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Abstract

Let G be a bridgeless cubic graph. The Berge–Fulkerson Conjecture (1970s)
states that G admits a list of six perfect matchings such that each edge of G
belongs to exactly two of these perfect matchings. If answered in the affir-
mative, two other recent conjectures would also be true: the Fan–Raspaud
Conjecture (1994), which states that G admits three perfect matchings such
that every edge of G belongs to at most two of them; and a conjecture by
Mazzuoccolo (2013), which states that G admits two perfect matchings whose
deletion yields a bipartite subgraph of G. It can be shown that given an arbi-
trary perfect matching of G, it is not always possible to extend it to a list of
three or six perfect matchings satisfying the statements of the Fan–Raspaud
and the Berge–Fulkerson conjectures, respectively. In this paper, we show
that given any 1+-factor F (a spanning subgraph of G such that its vertices
have degree at least 1) and an arbitrary edge e of G, there always exists a
perfect matching M of G containing e such that G \ (F ∪ M) is bipartite.
Our result implies Mazzuoccolo’s conjecture, but not only. It also implies
that given any collection of disjoint odd circuits in G, there exists a perfect
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matching of G containing at least one edge of each circuit in this collection.

Keywords: factor, perfect matching, cubic graph, snark, S4-Conjecture,
Fan–Raspaud Conjecture, Berge–Fulkerson Conjecture
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1. Introduction1

The behaviour of perfect matchings in cubic graphs is amongst the most2

well-studied themes in graph theory. One of the first classical results was3

made by Petersen in 1891 [18], who showed that every bridgeless cubic graph4

admits a perfect matching. These graphs not only do admit a perfect match-5

ing, but in 2011, one of the most prominent conjectures about perfect match-6

ings in bridgeless cubic graphs was completely solved by Esperet et al. [1].7

The conjecture, proposed by Lovász and Plummer in the 1970s, stated that8

the number of perfect matchings in a bridgeless cubic graph grows exponen-9

tially with its order (see [9]). Another conjecture which has baffled mathe-10

maticians for more than 50 years is the following.11

Conjecture 1.1 (Fulkerson, 1971 [3]). Every bridgeless cubic graph G admits12

six perfect matchings such that each edge in G is contained in exactly two of13

these six perfect matchings.14

Such a list of six perfect matchings shall be referred to as a Fulkerson15

cover. Although initially stated by Fulkerson, Conjecture 1.1 is also at-16

tributed to Berge and has been widely referred to as the Berge–Fulkerson17

Conjecture. In hindsight, such a name was more than appropriate as Fulker-18

son’s conjecture was actually shown to be equivalent to the following seem-19

ingly weaker conjecture made by Berge (see [13] for more details).20

Conjecture 1.2 (Berge, unpublished). Every bridgeless cubic graph G ad-21

mits five perfect matchings such that every edge in G is contained in at least22

one of these five perfect matchings.23

In the sequel, in order to avoid confusion, the Berge–Fulkerson Conjecture24

shall refer exclusively to the statement by Fulkerson, which, despite being25

quite simple and uncomplicated, remains widely open. As the years went by,26

in an attempt to advance in this direction, weaker assertions started to be27

considered. Such an example is a conjecture by Fan and Raspaud.28
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Conjecture 1.3 (Fan–Raspaud, 1994 [2]). Every bridgeless cubic graph ad-29

mits three perfect matchings M1,M2,M3 such that M1 ∩M2 ∩M3 = ∅.30

Three perfect matchings satisfying this property shall be referred to as31

an FR-triple. As one can readily deduce, any three perfect matchings from32

a Fulkerson cover form an FR-triple. Although, as stated by the authors33

in [2], this conjecture is weaker than the Berge–Fulkerson Conjecture; once34

again, it remains unresolved. The best result in this direction is a result35

by the second author and Škoviera [11] who show that the Fan–Raspaud36

Conjecture is true for bridgeless cubic graphs having oddness 2. The oddness37

of a bridgeless cubic graph G is the least (even) number of odd circuits in a38

2-factor amongst all possible 2-factors of G. Seemingly stronger formulations39

of the Fan–Raspaud Conjecture are discussed in [15, 17, 20], and shown to40

be equivalent to the original formulation.41

A Fano colouring of a cubic graph G is a colouring of the edges of G with42

the points of the Fano plane such that the colours given to the three edges43

incident to a vertex of G form a line of the Fano plane, where the latter44

consists of seven points and seven lines (see Figure 1(a)). A cubic graph45

admits a Fano colouring if and only if it is bridgeless (see [4]). In [10], the46

second author and Škoviera deal with the question of how many points and47

lines of the Fano plane are sufficient to colour all bridgeless cubic graphs.48

It is shown that for a Fano colouring of a snark (a non-3-edge-colourable49

bridgeless cubic graph), all seven points and at least four lines are needed.50

In fact, it is proven that six, and conjectured that four, lines of the Fano51

plane colour every bridgeless cubic graph. For i ∈ {4, 5}, the statement that52

for every bridgeless cubic graph there exists a Fano colouring with at most53

i lines is denoted as the Fi-Conjecture. It is shown that the F4-Conjecture54

is equivalent to the Fan–Raspaud Conjecture, and that the F5-Conjecture is55

equivalent to saying that every bridgeless cubic graph G admits two perfect56

matchings whose intersection does not contain any odd edge-cut of G. In57

2013, Mazzuoccolo proposed the following conjecture, which is equivalent to58

the F5-Conjecture restricted to only those odd edge-cuts that separate odd59

circuits.60

Conjecture 1.4 (Mazzuoccolo, 2013 [12]). For any bridgeless cubic graph61

G, there exist two perfect matchings such that the deletion of their union62

leaves a bipartite subgraph of G.63

Let H and G be graphs. An H-colouring of G is a map f : E(G) → E(H)64

such that for any vertex u ∈ V (G) there exists a vertex v ∈ V (H) with65
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(0, 0, 1)

(0, 1, 0)(1, 0, 0)

(0, 1, 1)(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(a) (b)

Figure 1: (a) The Fano plane (the configuration where points are non-zero elements of Z3

2

and lines are triples that sum up to zero); (b) The graph S4.

f (∂G(u)) = ∂H(v), where ∂G(u) and ∂H(v) respectively denote the sets of66

edges in G and H incident to the vertices u and v. Conjecture 1.4 was later67

referred to as the S4-Conjecture by Mazzuoccolo and the last author, since68

it is equivalent to colouring the edges of G with the edges of the graph S469

shown in Figure 1(b) (see [14, 15, 20] for more details). Consequently, as70

in the last two cited documents, given a bridgeless cubic graph G, a pair of71

perfect matchings whose deletion yields a bipartite subgraph of G shall be72

referred to as an S4-pair.73

In 2013, Mkrtchyan [16] showed that if the Petersen Colouring Conjecture74

by Jaeger [5] is true, the Petersen graph is the unique connected bridgeless75

cubic graph which can colour all bridgeless cubic graphs (colouring is done in76

the same manner as H-colourings defined above). In [14] this was extended77

and it was shown that if one was to remove all degree conditions on the graph78

H by which we are colouring, any bridgeless cubic graph can be coloured by79

the Petersen graph, and by a unique other graph: S4 (see [14] for more details80

about the uniqueness of S4). Related results can be found in [6, 7].81

Clearly, by the result in [11], any bridgeless cubic graph having oddness 282

admits an S4-pair. The authors of [15, 20] extend this result to bridgeless cu-83

bic graphs having oddness 4. The authors also show that if the S4-Conjecture84

is true, then there exist cubic graphs admitting a bridge for which an S4-pair85

exists – this is not possible when considering the Berge–Fulkerson Conjec-86

ture and the weaker conjectures mentioned above, because if a cubic graph87

admitting a perfect matching contains a bridge, then, every perfect matching88

of this graph must intersect the bridge (itself an odd edge-cut).89
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Theorem 1.5 ([15, 20]). Let G be a connected cubic graph having k bridges,90

all of which lie on a single path, for some positive integer k. If the S4-91

Conjecture is true, then G admits an S4-pair.92

1.1. Important definitions and notation93

Graphs considered in this paper may contain parallel edges, but they94

cannot contain loops, unless otherwise stated. We speak about a simple95

graph if parallel edges are not allowed.96

Let G be a graph and (V1, V2) be a partition of its vertex set, that is,97

V1 ∪ V2 = V (G) and V1 ∩ V2 = ∅. Then, by E(V1, V2) we denote the set98

of edges having one endvertex in V1 and one in V2; we call such a set an99

edge-cut. An edge which itself is an edge-cut of size one is a bridge.100

An edge-cut X = E(V1, V2) is called cyclic if both graphs G[V1] and101

G[V2], obtained from G after deleting X, contain a circuit (a 2-regular con-102

nected subgraph). The cyclic edge-connectivity of a graph G is defined as103

the smallest size of a cyclic edge-cut in G if G admits one; it is defined as104

|E(G)| − |V (G)| + 1 otherwise. For cubic graphs, the latter only concerns105

three graphs: K4, K3,3, and the graph consisting of two vertices joined by106

three parallel edges, whose cyclic edge-connectivity is thus 3, 4, and 2, re-107

spectively.108

Let G be a bridgeless cubic graph. A 1+-factor of G is the edge set109

of a spanning subgraph of G such that its vertices have degree 1, 2 or 3.110

In particular, a perfect matching and a 2-factor of G are 1+-factors whose111

vertices have exactly degree 1 and 2, respectively. A parity subgraph J of a112

graph G is a subgraph H such that the parity of the degree of every vertex is113

the same in H as is in G. For cubic graphs, a parity subgraph is a 1+-factor114

with no vertices of degree 2. We remark that in [8], parity subgraphs (also115

known as joins in the literature) have been already studied with respect to116

problems discussed above.117

Definition 1.6. A 1+-factor F and a perfect matching M of G form a118

quelling pair if G \ (F ∪M) is bipartite.119

2. Disjoint odd circuits in bridgeless cubic graphs120

In [15, 20], a stronger problem than the S4-Conjecture is proposed.121

Problem 2.1 ([15, 20]). Establish whether any perfect matching of a bridge-122

less cubic graph can be extended to an S4-pair.123
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It is known that not every perfect matching can be extended to an FR-124

triple and consequently, neither to a Fulkerson cover. In fact, consider the125

Petersen graph P and expand each of its vertices into a triangle (see Figure126

2). Let the resulting graph on 30 vertices be denoted by P ′, and let N be the127

set of edges in P ′ corresponding to E(P ). The set N is a perfect matching128

of P ′, and it is not difficult to see that it cannot be extended to an FR-triple129

or to a Fulkerson cover. However, as can be seen in Figure 2, N (shown as130

dashed lines) can in fact be extended to an S4-pair of P ′ (with the edges of131

the second perfect matching shown as dotted lines).132

Figure 2: An example of an S4-pair in the graph P ′ obtained from the Petersen graph P

by replacing each vertex by a triangle.

Moreover, saying that Problem 2.1 is true for every bridgeless cubic graph133

is equivalent to the following statement: for every bridgeless cubic graph G,134

given any collection O of disjoint odd circuits of G, there exists a perfect135

matching M such that M ∩ E(C) 6= ∅, for every C ∈ O (see [15, 20]). One136

implication is clearly obvious. Thus, assume that every perfect matching137

of any bridgeless cubic graph can be extended to an S4-pair, and consider138

a collection of disjoint odd circuits in a bridgeless cubic graph G. Expand139

every vertex not covered by the circuits in the collection to a triangle, and140

let the resulting bridgeless cubic graph be denoted by G′. The initial odd141

circuits and all the new expanded triangles give a 2-factor R of G′. Let142

N ′ = E(G′)\R. By our assumption, there exists a perfect matching M ′ such143

that G′\(N ′∪M ′) is bipartite, implying that M ′ intersects all the odd circuits144

in R, including all the new expanded triangles. Let M ′

△
be the set of edges145

belonging simultaneously to M ′ and the new expanded triangles. One can146

immediately see that the set of the edges of G corresponding to M ′ \M ′

△
is a147

perfect matching of G intersecting all the odd circuits in the initial collection148

of odd circuits in G, proving the equivalence of the two statements.149
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2.1. Main result150

We now proceed to proving our main result, and consequently solve Prob-151

lem 2.1 and the S4-Conjecture.152

Theorem 2.2. Let G be a bridgeless cubic graph. Let F be a 1+-factor of G153

and let e ∈ E(G). Then, there exists a perfect matching M of G such that154

e ∈ M , and F and M are a quelling pair.155

Proof. Let G be a minimum counterexample to the above statement. Let156

e ∈ E(G) be an edge of G such that there exists a 1+-factor which cannot be157

extended to a quelling pair by a perfect matching containing e. Amongst all158

such 1+-factors of G, we can choose an inclusion-wise maximal one, denoted159

by F . By the choice of F , we may assume that e ∈ F and that G\F contains160

only (disjoint) odd circuits, that is, F is a join. Let the set of components of161

G \ F be denoted by O.162

If G is 3-edge-colourable, then its edge set decomposes into three perfect163

matchings. It suffices to take M to be the one containing e. Then G \M is164

a union of even circuits, and so F and M are a quelling pair by definition.165

Therefore, G is not 3-edge-colourable, and hence, it is not bipartite. In166

particular, G is not the unique bipartite cubic graph on two vertices.167

It is easy to see that we may assume that G is connected.168

169

Claim 1. The graph G does not have any 2-edge-cuts.170

Proof of Claim 1. Suppose that G admits a 2-edge-cut E(V ′, V ′′) with171

E(V ′, V ′′) = {f1, f2} =: X, where f1 = v′1v
′′

1 and f2 = v′2v
′′

2 for some172

v′1, v
′

2 ∈ V ′ and v′′1 , v
′′

2 ∈ V ′′. Since G is bridgeless, v′1 6= v′2 and v′′1 6= v′′2 .173

See Figure 3 for an illustration.174

v′
1

v′
2

v′′
1

v′′
2

e′ e′′

G′ G′′

v′
1

v′
2

v′′
1

v′′
2

f1

f2

G

Figure 3: The graphs G′ and G′′ when G admits a 2-edge-cut {f1, f2}.

By the choice of F , we have that either X is contained in the edge set of175

some odd circuit CX in O, or X ⊂ F . Let G′ and G′′ be the two graphs on176
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the vertex sets V ′ and V ′′ obtained from G after deleting X and adding the177

edges e′ = v′1v
′

2 and e′′ = v′′1v
′′

2 , respectively. Let178

F ′ =

{

F ∩ E(G′) if F ∩X = ∅,
(F ∩ E(G′)) ∪ {e′} otherwise;

and let179

F ′′ =

{

F ∩ E(G′′) if F ∩X = ∅,
(F ∩ E(G′′)) ∪ {e′′} otherwise.

Clearly, F ′ (F ′′) is a 1+-factor of G′ (G′′, respectively).180

Without loss of generality, we may assume that at least one of the end-181

vertices of e corresponds to a vertex of G′. First, consider the case when182

e ∈ X. Observe that by our choice of F , X ⊂ F . By minimality of G, there183

exists a perfect matching M ′ of G′ (M ′′ of G′′) containing e′ (e′′) such that184

F ′ and M ′ (F ′′ and M ′′) are a quelling pair of G′ (of G′′, respectively). Con-185

sequently, M = M ′ ∪M ′′ ∪X \ {e′, e′′} is a perfect matching of G containing186

e. Moreover, since X ⊂ M , F and M are a quelling pair of G, contradicting187

our initial assumption.188

Therefore, e corresponds to an edge in G′ \ e′. For simplicity, we shall189

refer to the edge in G′ corresponding to e, with the same name, that is, by190

e. By minimality of G, there exists a perfect matching M ′ of G′ containing191

e such that F ′ and M ′ are a quelling pair of G′.192

If e′ ∈ M ′, then let M ′′ be a perfect matching of G′′ containing e′′ such193

that F ′′ and M ′′ are a quelling pair of G′′. Such a perfect matching M ′′ exists194

by minimality of G. Once again, M = M ′ ∪ M ′′ ∪ X \ {e′, e′′} is a perfect195

matching of G containing e, and since X ⊂ M , F and M are a quelling pair196

of G. Thus, e′ /∈ M ′.197

In this case, let e′′′ be an edge adjacent to e′′ in G′′. By minimality of G,198

there exists a perfect matching M ′′ of G′′ containing e′′′ such that F ′′ and M ′′
199

are a quelling pair of G′′. Since e′′ /∈ M ′′, M = M ′∪M ′′ is a perfect matching200

of G containing e. It remains to prove that F and M are a quelling pair of G.201

Every odd circuit C 6= CX in O corresponds to an odd circuit either in G′\F ′
202

or in G′′ \ F ′′. The odd circuit CX (if it exists), corresponds to two circuits203

C ′

X and C ′′

X in G′\F ′ and G′′\F ′′, respectively, of different parity. Therefore,204

at least one of them (the odd one) is hit, that is, intersected, by at least one205

edge of M ′ or M ′′ in G′ or G′′, respectively, and thus, CX is hit by at least one206

edge of M in G. Indeed, F and M are a quelling pair of G, a contradiction. �207

208
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In particular, Claim 1 implies that G does not have any parallel edges,209

that is, G is simple.210

211

Claim 2. The graph G does not have any cyclic 3-edge-cuts.212

Proof of Claim 2. Suppose that G admits a cyclic 3-edge-cut E(V ′, V ′′) with213

E(V ′, V ′′) = {f1, f2, f3} =: X, where each fi = v′iv
′′

i , for some v′1, v
′

2, v
′

3 ∈ V ′
214

and v′′1 , v
′′

2 , v
′′

3 ∈ V ′′. Since G has no 2-edge-cuts, the vertices v′1, v
′

2, v
′

3, v
′′

1 , v
′′

2 , v
′′

3215

are all distinct.216

By the choice of F , the parity of |F ∩X| is odd, that is, either |F ∩X| =217

3, meaning there is no odd circuit in O intersecting X, or |F ∩ X| = 1,218

meaning the cut X is intersected by a unique circuit CX in O. Without loss219

of generality, we shall assume that when |F ∩X| = 1, F ∩X = f1.220

Let G′ and G′′ be the two graphs obtained from G after deleting X and221

joining the vertices v′i to a new vertex v′, and the vertices v′′i to a new vertex222

v′′. For each i ∈ {1, 2, 3}, let e′i = v′iv
′ and e′′i = v′′i v

′′.223

v′
1

v′
2

v′
3

v′ v′′
v′′
1

v′′
2

v′′
3

G′ G′′

v′
1

v′
2

v′
3

v′′
1

v′′
2

v′′
3

f1

f2

f3

G

Figure 4: The graphs G′ and G′′ when G admits a cyclic 3-edge-cut {f1, f2, f3}.

Let224

F ′ =

{

(F ∩ E(G′)) ∪ {e′1} if |F ∩X| = 1,
(F ∩ E(G′)) ∪ {e′1, e

′

2, e
′

3} otherwise.

Similarly, let225

F ′′ =

{

(F ∩ E(G′′)) ∪ {e′′1} if |F ∩X| = 1,
(F ∩ E(G′′)) ∪ {e′′1, e

′′

2, e
′′

3} otherwise.

It is not hard to see that F ′ (F ′′) is a 1+-factor of G′ (of G′′, respectively).226

Every odd circuit C 6= CX in O corresponds to an odd circuit either in G′\F ′
227

or in G′′ \ F ′′. The odd circuit CX (if it exists) corresponds to two circuits228

C ′

X and C ′′

X in G′ \ F ′ and G′′ \ F ′′, respectively, having different parity.229
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Without loss of generality, we may assume that at least one of the end-230

vertices of e corresponds to a vertex in V ′. We consider two cases, depending231

on the size of |F ∩X|.232

Case A. First, consider the case when |F ∩X| = 3. When e ∈ X, say e =233

f1, then, by minimality of G, there exists a perfect matching M ′ of G′ (M ′′
234

of G′′) containing e′1 (e′′1), such that F ′ and M ′ (F ′′ and M ′′) form a quelling235

pair of G′ (of G′′, respectively). Consequently, M = M ′∪M ′′∪{f1}\{e
′

1, e
′′

1}236

is a perfect matching of G containing e = f1, and moreover, F and M are a237

quelling pair of G.238

It remains to consider the case when e /∈ X, and so the endvertices of e239

both correspond to vertices in G′. Once again, for simplicity, we shall refer240

to this edge as e. Let M ′ be a perfect matching of G′ containing e such that241

F ′ and M ′ are a quelling pair of G′. Without loss of generality, assume that242

e′1 ∈ M ′. Let M ′′ be a perfect matching of G′′ containing e′′1 such that F ′′ and243

M ′′ are a quelling pair of G′′. Let M = M ′ ∪M ′′ ∪ {f1} \ {e
′

1, e
′′

1}. This is a244

perfect matching of G containing e, and as before, F and M form a quelling245

pair of G, a contradiction.246

Case B. Suppose that |F ∩ X| = 1. When e ∈ X, say e = fi, then,247

by minimality of G, there exists a perfect matching M ′ of G′ (M ′′ of G′′)248

containing e′i (e′′i ), such that F ′ and M ′ (F ′′ and M ′′) form a quelling pair of249

G′ (of G′′, respectively). Consequently, M = M ′ ∪M ′′ ∪ {fi} \ {e
′

i, e
′′

i } is a250

perfect matching of G containing e = fi. To observe that F and M form a251

quelling pair of G, it suffices to note that the only odd circuit in O possibly252

not intersected by M is CX . However, this can only happen if i = 1, and, if253

this is the case, then either C ′

X or C ′′

X is odd, and so it is hit by an edge of254

M ′ or M ′′, not incident to v′ or v′′. However, this means that CX is also hit255

by the corresponding edge of M in G, a contradiction.256

It remains to consider the case when e /∈ X, and so the endvertices of e257

both correspond to vertices in G′. Once again, for simplicity, we shall refer258

to this edge as e. Let M ′ be a perfect matching of G′ containing e such that259

F ′ and M ′ are a quelling pair of G′. We have e′i ∈ M ′ for some i ∈ {1, 2, 3}.260

Let M ′′ be a perfect matching of G′′ containing e′′i such that F ′′ and M ′′ are261

a quelling pair of G′′. Let M = M ′ ∪M ′′ ∪ {fi} \ {e
′

i, e
′′

i }. This is a perfect262

matching of G containing e. As before, F and M form a quelling pair of G,263

unless i = 1 and no edge of G′ or G′′ corresponding to an edge of CX is hit264

by M ′ or M ′′, which is impossible since either C ′

X or C ′′

X is an odd circuit. �265

266

From this point on we may assume that G has no cyclic 3-edge-cuts.267
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Therefore, it is cyclically 4-edge-connected, unless G = K4, but for this268

particular graph it is easy to see that it is not a counterexample, since for269

every edge e, the complement of (the only) perfect matching containing e is270

an even circuit.271

We now consider the edges at distance 2 from e (distance measured as272

the distance of the corresponding vertices in the line graph of G).273

Claim 3. Let f be an edge at distance 2 from e. Then, f ∈ F .274

Proof of Claim 3. We will use a procedure that transforms a cubic graph275

G into a cubic graph G′ smaller than G, such that every perfect matching276

of G′ containing a certain edge can be extended into a perfect matching of277

G containing the corresponding edge. This operation was already used by278

Voorhoeve [19] to study perfect matchings in bipartite cubic graphs and it is279

a key ingredient for counting perfect matchings in general in [1].280

Let f = uv, let the neighbours of u distinct from v be α and γ, and let281

the neighbours of v distinct from u be β and δ. In particular, since G is282

cyclically 4-edge-connected, these four vertices are all distinct. Without loss283

of generality, we may assume that α is an endvertex of e.284

e α
u

vβ δ

γ

f

e α

β δ

γ

G′G

Figure 5: The vertices α, β, γ, δ and an (αβ : γδ)uv-reduction.

As shown in Figure 5, we obtain a smaller graph (possibly containing par-285

allel edges) by deleting the endvertices of f (together with all edges incident286

to them) and adding the edges αβ and γδ. Let this resulting graph be G′.287

We shall say that G′ is obtained after an (αβ : γδ)uv-reduction. It is well-288

known that when applying this operation, the cyclic edge-connectivity of a289

cubic graph can drop by at most 2. Since G is cyclically 4-edge-connected,290

G′ is bridgeless.291

Let the edge in G′ corresponding to e, and the vertices in G′ correspond-292

ing to α, β, γ, δ be denoted by the same name. We recall that any perfect293

matching of G′ which contains e can be extended to a perfect matching of294

G containing the edge e (see also Figure 6). In fact, let M ′ be a perfect295

matching of G′ containing e. This is extended to a perfect matching M of G296

containing e as follows:297
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M =

{

M ′ ∪ {uγ, vδ} \ {γδ} if γδ ∈ M ′,
M ′ ∪ {f} otherwise.

e α
u

vβ δ

γ

f

e α

β δ

γ

GG′

e α
u

vβ δ

γ

f

e α

β δ

γ

GG′

Figure 6: Extending a perfect matching of G′ containing e to a perfect matching of G

containing e. Dotted lines represent edges in M or M ′.

Suppose that for some edge f at distance 2 from e we have f /∈ F . By the298

choice of F , f is in some odd circuit Cf in O. This means that exactly one299

of uα and uγ, and exactly one of vβ and vδ belong to Cf . Without loss of300

generality, we may assume that uα ∈ F if and only if vβ ∈ F (otherwise, we301

rename β and δ). Let G′ be the graph obtained from G after an (αβ : γδ)uv-302

reduction. Let F ′ be the 1+-factor of G′ as follows:303

F ′ =

{

F ∪ {αβ} \ {uα, vβ} if {uα, vβ} ⊂ F ,
F ∪ {γδ} \ {uγ, vδ} otherwise.

This is portrayed in Figure 7.304

α
u

vβ δ

γ

f

α

β δ

γ

G′G

α
u

vβ δ

γ

f

α

β δ

γ

G′G

Figure 7: If f 6∈ F , then we apply induction on G′ – the graph obtained from G after an
(αβ : γδ)uv-reduction. Dashed lines represent edges in F ′ or F .

Observe that every odd circuit C 6= Cf remains the same in G′; and305

that Cf is transformed into an odd circuit C ′

f in G′, shorter than Cf by two306

edges. Since G′ is bridgeless and its order is strictly less than G, it is not a307

counterexample. Let M ′ be a perfect matching of G′ containing e such that308

F ′ and M ′ are a quelling pair. We extend this perfect matching to a perfect309

matching M of G containing e as described above (see Figure 6), and claim310

that F and M are a quelling pair. Every odd circuit C ′ 6= C ′

f in G′ \F ′ is hit311
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by an edge of M ′ in G′, and so the corresponding circuit C is hit by the corre-312

sponding edge of M in G. The odd circuit C ′

f is hit by an edge M ′ in G′, and313

so the corresponding circuit Cf is hit by the corresponding edge in G, unless314

the hitting edge is αβ (or γδ), but then Cf is hit by at least one edge (in315

fact, two edges) on the path from α to β (or from γ to δ, respectively) which316

contains u and v. Hence, F and M are a quelling pair of G, a contradiction. �317

318

From this point on we may assume that for every edge f at distance 2319

from e we have f ∈ F . As a consequence, by the maximality of F , we have320

that all the edges at distance at most 1 from e are in F , otherwise there321

would be a component in O which is not a circuit, a contradiction. Once322

again, let us consider an edge f = uv at distance 2 from e. Let α, β, γ and323

δ be as defined in Claim 3. The edge uγ is at distance 2 from e, and so324

uγ ∈ F , implying that uα ∈ F as well. Furthermore, it can be easily seen325

that vβ ∈ F if and only if vδ ∈ F .326

Consider first the case when {vβ, vδ} ⊂ F . Then, in the graph G′,327

obtained by an (αβ : γδ)uv-reduction, the 1+-factor F ′ = F ∪ {αβ, γδ} \328

{uα, vβ, uv, uγ, vδ} can be extended to a quelling pair of G′ by a perfect329

matching M ′ containing e. It is easy to see that the perfect matching M (of330

G) containing e obtained as an extension of M ′ forms a quelling pair with F331

in G, a contradiction. This implies that vβ and vδ do not belong to F .332

When {vβ, vδ}∩F = ∅, we cannot use the reduction portrayed in Figure333

5 as we do not have a guarantee that we can obtain a perfect matching M334

intersecting the odd circuit in O containing the edges vβ and vδ. Since G is335

cyclically 4-edge-connected, this latter odd circuit is of length at least 5. Let336

δ, v, β, y, z be consecutive and distinct vertices on this odd circuit (see Figure337

8). Moreover, let w and x be the vertices in G such that {wβ, xy} ⊂ F . We338

proceed by applying an (αβ : γδ)uv-reduction followed by an (αx : wz)βy-339

reduction as portrayed in Figure 8.340

e α
u

v

β

δ

γ

f

y

z

x

w

e α

β

δ

γ

y

z

x

w

e α

δ

γ

z

x

w

G′G

Figure 8: An (αβ : γδ)uv-reduction followed by an (αx : wz)βy-reduction.
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Let the resulting graph after these two reductions be denoted by G′. We341

remark that G′ may have parallel edges and even loops. Let F ′ = F ∩342

E(G − {u, v, β, y}) ∪ {αx,wz, γδ}. Since G′ is obtained by applying twice343

the reduction at an edge at distance 2 from e, a perfect matching of G′
344

containing e can always be extended to a perfect matching of G containing345

e (recall that βy cannot be adjacent to e, otherwise βy ∈ F ). Moreover, any346

such matching contains either the edge βy or the edge yz, and so it hits the347

odd circuit in O containing the edges vβ and vδ. Therefore, as long as G′
348

is bridgeless, by minimality of G, there exists a perfect matching M ′ of G′
349

containing e such that F ′ and M ′ are a quelling pair of G′. This extends to a350

perfect matching M of G containing e such that F and M are a quelling pair351

of G. This contradicts our initial assumption that G is a counterexample.352

Consequently, G′ must admit some bridge g. Let Ω1 = {α, γ, δ, w, x, z} and353

let Ω2 = {u, v, β, y}.354

In order to prove that G′ is bridgeless, we prove that it is 2-edge-connected355

(which is a stronger property). Before considering an edge-cut of size one, we356

prove that the graph G′ is connected. For, suppose that G′ is disconnected.357

Then G′ admits at least two components. Label the vertices of a first compo-358

nent by A, and the remaining vertices by B. This shall result in a labelling359

of the vertices of G′ such that each edge in G′ is monochromatic (an edge in360

G′ is said to be monochromatic if its endvertices have the same label). For361

the three edges αx, wz, and γδ, either their endpoints receive all the same362

label, or two of them receive one label and the remaining four receive the363

other. We first extend this labelling of V (G′) to a partial labelling of V (G)364

by giving to the vertices in V (G)−Ω2 the same label they had in G′. Next,365

in both cases, we label all the vertices in Ω2 with the label appearing four366

or six times in Ω1, thus obtaining a labelling of G such that there are at367

most two edges which are not monochromatic. However, this means that G368

is either disconnected or contains a 2-edge-cut, a contradiction.369

Therefore, G′ must be connected. We label the vertices of G′ \ {g} with370

labels A and B depending in which connected component of G′ \ {g} they371

belong to. Consequently, G′ has exactly one edge which is not monochro-372

matic: the bridge g. We consider different cases depending on the number373

of vertices in Ω1 labelled A in G′, and show that, in each case, a bridge in374

G′ would imply that G is not cyclically 4-edge-connected. Without loss of375

generality, we shall assume that the number of vertices in Ω1 labelled A is at376

least the number of vertices in Ω1 labelled B. We consider four cases.377
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(B0) All the vertices in Ω1 are labelled A in G′.378

As above, we extend this labelling to a partial labelling of G, and then379

give label A to all the vertices in Ω2. However, this means that G has380

exactly one edge, corresponding to g, which is not monochromatic, a381

contradiction, since G does not admit a bridge.382

(B1) Exactly 5 vertices in Ω1 are labelled A in G′.383

This means that one of the edges in {αx,wz, γδ} is the bridge g. Once384

again, we extend this labelling to a partial labelling of G, and then385

give label A to all the vertices in Ω2. However, this means that G has386

an edge which has exactly one endvertex in Ω1 labelled B and exactly387

one endvertex in Ω2 labelled A, implying that G admits a bridge, a388

contradiction once again.389

(B2) Exactly 4 vertices in Ω1 are labelled A in G′.390

Since G′ has exactly one edge which is not monochromatic, the edges391

in {αx,wz, γδ} are all monochromatic. As in the previous cases, we392

extend this labelling to a partial labelling of V (G), and then give label393

A to all the vertices in Ω2. However, this means that G has exactly two394

edges each having exactly one endvertex in Ω1 labelled B and exactly395

one endvertex in Ω2 labelled A. These two edges together with the396

edge in G corresponding to the bridge g form a 3-edge-cut in G. Since397

G has no cyclic 3-edge-cuts, this cut must be trivial – it separates a398

singleton from the rest of the graph. Therefore, one of the edges αx,399

wz, or γδ is a loop in G′, and so α = x, w = z, or γ = δ in G. If w = z400

or γ = δ, then the vertices w, β, y, or γ, u, v would induce a triangle in401

G, which is impossible since G is cyclically 4-edge-connected. If α = x,402

then the edges βy and yz (which are not in F ) would be at distance at403

most 2 from e, a contradiction once again.404

(B3) Exactly 3 vertices in Ω1 are labelled A in G′.405

Since G′ has exactly one edge which is not monochromatic, there is406

exactly one edge in {αx,wz, γδ} which is not monochromatic. As in407

the preceding cases, we extend this labelling to a partial labelling of408

V (G), and then give label A to all the vertices in Ω2. However, this409

means that G has exactly three edges each having exactly one endvertex410

in Ω1 labelled B and exactly one endvertex in Ω2 labelled A, and so411
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these three edges separate a singleton from the rest of the graph. In412

particular, it means that either α = x, w = z or γ = δ, which is413

impossible as we have seen in the previous case.414

Thus, G′ is bridgeless, a contradiction to our assumption.415

Here are some consequences of our main result.416

Corollary 2.3. Let G be a bridgeless cubic graph. For every parity subgraph417

J of G there exists a perfect matching M such that J and M are a quelling418

pair.419

Corollary 2.4. Let G be a bridgeless cubic graph and let O be a collection420

of disjoint odd circuits of G. Then, there exists a perfect matching M such421

that M ∩ E(C) 6= ∅, for every C ∈ O.422

Corollary 2.5. Every bridgeless cubic graph admits an S4-pair.423
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