
HAL Id: hal-04019154
https://hal.science/hal-04019154v1

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approach for Variability Management of Legal Rights in
Human Resources Software Product Lines

M. Derras, L. Deruelle, J.-M. Douin, Nicole Levy, F. Losavio, R. Mahamane,
V. Reiner

To cite this version:
M. Derras, L. Deruelle, J.-M. Douin, Nicole Levy, F. Losavio, et al.. Approach for Variability Manage-
ment of Legal Rights in Human Resources Software Product Lines. 14th International Conference on
Software Technologies, Jul 2019, Prague, Czech Republic. pp.514-521, �10.5220/0007955905140521�.
�hal-04019154�

https://hal.science/hal-04019154v1
https://hal.archives-ouvertes.fr

Approach for Variability Management of Legal Rights
in Human Resources Software Product Lines

M. Derras1, L. Deruelle1, J.-M. Douin2, N. Levy2, F. Losavio3, R. Oumarou Mahamane2 and
V. Reiner1

1Berger-Levrault, Boulogne Billancourt, France
2CNAM – CEDRIC, Paris, France

3Universidad Central de Venezuela, Caracas, Venezuela

{om.rahina, francislosavio}@gmail.com

Keywords: Software Product Lines (SPL), Variability Management, Human Resources, Legal Rights.

Abstract: This work concerns software product lines (SPL); it comes from the experience gained collaborating with
Berger-Levrault, a French society leader in Human Resources systems. This enterprise serves many French
and European territorial communities. They had a variability problem associated to the differences of
applicable legal rights in different countries or territories, and this activity was performed manually at a high
cost. On the other hand, functionalities were common and mandatory and did not very much. The crucial issue
in SPL development and practice is to manage the correct selection of variants. However, no standard methods
have been developed yet, and industry builds SPL using on-the-market or in-house techniques and methods,
aware of the benefits a product line can provide; nevertheless, this development must return the investment,
and this is not always the case. In this work an approach to variability management in case of legal rights
applicability to different entities is proposed. This architecture-centric and quality-based approach uses a
reference architecture that has been built with a bottom-up strategy. Variability is incorporated to the reference
architecture at abstract level considering non-functional properties. A “production plan” to reduce the gap
between abstraction and implementation levels is defined.

1 INTRODUCTION

This work concerns software product lines (SPL); it
comes from the experience gained after 2-years of
collaboration with Berger-Levrault (BL) a French
society leader in Human Resources (HR) services. The
enterprise has a main HR system, called S-SEDIT,
which serves French and European territorial
communities. We realized that the variability problem
they had was associated to the differences of applicable
law(s) and regulations in different countries or
territories and also with occasional local laws changes.
On the other hand, functionalities were common and
mandatory and did not vary much. The reference
architecture (RA) construction and the variability
management were identified as main challenges
(Derras et al., 2018).
1. The RA Construction. The migration to a SPL
(Northup and Clements, 2012) was first proposed by
BL to exploit variability and avoid configuring almost
manually their system for local entities at a high cost,
due to different applicable legal rights (laws and

regulations). It was decided to use a bottom up strategy,
starting from one in-house product, the Vacation
Request System (VRS), part of S-SEDIT. On the basis
of available documentation, the SPL RA was
incrementally built for VRS, using a practical approach
(Derras et al., 2018) that considers functional and non-
functional components. Relations between
components are of type “provide/require”. The
variation points (Pohl et al., 2005) were mostly non-
functional components representing domain and
system quality properties that were specified by a
quality model (ISO/IEC 25010, 2011). But relevant
variation points concerned the different applicable
legal rights for each entity and their modifications. In-
house systems or technical tools realized the other
variation points.

A general research question arise from the SPL
engineering practices:
- Is there a mature process to convert the RA high-level
abstract reusable components into lower level
components to ease the derivation of concrete products
of the SPL family?

514
Derras, M., Deruelle, L., Douin, J., Levy, N., Losavio, F., Mahamane, R. and Reiner, V.
Approach for Variability Management of Legal Rights in Human Resources Software Product Lines.
DOI: 10.5220/0007955905140521
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 514-521
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

An answer to the above question is to handle the
SPL variability.
2. Variability Management. A process should be
defined to map the RA variation points with lower
level modules realizing solutions for variants
management, establishing a plan or strategy to be able,
later, to derive concrete SPL products. Our present
approach follows the guidelines for the Domain
Realization phase proposed by the reference model
framework for SPL engineering (ISO/IEC 26550,
2015), and the SEI framework (Northup and Clements,
2012). In case of our HR SPL, variability is reduced to
the applicability of different laws and regulations that
can vary depending on each country or region. Thus,
all laws could be defined by a centrally set of
regulations and the configuration of a client would
consider only one extraction of this set. One advantage
would be the ease of updating when for example, laws
evolve.

Concerning our previous work on the first
challenge (Derras et al., 2018), that is the construction
of the RA, the quality properties required by each
functional component are considered at an early stage.
They are obtained from the domain architectural
style(s) and the in-house product properties. This
quality-driven approach begins with the domain
requirements analysis and has facilitated the
identification of variation points and the decision
process to select variants.

The goal of this work is to present our advances to
respond to the second challenge of legal rights
variability management in the HR domain. Guidelines
for a variability management process will be presented.

This paper is structured as follows, besides this
introduction and the conclusions: Section 2 discusses
the context of the architecture-centric quality-based
approach to build the SPL RA. Section 3 presents some
guidelines for variability management at the domain
engineering stage, on the threshold of the application
engineering stage; a configuration process is outlined.
Finally, Section 4 presents related works.

2 CONTEXT

According to the SEI1 (Northup and Clements, 2012),
a SPL is a set of software-intensive systems that share
a common, managed set of features satisfying the
specific needs of a particular market segment or
mission, developed from a common set of core assets
in a prescribed way. This definition is consistent with

1 Software Engineering Institute, Carnegie Mellon University,

USA

those traditionally given for any SPL, but it focuses on
the fact that the SPL systems or products are obtained
in a “prescribed way”, meaning that there is a process
to be followed to derive a specific product. Building a
SPL and bringing it to market requires skilful
engineering as well as technical management. Many
organizations have followed their own activities to
achieve a SPL, and there is no standard practice but
many different ones (ISO/IEC 26550, 2015), (Käköla,
2010), (Northup and Clements, 2012), (Ouali et al.,
2011). The SPL Engineering (SPLE) model of (Pohl et
al., 2005), the SEI framework, and the standard
reference model for SPLE (ISO/IEC 26550, 2015)
coincide on the fact that the SPL development focuses
an architecture-centric approach. SPL common and
non common functionalities can be identified by using
different practices, such as use case models, feature
models (Lee et al., 2002) or business processes
(BPMN 2); however, these functionalities must be
organized into an evolutionary structure to represent
related components of an architecture, which is the
SPL backbone.

The capture of the SPL domain knowledge is
crucial for SPLE. Usually, the functionality of the
domain is reflected into the main available market or
in-house products; it can be obtained using different
practices as it has been pointed out. The quality goals
or non-functional properties for a system, such as
performance, reliability, modifiability, availability,
etc., are largely determined by the study of the domain
architectural style(s), also present in the existing
market or in-house products. A software product
quality model (ISO/IEC 25010, 2011) can be used to
specify quality characteristics. Quality properties have
been found to be major responsible of the SPL
variability (Siegmund et al., 2012).

Variability is defined as the ability of a system to
be efficiently extended, changed, customized or
configured for use in a particular context (Van Gurp
2000). The realization or choice of a placeholder or
variation point (set of variant solutions) of a
component or asset is called a variant (Pohl et al.,
2005). The SPL that is a family of similar systems must
be designed to support the variation needed by the
concrete products. The RA should be reconfigurable
and remain compliant with the architectural style and
the quality properties of the SPL domain. The design
and selection of variants to conform concrete products
concern a production plan (Northup and Clements,
2012). Some of the products’ constraints may be
extracted from a set of existing products, by a reactive

2 Business Process Modeling Notation

Approach for Variability Management of Legal Rights in Human Resources Software Product Lines

515

or bottom-up strategy; which is widely spread in
industrial practice and it is the approach we used.
However, precise guidelines for a general production
plan are not provided in known SPLE frameworks
(Northup and Clements, 2012) (ISO/IEC 26550,
2015), (Pohl et al., 2005).
A production plan fills two roles:
1. The production process to be used for building the
products. It consists mainly in defining the components
interfaces; the relations or links between components
are already part of the RA. The Domain Realization
phase (ISO/IEC 26550, 2015) is focused on building
this process, called “architectural texture”. Hence,
defining a “production process” or realizing the
“architectural texture” are roughly similar activities.
2. The production method to specify the models,
processes, and tools to be used in the production
processes attached to components.
In our case, the variation points considered are non-
functional properties; for example the Hibernate
toolkit is selected among the available technological
tools, to provide data availability/persistency and
portability; to achieve this, new components could be
added or deleted. Non-executable loosely coupled
components are produced at this stage.

In conclusion, the management of variability is still
a problem. In the literature the challenge of mapping
abstract RA components into concrete components to
retrieve the right code module of a variant is always
mentioned but not detailed. However no mature
method, process or approach to bridge or reduce the
gap between the abstract RA design level and the more
concrete application level has been adopted in
industrial practice. We propose an approach for
variability management by adapting the guidelines of
the Domain Realization phase of (ISO/IEC 26550,
2015) to the Production Plan of (Northup and
Clements, 2012).

3 AN ARCHITECTURE-CENTRIC
AND QUALITY-DRIVEN
APPROACH FOR
VARIABILITY MANAGEMENT

We have covered the Domain Engineering lifecycle of
SPLE until the Design phase, where the RA for the
VRS of the S-SEDIT HR system was built (Derras et
al., 2018). We recall that a bottom-up strategy was
followed with a single in-house product. The RA was
incrementally constructed considering first functional
components extracted from the enterprise business
processes; secondly, the quality required by functional

components was incorporated as non-functional
components, and in the 3rd place, the components were
distributed according to the domain styles for HR, that
is layers, event-based, and client/server model for
communication. Finally, the variation points were
determined by using the quality properties required by
the functionalities, which were mostly common
mandatory components; the majority of the variation
points were non-functional components. We faced the
problem of the compliance with laws and regulations.
So, an automatic configuration system was needed to
overcome the different applicability and changes of
laws. The laws variability will be treated considering
the production plan (process and method) proposed in
the SEI framework to provide the component interface
specification, which is the main activity of the Domain
Realization stage.

3.1 Guidelines for a Production Plan

1. Establish a Mapping between the RA Components
and their Solutions.
Input: the RA (not shown here to abridge the
presentation) structured according to the HR domain
style; the enterprise technological platform (list of
reusable in-house or to be developed software
artefacts).
- For each component and sub-component in a layer,
the relation with the corresponding technical tool or
with an architectural component present in the
subsequent layer, is analysed.
- Each variation point component is annotated with a
list of variant technological tool(s)/in-house
solution(s).
Output: components annotated with possible solutions.
2. Establish the Production Process, Adapted from
(Northup and Clements, 2012).
(New components can be added, and/or existing
components can be deleted).
Input: RA components annotated with reusable
technological tool(s)/in-house solutions.
• e.g. in Presentation Layer, the functional

component Supervisor requires to Check Signature
Right in Process Layer, connecting to the variation
point <<Signature Hierarchy>> to provide
Security and Authenticity, which is solved by the
in-house system X.Net, developed with Spring; the
services provided by Log4j, SLF4j, Spring
Security, and Kerberos Security are used to satisfy
the security and authenticity quality properties; this
solution requires to use the Signature Rights DB
from Data Layer;
- For each component:

• Specify the provided/required parameters, which
were extracted from the RA functional and non-

ICSOFT 2019 - 14th International Conference on Software Technologies

516

functional requirements during phases PL Scoping
and Domain Requirements Engineering;
techniques/ methods used: ISO/IEC 26550 SPLE,
BPMN, ISO/IEC 25010 Quality Model (e.g.
Supervisor requires the parameters entity, staff-id,
sign-approval, notify, security and authenticity; the
method Check Signature Rights calls <<Signature
Hierarchy>> to receive the sign-approval
parameter; the method Take Decision receives
notify from the Send Notification component;
notice that the two sub-components Check
Signature Rights and Take Decision of the original
RA Supervisor component are now expressed as
methods calls in Figure 1);

• Specify techniques/methods used: BPMN, criteria
to map BPMN activities to architectural
components (e.g. Supervisor (entity, staff-id, sign-
approval);

• Define the component main methods; they can
correspond to the RA abstract sub-components of
the component (e.g. Supervisor calls methods
Check Signature Rights and Take Decision);

Output: RA structure expressed as a UML 2.0 logic
view, showing the components interfaces (see Figure
1).

The parameters of the interfaces of components are
defined as follows: entity = {country, region, city,
community, … }; staff-id = {id, password, status, … };
access, notify, sign-approval, rights-check = {yes, no};
period = {dates for the vacation request or number of
days required and period of the year}; eval-required =
{yes, no} (push button to activate the evaluation in
Process Layer); updated-data: results of
administrative tasks related with the vacation request
of an employee; law: data structure representing the
law text that will be expressed as a set of rules; config-
file: configuration file expressing the laws possible
changes and/or the injection of new components. The
quality properties required by each functional
component are shown as parameters; they are actually
the links to the components providing the appropriate
solution.

All the connections between layers follow the
REST system architectural style, where resources are
directed only through their URLs, via the http/https
protocol. The JAMon system monitors all connections
between architectural components, including message
passing and RMI3.

In the Context external system shown in green in
Figure 1, the <<Implementation>> component is
considered as the Java programming environment of
the Configuration component. It is the system used to
manage the RA variability. This component will

3 Remote Method Invocation

actually implement the laws variants selection. The
Configuration component should basically contain the
tools/mechanisms to configure the system required by
a client, with the selected variants. Variation points
<<Login>>, <<Signature Hierarchy>> and
<<Access Rights>> are realized by in-house modules
or mechanisms, so they are already implemented
solutions for a variant.

Most of the functional components of the RA, such
as Supervisor, Employee and Administrator in
Presentation Layer, and Administrative Tasks,
Evaluate Case, Send Notification and Send Response
in Process Layer are common mandatory components
that are supposed to have their coded modules
available, such as Administrative Tasks that is solved
by the in-house e-Sedit system. In this case, required
quality properties are taken into account by these in-
house modules. MVC 4 concerns the independence
between user interface and process layer, ensuring
maintainability; <<MVC Client-side>> and <<MVC
Server-side>> are solved by Angular Js;
security/authenticity required by <<Login>> and
<<Signature Hierarchy>> is solved by protocol
LDAP and by the in-house X.Net system with Spring
Security and Kerberos Security and using Access
Rights DB; <<Data Access>> solves
persistency/availability with Hibernate, and finally
<<Data Base>> is actually settled to Oracle by
enterprise decision. The quality required here is
suitability/correctness, which is realized by Data
Schemas.

However, it is not enough to have an annotation
(for example the @Variability tag shown in section
3.2) at the RA abstract level to force the choice of a
concrete solution. At the abstract level, a feature is
represented by a component that is potentially
implemented by different concrete components
(mechanisms/modules/tools). Thus, there are at least
three levels:
1. The RA abstract level describing the functionalities
(not shown here to abridge the presentation);
2. The RA concrete level including components
variation points and business patterns (domain styles,
layers, etc.), and
3. A more concrete level, where components interfaces
show parameters representing provided/ required
resources and able to make calls; this level is closer to
the implementation level, with the code supposed to be
distributed in different files. Figure 1 integrates these
two architectural views. The @Variability label would
then appear at the more concrete level and to generate
the code that corresponds to the choice in the config-
file.

4 Model View Controller

Approach for Variability Management of Legal Rights in Human Resources Software Product Lines

517

Figure 1: The VRS RA of the S-SEDIT HR system with components’ interfaces; in orange the variants’ choices.

3.2 Handling Variability - Compliance
with Legal Rights

The RA variation point <<Compliance with Law(s)>>
responsible of reflecting the changes of the law (see
Figure 1), will be taken as an example. At this
abstraction level, the method configuration in
<<Compliance with Law(s)>> requires the
Configuration component of the Context external
system to update/build a config-file with the Law(s)

changes or adaptations that will be stored in the Law(s)
Data Base (see Figure 2), and the RA Data Base will
be also updated.

The Configuration component conformed by an
Eclipse plug-in (Vélitchkoff, 2019), will be used by
Maven Build to Tag the variation point with
@Variabiliy annotation, indicating also the injection
mechanism, for example AspectJ, Javassist or
Java.lang.instrument.

ICSOFT 2019 - 14th International Conference on Software Technologies

518

Figure 2: <<Compliance with Law(s)>> - details.

3.2.1 The Vip (Variability and Injection
Pattern) Framework

The goal is to add, remove or modify functionalities
using a simple structure and without Java code
updating; software development is reduced to
business-related rules of the form if condition (entity)
then command (entity, result). The condition as the
command are java beans, a beans container assumes
their initialization. The rules are defined as a sequence
of conditions to be satisfied and commands to be
executed; in Java they are classes that must have been
defined to be injected into the configuration file. The
rules answer some main questions:
- Who are the Entities? They are the business objects,
e.g. in case of VRS, they are the parameters of the
interfaces of the RA components such as entity, staff-
id.
- For which Type of Result? They are values, e.g.
Boolean, integer, table, any java classes with eventual
side effects such as a display command, a request to a
database, a REST service invocation or an http
invocation, … etc. In this context, the definition of a
configuration is a sequence of rules that is specified
iteratively by a given configuration file. The
configuration method will provide the updated-config-
file (text or XML file) from the Configuration
component of the Context system. An example of a
config-file in Java is the following:

 bean.id.1=calcul
calcul.class=commands.Command
if(condition) then command
calcul.property.1=condition

5 https://en.wikipedia.org/wiki/Service_locator_pattern

 calcul.property.1.param.1=condition
calcul.property.2=command
calcul.property.2.param.1=command

Let us consider the computation of the authorized
leave for an employee, according to his status and
entity. The rules could be of the form:
– If the employee holds the position (status), …
– If the employee is native of the entity, …
– If the employee seniority is … …
– 1 additional day each 5 years of holding the
 position
– If the community is in region, …

An example of the configuration file could be:

bean.id.1=conditionSeniority
conditionSeniority.class=ConditionSen
iority
conditionSeniority.property.1=numberO
fYearsOfSeniorityRequired
conditionSeniority.property.1.param.1
=5
bean.id.2=operationSeniority
operationSeniority.class=OperationAdd
ition
operationSeniority.property.1=operand
operationSeniority.property.1.param.1
=5
Rule : if conditionSeniority then
operationSeniority
bean.id.3=commandSeniority
commandSeniority.class=commands.Comma
nd
commandSeniority.property.1=operation
commandSeniority.property.1.param.1=o
perationSeniority
commandSeniority.property.2=condition
commandSeniority.property.2.param.1=c
onditionSeniority
bean.id.4=invoker
Invoker.class=commands.Invoker
Invoker.property.1=command
Invoker.property.1.param.1=commandSen
iority

In the complete Java example provided in (Wu,
2018), variability at entity level is satisfied; only one
configuration file is used for each entity (French
communities in this case). Once the constraints are
known, it is possible to define all the rules for each
French community and implement them using the VIP
framework. In the example taken in (Wu, 2018), 60
rules were required to model vacation laws. The size of
the configuration file could be a problem that may
require the use of the service locator5 pattern.

Approach for Variability Management of Legal Rights in Human Resources Software Product Lines

519

4 RELATED WORKS

On the design of a configuration process for SPL,
extensive literature reviews have been written; many
works from almost two decades on the configuration
management in SPL are found showing the interest of
the SPL community on this subject that it is still an
open problem. Software Configuration Management
(SCM) is the discipline of managing the evolution of
complex software systems, but this is not always the
case for SPL (ISO/IEC, 2015), (Thao, 2012).

The problem that conventional SCM tools are not
suited for configuration management in SPL is faced in
(Thao, 2012). He presents an interesting work on a
configuration management prototype called Molhado
SPL that is designed specifically to support the
evolution of SPL. We are interested in this work
because it addresses the evolution problem at domain
engineering level instead of at code level, which is also
our case, and because it presents an extensive literature
review on the subject.

The work of (Soujanya and Rao, 2015) affirms that
SPL achieve significant cost and effort reduction
through large-scale reuse of software product assets.
SPL consists of core assets and custom assets, which
are shared among multiple products, and they evolve
independently. The evolution of products in SPL is in
time and space dimensions. Available SCM systems
are suitable for the product evolution but inadequate
for SPL systems. A software version management
system is proposed for SPLE. It supports cases of
assets changes from core and custom assets to concrete
products. Component sharing is also proposed.

In (Van Gurp and Prehofer, 2006) a combination
of traditional variability tools and files subversion is
proposed to support product derivation and
configuration management. Tools like Apache
Subversion (SVN) are used to maintain current and
historical versions of files such as source code, web
pages, and documentation. Its goal is to be a
compatible successor to the widely used Concurrent
Versions System (CVS). The relevant problem found
here is still the link between the variability model and
the concrete artefact.

In (Krueger, 2002), the products are considered
simply transient outputs. All changes are made to the
common and variant artefacts. There is only the SPL to
be managed as a unique product. Component
composition is the process of composing different
components to form a product. Software customization
is the process of specializing a product. The component
composition and software customization layers use the
configuration management layer to supply the correct
version at a fixed point in time. Krueger suggests using

the ‘context’ approach that represents a possible
composition of component versions. Customized
products are instantiated from customized
components, which are instantiated by selecting the
appropriate variant of the variation points in the
domain space. The variation points are mapped to
common variant files and components.

The work of (Uk and Lee, 2015) presents a
methodology based on a decision model with
associated tool supports, to design a SPL model,
analyse features, and configure a valid product. XML
is used to model the SPL, where a schema is defined to
specify core assets. The decision model is represented
as a UML activity diagram, and the SPL has to deal
with the combinatorial problem of variability. It
extracts all the properties of required features from the
SPL model. It uses the Alloy formal language, and the
Alloy Analyser. The SPL is supposed already designed
and how the components are obtained is not discussed.
The SPL RA is not mentioned, the SPL model is
supposed to contain all the information concerning the
components. The work is more oriented towards
product configuration at application engineering.

The recent works of (Mazo, 2018) present the
VariaMOS SPLE framework focused on a complete
process to develop dynamic product lines, in the sense
that an intermediate automatic adaptation layer is
placed between domain and application engineering
layers of the standard SPLE lifecycle. A run-time self-
adaptation of the system is simulated at application
engineering stage, once the product is derived. The
importance of the RA is mentioned but the emphasis is
placed on the bottom-up strategy, where market, third
party or in-house components are specified with the
High-Level Constraint Language (HLCL) for SPLE
used through the whole process. The code can be
modified using a “fragmentation” technique that is
similar to the Java injection pattern discussed in section
3. This approach that handles variability in abstract
components is similar to our approach, however it is
not architecture-centric

The work of (El-Sharkaway et al., 2018) states that
ideally a variability model is a correct and complete
representation of SPL features and constraints among
them. Together with a mapping between features and
code, only valid products can be configured and
derived. However, in practice the modelled constraints
might be neither complete nor correct, which causes
problems in the configuration and product derivation
phases. The work presents an approach to reverse
engineer variability constraints from the
implementation, and thus improve the correctness and
completeness of variability models.

To conclude, the SPL configuration process
roughly consists in setting the convenient variants. In

ICSOFT 2019 - 14th International Conference on Software Technologies

520

this work we are concerned with SPL in the HR
domain, where the compliance with legal rights
greatly affects the system evolution and it is almost
manually achieved (Dai, He, Xing, 2015), (Mazo et
al. 2014). In the SPL HR context processes that could
translate automatically or semi automatically the
evolution of the law to a particular concrete product,
and how the law representation can be included into a
configuration mechanism, were not found in the works
studied.

5 CONCLUSIONS

This paper considers the variability management of
laws and regulations for a SPL in the domain of human
resources. Guidelines are proposed for a process driven
by the RA; the variability model considered is
extracted from the domain and product quality model,
since most of the variants are qualities required by the
HR functionalities, which are common and mandatory.
This process is on the threshold between the abstract
RA level and the concrete product derivation level. It
establishes a production plan at a more concrete level
than the abstract level imposed by the RA that is
inspired from (Northup and Clements, 2012). At this
level the variants choices are facilitated by the
definition of components interfaces. A configuration
process, to inject into the system the application of
territorial laws changes expressed as rules, is outlined.
The design of an automatic configuration system to
deploy on a SaaS multi-tenant cloud a concrete S-
SEDIT product, compliant with the client demand, is
an on-going work. It should be noticed that in this case,
the configuration system is what is important;
however, the SPL RA should evolve into concrete
micro-services architecture.

REFERENCES

ANSI/IEEE, 2005. Standard for Software Configuration
Management Plans, ANSI/IEEE Std 828-2005.

Dai, L., He, Y. and Xing, G., 2015. Intelligent Information
Management, SciRes Online 7, 1-6,
http://www.scirp.org/journal/iim,
http://dx.doi.org/10.4236/iim.2015.71001.

Derras, M., Deruelle, L., Douin, J. M., Levy, N., Losavio, F.,
Pollet, Y. and Reiner, V., 2018. Reference Architecture
Design: a practical approach, ICSOFT 2018, Porto,
Portugal, 599-606.

El-Sharkawy, S., Dhar S.J., Krafczyk, A., Duszynski, S.,
Beichter, T. and Schmid, K., 2018. Reverse Engineering
Variability in an Industrial SPL: Observations, Lessons
Learned, SPLC18 1, 215-225.

 ISO/IEC 25010, 2011. Systems and software engineering-
Systems and SQuaRE - System and software quality
models. ISO/IEC JTC1/ SC7/ WG6, Draft.

ISO/IEC 26550, 2015. Software and Systems Engineering–
Reference Model for Software and Systems Product
Lines, ISO/IEC JTC1/SC7 WG4.

Käkölä, T., 2010. Standards initiatives for SPLE and
management within the international organization for
standardization, System Sciences (HICSS), 43rd Hawaii
International Conference, IEEE, 1-10.

Krueger, C.W., 2002. Variation management for SPL,
SPLC2: 2nd International Conference on SPL, London,
UK, 37--48, Springer-Verlag.

Mazo, R., Assar, S., Salinesi, C. and Hassen, N.B., 2014.
Using SPL to improve ERP Engineering: Literature
Review and Analysis, LAJC, Vol. 1(1).

Mazo, R., 2018. Software Product Lines, from Reuse to Self
Adaptive Systems, HDR, Paris 1, France.

Northup, L. and Clements, P., 2012, A framework for SPL
practice, 5.0, SEI, Carnegie Mellon University.

Ouali, S., Kraiem, N. and Ben Ghezala, H., 2011. Framework
for Evolving SPL, International Journal of Software
Engineering & Applications (IJSEA), 2 (2).

Pohl, K., Bockle, G. and Van Der Linden, F., 2005. SPLE:
Foundations, Principles, and Techniques, Springer.

Siegmund, N., Rosenmuller, M., Kuhlemann, M., Kastner,
C., Apel, S. and Saake, G., 2012. SPL Conqueror:
Towards Optimization of Non-functional Properties in
SPL, Soft. Qual. Journal., 20, 3-4, Sept, 487-517(31).

Soujanya K.L.S. and Rao A., 2015. A Systematic Approach
for Configuration Management in SPL, Inter. Multi
Conference of Engineers and Computer Scientists 2015
(IMECS), Vol. I, March, Hong Kong.

Thao, C., 2012. A Configuration Management System for
SPL, Phd thesis, University of Wisconsin-Milwaukee,
USA, August.

Uk, S. and Lee, J., 2015. An Effective Methodology with
Automated Product Configuration for SPL
Development, Hindawi Publ. Corp, Mathematical
Problems in Engineering, Vol. 2015, ID 435316, 11
pages, http://dx.doi.org/10.1155/2015/435316.

Vélitchkoff, V., 2019. Développement de plugins pour la
gestion de la variabilité dans les lignes de produits,
Rapport de stage, CNAM, Paris, France.

Van Gurp, J., 2000. Variability in Software Systems, the key
to software reuse, Univ. of Groningem, Sweden.

Van Gurp, J. and Prehofer, C., 2006. Version management
tools as a basis for integrating product derivation and
software product families, Workshop on Variability
Management, SPLC 2006, 152.06/E, 48--58.

Wu, M., 2018. Variability&Injection Pattern, Rapport de
stage 2e année, ENSIIE-CNAM, Paris, France.

Approach for Variability Management of Legal Rights in Human Resources Software Product Lines

521

