Christian Anti

LOGIC-BASED SIMILARITY

published or not. The documents may come

Introduction

Detecting and exploiting similarities between seemingly distant objects is at the core of analogical reasoning which itself is at the core of artificial intelligence with applications to such diverse tasks as proving mathematical theorems and building mathematical theories, commonsense reasoning, learning, language acquisition, and story telling (e.g. [START_REF] Boden | Creativity and artificial intelligence[END_REF][START_REF] Gust | Analogical reasoning: a core of cognition[END_REF][START_REF] Hofstadter | Analogy as the core of cognition[END_REF][START_REF] Hofstadter | Surfaces and Essences. Analogy as the Fuel and Fire of Thinking[END_REF][START_REF] Krieger | Doing Mathematics: Convention, Subject, Calculation, Analogy[END_REF][START_REF] Pólya | of Mathematics and Plausible Reasoning[END_REF][START_REF] Winston | Learning and reasoning by analogy[END_REF][START_REF] Wos | The problem of reasoning by analogy[END_REF].

This paper develops a qualitative and logic-based notion of similarity from the ground up using only elementary tools of first-order logic centered around the fundamental modeltheoretic notion of type. The idea is to say that two elements, possibly from different domains, are similar iff they share a maximal set of abstract properties.

We show that the so-obtained notion of similarity has appealing mathematical properties (Section 3). Specifically, we show in our First and Second Isomorphism Theorems 5, 7 that similarity is compatible with isomorphisms, which is in line with [START_REF] Gentner | Structure-mapping: a theoretical framework for analogy[END_REF] famous structure-mapping theory of analogical reasoning.

In a broader sense, this paper is a further step towards a mathematical theory of analogical reasoning (cf. [START_REF] Antić | Analogical proportions[END_REF][START_REF] Antić | Analogical proportions II: abstract justifications[END_REF][START_REF] Antić | Analogical proportions III: first-order logic[END_REF]Antić, , 2023f, 2023c, 2023e), 2023e).

Similarity

This is the main section of the paper. Here we shall introduce from first principles a notion of similarity based on the well-known notion of model-theoretic type. We expect the reader to be fluent in first-order logic as it is presented for example in [START_REF] Hinman | Fundamentals of Mathematical Logic[END_REF].

In the remainder of the paper, we fix a first-order language L, and two L-structures A and B.

Recall that the type of an element collects all the properties of that element in a structure. Comparing two elements from different structures can thus be achieved by comparing their respective types. Formally, the type of a in A is usually defined by

T ype A (a) := {φ(y) | A |= φ(a)}.
Intuitively, the type of a contains all abstract properties of a in A-in a sense, it is the theory of A from a's perspective. Thus we can interpret the set T (a, b) := T ype A (a) ∩ T ype A (b) as the set of shared abstract properties of a and b. We thus expect the similarity of a and b to increase with the number of formulas in T (a, b) and it appears reasonable to say that a and b are similar iff T (a, b) is maximal. However, there are three problems.

First, if we require T (a, b) to be maximal with respect to a and b at the same time, we clearly have T (a, b) ⊆ T (a, a) and T (a, b) ⊆ T (b, b) and in most cases this inclusion is proper which means that a and b would be similar iff a = b which is too strong to be usefulwe therefore separate the maximality conditions and say that T (a, b) is maximal among the T (a, b ′), b ′ ∈ A, and maximal among the T (a ′ , b), a ′ ∈ A, respectively.

Second, since we always have T (a, b) ⊆ T (a, a), we run into the same problems as beforewe therefore require T (a, b) to be maximal with respect to b except for a, and maximally with respect to a except for b.

Third, if we allow arbitrary formulas to appear in the types of a and b, then we have

(y = a) ∨ (y = b) ∈ T (a, b ′) iff b ′ = b or b ′ = a, and we have (y = a) ∨ (y = b) ∈ T (a ′ , b) iff a ′ = a or a ′ = b,
which means that with the previously adapted maximality condition, again a and b are similar iff a = b, which is undesirable. We therefore restrict types to contain only formulas without disjunctions (which forces us to restrict negation as well).

This motivates the following definitions. We call an L-formula conjunctive iff it contains no disjunctions and negation occurs only in front of atoms to form literals. We denote the set of all conjunctive L-formulas by c-F m L .

The following definition is an adaptation of the above model-theoretic notion of type to conjunctive formulas. Define the conjunctive L-type (or c-type) of an element a ∈ A by

c-T ype A (a) := {φ(y) ∈ c-F m L | A |= φ(a)}.
We are now ready to formally introduce the main notion of the paper. Given a ∈ A and b ∈ B, we define the similarity relation by1 Characteristic justifications. Computing all justifications of a similarity is difficult in general which fortunately can be omitted in many cases.

We call a set J of justifications a characteristic set of justifications of a ≲ b in (A, B) iff J is a sufficient set of justifications, that is, iff

(1) J ⊆ c-T ype (A,B) (a ≲ b), and

(2)

J ⊆ c-T ype (A,B) (a ≲ b ′) implies b ′ = b, for each b ′ ̸ = a ∈ B. In case J = {φ} is a singleton set satisfying both conditions, we call φ a characteristic justification of a ≲ b in (A, B).
Example 1. Take for example the natural numbers N starting at 0 and the set 2 B of all subsets of some set B with the usual operations. Then it is reasonable to expect 0 to be similar to the empty set ∅. Given the joint language L containing a function symbol * standing for addition and union, respectively, we see that the (conjunctive) formula

φ(y) :≡ (∀z)(z * y = z) is a characteristic justification of the similarity (N, 2 B) |= 0 ≈ ∅ (2) since φ ∈ c-T ype (N,2 B) (0, B ′) iff B ′ = ∅, and φ ∈ c-T ype (N,2 B) (a, ∅) iff a ′ = 0.
Similarly, the (conjunctive) formula (here ⊛ stands for multiplication and intersection) ψ(y) :≡ (∀z)(z ⊛ y = y) is another characteristic justification of the similarity in (2).

Properties

In this section, we prove some elementary properties of similarity.

Theorem 2. In a single structure, the similarity relation is reflexive, symmetric, and in general not transitive. In a pair of structures, reflexivity may fail as well.

Proof. Symmetry holds trivially.

In a single structure, reflexivity holds trivially as well. To disprove reflexivity in a pair of structures (A, B), it suffices to find elements a ∈ A ∩ B and b ∈ B so that

c-T ype (A,B) (a ≲ a) ⊊ c-T ype (A,B) (a ≲ b),
and it is not hard to construct such counterexamples. For example, in the two structures A and B given, respectively, by

0 1 2 . . . f f f and 1 0 2 . . . f f f we have c-T ype (A,B) (1 ≲ 1) ⊊ c-T ype (A,B) (1 ≲ 0) which shows (A, B) |= 1 ̸ ≲ 1.
To disprove transitivity, consider the structures A, B, C given respectively by

a a ′ b b ′ c c ′ R R R It is easy to verify (A, B) |= a ≲ b and (B, C) |= b ≲ c whereas (A, C) |= a ̸ ≲ c since c-T ype (A,C) (a ≲ c) ⊊ c-T ype (A,C) (a ≲ c ′).

□

Problem 3. Characterize those structures in which the similarity relation is reflexive and transitive.

Isomorphism Theorems

It is reasonable to expect isomorphisms-which are bijective structure-preserving mappings between structures-to be compatible with similarity. Consider the following simple example. Let Σ := {a} be the alphabet consisting of the single letter a, and let Σ * denote the set of all words over Σ including the empty word ε. We can identify every sequence a n = a . . . a (n consecutive a's) with the non-negative integer n, for every n ≥ 0. Therefore, define the isomorphism F : (N, +) → (Σ * , •) via

F (0) := ε and F (n) := a n , n ≥ 1.
We expect the following similarities to hold:

((N, +), (Σ * , •)) |= n ≈ F (n), for all n ≥ 0.
That this is indeed the case is the content of the First Isomorphism Theorem 5 below.

Lemma 4 (Isomorphism Lemma). For any isomorphism F : A → B, c-T ype A (a) = c-T ype B (F (a)), for all a ∈ A.

Proof. A straightforward structural induction proof (cf. Hinman, 2005, Lemma 2.3.6). □

Theorem 5 (First Isomorphism Theorem). For any isomorphism F : A → B,

(A, B) |= a ≈ F (a)
, for all a ∈ A.

Proof. A direct consequence of the Isomorphism Lemma 4. □

The following counterexample shows that similarity is, in general, not compatible with homomorphisms. □

Future work

The major line of future research is to extend the concepts and results of this paper from first-order to second-order and higher-order logic (cf. [START_REF] Leivant | Higher order logic[END_REF].

Another major line of future work is to study logic-based similarity in concrete structures relevant in practice as for example in the setting of words as studied in computational linguistics and natural language processing. Since computing the set of all (characteristic) justifications and conjunctive types is difficult in general, it is reasonable to study fragments of our framework first by syntactically restricting the form of justifications (cf. Section 6.1).

Related work

There is a vast literature on similarity, most of which deals with quantitative approaches where similarity is numerically measured in one way or another; some works dealing with the similarity of words are [START_REF] Hirschberg | A linear space algorithm for computing maximal common subsequences[END_REF] and [START_REF] Egho | On measuring similarity for sequences of itemsets[END_REF]. A notable exception is [START_REF] Yao | Qualitative similarity[END_REF] where qualitative judgements of similarity are interpreted through statements of the form "a is more similar to b than c to d. [START_REF] Badra | On the role of similarity in analogical transfer[END_REF] analyze the role of qualitative similarity in analogical transfer.

6.1. Generalization-based similarity. A notable fragment of the above notion of similarity is due to [START_REF] Antić | Generalization-based similarity[END_REF]. For this, we associate with every L-term s(z) a g-formula of the form φ s(z) (y) :≡ (∃z)(y = s(z)).

We denote the set of all g-formulas over L by g-F m L . Notice that every g-formula is a conjunctive formula which means that we obtain a notion of g-similarity 2 (A, B) |= a ≈ g b by replacing c-T ype by g-T ype, which is based on g-formulas, in the definition of similarity. This coincides with the definition of generalization-based similarity in Antić (2023d).

Conclusion

This paper developed a notion of qualitative logic-based similarity from the ground up using only elementary notions of first-order logic centered around the fundamental notion of type. In a broader sense, this paper is a further step towards a mathematical theory of analogical reasoning.

 (A, B) |= a ≲ b iff c-T ype A (a) ∩ c-T ype B (b) is ⊆-maximal with respect to b except for a in case a ∈ B. We define (A, B) |= a ≈ b iff (A, B) |= a ≲ b and (B, A) |= b ≲ a, in which case we say that a and b are similar in (A, B). We extend similarity from elements to algebras by A ≲ B iff for each a ∈ A there exists some b ∈ B such that (A, B) |= a ≈ b, and A ≈ B iff A ≲ B and B ≲ A. For convenience, we define c-T ype (A,B) (a ≲ b) := c-T ype A (a) ∩ c-T ype B (b), and we call the formulas in that set justifications of a ≲ b in (A, B). Notice the symmetry c-T ype (A,B) (a ≲ b) = c-T ype (B,A) (b ≲ a). Of course, c-T ype A (a) ⊆ c-T ype B (b) implies (A, B) |= a ≲ b. (1) and c-T ype A (a) = c-T ype B (b) implies (A, B) |= a ≈ b.

Example 6 .F

 6 Let A := ({a, b}, f) and B := ({c}, f) be given by The mapping F : A → B is obviously a homomorphism. However, we clearly havec-T ype A (a) ∩ c-T ype B (c) ⊊ c-T ype A (b) ∩ c-T ype B (c) = c-T ype B (c),which shows (B, A) |= F (a) ̸ ≲ a and thus (A, B) |= a ̸ ≈ F (a). Theorem 7 (Second Isomorphism Theorem). For any isomorphims F : A → C and G : B → D, (A, B) |= a ≈ b ⇔ (C, D) |= F (a) ≈ G(b). Proof. A direct consequence of c-T ype A (a) = c-T ype C (F (a)) and c-T ype B (b) = c-T ype D (F (b)).

In the rest of the paper, we will abbreviate "is ⊆-maximal with respect to b except for a in case a ∈ B" by "is b-maximal".