security, Springer International Publishing, Cham, 2017, pp. 520–535.

[11] D. Annenkov, M. Milo, J. B. Nielsen, B. Spitters, Extracting smart contracts tested and verified in coq, in:
Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2021,
Association for Computing Machinery, New York, NY, USA, 2021, p. 105?121. doi:10.1145/3437992.
3439934.
URL https://doi.org/10.1145/3437992.3439934

[12] T. C. Le, L. Xu, L. Chen, W. Shi, Proving conditional termination for smart contracts, in: Proceedings of the
2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts, BCC ’18, Association for Computing
Machinery, New York, NY, USA, 2018, p. 57?59. doi:10.1145/3205230.3205239.
URL https://doi.org/10.1145/3205230.3205239

[13] S. K. Lahiri, S. Chen, Y. Wang, I. Dillig, Formal specification and verification of smart contracts for azure
blockchain, CoRR abs/1812.08829. arXiv:1812.08829.
URL http://arxiv.org/abs/1812.08829

[14] L. Alt, C. Reitwiessner, Smt-based verification of solidity smart contracts, in: T. Margaria, B. Steffen (Eds.),
Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice, Springer Interna-
tional Publishing, Cham, 2018, pp. 376–388.

[15] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova, A. Ras-
togi, T. Sibut-Pinote, N. Swamy, S. Zanella-Béguelin, Formal verification of smart contracts: Short paper, in:
Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, PLAS ’16,
Association for Computing Machinery, New York, NY, USA, 2016, p. 91?96. doi:10.1145/2993600.
2993611.
URL https://doi.org/10.1145/2993600.2993611

[16] I. Grishchenko, M. Maffei, C. Schneidewind, A semantic framework for the security analysis of ethereum smart
contracts, CoRR abs/1802.08660. arXiv:1802.08660.
URL http://arxiv.org/abs/1802.08660

[17] J. Zhu, K. Hu, M. Filali, J. Bodeveix, J. Talpin, Formal Verification of Solidity contracts in Event-B, CoRR
abs/2005.01261. arXiv:2005.01261.
URL https://arxiv.org/abs/2005.01261

[18] R. Banach, Verification-led smart contracts, in: A. Bracciali, J. Clark, F. Pintore, P. B. Rønne, M. Sala (Eds.),
Financial Cryptography and Data Security, Springer International Publishing, Cham, 2020, pp. 106–121.

[19] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, 1st Edition, Cambridge University Press,
New York, NY, USA, 2010.

[20] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin, Rodin: An Open Toolset for Modelling
and Reasoning in Event-B, Int. J. Softw. Tools Technol. Transf. 12 (6) (2010) 447–466.

[21] P. Behm, P. Benoit, A. Faivre, J.-M. Meynadier, Météor: A Successful Application of B in a Large Project,
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