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Improved real-time gait phase detection using simple FSR sensors,
sequencing conditions and smart fault management

Clémence Drouot and Nathanaël Jarrassé

Abstract— Gait event analysis by wearable devices is still a
current challenge. Ground foot contacts, lower body segment
accelerations or rotations or joint kinematics are commonly
used, associated with functional analysis or machine learning
algorithms, and currently allow to detect up to 5 different
phases during a gait cycle. However, these detection are not
always reliable or usable in real time because of calculation
duration or sensor faults and drifts. To get more precise and
realistic sequencing of the gait cycle, we chose to only use
the information of heel or toe contacts with Force Sensing
Resistors (FSR) to decompose the cycle in 8 different phases
that we determined previously by a bottom-up analysis of
the possible contacts during walk. Based on this definition
different detection algorithms are presented, which introduces
sequencing conditions and smart fault management of sensors
information to improve the performance and robustness of the
detection. Proposed algorithms are assessed on the recorded
walking data of 12 participants and in an online experiment,
showing an average of 99% recognition rate of gait phases
during the walk. These proposed approaches could offer new
possibilities for using simple and low-cost instrumented soles
to perform quantitative assessment of walking strategies.

I. INTRODUCTION

Older adults falls are a common, serious, and growing
public health problem [1]. Those falls are induced by postural
instabilities, muscle weaknesses or buckling of lower-limb
joints [2] and can lead to severe injuries, long term im-
pairment up to death (second leading cause of unintentional
injury deaths worldwide according to WHO). Numerous
technical devices are currently being developed to address
this issue, such as advanced orthotic devices such as the
C-Brace developed by Ottobock [3], exoskeletons such as
the Keeogo from B-temia [4], smart canes [5], wearable
airbags [6], etc. One key challenge for those devices is to be
able to efficiently detect the fall through sensors in a fast or
anticipatory way. One common approach for those systems
is to measure and analyze some characteristics of the gait
cycle to detect abnormalities, through the decomposition of
the cycle into specific phases and comparison with reference
characteristics.

Wearable solutions that are analysing the gait cycle can
use information from force, angular and accelerometric mea-
surements [7]. Historically, simple foot switches were used
to detect heel strike and heel off events. For example, Lyons
and al. [8] used such sensors and information to apply
Functional Electrical Stimulation (FES) during patient walk.
Low processing of kinematic data also shown good results in
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heel strike and toe off detection. For example, O’Connor and
al. [9] used motion capture system to get vertical velocity
of the foot or Hanlon and al. [10] used accelerometers to
measure the knee vertical and foot horizontal accelerations.
However, the first solution currently uses motion capture
which limits the use to clinical indoor trials and the second
one tends to lose accuracy when used in real-time. To
increase precision, Pappas and al.[11] used a sole fitted with
3 sensors (Force Resistive Sensors (FSR)) and a gyroscope
measuring the rotational velocity of the foot. Thanks to this
hardware, they were able to differentiate 4 different phases
during one gait cycle (Heel strike, Stance, Heel off and
Swing), cadenced by 7 possible triggering events, with a
maximum delay of 90 ms. Skelly and al. [12] used a sole
fitted with four individual FSR sensors — two at the heel,
one under the head of the first metatarsal (medial sensor),
and one under the head of the fifth metatarsal (lateral sensor).
These sensors, processed by a fuzzy logic classifier, added
to a knee angle sensor allowed them to distinguish 5 phases
per gait cycle (Heel strike, foot flat, Heel off, Toe off, Knee
max) after having added supervisory rules on the primary
gait phase estimations. Williamson and Andrews [13] also
differentiated 5 gait phases in real-time, using tree-directional
accelerometer on the shank and machine learning.

Wearable solutions based on IMU sensors are however
time and energy consuming and have a tendency to drift
through time[7] requiring regular calibration. FSRs, while
commonly used, are known for their limited reliability
and fragility leading to inconsistencies in the measurement.
Detection can also show incoherent states because of the
difficulty of defining mappings between the ground contacts
states and associated gait phases. Indeed, most of exiting
studies do not take into account the cycling aspect of the
gait phases and generally considers 4 or 5 possible states
at most while biomechanic literature (such as Whittle[15])
defines up to 8 different phases. Besides, most of these gait
detection algorithms are using machine learning or artificial
intelligence [7]. But, as highlighted by Burkart and al. [14],
there are some domains that require explainability, such as
the medical area because of the complexity, unpredictability
and variations of the functioning of the human bodies.

We believe that sequencing more precisely - and in an ex-
plainable way- the gait cycle using information on feet (heel
and toes) contacts with the ground, would allow to recognize
more efficiently abnormalities in the walking of human
subjects. In this article, we thus introduce a new sequencing
of the gait cycle, based on the possible ground contacts of
the heel and toes of both feet. We also propose a dedicated



gait phase detection algorithm which takes advantage of the
cyclical aspect of walking and takes into account the possible
defects of the sensors of the instrumented insoles.

In the following section, we first analyse the gait cycle
with respect to the possible combinations of feet contact
with the ground to determine the expected sequence. We
then introduce three gait-phase detection algorithms, based
on this definition. First a simple algorithm that links the
phases directly to the detected ground contact. Then, cycling
conditions are added to get more relevant on the phase
detection based on the previously detected phase. And finally,
a solution is proposed to take into account the possibility
of a sensor fault while pursuing the phase detection. A
dataset of signals collected on a group of asymptomatic
participants walking with instrumented soles is then created
(Section IV) and used to assess the performance of proposed
algorithms in Section V. In this section, the results of an
online detection experiment are also shown, and finally
discussed in Section VI.

II. DEFINITION OF A GAIT CYCLE

A. Global definition

The walking can be described as a succession of repetitive
events and movements of the lower body : the gait cycle
is thus defined as the time interval between two successive
occurrences of one of these events[15]. In the sagittal plane,
three joints (the ankle, knee and hip) and four segments of
body are involved in the lower limb movement, as it can be
seen in the decomposition of the Figure 1.

Left heel strike events

Fig. 1: Position of 3 DoF legs in the sagittal plane at 40
ms intervals during a single gait cycle. Adapted from [15]

with the right leg in green and the left one in red

Numerous characteristics of one given leg thus exhibit
a typical pattern during walking and can be used as a
reference to describe the cycle, such as the joint angles or
segments orientation. The other leg goes through the exact
same series of events, but shifted in time by half a cycle
duration. In this study, we define the beginning of the gait
cycle by the left heel strike event and focus our analysis on
the ground contact sequences to define and decompose the
gait cycle.

B. Ground contacts

Gait phase detection literature generally only considers 2
to 5 different phases during a cycle. We here propose a more
precise decomposition based on systematic ground contacts

analysis. We here consider two ground contact areas for each
foot, heel and toes. To identify all possible occurring contacts
during the walking cycle, we use a bottom-up strategy,
considering that at least one foot part remains in contact
with the floor anytime and that only one foot part can land
or leaves the ground at each instant.

Thus, starting by a ground contact combination
unavoidable during the walk (such as the Left Heel/Left
Toe combination when the right leg is swinging), the next
possible events for the 4 possible foot parts are evaluated
(considering a forward walk). In this configuration for
example, either the Left Heel leaves the floor, or this is the
Right Heel that lands on ground first.
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Fig. 2: State machine of the different possible ground
contacts during a gait cycle. R refers to the Right foot. L

the left one. H refers to the heel and T the toes.

This analysis leads to the graph of the Figure 2 which
represents the possible ground contact sequences observable
during walk. R and L letters corresponds to the Right of
Left foot and H or T refers to the Heel or Toe part of the
foot. In this figure, contact combinations have already been
organized around similarities, highlighting the possibility to
define 8 different phases sequencing the walking gait cycle.
In what follows, those will be named and numbered as shown
in this Figure. This organization also highlights the different
ground contact sequences which minimizes the number of
contact with the ground (upper part of the graph) and at
the opposite maximizes them (lower part). This is why they
have been named dynamic, quasi-static and static gaits. A
visualisation of each of these gaits is shown in the Figure 3.

Based on the proposed gait cycle decomposition, we
introduce in the next section a dedicated and improved
walking phase detection algorithm.

III. GAIT PHASE DETECTION ALGORITHMS

A. Direct ground contact decoding

The standard way to detect the gait phase P is to associate
each one to its possible ground contacts, as shown in Figure 2
leading to the following correspondence Table I. The binary
state of right and left (R and L) heel and toes (H and T )
sensors are combined in a quadruplet and converted into a
unique decimal variable Gc, varying between between 0 and
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projection of the center of mass on the ground.

15, representing the 16 possible states corresponding to all
the combinations of the 4 sensors states, as summarized in
Table I.

Thus, the algorithm for gait phase P detection is the
following:

input : RT, RH, LT, LH
parameter: Gc ← bin2dec(′RT RH LT LH′)

prev. phase Pprev

output : phase P
switch Gc do

case 0 do
P ← NW ;

case 1 do
P ← ISw;

...
case 15 do

switch Pprev do
case 8,1 do

P ← PSw;
case 4,5 do

P ← PSt;
end

end

Algorithm 1: Identification of the gait phase depending
on the detected ground contact

B. Considering the cycling aspect

The proposed algorithm do not check if the sequences
of detected phases is coherent with the sequential graph
of Figure 2. We here propose to derive it into a weighted
oriented graph that will be used to confirm the veracity of
the detected phase within in a larger sequence. This will
allow us to determine the current gait phase P based on both
ground contacts Gc and previously detected gait phase Pprev:
when a gait phase P is determined from ground contacts, it
has to be following some specific phases (i.e. to respect a
given sequence) to be really detected by the algorithm, which
otherwise will detect it as a Non Walking (NW ) state.

To do so the previous walking sequential graph is turned
into a graph with the values of ground contact Gc determine
by the table I as seen in Figure 4. A graph is a finite set of
nodes, linked together in pairs. The bind that links 2 nodes is

Gc RT RH LT LH phase P acronym
0 0 0 0 0 NW
1 0 0 0 1 ISw
2 0 0 1 0 TSw
3 0 0 1 1 MSw
4 0 1 0 0 ISt
5 0 1 0 1 NW
6 0 1 1 0 PSt
7 0 1 1 1 TSw
8 1 0 0 0 TSt
9 1 0 0 1 PSw

10 1 0 1 0 NW
11 1 0 1 1 ISw
12 1 1 0 0 MSt
13 1 1 0 1 TSt
14 1 1 1 0 ISt
15 1 1 1 1 PSw or PSt

TABLE I: Coding table of the ground contact variable and
associated gait phase P (where NW means Not Walking)

defined as an edge. A specific kind of graph will be used here
: a weighted oriented graph. This means that each edge has
a associated direction and weight (or cost). Then, a Dijkstra
function [16] can be used to determine the shortest path in
the defined graph and evaluate its associated cost.

9

PSw ISw MSw TSw PSt ISt MSt TSt

1515

1 2 4 8
3 6 12

11 7 14 13

Fig. 4: Numbered translation of the state machine of the
Figure 2

To numerically encode the graph of Figure 4, a 16 × 16
matrix D is used. Each row represents the previous estimated
ground contact number (previous node) and each column
the current one (current node). Thus, an edge between two
nodes is representing by a numbered cost di,j stored in
the appropriate element of the matrix. In this approach,
all edges are considered as bidirectional and with the
same cost usualcost = 1. Thus, the edge between ground
contacts 9 and 1 (i.e. RT LH and LH) for example will be
mathematically defined as d1,9 = d9,1 = 1. All non-existent
edges are set to an high cost (100) and each node is linked
to itself by an edge of 0 cost.

The gait phase detection algorithm is here using the
Dijkstra method to determine, in this graph D, the short-
est possible path between two successive ground contacts
and the correspondent cost dtot. It has been observed on
preliminary data analysis that it is common that 2 sensors
can change of state simultaneously. To take this possibility
into account, the algorithm considers that the path belongs



to walk if the total cost dtot is lower or equal to 2. If so, the
current gait phase will be set to the phase corresponding to
the current ground contact thanks to the get phase function
which links both. Otherwise, the wearer is considered as not
walking and the detected phase is set to 0 (NW ) even if the
ground contact is one belonging to the walking graph. In the
specific case where the total cost dtot is equal to 0 (i.e. 2
successive times with the same combination), the algorithm
maintains the previous detected phase. All this corresponds
to the algorithm 2.

input : RT, RH, LT, LH
parameter: Gc ← bin2dec(′RT RH LT LH′)

Gcprev (previous ground contact)
Pprev (previous phase)
D

output : P

[dtot, path] = dijkstra(D,Gcprev , Gc);
if dtot == 0 then

P ← Pprev ;
else if dtot <= 2 then

P ← get phase(path(end)) ;
else

P ← NW ;
end
Gcprev ← Gc

Pprev ← P

Algorithm 2: Identification of the gait phase depending
on the cycling sequence with one phase skip allowed

C. Managing the possibility of sensor fault

To consider the possibility of a sensor fault, new nodes
and edges are added to the previous graph. The translations
of this graph without the glitched sensor involved have been
written, considering that only one sensor is glitching at a
time (assuming that a glitch remains an uncommon event).
These graphs are the colored ones shown in Figure 5. To
allow some adjustments of the variables, the edges of these
graphs have their own costs. In what follows, they will be
named g cost and be set to a higher value than the standard
cost of 1 to give priority to usual behaviors.

There are now several nodes that have the same Gc value
but which refers to different phases. For example, Gc = 2
can refer to the MSw phase when the LH sensor is glitching
or to the TSw in the usual case or to the PSt phase when
RH sensor is glitching. Thus, to differentiate each node
despite the fact that they are sharing the same Gc value,
a new node numbering is implemented as follows :

node num = P + 9 ∗Gc (1)

Thus, nodes have now values between 0 and 143 so the
matrix (Dg) defining the new graph will now be (143×143).
The equation 1 is used to find the line and column number
corresponding to the previous and current node of the graph.
So the edge costs of the 5 small graphs are implemented
in Dg and to gather them all, edges are added between
each ”usual nodes” and its glitched counterpart. An example
for the node corresponding to Gc = 15 and P = 5

is shown in the figure 5. A glitch appearance cost and
glitch disappearance cost are assigned to the latter, with
a value of between the usual cost and the g cost to make
sure that a (return to) usual situation will be preferred to a
glitched one. Here, they are set to 1, 1.1 and 1.2.

Eventually, now that the definitions of this graph’s nodes
depend on both the ground contact and the phase, new
nodes corresponding to the ground contact detected during
a NW phase have to be added. Thus, the ground contact
sequences of the usual graph are also added for P = NW .

The next phase being unknown at each time step, the
algorithm will evaluate the total cost of each path that
possibly link the current node and the ones corresponding to
the detected ground contact and all the possible next phases.
Thus, a temporary cost variable Ctemp is used to store the
smallest path cost found while evaluating all the possibility
for the next phase. The new algorithm is thus as follows, in
which find node is the implementation of the equation 1 and
find phase number its corollary:

input : RT, RH, LT, LH
parameter: Gc ← bin2dec(′RT RH LT LH′)

Gcprev
Pprev

Dg

Ctemp

costtemp

output : P

Ctemp = 100;
for p = 1 to 8 do

[costtemp, path] =
dijkstra(Dg , find node(Gcprev , Pprev , find node(Gc, P ));

if costtemp == 0 then
P ← Pprev ;

else if (costtemp <= 2) & (costtemp < Ctemp) then
Ctemp = costtemp;
P ← find phase number(path(end));

end
end
if Ctemp==Inf then

P ← NW ;
end
Gcprev ← Gc

Pprev ← P

Algorithm 3: Identification of the gait phase depending
on the cycling sequence with one phase jump allowed
and sensor glitches management

IV. MATERIALS AND METHODS

We conducted an experimental campaign to collect ground
contact data during the walk of different individuals to assess
the performance of the proposed detection algorithms.

A. Instrumented soles

The figure 6 shows a picture of a participant wearing the
recording device, with a zoom on one of the sole disposed
on one shoe. Each sole is supporting 2 FSRs (pointed by
the white arrows in the figure), one at the front (detecting
toe part contact with the ground) and one at the back (for



Fig. 5: Graphical showing of the graph defining possible ground contact sequences during walk, including contact glitching.
Links between the 5 graphs are not represented except for the node corresponding to a ground contact equal to 15 in phase
5 in the usual situation

the heel part). A smooth sole (at the bottom of the figure)
is added over the one that bears the FSRs to improve the
user feel and the pressure distribution on the sensors. The
placement of each FSR is adapted to the wearer foot before
the recording.

Fig. 6: Picture of 2 FSRs set on the right sole.

The 4 FSR raw signals are collected by an Arduino
MKR1000 which is able to either send the recorded raw data
to a computer via Wi-Fi for offline analysis or applied itself
the detection algorithm and send visible or audible feedback.
Accordingly, colored LEDs and a buzzer are controlled by
the Arduino to provide possible feedback to the experimenter.
Data are collected and send via Wi-Fi at a rate of 50Hz.

B. Data treatment

FSR information are collected by the Arduino (through a
12 bit resolution ADC) and sent to the computer. Examples
of received data during a gait cycle are shown in the figure 7
A. and A’ for each sole. These sensors are here used
as simple ground contact detectors : their values oscillate
between a minimum and a maximum depending if the foot
part is in the contact with the ground or not. They do not
provide precise measurement of the amount of force applied.

FSR signals can be influenced by several phenomenon.
For example, sensors can detect the pressure exerted by
the tightening of the shoe, this is especially true during
swinging phase when the toes extend and the shoe bends
a little. It explains why the raw FSR signal of the right toe
shown in figure 7.A’. doesn’t get down to 0 during the flight
phase of the right foot. Besides, walkers can be sometimes
unbalanced, especially when they are asked to exhibit a
particular gait and have to focus on their leg movements.
So, as the toe FSRs do not cover the whole width of the
soles, their high level value can also vary during standing, as
shown in figure 7.A’ : after having risen above the threshold,
it can be seen that the signal of the right toe FSR oscillates
a little rather than just going up. For all these reasons, the
binarization is done with a personalized threshold chosen
for each walker and each FSR. This threshold is manually
defined as an intermediate value between the maximum
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and minimum FSR values reached by the user during a
preliminary walking experiment. The chosen thresholds for
the participant of which data are shown on the figure 7 are
visible on graphs A. and A’. and the result of the binarization
on the graphs B. and B’.

C. Participants and protocols

1) Participants: All participants were adults, aged be-
tween 20 and 30 years old, with no evidence of gait ab-
normality. They were asked to wear the 2 soles in their
own shoes and the collecting data card were worn on a
belt. The study was carried out in accordance with the
recommendations of the Sorbonne Université ethic commit-
tee CER-SU, which approved the protocol. All participants
provided informed consent to participate in the study. The
protocol was performed in accordance with the Declaration
of Helsinki.

2) Protocol used to collect preliminary data: The first
experiment, which goals was to collect walking data, were
conducted on 12 asymptomatic participants. They were asked
to walk on flat floor. The recording area were composed
by a straight line and a slight turn (i.e. without having to
rotate on themselves), corresponding to a 30 meter walk.

Each participant were going through this track 6 times, with
a break every 2 repetitions.

3) Protocol used to assess real time detection: The valida-
tion experiment consisted on the recording of different kinds
of walk (according to its speed or stride length) exhibited
by 3 participants. On a straight flat track of 10 meter long,
they were first asked to go through 2 times, walking as they
are used to. Then they were asked to go back and forth with
a high speed and wide strides and to gradually lower both
until they reached a slow walk with tight steps. During this
experiment, the wearer legs were filmed and the output of
a Graphical User Interface (showing through which ground
contacts the participant goes) has been recorded.

V. RESULTS

A. Qualitative performance offline

The figure 8 shows the output of the algorithms during 3
successive gait cycles of one participant as a representative
detection example. Phases are detected in the correct order,
from PSw to PSt, for the third algorithm (”Fault robust”)
while the others show inaccuracies during the second cycle.

0 100 200 300
Gait cycles (%)

Detected gait phase (cycling and fault robust)

NW
PSw
ISw

MSw
TSw
PSt
ISt

MSt
TSt

Direct decoding Cycling Fault robust
Fig. 8: Phases return by the algorithms for one participant
during 4 gait cycle

A sequence of the detected phases during a damaged
gait cycle is shown on the figure 9 for all the presented
algorithms. It can be seen that the first approach, that directly
links phases to sensed ground contact, do not manage to
identify the phases that succeeded to the second detected
phase and then detects a sequence that is not progressive
despite the fact that the wearer was still walking straight.
The cycling approach do not detect the gait phases at the
beginning of the cycle but return a ”Not Walking” (NW )
of phase instead. The most robust algorithm detects phases
going incrementally from PSw to PSt which was what the
participant were exhibiting.

B. Quantitative performance offline

Figure 10 shows the percentage of time instants that
were detected as belonging to the walk cycle (i.e. all phases
different from NW . It was computed on all the recordings
of all participants (8 min of recording for each, i.e. 8 475
data point with a 50 Hz frequency).
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Fig. 10: Rate of gait phases detected during walk of all
participant for the 3 proposed algorithms.

The blue line on each boxplot represents the median of
the data. Thus, the 3 algorithms detected walk phases during
more than 99% of the walk. Besides, the rate of detected
phases increases with the evolution of the algorithm (for all
the participants) and is equal to at least 96% approximately.

C. Online detection of gait phase with GUI

During the online experiment, participants were asked to
exhibit different kind of walk (i.e. with different speeds)
while the last algorithm where evaluated the walking phase
at any time and sent it to the computer. Figure 11 shows
freeze frames of a gait cycle with wide strides (dynamic gait
of Figure 2). Each frame is associated to the matching picture
that appeared on a dedicated Matlab GUI fed by the Arduino.
This GUI reproduces the graph from Figure 2, with the phase

names at the top and the possible ground contacts under. It
displays in dark blue the current sensed ground contact and
its relative detected phase. Besides, the information of the
previous sensed ground contact remains on light blue to keep
a residual track of the sequence the wearer goes through. An
example of the sequences displayed on the GUI during others
kinds of gait are illustrated on Figure 12, with the quasi-static
gait to the left and the static gait one to the right (as defined
in Figure 2).

Fig. 11: Freeze frames of a dynamic gait with each associated
state of the GUI

VI. DISCUSSION & CONCLUSION

As it can be seen on Figure 8, the detection algorithm
correctly detects the 8 walking phases, from PSw to PSt,
while a participant is walking normally. The example of
Figure 9 shows that the third algorithm allows to retrieve
walking phases that were missed or incorrect because of FSR
sensor faults or misreads. The third algorithm using sequence
conditions and fault management features thus allows to get
more reliable information about the gait evolution with a
precise decomposition of the walking gait in 8 different
phases, offering improved possibilities to characterize and



Fig. 12: Freeze frames of the GUI for a quasi-static gait to
the left and a static gait to the right

analyze the walking strategies. This algorithm to detect
gait phases in more than 99% of the walking time for
12 participants. However, a wider quantitative performance
evaluation will have to be done to assess more in depth
the relevance of the detection, with external control data
(with a motion capture system for example or a force in-
strumented walking platform). Robustness towards variations
of multiple parameters (walking rhythms, ground surface
and even physiological condition of participants with more
unusual walking strategies) should also be studied in future
experimental campaigns.

Additionally, proposed algorithm currently only works
during walking. If the system is used during other activities,
numerous foot contact states will be shown in sequences
unknown to the algorithm and will thus lead to numerous in-
correct gait phase detection or constant NW phase detection.
A perspective of this work will therefore be to implement
recognition of the specific sequences of other activities to be
able to adapt the sequencing conditions accordingly and be
able to characterize gait phase in more realistic everyday life
scenarios.

The real time experiment shows that our device (in-
strumented soles and embedded electronic) and proposed
algorithm can be used in an online manner. During the walk

of participant, the GUI correctly displays in real-time the
sequences of gait phases and ground contacts and allows to
observe subtle variations in walking patterns. This could be
useful for clinicians to get more precise information on a
patient gait such as walking asymmetries, nature of ground
contacts patient is exhibiting (assessment of foot rolling
impairment), the duration of each phase or even information
of any other sensor (such as kinematics measurements) that
could be categorised depending on the analysed gait phase(s).
A specific sound or visual feedback could also easily be
added for the clinician or the user to have real-time informa-
tion and take them into account, for rehabilitation purposes
for example. We believe that proposed gait phase detection
approaches could pave the road toward generalization of the
use of simple and low-cost instrumented soles to perform
clinical quantitative assessment of walking or to offer smarter
rehabilitation care.
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