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Abstract

Uncertainty quantification is a central challenge in reliable and trustworthy machine learning.

Naive measures such as last-layer scores are well-known to yield overconfident estimates in the

context of overparametrized neural networks. Several methods, ranging from temperature scaling

to different Bayesian treatments of neural networks, have been proposed to mitigate overconfidence,

most often supported by the numerical observation that they yield better calibrated uncertainty

measures. In this work, we provide a sharp comparison between popular uncertainty measures

for binary classification in a mathematically tractable model for overparametrized neural networks:

the random features model. We discuss a trade-off between classification accuracy and calibration,

unveiling a double descent like behavior in the calibration curve of optimally regularized estima-

tors as a function of overparametrization. This is in contrast with the empirical Bayes method,

which we show to be well calibrated in our setting despite the higher generalization error and

overparametrization.

1 Introduction

Uncertainty estimation is the cornerstone of reliable data processing. A large body of literature in clas-
sical statistical theory is dedicated to providing solid mathematical guarantees on a model’s uncertainty,
such as confidence scores for classification and confidence intervals for regression [Wasserman, 2013].
Yet, when it comes to modern machine learning methods such as deep neural networks our math-
ematical understanding of the uncertainty associated with prediction falls short. A key aspect in
current machine learning practice is that, in contrast to classical wisdom, models often operate in
a regime where the complexity of the hypothesis class (e.g. as measured by the number of param-
eters in the model) is comparable or larger than the quantity of data available for training. This
modern, overparametrized regime defies the common intuition rooted on classical statistics, therefore
posing interesting challenges to their mathematical treatments. For example, deep neural networks
are able to achieve optimal generalization performance even when the training data are perfectly in-
terpolated [Geman et al., 1992, Geiger et al., 2019, Nakkiran et al., 2020], a behaviour at odds with
the bias-variance intuition. This benign overfitting property was recently shown to be common among
overparametrized convex methods, such as linear regression [Bartlett et al., 2020, Hastie et al., 2022],
random features regression [Mei and Montanari, 2022] and classification [Gerace et al., 2020].

While much of the theoretical effort has focused on the generalization properties of point estimates
from overparametrized models, less is understood about their confidence. Indeed, a popular method
to estimate uncertainty in neural networks consists of interpreting the last layer pre-activations as
class probabilities. Numerical experiments suggest that deep neural networks tend to suffer from

1

http://arxiv.org/abs/2210.12760v1


overconfidence with respect this notion [Guo et al., 2017], a problem which has motivated many empir-
ical calibration methods in the literature [Hein et al., 2019, Kristiadi et al., 2020, Mukhoti et al., 2020,
Liu et al., 2020]. Recently, it has been shown that actually overconfidence is a common problem in
high-dimensional classification [Bai et al., 2021], although it can be considerably mitigated by prop-
erly regularising the risk [Clarté et al., 2022]. An alternative to the pre-activation scores consists in
applying a Bayesian treatment to neural networks, for instance by averaging the last layer weights
over the measure induced by the empirical risk. In some contexts, these techniques were shown to pro-
vide better calibrated uncertainty measures than pre-activation score. A priori, Bayesian techniques
require sampling from a high-dimensional measure, and therefore can be computationally demanding
[Alexos et al., 2022]. Despite the success and widespread use of these uncertainty measures, math-
ematical guarantees relating these notions to intrinsic uncertainty measures such as the true class
probabilities or the best uncertainty estimation given the available data (i.e. the true posterior un-
certainty given the features) are scarce. In this work, we provide a sharp mathematical comparison
between these different uncertainty notions in the context of a simple, solvable model for binary clas-
sification on structured features - such as the ones given by the first layers of neural networks. To the
best of our knowledge, our work is the first to provide a sharp asymptotic analysis of uncertainty in
overparametrized high-dimensional models.

Our main contributions are:
• We provide an exact asymptotic description of the generalization error & the joint probability
density for different classifiers of interest for the random features model, beyond the empirical risk
characterization of [Gerace et al., 2020, Dhifallah and Lu, 2020]. It allows us to evaluate uncertainty
measures, such as the calibration and the conditional variance of prediction, and to study the interplay
between uncertainty & overparametrization.
• We identify a fundamental trade-off between performance and prediction confidence as a function
of the number of parameters in the model. We compare cross-validation schemes with Bayesian model
selection, and show that targeting high accuracy can be at odds with achieving a calibrated classifier.
In particular, we show that the calibration of the optimally regularized empirical risk classifier peaks
around the interpolation threshold, despite the monotonic generalization error. We show that a popular
calibration technique known as temperature scaling [Guo et al., 2017] mitigates this peak, and achieves
the best combination of a good test error and a good calibration.
• Finally, we discuss a popular uncertainty measure motivated by Bayesian methods: the Laplace
approximation [MacKay, 1992, Ritter et al., 2018]. The Laplace approximation is known to produce
a consistently less confident uncertainty measure, and in our work we quantify how much. In par-
ticular, we show it often provides an underconfident estimate. Our analysis requires an asymptotic
characterization of the logistic loss Hessian at the minimum - a result we believe to be of independent
interest.

Related work – Uncertainty quantification in deep learning is an active and rapidly evolving field,
with many coexisting metrics and methods in the literature, see e.g. [Abdar et al., 2021, Gawlikowski et al., 2022]
for two recent reviews. [Nguyen et al., 2015, Guo et al., 2017] empirically observed that different from
"small" networks [Niculescu-Mizil and Caruana, 2005], modern deep neural networks tend to give over-
confident predictions. [Guo et al., 2017] proposed temperature scaling, a simple post-processing vari-
ant of Platt scaling [Platt, 2000] consisting of rescaling & cross-validating the norm of the last-layer
weights, and showed it can effectively calibrate them. Alternatively, [Kristiadi et al., 2020] has ar-
gued that a Bayesian treatment of the last layer of deep networks fixes overconfidence. Bayesian
methods typically involve sampling from a high-dimensional posterior [Mattei, 2019], and different
methods have been proposed to compute them efficiently [Graves, 2011, Gal and Ghahramani, 2016,
Lakshminarayanan et al., 2017, Maddox et al., 2019]. Of particular interest to our work is the Laplace
approximation introduced in [MacKay, 1992] for Gaussian process classification and adapted to Bayesian
deep learning in [Ritter et al., 2018, Kristiadi et al., 2020, Daxberger et al., 2021]. An asymptotic dis-
cussion of evidence maximization in Bayesian ridge regression appeared in [Marion and Saad, 1994,
Bruce and Saad, 1994, Marion and Saad, 1995]. [Bai et al., 2021] has shown that the logit model is
overconfident in high-dimensions, and [Clarté et al., 2022] discussed how to mitigate it by properly
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regularizing. An exact asymptotic characterization of the empirical risk minimizer for random features
model has been derived and discussed in [Mei and Montanari, 2022, Gerace et al., 2020, Goldt et al., 2022,
Hu and Lu, 2020, Dhifallah and Lu, 2020, Loureiro et al., 2021a]. Particularly relevant to our tech-
nical results is the recent progress in approximate message-passing schemes for structured matri-
ces [Gerbelot and Berthier, 2021, Loureiro et al., 2022]. Finally, exact asymptotics for Bayes-optimal
estimation has been discussed in the context of generalized linear models in [Barbier et al., 2019,
Gabrié et al., 2018].

Notation – We denote vectors with bold letters, and matrices with capital letters. For n ∈ N, we
let [n] := {1, · · · , n}. N (µ,Σ) denotes the Gaussian density, σ(t) := (1 + e−t)−1 denotes the sigmoid
function. We define

σv(x) :=

∫

σ(z)N (z|x, v)dz (1)

the averaged sigmoid with a Gaussian noise of variance v.

2 Setting

2.1 Probabilistic classifiers and uncertainty

Consider a supervised binary classification task given by n independent samples D = (xµ, yµ)µ∈[n] ∈
X ×{−1,+1} from a joint distribution ν, and denote by f⋆(x) = ν(y = 1|x) the oracle class probability
obtained by conditioning ν over an input. In this work we are interested in studying the uncertainty
associated to probabilistic classifiers f̂(x) = P(y = 1|x) ∈ [0, 1] obtained by fitting the data1, and
how they compare with the true class probability f⋆. A key motivation is the recent stream of works
on uncertainty quantification for neural networks, and in particular the line of works proposing un-
certainty measures based on classifiers defined by sampling over the last layer of neural networks
[Brosse et al., 2020, Kristiadi et al., 2020]. To set notation, let ϕ : X → R

p denote a feature map, for
instance the features learned by the first layers of a trained neural network. We shall be interested in
the following classifiers:

Empirical risk classifier – The empirical risk classifier is the one obtained by naively interpreting
the scores in the last year as probability distributions. Mathematically, it is defined as f̂erm(x) =
σ(θ̂⊤

ermϕ(x)), where σ : R → (0, 1) is a non-linearity. For concreteness, we will focus on the popular
case where σ(z) = (1+e−z)−1 is the sigmoid function, and θ̂erm ∈ R

p is the minimizer of the associated
(regularized) logistic or cross-entropy risk:

R̂n(θ) =
1

n

n∑

µ=1

log
(

1 + e−yµθ⊤ϕ(xµ)
)

+
λ

2
||θ||22 . (2)

This is also commonly referred to as the logit classifier.

Bayes-optimal classifier – Denoting the training features Dϕ := {(ϕ(xµ), yµ)}µ∈[n], the optimal
Bayesian classifier for the last layer is given by:

f̂bo(x)=

∫

dθ p
(
y = 1|θ, {ϕ (xµ)}µ∈[n]

)
p (θ|Dϕ) (3)

where p
(
y = 1|θ, {ϕ(xµ)}µ∈[n]

)
is the likelihood over the labels and p(θ|Dϕ) is the posterior distribu-

tion over the weights given the training features and labels. In practice, the Bayes-optimal classifier
fbo is not accessible to the statistician, since she doesn’t have access to the distribution ν that has
generated the data - and even if she had, sampling from the high-dimensional posterior distribution
would be computationally cumbersome. However, as we will discuss in Sec. 3.1, for the data genera-
tive model considered here, the Bayes-optimal classifier can be asymptotically characterized, and its
marginals can be computed by a polynomial-time message passing algorithm.

1In the following, we consistently denote with a hat classifiers which are a function of the training data.
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Bayesian classifiers – Since the optimal Bayesian classifier is not accessible in practice, different
classifiers inspired by Bayesian methods have been proposed in the literature. In this manuscript, we
will consider two popular choices.

The first is the empirical Bayes classifier f̂eb [Marion and Saad, 1994, Jospin et al., 2022]. In full
generality, the empirical Bayes method consists of postulating a class of plausible likelihoods and priors
and doing model selection from the training data via evidence maximization. In the context of Bayesian
neural networks, the likelihood and priors are defined by the network architecture and regularization,
which are normalized to define proper probability distributions. In our setting, the empirical Bayes
classifier is explicitly given by:

f̂eb(x) =

∫

Rp

dθ σ(βθ⊤ϕ(x))peb(θ|D, β, λ),

peb(θ|D, β, λ) =

∏

µ
σ(βyµθ⊤ϕ(xµ))N (θ|Ip/βλ)

p(D|β, λ)

(4)

The normalisation constant p(D|β, λ) is known as the marginal likelihood or the evidence. In the empir-
ical Bayes method the evidence is maximized in order to select the most likely hyperparameters (β, λ)
explaining the training data [MacKay, 1996]. In our specific model, we note that the evidence is actu-
ally only a function of the ratio λ/β (this can be seen from the change of variables θ ← βθ). Therefore,
without loss of generality we take β = 1 and optimize only over λ. It is important to stress that the
postulated prior and likelihood in f̂eb may not correspond to the ones that generated the data in general.

Note that, differently from the Bayes-optimal estimator, the empirical Bayes classifier can be a
priori computed using only the training data. However, it can be computationally demanding to
sample from the posterior distribution above, specially in large dimensions p, n ≫ 1. To avoid this
computational bottleneck, a common approximation consists of expanding the posterior around the
θ̂erm to second order, known as the Laplace approximation [Kristiadi et al., 2020, Ritter et al., 2018,
Daxberger et al., 2021]:

f̂Lap (x) =

∫

dθ σ
(

θ̂⊤
ermϕ(x)

)

N (θ|θ̂erm,H−1) (5)

where H := ∇2
θR̂n(θ̂erm) is the Hessian of the empirical risk evaluated at the minimum. Therefore, in

the Laplace approximation the posterior is effectively approximated by a Gaussian distribution centred
at θ̂erm and with covariance given by the inverse curvature around the minimum. The "sharper"
the minimum, the lower the variance and the more confident the Laplace classifier is. Note that
the generalization errors associated to the Laplace classifier coincide exactly with the empirical risk
classifier. Finally, in the model considered here, the Laplace approximation f̂Lap will always be less

confident than the ERM estimator using θ̂erm. This is due to the concavity of the logit function σ on
[0,∞).

Performance and uncertainty – Given a probabilistic classifier f̂ , the most common measure for
the generalization performance is the misclassification test error (also known as 0/1 error) :

Egen.(f̂) = E(x,y)∼νP

(

sign(f̂(x)) 6= y
)

. (6)

For f̂erm, another commonly used metric is the test loss :

Lgen.(f̂) = −E(x,y)∼ν log(σ(yf̂(x))) . (7)

However, our key goal in this manuscript is to mathematically characterize the uncertainty associated
to the prediction of the different classifiers above, and in particular how they correlate with the true
class uncertainty as measured by f⋆. Mathematically, this can be measured by the following joint
density:

ρ⋆,t(a, b) := EDPx

(

f⋆(x) = a, f̂t(x) = b
)

(8)
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where (a, b) ∈ [0, 1]2 and f̂t, t ∈ {bo, erm,Lap, eb} can be any of the classifiers defined above, and the
expectation is taken both over the training data D = {(xµ, yµ)}µ∈[n]. In particular, this joint density
gives access to different notions used in the literature to quantify uncertainty. For instance, a widely
studied notion is the calibration at level ℓ ∈ [0, 1] of a classifier f̂ :

∆ℓ(f̂) := ℓ− Ex,D
[

f⋆(x)|f̂ (x) = ℓ
]

. (9)

A related metric is the Expected Calibration Error (ECE):

ECE(f̂) := Ex

[

|∆f̂(x)|
]

. (10)

2.2 The random features model

Following our aim to investigate the interplay between overparametrization and uncertainty, we will
focus on one of the simplest settings of feature maps defined by two-layer neural networks ϕ : x ∈ X ⊂
R
p 7→ φ(Fx)/

√
p with weights F ∈ R

p×d and component-wise activation φ. We will consider random
features [Rahimi and Recht, 2007], where the first layer weights F ∈ R

p×d are fixed at initialization,
typically taken to be i.i.d. standard Gaussian. Random features have been widely studied as a
convex proxy for investigating the impact of overparametrization in generalization, since they were
shown to display the characteristic non-monotonic double descent behaviour of the generalization error
[Belkin et al., 2019, Spigler et al., 2019], with optimal generalization achieved beyond interpolation of
the data [Mei and Montanari, 2022, Gerace et al., 2020, D’Ascoli et al., 2020], also known as benign
overfitting [Bartlett et al., 2020].

We will assume Gaussian input data xµ ∼ N (0, 1/dId) with labels drawn from a logit model:

f⋆(x) =

∫

R

σ
(

θ⊤
⋆ x+ τ0z

)

N (z|0, 1)dz (11)

with random weights θ⋆ ∼ N (0, Id) and τ0 ≥ 0 defines a tunable label noise level. This completely
specifies the data distribution ν. In the following, we will be interested in the proportional high-
dimensional limit defined by n, p, d→∞ with fixed ratios α := n/p and γ := p/d.

An asymptotic characterization of the generalization and training errors of empirical risk mini-
mization for the random features model in the proportional limit was derived for ridge regression
in [Mei and Montanari, 2022] and generalized to convex losses in [Gerace et al., 2020]. A key in-
gredient in this analysis is a Gaussian equivalence principle [Goldt et al., 2020, Goldt et al., 2022]
proven in [Hu and Lu, 2020, Montanari and Saeed, 2022] stating that the statistics of the empirical
risk minimizer is asymptotically equal to the one of an equivalent Gaussian problem with matching
moments. More recently, Gaussian equivalence has been proven for two-layer neural tangent features
in [Montanari and Saeed, 2022] and features coming from mixture models in [Gerace et al., 2022], and
was conjectured to hold for a broader class including features coming from trained neural networks
[Loureiro et al., 2021a]. Although the discussion in this manuscript focus in the random features case,
our analysis can be readily extended to all cases in which Gaussian equivalence holds. We provide in
Appendix B an extension of our main theoretical result to a general Gaussian covariate model with
convex loss encompassing all these cases.

3 Results

3.1 Technical results

Let µ̂p denote the empirical spectral distribution of the matrix FF⊤ ∈ R
p×p. In the following, we

assume that in the proportional high-dimensional limit defined above, µ̂p weakly converges to an
asymptotic spectral distribution µ on R+ with normalized second moment

∫
µ(dx)x2 = 1. Further,

assume κ0 = E[φ(z)], κ1 = E[zφ(z)] and κ2⋆ = E[φ(z)2] − κ21 − κ20 are all finite for z ∼ N (0, 1). For
simplicity of exposition, in the following we assume κ0 = 0, which can always be obtained by letting

φ→ φ− κ0. We also define the effective noise τ2add = 1− Ex∼µ

[
κ2
1x

κ2
1x+κ2

⋆

]

.
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The first step is to characterize the density ρ⋆,t with t ∈ {bo, erm,Lap, eb} defined in eq. (8). All rel-

evant quantities depend on this density. In the asymptotic regime, the estimator f̂(x) is characterized
by six quantities (m, q, v, m̂, q̂, v̂) that are solutions of self-consistent equations.

Classifier gt(y, ω, v) π̂t(x) τ̂t

f̂erm proxlog σ(y×·)(ω) λ 0

f̂Lap proxlog σ(y×·)(ω) λ Ex∼µ

[
κ2
1x+κ⋆

λ+v̂⋆(κ2
1x+κ⋆)

]

f̂eb ∂ω log
∫
σ(βy × z)N (z|ω, v)dz λ v⋆

f̂bo ∂ω log
∫
στ20+τ2add

(y × z)N (z|ω, v)dz κ2
1x

(κ2
1x+κ2

⋆)
2 v⋆ + τ20 + τ2add

Table 1: Auxiliary functions and value of τ̂t for the different classifiers defined in Sec. 2.1.

Theorem 3.1 (Joint density). Let D = {(xµ, yµ)}nµ=1 denote data independently drawn from the model

defined in Equation (11). Consider f̂t, t ∈ {bo, erm,Lap, eb} one of the classifiers defined in Sec. 2.1.
Then, in the proportional high-dimensional limit where n, d, p → ∞ with fixed α = n/p, γ = p/d, the
asymptotic joint density ρ⋆,t defined in Equation (8) is given by ρlim⋆,t (a, b) = lim

p→∞
ρ⋆,t(a, b):

ρlim⋆,t (a, b) =

N
([

σ−1
τ20+τ2add

(a)

σ−1
τ̂2t

(b)

]
∣
∣
∣02,Σt

)

|σ′
τ20+τ2add

(σ−1
τ20+τ2add

(a))||σ′
τ̂2t
(σ−1

τ̂2t
(b))|

(12)

where

Σt =

[
1− τ2add m⋆

t

m⋆
t q⋆t

]

(13)

and the sufficient statistics (m⋆
t , q

⋆
t , v

⋆
t ) ∈ R

3 are the unique fixed points of the following system of
equations:







v = 2× ∂q̂Ψw(m̂, q̂, v̂; π̂t)

q = 2× (∂q̂Ψw − ∂v̂Ψw)(m̂, q̂, v̂; π̂t)

m =
√
γ∂m̂Ψw(m̂, q̂, v̂; π̂t)

(14)







v̂ =−αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) ∂ωgt (y, ξ, v)
]

q̂ =αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) gt (y, ξ, v)
2
]

m̂ =
√
γαEξ∼N (0,q)

[
∑

y ∂ωZ0 (y,m/qξ, v⋆) gt (y, ξ, v)
]

where Z0(y, ω, v) = σv+τ20+τ2add
(yω), v⋆ = 1 − m2/q − τ2add. The functions gt and π̂t and the scalar τ̂t

depend on the estimator and the sufficient statistics, and are given in Table 1. Also :

Ψw(m̂, q̂, v̂; π̂) =
1

2
Ex∼µ

[
m̂κ21x+ q̂(κ21x+ κ2⋆)

π̂(x) + v̂(κ21x+ κ2⋆)

]

− 1

2
log(π̂(x) + v̂(κ21x+ κ2⋆)) . (15)

Proof idea: Let x ∼ N (0, 1/dId). For any of the classifiers t ∈ {bo, erm,Lap, eb} from Sec. 2.1,
the 2-dimensional vector (f⋆(x), f̂t(x)) is asymptotically distributed as (σ(z), σṽ(z

′
t)) for some ṽ that

depends on the estimator, where (z, z′t) ∼ N (02,Σt), and

Σt =
1

d

(
||θ⋆||22 θ̂⊤

t Φθ⋆
θ⊤
⋆ Φ

⊤θ̂t θ̂⊤
t Ωθ̂t

)
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Figure 1: (Left) Test errors of the different methods as a function of the number of parameter per
sample p/n. ERM, and Empirical Bayes (EB) are used with different penalizations. Here we use a logit
teacher with n/d = 2.0, τ0 = 1/2 and erf activation. The curves f̂eb(λerror) and f̂erm(λerror) are very
close and indistinguishable on the plot, as well as the curves f̂eb(λevidence) and f̂erm(λloss). Due to the
intrinsic noise in the model the oracle error is E⋆gen. ≃ 0.332. (Center) Calibration at a level ℓ = 0.75.

(Right) Variance of f̂bo conditioned on the different other estimators.

where we defined the shorthand Φ = κ1F ∈ R
p×d and Ω = κ21FF⊤ + κ2⋆Ip and θ̂t is either the unique

minimizer the empirical risk in eq. (2) for t ∈ {erm,Lap} or the mean over the respective posterior
distribution for t ∈ {bo, eb}. The computation of ρ⋆,t thus boils down to computing the sufficient

statistics (m⋆, q⋆) := (θ̂⊤
t Φθ⋆, θ̂

⊤
t Ωθ̂t). For f̂erm on the random features model, the theorem follows

then directly from [Dhifallah and Lu, 2020, Loureiro et al., 2021a], where (m⋆, q⋆) is indeed proven to
asymptotically obey a set of self-consistent "state-evolution" equations [Gerbelot and Berthier, 2021,
Bayati and Montanari, 2011, Donoho and Montanari, 2016], mathematically equivalent to eqs. (14).
We show in Appendix B.3 how to derive analogous results for t ∈ {bo,Lap, eb} with the heuristic
replica and cavity method. The Laplace estimator can also be proven by the ERM theorem and the
BO one with results from [Barbier et al., 2018, Gabrié et al., 2018]. Finally, the EB is proven under the
technical condition that message-passing algorithm sample the posterior efficiently (which is expected
to be the case in linear time for such measures [Zdeborová and Krzakala, 2016, Celentano et al., 2020,
Barbier et al., 2021b]). Note that a similar theorem was used in [Clarté et al., 2022] for the simpler
vanilla logistic model.

Corollary 3.2 (Test error and calibration). Under the conditions of Theorem 3.1, the asymptotic
generalization error and calibration are given by:

E limgen. =
∫∫

b<0.5,a
a× ρlim⋆,t (a, b)dadb+

∫∫

b>0.5,a
(1− a)× ρlim⋆,t (a, b)dadb

∆lim
p = p−

∫
a× ρlim⋆,t (a, p)da
∫
ρlim⋆,t (a, p)da

.

(16)

(17)

3.2 Trade-off between performance and uncertainty

In sensitive applications of machine learning having a reliable estimation of the model’s uncertainty can
be as important as having accurate predictions. Therefore, a key question is "can my model achieve
good generalization while being calibrated?".

Comparing the performances: In Figure 1 (left) we compare the misclassification test error eq. (6)
of the different classifiers defined in Sec. 2.12 as a function of the overparametrization ratio p/n at
fixed sample complexity n/d = 2 for different choices of the hyperparameters (β, λ). First, note

2Note that by construction Egen.(f̂Lap) = Egen.(f̂erm).
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the characteristic double descent behaviour of the empirical risk minimizer with λ → 0+, with the
peak at the interpolating threshold corresponding in our setting to the existence of linear separator
[Rosset et al., 2003]. As discussed in e.g. [Nakkiran et al., 2021] for neural networks and shown in e.g.
[Gerace et al., 2020] for random features classification, this peak is mitigated by cross-validation on
the ℓ2 regularization λ > 0, which is shown in Fig. 1 with the blue and red full lines, corresponding to
optimally tuning λ to minimize the misclassification error eq. (6) and the test loss respectively eq. (7).

It is interesting to contrast these ERM estimators to the empirical Bayes classifier, which averages
over different classifiers. We see that, evaluating the empirical Bayes with a Gaussian prior of variance
given by the cross-validated λerror achieves almost identical performance to the ERM estimator, with
a difference of the order of 10−5.

An often quoted strength of the Bayesian approach is that model selection can be performed
directly on the training data by evidence maximization over the model hyperparameters [MacKay, 1996].
Curiously, in our setting this yields a very close performance to ERM cross-validated with respect to
the test loss, as shown in Fig. 1 (left) in dashed yellow line. Despite achieving similar performances in
our setting, it is important to stress that these two classifiers are computationally radically different,
as the empirical Bayes classifier requires sampling from a high-dimensional distribution which can be
prohibitive in practice. These should be contrasted with the Bayes-optimal classifier, shown in solid
grey, which by definition gives the best achievable performance at fixed data availability.

To summarise, from the point-of-view of the performance we observe no significant difference be-
tween Bayesian and ERM estimators, with (not surprisingly) best performance achieved by cross-
validating over the misclassification error.

Calibration: Despite the relatively small difference in performance, the discussed classifiers are
rather different in terms of calibration. Figure 1 (center) shows the calibration at fixed level ℓ = 0.75
for the same classifiers. Note that the max-margin interpolator λ→ 0+ produces consistently overcon-
fident predictions. Indeed, we observe a maximum in the calibration curve around the interpolation
threshold reminiscent of the double descent behaviour, with worst possible calibration ∆ℓ = ℓ − 1/2
corresponding to a confidence completely uncorrelated with the true class probabilities achieved at
the interpolation transition. As noted in [Bai et al., 2021], overconfidence is inherent for unregularized
logistic regression in high-dimensions, as it is present even when data is abundant with respect to
the number of parameters. However, in their simpler setting of matched linear classifiers the number
of parameters is equal to the input dimension p = d, and therefore overparametrization cannot be
distinguished from high-dimensionality. Indeed, they observe an asymptotic scaling of the calibration
∆ℓ ∼ d/n, which suggests that overconfidence increases with the number of parameters. Our setting
allow us to decouple the number of parameters p from the data dimension d, suggesting instead that
overparametrization can improve calibration at fixed number of samples.

More strikingly, we observe that optimal regularization does not mitigate this double descent-like
behaviour in the calibration, which is in contrast with what happens with the error itself that becomes
monotonic when optimally regularized. Indeed, while cross-validating with respect to the misclassifi-
cation error achieves the best accuracy, it produces consistently overconfident predictions for both the
empirical risk minimizer and the empirical Bayes classifiers. On the other hand, cross-validation with
respect to the loss produces better calibrated estimates, with an interesting non-monotonic behaviour
crossing from over- to underconfidence as a function of overparametrization. In contrast, maximising
the evidence yields better calibrated estimation with a monotonic calibration curve very close to zero.

To summarise, we observe a fundamental trade-off between optimising the accuracy of classification
and obtaining calibrated classifiers. A similar discussion holds for other calibration levels and for the
expected calibration error eq. (10), as shown in Appendix E.

Conditional variance: Theorem 3.1 gives us access to a rich set of uncertainty measures, of which
the calibration is a particular example. For instance, we have access to the full distribution of the Bayes-
optimal classifier f̂bo conditioned on the predictors defined in Sec. 2.1. Note that since E(f̂bo|f̂ = ℓ) =
E(f⋆|f̂ = ℓ) = ℓ −∆ℓ(f̂), the mean of this conditional distribution is equal to the calibration up to a
constant. A natural measure of uncertainty beyond the calibration is the variance of this conditional
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Figure 2: (Left) Calibration at level ℓ = 0.75 of f̂erm (solid lines, refer to Figure 1 for the legend)
and f̂Lap with the three different regularizations. (Center) Calibration at level ℓ = 0.75 of f̂erm after

temperature scaling (TS), compared to f̂eb (dashed yellow) and f̂loss (full red) for reference. (Right)
Variance of f̂bo conditioned on f̂erm = 0.75 after temperature scaling, compared to variance at f̂loss
(full red) and f̂eb (dashed yellow).

distribution Var(f̂bo|f̂ = ℓ), which quantifies how much the prediction f̂(x) = ℓ inform us on f̂bo(x),
which is by definition the best achievable classifier at finite availability of data.

Theorem 3.3 (Conditional variance). Under the same setting as Theorem 3.1, an explicit expression
for the conditional variance can be derived for any of the classifiers t ∈ {erm,bo,Lap, eb}:

Var(f̂bo(x)|f̂t(x) = ℓ) =

∫

da σv̂⋆bo+τ20+τ2add
(a)2 ×N

(
a|m⋆

t/q⋆tσ
−1
τ̂t

(ℓ), q⋆bo − m⋆
t
2/q⋆t
)
− (ℓ−∆ℓ)

2 (18)

where (m⋆
t , q

⋆
t , q

⋆
bo) are solutions to the self-consistent equations eq. (14) and ∆ℓ is the asymptotic

calibration eq. (17).

The detailed derivation and the proof, that follows from Theorem 3.1, are shown in Appendix D.
Figure 1 (right) shows this conditional variance as a function of the overparametrization. We note that
here better calibration correlates well with lower variance. We also observe behaviour reminiscent of
double descent in the value of the conditional variance that does not go away with optimal regularization
and the corresponding peak is even more pronounced than in the calibration.

3.3 Temperature scaling

Temperature scaling is a calibration method introduced in [Guo et al., 2017] to mitigate overconfidence
in trained neural networks. It is applied after training, and consists in introducing a "temperature"
scaling parameter on the last layer pre-activations f̂erm(x) = σ(θ̂⊤

ermϕ(x)/T ). It is then tuned to
minimize the validation loss. In our analysis, this corresponds to simply re-scaling the predictor
θ̂erm→ θ̂erm/T , & Thm. 3.1 thus applies mutatis mutandis.

Figure 2 (center) compares the calibration at level ℓ = 0.75 of the regularized empirical risk mini-
mizers with λloss and λerror after temperature scaling with the empirical Bayes classifier with λevidence
and ERM classifier at λloss, the best calibrated in our setting so far. We observe that the temperature
scaling yields very similar calibrations for λloss and λerror. While empirical Bayes remains the best
calibrated estimator, temperature scaling has a calibration around 0.1%, which would be satisfying in
most practical scenarios. We also observe that the maximum around the interpolation threshold is not
present in the calibration curves after temperature scaling.

Looking at the variance of f̂bo conditioned on f̂erm after temperature scaling we see that it is
lower for λerror than for λloss, see Fig. 2 (right). We see that again the variance has an increase in
the vicinity of the interpolation threshold, reminiscent of the double descent behaviour. As discussed
in the previous section, we aim to have the lowest variance possible to ensure that the uncertainty
estimation is accurate not only on average but also point-wise. It appears that cross-validating the
empirical risk minimizer on the misclassification error and then applying temperature scaling gives an
estimator that both has the best test error and is very well calibrated, both on average and point-wise.
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3.4 The calibration of the Laplace approximation

Estimating any of the Bayesian classifiers in Sec. 2.1 is computationally demanding, since they in-
volve a sampling over a high-dimensional distribution. This has motivated practitioners to develop
different approximations for making Bayesian methods more efficient. These include Bayesian dropout
[Gal and Ghahramani, 2016], deep ensembles [Lakshminarayanan et al., 2017], stochastic gradient Langevin
dynamics [Welling and Teh, 2011] and the Laplace approximation [Ritter et al., 2018, Daxberger et al., 2021],
among others. The Laplace approximation was introduced by [MacKay, 1992] in the context of Gaus-
sian processes, and consists of approximating the posterior distribution by a Gaussian density centred
around the empirical risk minimizer - or equivalently to a low-temperature expansion of the posterior -
see eq. (5). By construction, the Laplace classifier has the same misclassification error as the empirical
risk minimizer, and hence can be effectively seen as endowing this point-estimator with a covariance
given by the inverse of the Hessian evaluated at the minimum. Although computing the Hessian of
the empirical risk for a deep neural network can be costly, an approximate scheme has been recently
proposed [Ritter et al., 2018, Daxberger et al., 2021], making Laplace a viable uncertainty estimation
technique for deep learning.

On the theory side, sharp results have been limited to the Gaussian process and ridge regres-
sion setting, where the Laplace approximation is exact [Sollich, 1998, Sollich, 2001]. While exact
asymptotic results characterizing the statistics of the logit estimator in high-dimensions abound [Sur and Candès, 2019,
Gerace et al., 2020, Aubin et al., 2020, Deng et al., 2022], to our best knowledge the asymptotic spec-
tral distribution of the Hessian at the minimum is missing. Recently, [Liao and Mahoney, 2021] has
computed the asymptotic spectral distribution of the Hessian in a matched logit model under the as-
sumption that the weights are uncorrelated with the input data. Hence, their their results do not apply
for the empirical risk minimizer, and cannot be used to characterize the uncertainty of the Laplace clas-
sifier. Characterizing the Hessian of the logistic risk eq. (2) at the minimizer is a challenging technical
result which we believe is of independent interest to the scope of the discussion in this manuscript.

Theorem 3.4 (Hessian of logit, informal). Let

H(θ) :=
∑

µ∈[n]
(σ′(yµθ⊤ϕ(xµ))− 1)ϕ(xµ)ϕ(xµ)⊤ + λIp

denote the Hessian of the logistic empirical risk eq. (2), and denote θ̂erm = argminθ R̂n(θ) its mini-
mizer. Then, under the same conditions of Thm. 3.1 and additional technical assumptions, the following
asymptotic characterization holds:

H−1(θ̂erm) ≍
p→∞

(

v̂⋆
(

κ21FF⊤ + κ2⋆Ip

)

+ λIp

)−1
(19)

where v̂⋆ ∈ R is the solution of the self-consistent eq. (14).

A derivation of this result is discussed in Appendix C in the more general context of the Gaussian
covariate model. With Thm. 3.4 in hands, we can characterize the asymptotic calibration of the Laplace
classifier for our model.

Figure 2 (left) shows the calibration curve at level ℓ = 0.75, at sample complexity n/d = 2 and
noise variance τ0 = 0.5 as a function of the number of parameters. As mentioned in the introduction,
we observe here that f̂Lap is always less confident than f̂erm, due to the concavity of σ. While this
might seem desirable in the scenarios where ERM is very overconfident, e.g. for λ → 0+ or λerror, it
hurts calibration when the classifier is well-calibrated as for λloss. Moreover, it highly depends on the
sample complexity and noise variance, see Appendix E in the supplementary material where we show
a setting in which the Laplace approximation yields an underconfident classifier even in the λ→ 0+ at
mild overparametrization. Then, the Laplace approximation seems to be an unreliable way to control
the calibration of the estimators, contrary to temperature scaling.

4 Conclusion

In this paper, we studied the performance of different frequentist and Bayesian classifiers for random
features classification. In the high-dimensional limit, the asymptotic behaviour of these algorithms
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can be precisely characterized. Our first contribution is the derivation of the Bayes-optimal estimator.
By definition it is the estimator with the best possible performance, and although it is inaccessible
in practice, it provides a baseline to compare the classifiers. Then, we compared the generalization
error of frequentist and Bayesian approaches, showing they yield very similar test error. We then
focused on uncertainty quantification, and showed there is a trade-off between generalization and
calibration in our model. Moreover, we observed a non-monotonic behaviour of the calibration curve
for certain estimators, akin to the famous double-descent phenomenon for the test error. Finally, we
compared two popular approaches for post-training calibration: temperature scaling and the Laplace
approximation, benchmarking them against the baseline classifiers. In our model, we observe that
temperature scaling on top of cross-validating the empirical risk classifier on the accuracy achieves
the best result : it has both the lowest test error and best calibration. Moreover, despite requiring a
validation set, in practice it is a computationally more efficient method than the Bayesian approach,
which requires sampling from a high-dimensional distribution. The code used in this project is available
at github.com/SPOC-group/double_descent_uncertainty.

Limitations: It is worth pointing some limitation of our results. The first resides in the (nevertheless
classical) Gaussian assumption for the data. We note, however, that there are good reasons to believe
that this can be a very good model in high-dimensions [Hu and Lu, 2020, Montanari and Saeed, 2022].
A second limitation of is the lack of feature learning. While many of the uncertainty quantification
methods discussed here apply directly to the last layer of trained neural networks, other methods
considered in the literature apply to the full architecture [Abdar et al., 2021]. Since the performance
of deep neural networks can be largely attributed to feature learning, it shall be important to take it
into account in theoretical studies of uncertainty. We hope that our work can offer a starting point
towards this more ambitious goal.
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Appendix

A Gaussian equivalence

As discussed in the main, our analysis of the random features model introduced in Sec. 2.2 relies on a
recent progress in high-dimensional statistics known as the Gaussian equivalence theorem (GET). In
this Appendix, we recall the reader of the main results in this line of work.

A.1 Informal discussion and key idea

For convenience let’s first recall the model of interest. Consider data (xµ, yµ)µ∈[n] ∈ R
d ×Y which we

assume was independently drawn from the following model:

yµ = f⋆(θ
⊤
⋆ x

µ/
√
d), xµ ∼ N (0, Id), θ⋆ ∼ N (0, Id) (20)

where f⋆ : R → Y is an activation function, which we assume can be potentially stochastic (as in the
logit model studied in the main, Sec. 2.2). For convenience, define the matrix X ∈ R

n×d and the vector
y ∈ Yn obtained by stacking together xµ and yµ row-wise. We are interested in studying the following
generalized linear predictor:

ŷ = f(θ̂⊤ϕ(x)) (21)

where ϕ : Rd → R
p is a feature map, and θ̂ ∈ R

p are weights, which generally depend on the training
data θ̂ = θ̂(ϕ(X),θ⋆), where for convenience we defined the feature matrix ϕ(X) ∈ R

n×p. The random
features model correspond to the specific feature map:

ϕ(x) =
1√
p
φ(Fx) (22)

where F ∈ R
p×d is a random matrix and φ : R→ R is a component-wise activation function. Our key

goal is to characterize the statistics of the model, i.e. to compute expectations over functions of the
test and training predictions:

EX,x,θ⋆

[

ψ
(

f⋆(θ
⊤
⋆ x), f(θ̂(ϕ(X),θ⋆)

⊤ϕ(x))
)]

, EX,θ⋆

[

ψ̃
(

f⋆(Xθ⋆), f(ϕ(X)θ̂(ϕ(X),θ⋆)
)]

(23)

where ψ : Y2 → R and ψ̃ : Y2n → R are test functions. Note in particular that the generalization
errors eqs. (6), (7) and the density eq. (8) are examples of the above.

Different tools from high-dimensional statistics have been designed to compute such expecta-
tions in the limit where n, p, d → ∞ at fixed rates α = n/p and γ = d/p, both rigorously and
heuristically, e.g. the replica method [Mézard et al., 1987, Zdeborová and Krzakala, 2016], CGMT
[Stojnic, 2013, Thrampoulidis et al., 2015, Thrampoulidis et al., 2018], approximate message passing
[Bayati and Montanari, 2011, Krzakala et al., 2012, Gerbelot and Berthier, 2021], cavity / leave-one-
out method [Mezard and Montanari, 2009, Karoui et al., 2013, Mai et al., 2019], tools from random
matrix theory [Karoui, 2009, Dobriban and Wager, 2018], among others. A shortcoming of all the
aforementioned methods is that they typically rely on the Gaussianity of the input data, and therefore
are not directly applicable to the random features model (note that even if Fx ∈ R

p is a Gaussian
vector, the features φ(Fx) are not Gaussian).

Gaussian equivalence provides a surprising answer to this hurdle. Assuming for simplicity that the
features are centred Ex[ϕ(x)] = 0 and defining the covariances:

Φ = Ex[ϕ(x)x
⊤] ∈ R

p×d, Ω = Ex[ϕ(x)ϕ(x)
⊤] ∈ R

p×p (24)

Gaussian equivalence states that in the high-dimensional limit, the expectations in eq. (23) can be
computed for an equivalent Gaussian model with matching second moments:

EX,x,θ⋆

[

ψ
(

f⋆(θ
⊤
⋆ x), f(θ̂(ϕ(X),θ⋆)

⊤ϕ(x))
)]

−−−→
p→∞

EX,V,x,v,θ⋆

[

ψ
(

f⋆(θ
⊤
⋆ x), f(θ̂(V,θ⋆)

⊤v)
)]

EX,θ⋆

[

ψ̃
(

f⋆(Xθ⋆), f(ϕ(X)θ̂(ϕ(X),θ⋆)
)]

−−−→
p→∞

EX,V,θ⋆

[

ψ̃
(

f⋆(Xθ⋆), f(Vθ̂(V,θ⋆)
)]

(25)
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where (xµ,vµ)µ∈[n] are n independent samples of jointly Gaussian random variables:

(x,v) ∼ N
(

0d+p,

[
Id/d Φ/

√
pd

Φ⊤/
√
pd Ω/p

])

(26)

and as before we defined the matrices X ∈ R
n×d and V ∈ R

n×p by stacking the samples row-wise.
For the random features model ϕ(x) = 1/√p φ(Fx), the asymptotic covariances Φ,Ω can be computed
explicitly, and are given by:

Φ ≍
p→∞

κ1√
p
F, Ω ≍

p→∞
κ201p1

⊤
p +

κ21
p

FF⊤ + κ2⋆Ip (27)

where the constants (κ0, κ1, κ⋆) ∈ R
3 are the Gaussian moments of the activation function φ:

κ0 = Ez∼N (0,1)[φ(z)], κ1 = Ez∼N (0,1)[φ
′(z)], κ⋆ =

√

Ez∼N (0,1)[φ(z)2]− κ21 − κ20. (28)

Therefore, for the random features problem the Gaussian equivalent model can be written explicitly
in terms of the input data x ∼ N (0, 1/dId) and the weights F ∈ R

p×d as:

v = κ01p +
κ1√
p
Fx+ κ⋆z (29)

where z ∼ N (0, Ip) is an effective noise vector which is independent from F, x and θ⋆. In summary,
in the high-dimensional limit the statistics of the random features model is equivalent to the statistics
of a Gaussian equivalent model with noisy features. The later can be directly characterized by the
methods mentioned in the last paragraph.

A.2 Gaussian equivalence theorem

Related literature: Gaussian universality has a long history, and appeared in many contexts rang-
ing from random matrix theory [Erdos et al., 2009, Erdos et al., 2010, Tao and Vu, 2012] to signal pro-
cessing [Donoho and Tanner, 2009], statistical learning [Abbasi et al., 2019, Panahi and Hassibi, 2017,
Korada and Montanari, 2010] and physics [Carmona and Hu, 2004, Chatterjee, 2005]. In the con-
text of random features, a precursor of the result discussed here is the observation that for Gaus-
sian data the high-dimensional limit of kernel spectra is linearly related the spectrum of the inputs
[Karoui, 2010]. This result was generalized to random features kernels in [Pennington and Worah, 2017,
Liao and Couillet, 2018], and leveraged by [Mei and Montanari, 2022] to derive exact asymptotic ex-
pressions for the generalization and training error of random features regression. For ridge regres-
sion, computing the performance boils down to computing traces of the feature matrix, and there-
fore Gaussian universality can be seen as an instance of spectral universality of random matrices
[Benigni and Péché, 2021]. In non-linear problems where a closed-form solution is not available (as
in our classification setting), Gaussian universality for the random features model was shown to hold
for the empirical risk minimizer in [Gerace et al., 2020, Goldt et al., 2022], and was later proven in
[Hu and Lu, 2020, Dhifallah and Lu, 2020]. More recently, [Montanari and Saeed, 2022] extended this
proof to non-convex loss, and showed the universality of the free energy density associated to the
empirical risk at finite temperature as well. This version is better suited to our discussion, since it is
closer to the Bayesian classifiers studied in the main.

Theorem A.1 (Lemma 1 from [Montanari and Saeed, 2022]). Consider the random features model
discussed in Sec. A.1. Assume that the activation φ is three times differentiable and has zero Gaussian
mean κ0 = Ez∼N (0,1)[φ(z)] = 0 and that the weight matrix F ∈ R

p×d has rows fi ∼ N (0, Id) for i ∈ [p].
Further, assume that the function f⋆ is Lipschitz with i.i.d. bounded sub-Gaussian noise. Define the
free energy density at inverse temperature β > 0:

fβ(ϕ(X)) = − 1

pβ
log

∫

Rp

dθ exp






−β



−
n∑

µ=1

log σ
(

f⋆(θ
⊤
⋆ x

µ)× θ⊤ϕ(xµ))
)

+
λ

2
||θ||22










. (30)
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Then for any bounded differentiable function ψ with Lipschitz derivative we have:

lim
p→∞

|E [ψ (fβ(ϕ(X))]− E [ψ (fβ(V))]| = 0 (31)

We refer the reader to [Montanari and Saeed, 2022] for the technical details on the proof of this
result.

A.3 Beyond random features

The Gaussian equivalence theorem for the random features model motivates the study of generalized
linear models with general Gaussian covariates. For instance, consider n independently drawn Gaussian
covariates (uµ,vµ) ∈ R

d+p:
(
u

v

)

∼ N
(

0d+p,

[
Ψ Φ
Φ⊤ Ω

])

(32)

for positive definite matrices Ψ ∈ R
d×d, Ω ∈ R

p×p and Φ ∈ R
p×d such that Ψ − ΦΩ−1Φ⊤ is invertible.

Labels yµ ∈ Y are generated from the covariate u ∈ R
p from a generalized linear model:

yµ = f⋆(θ
⊤

⋆ uµ/
√
d), θ⋆ ∼ N (0, Id). (33)

However, the statistician only observes the pairs (vµ, yµ) ∈ R
p × Y, from which she tries to learn:

ŷ = f(θ̂⊤v/
√
p). (34)

The asymptotic statistics of this Gaussian covariate model has been derived and proven in the recent
[Loureiro et al., 2021a] for the particular case in which θ̂ is the empirical risk minimizer. In Appendix
B, we recover and generalize this result to the other estimators defined in Sec. 2.1.

Note that thanks to Gaussian equivalence, in the proportional high-dimensional limit, the random
features model discussed in Sec. A.1 is a particular case of this Gaussian covariate model where u = x

and v = ϕ(x). However, the Gaussian covariate model can accommodate a richer class of models. For
instance, one could consider the case in which the target covariates themselves come from a feature
map: u = ϕ⋆(x). Although Gaussian equivalence has only been established for a limited number of
feature maps, [Loureiro et al., 2021a] has empirically observed that the asymptotic formulas derived
for Gaussian covariates are in good agreement with a rich class of feature maps, including case in which
the fixed features are learned from neural networks. While the goal of this work is not to investigate
Gaussian equivalence, this line of work motivate us to derive our result for general Gaussian covariates,
hence making them readily applicable to equivalences proven in the future.
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B Derivation of Theorem 3.1

In this Appendix we provide a derivation of the self-consistent equations (14) characterizing the suf-
ficient statistics (m⋆

t , q
⋆
t , v

⋆
t , m̂

⋆
t , q̂

⋆
t , v̂

⋆
t ) for t ∈ {bo, erm, eb,Lap}. As motivated in Appendix A, our

discussion will focus on the more general Gaussian covariate model, which contains the random features
setting as a particular case. The key idea is to design an approximate message passing and show that
the associated state evolution equations coincide exactly the with the self-consistent equations for the
sufficient statistics in Theorem 3.1.

This Appendix is organized as follows. We start by a recap of the Gaussian covariate model for
our specific setting in Sec. B.1, and introduce a convenient change of variables. Next, in Sec. B.2 we
introduced a tailored message passing algorithm, and provide an informal derivation of the associated
state evolution equations. In Sec. B.3 we provide a heuristic derivation of the self-consistent equations
from the replica method, and show that it agrees with the state evolution equations for our algorithm.
In Sec. B.4 we discuss how these equations are made rigorous from recent progress in the literature.
Finally, in the three last subsections we discuss variations of this result to the context of the Laplace
approximation and temperature scaling, and a simplification for the the random features case.

B.1 Recap of the setting

As motivated in Sec. A.3, our goal is to derive the self-consistent equations in the more general setting
of the Gaussian covariate model (GCM), which thanks to Gaussian universality contains the random
features model as a special case. For the ease of reading, we first recall the reader of the model of
interest, which specializes Sec. A.3 to binary classification.

Data model: Let (u,v) denote a pair of Gaussian covariates:

(
u

v

)

∼ N
(

0d+p,

[
Ψ Φ
Φ⊤ Ω

])

. (35)

and define the oracle classifier as:

f⋆(u) = P(y = 1|θ⊤
⋆ u) = στ20

(
θ⊤
⋆ u√
d

)

, θ⋆ ∼ N (0, Id), (36)

where we remind the reader of the convenient notation:

στ (x) :=

∫

σ(z)N (z|x, τ)dz (37)

with σ(z) = (1 + e−z)−1 the sigmoid function.

Classifiers: Given n independent pairs (vµ, yν)µ∈[n] ∈ R
p × {−1, 1} from the model above and

defining the training data D = {(vµ, yµ)µ∈[n]} we are interested in studying the family of probabilistic
classifiers of the type:

f̂t(v) = P(y = 1|τt,D) =
∫

dθ στt

(
θ⊤v√
p

)

pt(θ|D) (38)

where the "posterior" pt(θ|D) and the noise level τt depend on the specific classifier t ∈ {bo, erm, eb,Lap}
of interest introduced in Sec. 2.1.

A convenient rewriting: Since the covariate u ∈ R
d is not observed by the statistician, it is useful

to rewrite it explicitly as a function of v and an effective uncorrelated noise. Additionally, it is also
convenient to write v in terms of an uncorrelated variable. Mathematically, this is given by a standard
Gaussian partition:

u = ΦΩ−1v +
(

Ψ− ΦΩ−1Φ⊤
)1/2

z, (39)
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for z ∼ N (0, Id) uncorrelated with v. This motivate us to define the projected oracle weights:

w⋆ = Ω−1Φ⊤θ⋆ (40)

Then, the oracle classifier can be equivalently written as:

P(y = 1|w⊤
⋆ v) =

∫

στ20

(
w⊤

⋆ v√
d

+
1√
d
θ⊤
⋆

(

Ψ− ΦΩ−1Φ⊤
)1/2

z

)

N (z|0, Id) dz

=

∫

στ20

(
w⊤

⋆ v√
d

+ ξ

)

N
(

ξ
∣
∣
∣0,

θ⊤
⋆

(
Ψ− ΦΩ−1Φ⊤)θ⋆

d

)

dξ

(41)

(42)

which is a logit model on the observed features with an effective mismatch noise

ξ ∼ N (0,
1

d
θ⊤
⋆

(

Ψ− ΦΩ−1Φ⊤
)

θ⋆) .

Recalling that θ⋆ ∼ N (0d, Id), in the asymptotic limit the noise variance concentrates:

1

d
θ⊤
⋆

(

Ψ− ΦΩ−1Φ⊤
)

θ⋆ →
1

d
Tr
(

Ψ− ΦΩ−1Φ⊤
)

=: τ2add. (43)

Therefore, the oracle classifier is equivalent to:

f⋆(v) = P(y = 1|w⊤
⋆ v) = στ20+τ2add

(
w⊤

⋆ v√
d

)

(44)

with

w⋆ ∼ N (0,Σ⋆), Σ⋆ = Ω−1Φ⊤ΦΩ−1 (45)

Finally, to further simplify the algebra it is convenient to consider the following change of variables:

v → Ω−1/2v, w⋆ → Ω
1/2w⋆ (46)

Such that v ∼ N (0p, Ip) and w⋆ ∼ N (0d, Φ̃
⊤Φ̃) with Φ̃ ≡ ΦΩ−1/2. Note that the labels are invariant

under this change, and therefore we can assume input data with identity covariance.

B.2 State evolution for GAMP

Algorithm 1: GAMP for an estimator t ∈ {erm,bo, eb}
Input: Data V ∈ R

n×p, y ∈ {−1, 1}n
Define V2 = V⊙ V ∈ R

n×p and Initialize θ̂T=0 = N (0, σ2wId), ĉ
T=0 = 1d, g

T=0 = 0n.
for T ≤ Tmax do

V T = V2ĉT ; ωT = Vθ̂T − V T ⊙ gt−1 ; /* Update channel mean and variance */
gT = fout,t(y,ω

T ,V T ) ; ∂gT = ∂ωfout,t(y,ω
T ,V T ) ; /* Update channel */

AT = −V2⊤∂gT ; bT = V⊤gT +AT ⊙ θ̂T ; /* Update prior mean and variance
/* Update marginals */
θ̂T+1 = fw,t(b

T ,AT ) ; ĉT+1 = diag(∂bfw,t(b
T ,AT ))

end for

Return: Estimators (θ̂amp
t , ĉamp

t ) := (θ̂Tmax
t , ĉTmax

t ).

With the model in hands, we now show discuss how the sufficient statistics (v⋆t , q
⋆
t ,m

⋆
t ) needed to

characterize the asymptotic density defined in eq. (12) satisfy a set of self-consistent equations, which
in the particular case of the random features model are explicitly written given in eq. (14).

Our derivation follows from the analysis of an approximate message passing scheme,
which provides a powerful tool to derive exact asymptotic results in an unified way, and
has been employed in many works in the high-dimensional statistics literature, for instance
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Classifier fout,t(y, ω, v) fw,t(b,A)

f̂erm proxlog σ(y×·)(ω) (λIp + A)b

f̂bo ∂ω log
∫
P(y = 1|z)N (z|ω, v)dz (Σ−1

⋆ + A)b

f̂eb ∂ω log
∫
σ(βy × z)N (z|ω, v)dz (λIp + A)b

Table 2: GAMP denoising functions for the ERM, Bayes-optimal and empirical Bayes estimators. We
recall that the covariance matrix is given by Σ⋆ = Ω−1Φ⊤ΦΩ−1.

see [Bayati and Montanari, 2012, Bayati and Montanari, 2011, Rangan, 2011, Krzakala et al., 2012,
Donoho and Montanari, 2016, Sur and Candès, 2019, Loureiro et al., 2021b, Celentano et al., 2020,
Gerbelot and Berthier, 2021, Loureiro et al., 2022, Cornacchia et al., 2022].

Given the training data D = (V,y), the initial step is to consider the following set of iterates
known as Generalized Approximate Message Passing (GAMP) algorithm 1, where the denoising func-
tions (fout,t, fw,t) depend on the specific classifier of interest t ∈ {bo, erm, eb}, and are summarized in
table 2. The convenience of the GAMP is precisely to allow us to deal with classifiers of very different
nature (t ∈ {bo, eb} are defined by sampling, while t = erm is a point-estimator) in an unified frame-
work. Note that the GAMP algorithm 1 is close to the one in [Rangan, 2011], with the important
difference that the denoising functions fw,t is vector valued - a consequence of the fact that implicitly
the classifiers of interest have non-separable priors. A second convenient property of GAMP is that in
the high-dimensional limit of interest here, the statistics of the sequence of estimators θ̂T,amp

t , ĉT,amp
t can

be exactly tracked by a set of equations known as state evolution. Therefore, the key idea in the proof
strategy is to show that the statistics of the iterates θ̂

T,amp
t , ĉT,amp

t (given by the state evolution equa-
tions) coincide with the statistics of the classifiers defined in Sec. 2.1. The state evolution for GAMP
with non-separable priors was rigorously derived in [Berthier et al., 2019, Gerbelot and Berthier, 2021].
Therefore, in the following we limit ourselves to an informal but intuitive derivation. In Sec. B.3 we
show that the state evolution for the GAMP estimators indeed coincides with the fixed-point equa-
tions describing the statistics of the classifiers of interest according to the replica method. The fact
that GAMP (rigorous) state evolution equations corresponds to the replica saddle-point equations is
a very general fact [Zdeborová and Krzakala, 2016], which is at the roots of many rigorous proofs to
the replica predictions.

In the limit where n, p → ∞ with fixed α = n/p, it can be shown that the GAMP algorithm 1 is
asymptotically equivalent to the following rBP equations (this is discussed in for instance [Aubin et al., 2018,
Aubin et al., 2021]):







ωT
µ→i =

∑

j 6=i

vµj θ̂
T
j→µ

V T
µ→i =

∑

j 6=i

(vµj )
2ĉTj→µ

,

{

gTµ→i = fout,t(y
µ, ωT

µ→i, V
T
µ→i)

∂gTµ→i = ∂ωfout,t(y
µ, ωT

µ→i, V
T
µ→i)







bTµ→i =
∑

ν 6=µ

vνi g
T
ν→i

AT
µ→i = −

∑

ν 6=µ

(vνi )
2∂gTν→i

,

{

θ̂T+1
i→µ = fw,t(b

T
i→µ, A

T
i→µ)

ĉT+1
i→µ = ∂bfw,t(b

T
µ→i, A

T
µ→i)

(47)

(48)

where we recall the reader i ∈ [p], µ ∈ [n], and to lighten notation we have dropped the indexes
t ∈ {bo, erm, eb} for the classifier and amp which stresses that the messages concern GAMP estimators.
By construction, the rBP messages are independent, and are only coupled to each other through the
data, which we recall is given by:

yµ ∼ P0(·|w⊤
⋆ v

µ), vµ ∼ N (0, Ip), w⋆ ∼ N (0,Σ⋆) (49)

For convenience, we define the so-called teacher local field :

zµ = w⊤
⋆ v

µ/
√
d (50)
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Without loss of generality, we can write yµ = f0(zµ, η
µ) for ηµ ∼ N (0, 1). We now characterize the

joint statistics of the rBP messages.

Step 1: Asymptotic joint distribution of (zµ, ω
T
µ→i)

Note that (zµ, ω
T
µ→i) are given by a sum of independent random variables with variance p−1/2, and there-

fore by the Central Limit Theorem in the limit p → ∞ they are asymptotically Gaussian. Therefore
we only need to compute their means, variances and cross correlation. The means are straightforward,
since vµi have mean zero and therefore they will also have mean zero. The variances are given by:

E
[
z2µ
]
=

1

d
E





p
∑

i=1

p
∑

j=1

vµi v
µ
j w⋆iw⋆j



 =
1

d

p
∑

i=1

p
∑

j=1

E

[

vµi v
µ
j

]

w⋆iw⋆j =
1

d

p
∑

i=1

p
∑

j=1

δijw⋆iw⋆j

→
p→∞

ρ

E

[(
ωT
µ→i

)2
]

=
1

p
E





p
∑

j 6=i

p
∑

k 6=i

vµj v
µ
k θ̂

T
j→µθ̂

T
k→µ



 =
1

p

p
∑

j 6=i

p
∑

k 6=i

E

[

vµj v
µ
k

]

θ̂Tj→µθ̂
T
k→µ

=
1

p

p
∑

j 6=i

p
∑

k 6=i

δjkθ̂
T
j→µθ̂

T
k→µ →p→∞

qT

E
[
zµω

T
µ→i

]
=

1√
dp

E





p
∑

j 6=i

p
∑

k=1

vµj v
µ
k θ̂

T
j→µw⋆k



 =
1√
dp

p
∑

j 6=i

p
∑

k=1

E

[

vµj v
µ
k

]

θ̂Tj→µw⋆k

=
1√
dp

p
∑

j 6=i

p
∑

k=1

δjkθ̂
T
j→µw⋆k →

p→∞
mT

(51)

(52)

(53)

(54)

where we have used that θ̂Ti→µ = O(p−1/2) to simplify the sums at large p. Summarising our findings:

(zµ, ω
T
µ→i) ∼ N

(

03,

[
ρ mT

mT qT

])

(55)

with:

ρ ≡ 1

d
w⊤

⋆ w⋆, qT ≡ 1

p
(θ̂T

t )
⊤θ̂T

t , mT ≡ 1√
dp

(θ̂T
t )

⊤w⋆

(56)

Step 2: Concentration of variances V T
µ→i

Since the variance V T
µ→i depends on (vµ

i )
2, in the asymptotic limit p → ∞ it concentrates around its

mean :

E
[
V T
µ→i

]
=

1

p

∑

j 6=i

E

[

(vµi )
2
]

ĉTj→µ =
1

p

∑

j 6=i

ĉTj→µ =
1

p

p
∑

j=1

ĉTj→µ −
1

p
ĉTi→µ →p→∞

V T ≡ 1

p

p
∑

j=1

ĉTj (57)

where we have defined the variance overlap V T . We thus have V T
µ→i → V T . Note that V T corresponds

to the divergence with respect to b of logZw(b,A).

Step 3: Distribution of bTµ→i, b̃
T
µ→i

By definition, we have

bTµ→i =
1√
p

∑

ν 6=µ

vνi g
T
ν→i =

1√
p

∑

ν 6=µ

vνi fout(y
µ, ωT

ν→i, V
T
ν→i) =

1√
p

∑

ν 6=µ

vνi fout(f0(zν , η
ν), ωT

ν→i, V
T
ν→i)

(58)
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Note that in the sum zν = 1√
d

p∑

j=1
vνjw⋆j there is a term i = j, and therefore zµ is correlated with vνi .

To make this explicit, we split the teacher local field:

zµ =
1√
d

p
∑

j=1

vµj w⋆j =
1√
d

∑

j 6=i

vµj w⋆j

︸ ︷︷ ︸
zµ→i

+
1√
d
vµi w⋆i (59)

and note that zµ→i = O(1) is independent from vνi . Since vµi w⋆i = O(p−1/2), to take the average at
leading order, we can expand the denoising function:

fout(f0(zµ, η
ν), ωT

ν→i, V
T
ν→i) = fout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)

+
1√
d
∂zfout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)v

ν
i w⋆i +O(p−1)

(60)

Inserting in the expression for bTµ→i,

bTµ→i =
1√
p

∑

ν 6=µ

vνi fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

+
1√
dp

∑

ν 6=µ

(vνi )
2∂zfout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)w⋆i +O(p−3/2)

(61)

Therefore:

E
[
bTµ→i

]
=

w⋆i√
dp

∑

ν 6=µ

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(p−3/2)

=
w⋆i√
dp

n∑

ν=1

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(p−3/2) (62)

Note that as p→∞, for fixed t and for all ν, the fields (zν→i, ω
T
ν→i) are identically distributed according

to average in eq. (55). Therefore,

1√
dp

n∑

ν=1

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) →p→∞

α
√
γ E(ω,z),η

[
∂zfout(f0(z, η), ω, V

T )
]
≡ m̂T (63)

so:

E
[
bTµ→i

]
→

p→∞
w⋆im̂

T . (64)

Similarly, the variance is given by:

Var
[
bTµ→i

]

=
1

p

∑

ν 6=µ

∑

κ 6=µ

E [vνi v
κ
i ] fout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)fout(f0(zκ→i, η

κ), ωT
κ→i, V

T
κ→i) +O(d−2)

=
1

p

∑

ν 6=µ

fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

2 +O(p−2)

=
1

p

n∑

ν=1

fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

2 +O(p−2)

→
d→∞

α E(z,ω),ξ

[
fout(f0(z, η), ω, V

T )2
]
≡ q̂T

(65)

(66)

To summarise, we have:

bTµ→i ∼ N
(
w⋆im̂

T , q̂T
)

(67)
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Step 4: Concentration of AT
µ→i, Ã

T
µ→i

The only missing piece is to determine the distribution of the prior variances AT
µ→i, Ã

T
µ→i. Similar to

the previous variance, they concentrate:

AT
µ→i = −

1

p

∑

ν 6=µ

(vνi )
2∂ωfout,t(y

ν , ωT
ν→i, V

T
ν→i)

= −1

p

∑

ν 6=µ

(xνi )
2∂ωfout,t(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i) +O(p−3/2)

= −1

p

∑

ν=1

∂ωfout,t(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(d−3/2)

→
p→∞

−α E(z,ω),ξ

[
∂ωfout,t(f0(z, η), ω, V

T )
]
≡ v̂T

(68)

(69)

Summary

We now have all the ingredients we need to characterize the asymptotic distribution of the GAMP
iterates for any of the classifiers t ∈ {bo, erm, eb}:

θ̂
T,amp
t ∼ fout,t(w⋆m̂

T,amp
t +

√

q̂T,amp
t ξ, v̂T,amp

t ) (70)

where ξ ∼ N (0, Ip) is an independent Gaussian vector. Therefore, we recover the GAMP state evolution
equations [Rangan, 2011, Berthier et al., 2019] for the overlaps:







V T+1,amp = E(w⋆,ξ)

[

∂b · fw,t(m̂
T,ampw⋆ +

√

q̂T,ampξ, v̂T,ampIp)
]

qT+1,amp = E(w⋆,ξ)

[

fw,t(m̂
T,ampw⋆ +

√

q̂T,ampξ, v̂T Ip)
2
]

mT+1,amp =
√
γE(w⋆,ξ)

[

fw,t(m̂
T,ampw⋆ +

√

q̂T,ampξ, v̂T,ampIp)
⊤w⋆

]
,







v̂T,amp = −αE(z,ω),η

[
∂ωfout,t(f0(z, η), ω, V

T,amp)
]

q̂T,amp = αE(z,ω),η

[
fout,t(f0(z, η), ω, V

T,amp)2
]

m̂T,amp = α
√
γE(z,ω),η

[
∂zfout,t(f0(z, η), ω, V

T,amp)
]

(71)

(72)

where w⋆ ∼ N (0,Σ⋆), ξ ∼ N (0, Ip) and (z, ω) ∼ N (0,

[
ρ mT

mT qT

]

), η ∼ N (0, 1)

Interestingly, we can show that the equations (72) are strictly equivalent to the self-consistent
equations (14) of Theorem 3.1. Consider first the update equations for V T,amp

t , qT,amp
t ,mT,amp

t . First,
note that for all the estimators considered here, the function fw,t has the form (Σ−1

t + A)b for some
matrix Σt. Now, let us introduce

Ψ̃(b,A,Σ) =
1

2p
Tr log(Σ−1 + A) +

1

2p
b⊤(Σ−1 + A)−1b

Ψw(m̂, q̂, v̂) = Ew⋆,ξΨ̃(m̂w⋆ + q̂ξ, v̂Ip)

(73)

(74)

With some algebra, we can see that for any estimator described in Table 2 we have

∂m̂Ψw(m̂, q̂, v̂) = E(w⋆,ξ)

[

fw,t(m̂
Tw⋆ +

√

q̂T ξ, v̂T Ip)
⊤w⋆

]

∂q̂Ψw − ∂v̂Ψw =
1

2
E(w⋆,ξ)

[

fw,t(m̂
Tw⋆ +

√

q̂T ξ, v̂T Ip)
2
]

∂q̂Ψw =
1

2
E(w⋆,ξ)

[

∂b · fw,t(m̂
Tw⋆ +

√

q̂T ξ, v̂T Ip)
]

(75)

(76)

(77)
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Thus the update equations (72) for m, q, v are equivalent to Equations (14). It is the same for m̂, q̂, v̂
: consider the update equation for q̂T,amp. We can rewrite it with a Dirac delta

q̂T,amp = α
∑

y

E(z,ω),η

[
fout,t(y, ω, V

T,amp)2δ(y − f0(z, η)
]

= α
∑

y

Eω

[
fout,t(y, ω, V

T,amp)2Ez|ω,η(δ(y − f0(z, η))
]

(78)

(79)

(80)

The distribution of z conditioned on ω is a Gaussian with mean mT,amp/qT,amp × ω and variance
ρ−mT,amp ×mT,amp/qT,amp. Then, Ez|ω,η(δ(y − f0(z, η)) can be written

Ez|ω,η(δ(y − f0(z, η)) =
∫

dzEη (δ(y − f0(z, η)))N (z|mT,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

=

∫

dzP(y = 1|z)N (z|mT,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

= Z0(y,m
T,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

we thus recover the equation for q̂ in (14) :

q̂T+1 = α
∑

y

Eω

[
fout,t(y, ω, V

T,amp)2Z0(y,m
T /qTω, ρ− m2/q)

]
(81)

Similar computations can be done for m̂ and v̂.
We have thus eqs. (72) with the self-consistent equations (14) of Theorem 3.1. It remains to show

two points. First, that in the particular case of the random feature model the expression of Ψw simplifies
to Equation (15) - this is discussed in Appendix B.6. Second, to show that the fixed points of the
state evolution equations (mamp

t , qamp
t , vamp

t ) indeed corresponds to the sufficient statistics (m⋆
t , q

⋆
t , v

⋆
t )

for the classifiers of interest. First, we provide a heuristic derivation of this fact, based on the replica
method from statistical physics [Mézard et al., 1987]. We defer the discussion of the formal aspects to
Sec. B.4.

B.3 Self-consistent equation from the replica method

As discussed above, the goal of this section is to provide a derivation of the self-consistent equa-
tions in eq. (14) from the replica method. For the particular case of f̂erm, this derivation appeared
[Loureiro et al., 2021a], where it was also rigorously proven using CGMT. Here, we extend this analysis
to t ∈ {bo, eb}.

We can treat the different classifiers of interest in the replica analysis by defining the following
Gibbs distribution:

µt(θ|D) =
1

Zt

∏

µ∈[n]
P t
σ(y

µ|θ⊤vµ)× P t
θ(θ) (82)

where (P t
σ , P

t
θ) are a likelihood and priors (not necessarily normalized) depending on the particular

classifier, and are explicitly given in Table 3, and the normalization constant Zt is the partition function.
The aim of the replica method is to compute the free energy density defined as:

βfβ = − lim
p→∞

1

p
ED logZt (83)

The free energy is the cumulant generating function of the Gibbs measure, and therefore computing
it give us access to the statistics of the measure, which in particular allow us to compute the test
error and calibration (among others quantities) of the classifiers defined in Sec. 2.1. Since taking the
expectation over the log is intractable, we resort to the replica method [Mézard et al., 1987], which
consists of the following trick:

logZt = lim
r→0+

1

r
Zr
t (84)
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Classifier P t
σ(y|z) P t

θ(θ)

f̂erm σ(y × z)β e−βλ/2‖θ‖2

f̂eb σ(βy × z) N (θ|0, 1/λIp)
f̂bo στ20+τ2add

(y × z) N (θ|0,Σ⋆)

Table 3: Prior and likelihood for the different estimators. For f̂erm, the temperature β must be taken
in the limit β →∞, and the Gibbs measure µerm(θ|D) is peaked around the minimizer of the empirical
risk θ̂erm.

Swapping the limit and the expectation, what we need to compute is:

EDZr
t =

n∏

µ=1

Evµ,yµ

r∏

a=1

∫

Rd

P t
θ (θ

a)P t
σ

(

yµ|v
µ⊤θa

√
d

)

=
n∏

µ=1

∑

y

∫

P (w⋆)

∫
(
∏

a

P t
θ(θ

a)

)

Evµ

[

P0

(

yµ|v
µ⊤w⋆√
d

)
∏

a

P t
σ

(

yµ|v
µ⊤θa

√
p

)]

Next, we introduce the local fields νµ⋆ = 1√
d
vµ⊤w⋆ and νµa = 1√

d
vµ⊤θa. Then, the term between

brackets in the above equation is equal to

∫

dνµ⋆P0(y
µ|νµ⋆ )

∫
∏

a

dνµaP
t
σ(y

µ|νµa )Evµ

[

δ(νµ⋆ −
vµ⊤w⋆√

d
)
∏

a

δ(νµa −
vµ⊤θa

√
p

))

]

(85)

Note that Evµ

[
δ(νµ⋆ − vµ⊤w⋆)

∏

a δ(ν
µ
a − vµ⊤θa))

]
defines the joint distribution of the local fields. It

is straightforward to show that this is a Gaussian distribution on zero mean and covariance Σν :

E(ν⋆, ν⋆) =
1

d
w⊤

⋆ Ωw⋆ = ρ, E(ν⋆, νa) =
1√
pd

w⊤
⋆ Ωθ

a = ma, E(νa, νb) =
1

p
θa⊤Ωθb = Qab (86)

Then, we have

EZr
t =

∏

µ

∑

yµ

∫

Pθ,0(w⋆)

∫
∏

a

P t
θ(θ

a)

∫

dνµ⋆
∏

a

dνµaP0(y
µ|νµ∗ )

∏

a

P t
σ(y

µ|νµa )×N (νµ∗ , ν
µ
a |0,Σν) (87)

The elements of the covariance matrix Σν are fixed by eq. (86). We can free these overlaps by doing
the Fourier transform of the Dirac delta. We get in the end

EDZr
t ∝

∫

dρdρ̂
∏

a

dmadm̂a
∏

a,b

dQabdQ̂abepΦ(r) (88)

Where

Φ(r) = −1

γ
ρρ̂− 1√

γ

∑

a

mam̂a −
∑

a6b

QabQ̂ab + α×Ψ(r)
y +Ψ(r)

w

Ψ(r)
y =

1

p
log

∫

Pθ,0(w⋆)

∫
∏

a

P t
θ(θ

a)eρ̂‖w⋆‖2+
∑

a m̂aw⋆Ωθa+
∑

a6b Q̂
a,bθaΩθb

Ψ(r)
w =

1

p
log
∑

y

∫

dν⋆P0(y|ν⋆)
∫
∏

a

dνaP
t
σ(y|νa)N (ν, νa; Σν)

(89)

(90)

(91)
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B.3.1 Replica symmetric ansatz

In the replica symmetric ansatz, we assume ma = m, Qab = q for a 6= b, Qaa = v+q, m̂a = m̂, Q̂ab = q̂
for a 6= b, Q̂aa = −1

2(v̂ − q̂) where the quantities m, q, v, m̂, q̂, v̂ are to be determined.

We refer to [Gerace et al., 2020, Aubin et al., 2020] for the detailed computation of limr→0+ Ψ
(r)
y

and limr→0+ Ψ
(r)
w . In the end, we obtain :

fβ = extrm,q,v,m̂,q̂,v̂

{

− 1√
γ
mm̂+

1

2
(qv̂ − q̂v + v̂v) + Ψw + α×Ψy

}

Ψw = lim
d→∞

1

p
Eξ,w⋆ log

∫

dθP t
θ(θ)e

−v̂2θ⊤Ωθ+θ⊤(m̂Ωw⋆+q̂Ω−1/2ξ)

Ψy = Eξ∼N (0,q)

[
∑

y

Z0(y,m/qξ, ρ− m2/q) logZg(y, ξ, v)

]

(92)

(93)

(94)

where

Z0/g(y, ω, v) =

∫

dzP0/g(y|z)N (z|ω, v) (95)

The self-consistent equations (14) are obtained by cancelling the derivative of the free energy with
respect to each of (m, q, v, m̂, q̂, v̂).

Ψw for Gaussian priors: For all the estimators considered here, the prior distribution P t
θ(θ) is

Gaussian N (0,Σ), where Σ depends on the considered estimator. Then,

Ψw =

∫

dθe−
1
2
θ⊤Σ−1θe−

v
2
θ⊤Ωθ+θ⊤(m̂Ωw⋆+

√
q̂Ω−1/2ξ)

=
exp

(
1
2(m̂w⋆ +

√
q̂Ω−1/2ξ)⊤(Σ + v̂Ω)−1(m̂w⋆ +

√
q̂Ω−1/2ξ)

)

√

det(Σ + v̂Ω)

= lim− 1

2p
Tr log(Σ + v̂Ω) +

1

2p
Tr(m̂2Ωw⋆w

⊤
⋆ Ω+ q̂Ω)(Σ + v̂Ω)

(96)

(97)

(98)

We get in the end the following expression for Ψw

Ψw = − 1

2p
Tr log (v̂Ω+ Σ) +

1

2p
Tr
(

(m̂2Ωw⋆w
⊤
⋆ Ω+ q̂Ω)(v̂Ω+ Σ)−1

)

(99)

(100)

Saddle-point equations: To compute the free energy, we cancel its derivative with respect to
m, q, v, m̂, q̂, v̂. We have :







∂m̂fβ = − 1√
γm+ ∂m̂Ψw

∂q̂fβ = −1
2v + ∂q̂Ψw

∂v̂fβ = 1
2(v + q) + ∂v̂Ψw

(101)

Cancelling the derivatives gives the condition:







m =
√
γ∂m̂Ψw

v = 2× ∂q̂Ψw

q = −v − 2× ∂v̂Ψw = 2× (∂q̂Ψw − ∂v̂Ψw)

(102)

Which are the first three equations of Theorem 3.1. The derivative of the free energy with respect to
(m, q, v) is given by







∂mfβ = − 1√
γ m̂+ α∂mΨy

∂qfβ = 1
2 v̂ + α∂qΨy

∂vfβ = 1
2(v̂ − q̂) + α∂vΨy

(103)
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Cancelling the derivatives, and computing the derivatives of Ψy gives then







v̂ = −αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) ∂ωgt (y, ξ, v)
]

q̂ = αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) gt (y, ξ, v)
2
]

m̂ = α
√
γEξ∼N (0,q)

[
∑

y ∂ωZ0 (y,m/qξ, v⋆) gt (y, ξ, v)
]

(104)

which are the last three equations for m̂, q̂, v̂ in Theorem 3.1.
Therefore, we have shown that the self-consistent equations characterizing the sufficient statistics

in Theorem 3.1 can be obtained from the replica method by computing the asymptotic free energy
density. Moreover, in Sec. B.2 we have shown that these equations exactly agree with the state evolution
equations for a tailored GAMP algorithm 1.

B.4 Rigorous version of replica and self-consistent equations

As discussed in the introduction of this Appendix, the derivation of Theorem 3.1 consists in two
steps. First, one constructs a tailored GAMP algorithm 1 for which the estimates can be exactly
tracked by a set of state evolution equations. Second, one shows that these equations actually agree
with the self-consistent equations describing the sufficient statistics for the joint density of interest in
Theorem 3.1. The first part was discussed in Sec. B.2, and although we provided an informal deriva-
tion of the state evolution equations, they rigorously follow from the recent progress on state evo-
lution proofs for structured message passing schemes with non-separable priors [Berthier et al., 2019,
Gerbelot and Berthier, 2021]. For the second part, in Sec.B.3 we discussed a heuristic derivation
of the self-consistent equations from the replica method, and showed it agrees with the state evo-
lution equations from GAMP. Therefore, it remains to rigorously justify this last step. Thank-
fully, one can resort to a large number of recent progress on generic proofs of the replica predic-
tions [Bayati and Montanari, 2012, Barbier et al., 2019, Sur and Candès, 2019, Candes and Sur, 2018,
Montanari et al., 2020, Dhifallah and Lu, 2020, Loureiro et al., 2021a], which we now discuss in detail.

First, let us recall the statement of the theorem in the more general context of the Gaussian
covariate model. Let (u,v) denote a pair of Gaussian covariates:

(
u

v

)

∼ N
(

0d+p,

[
Ψ Φ
Φ⊤ Ω

])

. (105)

For any of the classifiers t∈{bo, erm,Lap, eb} from Sec. 2.1, the 2-dimensional vector (f⋆(u), f̂t(v)) is
asymptotically distributed as (σ(z), σṽ(z

′
t)) for some ṽ that depends on the estimator, where (z, z′t) ∼

N (02,Σt), and

Σt =

(
θ⊤
⋆ Ψθ⊤

⋆ θ̂⊤
t Φθ⋆

θ⊤
⋆ Φ

⊤θ̂t θ̂⊤
t Ωθ̂t

)

where θ̂t is either the unique minimizer the empirical risk in eq. (2) for t ∈ {erm,Lap} or the mean
over the respective posterior distribution for t ∈ {bo, eb}. The computation of ρ⋆,t thus boils down to

computing the sufficient statistics (θ̂⊤
t Φθ⋆, θ̂

⊤
t Ωθ̂t). A first important point is that, asymptotically in p,

these quantities converge in probability to single, deterministic quantities. This was shown in general
for sampling problems with log concave measure (such as the one we use in the Bayes-optimal and
empirical Bayes method) in [Barbier et al., 2021b], and for empirical risk minimization with convex
risks in [Loureiro et al., 2021a]. We shall thus use the following lemma:

Lemma B.1 (Overlap Concentration, from [Barbier et al., 2021b, Loureiro et al., 2021a]). In the
asymptotic limit p → ∞, the random variables (θ̂⊤

t Φθ⋆, θ̂
⊤
t Ωθ̂t) converge in probability to some value

(m⋆
t , q

⋆
t ) for t ∈ {bo, erm,Lap, eb}.

The problem is thus reduced to the computation of these statistics, as a function of the parameters
of the problems (α, γ, τ0, etc.) for each of the estimators of interest. In Theorem 3.1, we claim that
these are given by the replica equations derived in Appendix B.3. Thankfully, for different estimators
these equations were proven in the literature in slightly different contexts, written as formal proofs of
replica predictions.
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• For f̂erm on the random features model the self-consistent equations for (m⋆
erm, q

⋆
erm) were heuristically

derived in [Gerace et al., 2020] and rigorously proven in [Dhifallah and Lu, 2020]. In the more gen-
eral context of the Gaussian covariate model, analogous equations were proven in [Loureiro et al., 2021a].
In both cases, they agree with our equations in eq. (14). While these works use the Gordon minimax
approach to prove these equations, we note an independent GAMP-based proof for both the ran-
dom features and Gaussian covariate models appeared in [Loureiro et al., 2022], leveraging recent
progress on structured message passing schemes from [Gerbelot and Berthier, 2021].

• As noted in Sec. 2.1, the average over the Laplace posterior agrees exactly with the empirical risk
minimizer:

pLap(θ|D) = N (θ|θ̂erm,H−1) (106)

Therefore, the self-consistent equations for (m⋆
Lap, q

⋆
Lap) agree exactly with the ones for (m⋆

erm, q
⋆
erm).

Therefore, they are also rigorous.

In both cases, our result follows from:

Theorem B.2 (ERM statistics, Thms. 4 & 5 from [Loureiro et al., 2021a], Informal). In the setting
of Theorem 3.1, the ERM predictions from the replica are correct: (m, q, v) converges in probability to
their replica fixed points (m⋆

erm, q
⋆
erm, v

⋆
erm), while the minimum training error converges in probability

to the replica free energy density.

• The "finite temperature" sampling problems related to Bayesian estimation pose different challenges.
We start by discussing the Bayes-optimal f̂bo classifier. For i.i.d. Gaussian data, the rigour of the
replica prediction has been proven for Generalized linear models in [Barbier et al., 2019], together
with the GAMP optimality. Thanks to Gaussian equivalence, our problem can be framed as a
Bayesian generalized linear reconstruction problem, but with data matrix that are instead correlated.
In the random features case, the data matrix is a product of two random matrix (see eq.(29)). Thus,
in this the case replica predictions were for the Bayes-optimal problem was rigorously proven in
[Gabrié et al., 2018, Barbier et al., 2018]. Note that while these works only prove the correctness
of the replica free energy density, the techniques in [Barbier et al., 2019] can be readily applied to
generalize the proof to overlaps:

Theorem B.3 (BO statistics, Th. 1 from [Barbier et al., 2018] and Th. 1 from [Barbier et al., 2018],
Informal). In the setting of Theorem 3.1, the BO prediction from the replica is correct: (m, q, v)
converges in probability to their replica fixed points (m⋆

bo, q
⋆
bo, v

⋆
bo), while the minimum training error

converges in probability to the replica free energy density.

Additionally, given that the performance of the GAMP algorithms follows the same self-consistent
equations as the replica’s [Berthier et al., 2019, Gerbelot and Berthier, 2021], it follows that GAMP
performs Bayes-optimal estimation for this problem, a classical property in Bayesian estimation
[Zdeborová and Krzakala, 2016]. 3

• The remaining case is the empirical Bayes (EM) classifier f̂eb. In this case, where Bayesian estimation
is performed with mismatched noise, the complete proof of the replica equation is not available in
the literature. In principle, this can be done following the steps of [Barbier et al., 2021a] for the
square loss (recall we consider the logistic loss in this work). Indeed, [Barbier et al., 2021a] shows
how the concentration of (m⋆, q⋆) (referred to as strong replica symmetry in [Barbier et al., 2021b])
can be used together with rigorous control of the cavity method [Aizenman et al., 2006] to prove
the cavity equations. While this is, we believe, a worthwhile direction of research, we instead shall
redefine the empirical Bayes method performance as the one of the best empirical Bayesian estimator
in linear time, that is, the estimator achieved by the GAMP algorithm 1 with the corresponding
empirical Bayes denoiser. It can indeed be shown that GAMP is the best first-order algorithm for this

3Note that this crucially relies on the strong replica symmetry [Barbier et al., 2021b] condition, which impose the
existence of an unique fixed point in our problem. Without this property, one could generically have more than a fixed
point, associated to a so-called "hard phase" where GAMP is not optimal, see [Zdeborová and Krzakala, 2016].
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class of Bayesian estimation problems [Celentano et al., 2020], and it is widely expected to perform
an exact sampling for these problems [Zdeborová and Krzakala, 2016] (as it was proven in for the
Bayes-optimal case). With this definition, the performance of GAMP is by construction given by
its rigorous state evolution [Berthier et al., 2019, Gerbelot and Berthier, 2021], which we recall the
reader matches the replica prediction.

B.5 Laplace approximation : computing the inverse Hessian

In this section, we show how to compute the prediction for the Laplace approximation

f̂Lap(v) =

∫

dzσ(z)N (z|θ̂⊤
ermv,v

⊤H−1v) (107)

withH the Hessian of the empirical risk at θ̂erm. Note that in the high-dimensional limit, v⊤H−1v →p→∞
Tr(H−1Ω). As shown in Appendix C, to compute this quantity we can add the term h⊤θ to the loss
and compute the second derivative of the free energy density with respect to h. The computations are
the same as those done in Section B.3, except that the Gibbs distribution µt(θ) is replaced by

µt(θ) =
1

Zt(h)

∏

i

P t
σ(yi|θ⊤ϕ(xi))× P t

θ(θ)× eβh
⊤θ (108)

Adapting the derivation from Sec. B.3 for f̂erm and taking the temperature β →∞ and get as before

f0 := lim
β→∞

fβ = extr
m,q,v,m̂,q̂,v̂

{

− 1√
γ
mm̂+

1

2
(qv̂ − q̂v) + Ψw(m̂, q̂, v̂,h) + αΨy(m, q, v)

}

Ψy = Eξ∼N (0,q)

[
∑

y

Z0(y,m/qξ, ρ− m2/q) logZg(y, ξ, v)

]

(109)

(110)

However, now Ψw is

Ψw = − 1

2p
Tr log (v̂Ω+ Σ) +

1

2p
Tr
[
((m̂Ωw⋆ + h)(v̂Ω+ λI)−1(m̂Ωw⋆ + h) + q̂Ω(v̂Ω+ Σ)−1)

]
(111)

The second derivative of Ψw with respect to h is (λId + v̂Ω)−1. As a consequence, the second
derivative of the free energy

(∇2
h logZerm)|h=0 = ∇2

hΨw(m
⋆
erm, q

⋆
erm, v

⋆
erm,h) = (λId + v̂⋆ermΩ)

−1

and ∇2
h
f0 = −(λId + v̂⋆ermΩ)

−1. We then deduce that the inverse Hessian is equal to

H−1 = (λId + v̂⋆ermΩ)
−1 (112)

B.6 Simplification for random features

As discussed in Appendix B, the random features model ϕ(x) = φ(Fx) is asymptotically equivalent
to the Gaussian covariate model up to an identification of the covariances:

Ω = κ21FF
⊤ + κ2⋆Ip, Φ = κ1F, Ψ = Id (113)

where:

κ1 = Ez∼N (0,1)

[
φ′(z)

]
, κ⋆ =

√

Ez∼N (0,1) [φ(z)2]− κ21 (114)

where for simplicity we assume κ0 = Ez∼N (0,1)[φ(z)] = 0. Thus, in this case we can explicitly write:

Σ⋆ =
κ21FF⊤

κ2⋆Ip + κ21FF⊤ . (115)
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. Note that the matrices Ω,Σ,Σ⋆ are diagonalizable in the same basis, since Σ is either a multiple of
the identity, or a function of Ω,ΦΦ⊤. Assuming that FF⊤ has an asymptotic spectral distribution µ,
we can write Ψw directly in terms of an average over µ:

Ψw =
1

2
Ex∼µ)



log
(
v̂(κ21x+ κ2⋆) + π(x)

)
+




m̂2 κ2

1x

κ2
1x+κ2

⋆
+ q̂(κ21x+ κ2⋆)

v̂(κ21x+ κ2⋆) + π(x)







 (116)

where the function π represents the eigenvalues of Σ : since we can write Σ = f(ΦΦ⊤) here, we have,

π(x) = f(x). For f̂erm and f̂eb, π(x) = λ. For f̂bo, π(x) =
κ2
1x

κ2
1x+κ⋆

. This gives us the values of π̂t in

Table 1.
In particular, when F has Gaussian i.i.d. entries (as in all plots presented here), µ is simply the

Marcenko-Pastur distribution with shape parameter γ.

B.7 Temperature scaling

In this section, we show how to compute the optimal temperature T that minimizes the test loss for
f̂erm. Once the overlaps m⋆, q⋆, v⋆, m̂⋆, q̂⋆, v̂⋆ are computed, we get the test loss with the expression

Lgen.(m, q) =
∑

y

Eξ∼N (0,1)

[
Z0(y,m

⋆
/q⋆ξ, ρ−m2/q)× (− log σ(y ×√qξ))

]
(117)

Given a temperature T , temperature scaling will divide the weights such that the prediction is now
σ(θ⊤ϕ(x/T ). It is easy to see that in this case, the overlaps m⋆, q⋆ now become m⋆/T, q⋆/T 2. Then,
temperature scaling amounts to finding

T ⋆ = argmin
T

Lgen.(m⋆/T, q⋆/T 2) (118)
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C Confidence function and Hessian of Laplace Method

C.1 Computing the Hessian of the training loss

In this section, we show how we can compute the (inverse of) the Hessian thanks to classical properties
of Legendre transforms. We consider the ERM estimator f̂erm trained by minimizing the following loss
:

L(w) = −
∑

i

log σ(θ⊤ϕ(x)i × yi) + λ/2‖θ‖2 (119)

whose Hessian at the minimum is given by

H := ∇2L = −
∑

i

(1− σ′(θ⊤ϕ(x)i × yi))ϕ(x)iϕ(x)⊤i + λId
∣
∣
θ=θ̂erm

(120)

Our starting point to compute this Hessian is a very classical lemma in statistical mechanics, that
uses the Legendre transform of the loss.

Lemma C.1 (Inverse Hessian from Legendre Transforms). We define the Legendre transform of the
loss by adding a source term to the loss (an external field in the parlance of statistical mechanics)

LL(h) = min
θ

[

−
∑

i

log σ(yiθ
⊤ϕ(x)i) + λ/2‖θ‖2 + h⊤θ

]

= min
θ

[

L(θ) + h⊤θ
]

(121)

then the Inverse of the Hessian (120) is the Hessian of the Legendre transform L(h)

H−1(θ̂erm) = −
∂2LL(h)
∂2h

∣
∣
h=0

(122)

Proof This is a classical result from Legendre transform of strongly convex functions, which we
informally recall. First notice that at the minimum of L(θ) + h⊤θ over θ is characterized by

∂L(θ)
∂θj

+ hj = 0 ∀j (123)

so that

∂LL(h)
∂hi

=
∂
[
L(θ) + h⊤θ

]

∂hi

∣
∣
θ̂erm

=

p
∑

j=1

[
∂L(θ)
∂θj

∂θj
∂hi

+ hj
∂θj
∂hi

]
∣
∣
θ̂erm

+ θi
∣
∣
θ̂erm

=

p
∑

j=1

∂θj
∂hi

[
∂L(θ)
∂θj

+ hj

]
∣
∣
θ̂erm

+ θi
∣
∣
θ̂erm

= θerm,i (124)

It thus follows that
∂2LL(h)
∂hi∂hj

=
∂θi
∂hj

. (125)

However, we have from eq.(123)

∂2L(θ)
∂θi∂θj

= −∂hj
∂θi

. (126)

Using both eqs (125) and (126) at h = 0 concludes the proof. �

Note that this relation is not asymptotic and is valid for a given instance of the problem. This
lemma is however particularly practical in the large n limit, since an asymptotic expression for the loss
LL is known so that we can use it to obtain the asymptotic expression. Using the value of the minimal
loss from [Loureiro et al., 2021a, Loureiro et al., 2022], we deduce, taking its second derivative, that
for large n we must have (See Section B.5 for the derivation)

H−1 ≍
p→∞

(λIp + v̂⋆ermΩ)
−1 (127)
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Where v̂⋆erm is the unique solution the following self-consistent equations:







m = γm̂
p Tr

(
Ωw⋆w

⊤
⋆ Ω(λIp + v̂Ω)−1)

)

q = 1
p Tr

(
(q̂Ω+ m̂2Ωw⋆w

⊤
⋆ Ω)Ω(λIp + v̂Ω)−2

)

v = 1
p Tr(λIp + v̂Ω)−1Ω)

,







v̂ = −αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) ∂ωfout,erm (y, ξ, v)
]

q̂ = αEξ∼N (0,q)

[
∑

y Z0 (y,m/qξ, v⋆) fout,erm (y, ξ, v)2
]

m̂ = αEξ∼N (0,q)

[
∑

y ∂ωZ0 (y,m/qξ, v⋆) fout,erm (y, ξ, v)
]

This leads us to the following theorem:

Theorem C.2 (Asymptotic form of the inverse Hessian). Assume that the convergence of the free
energy to its asymptotic value in [Loureiro et al., 2021a] is such that the difference has bounded second
derivative, then

H−1 = (λIp + v̂⋆ermΩ)
−1 + o(1) (128)

While routinely made in the statistical physics literature, note that the assumption -akin to a
uniform convergence of the function and its first and second derivatives- is a strong but unfortunately
necessary one, that would warrant a dedicated investigation in itself. Such a delicate control of the
correction to the free energy is however needed since, in our identification, we are exchanging the second
derivative and the limit p → ∞. Fortunately, it can be checked numerically that the assumption is
empirically satisfied, and that the approximation given by the Hessian is extremely accurate, as is
shown in the next section. Additionally, we note that the statement is made in term of an expression
of the inverse of the Hessian (which, conveniently, is actually what we want to know).

C.2 Comparison with numerics

In this section, we apply the computations of the previous section and show that they gives ex-
tremly good prediction even at very moderate sizes. In Figure 3, we compare the theoretical value of
ϕ(x)⊤H−1ϕ(x) for ϕ(x) = erf(Fx) from eq. (127) and the one observed experimentally. Experiments
are done by training the logistic classifier f̂erm on training data (xµ, yµ)µ∈[n] and computing the Hessian

(C.1) at the minimizer θ̂erm. We observe a good fit between theory and experiment, validation our
analysis.
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Figure 3: (Left) Theoretical predictions (lines) and experimental values (crosses) of ϕ(x)⊤H−1ϕ(x)
with n/d = 2, τ20 = 0.5, ϕ(x) = erf(Fx) and F Gaussian, as in Figure 1, for λerror and λloss. Experimental
values are obtained by fixing d = 256. (Right) Theoretical and experimental values for λ = 10−4.
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D Conditional variance of the Bayes-optimal estimator

In this section, we prove the expression of the variance of f̂bo conditioned on the confidence of other
estimators that was given in theorem 3.3:

Var(f̂bo(x)|f̂t(x) = ℓ) =

∫

da σv̂⋆bo+τ20+τ2add
(a)2 ×N

(
a|m⋆

t/q⋆tσ
−1
τ̂t

(ℓ), q⋆bo − m⋆
t
2/q⋆t
)
− (ℓ−∆ℓ)

2 (129)

The first step is to show that for any estimator t ∈ {erm, eb,Lap}, the joint density of the confidence
of f̂bo, f̂ , defined as

ρbo,t(a, b) = Px(f̂bo(x) = a, f̂t(x) = b) (130)

can be computed in the similar way as ρ⋆,t in Theorem 3.1. This was shown previously for a simpler
model in [Clarté et al., 2022], where the teacher and input data have identity covariance.

Lemma D.1. In the same setting as Theorem 3.1, in the asymptotic limit, the density ρbo,t(a, b)
converges to ρlimbo,t(a, b)

ρlimbo,t(a, b) =

N
([

σ−1
τ20+τ2add

(a)

σ−1
τ̂2t

(b)

]
∣
∣
∣02,Σbo,t

)

|σ′
τ20+τ2add

(σ−1
τ20+τ2add

(a))||σ′
τ̂2t
(σ−1

τ̂2t
(b))|

(131)

where this time

Σbo,t =

[
q⋆bo m⋆

t

m⋆
t q⋆t

]

(132)

To prove Lemma D.1, the main idea is to observe that, as with f⋆, to compute the density we need
the covariance matrix

1

d

(
θ̂⊤
boΩθ̂bo θ̂⊤

boΩθt
θ̂⊤
boΩθ̂t θ̂⊤

t Ωθt

)

(133)

The diagonal terms are q⋆bo, q
⋆
t respectively by definition. We then just need to compute the overlap

mbo,t =
1
d θ̂

⊤
boΩθ̂t. Our goal is to prove that mbo,t = m⋆

t ,
However, using the Nishimori identity from statistical physics, for any vector z(D) that can depend

on the training data, we have

ED
(

θ̂⊤boz(D)
)

= Ew⋆,D
(

w⊤
⋆ z(D)

)

(134)

Equation 134 is just an application of Bayes formula. In particular, if we take z(D) = θ̂t, we obtain
that

ED(θ̂
⊤
boθ̂t) = Ew⋆,D(w

⊤
⋆ θ̂t) (135)

and we see that in expectation, ED(mbo,t) = Ew⋆,D(m
⋆
t ). We already know that the right-hand side

of the equality self-averages, i.e limd→∞ Ew⋆,D(m
⋆
t ) = m⋆

t . It remains to show that the left-hand side
also self-averages.

Lemma D.2 (Concentration of the overlap mbo,t).

lim
d→∞

E





(

θ̂⊤
boθt

d

)2


 = lim
d→∞

E

[

θ̂⊤
boθt

d

]2

(136)
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Proof. The proof again uses Nishimori identity.

E





(

θ̂⊤
boθt

d

)2


 = E

[(

θ̂⊤
boθt

d

)(

θ̂⊤
boθt

d

)]

(137)

= ED

[(
E
θ̂|Dθ̂

⊤θt

d

)(
E
θ̂|Dθ̂ · θt
d

)]

(138)

= EDEθ̂1,θ̂2|D

[(

θ̂⊤
1 θt

d

)(

θ̂2 · θt
d

)]

(139)

= ED,w⋆

[(
w⊤

⋆ θt

d

)(
E
θ̂|Dθ̂ · θt
d

)]

(140)

= ED,w⋆

[(
w⊤

⋆ θt

d

)(
w⊤

boθt

d

)]

(141)

Then, from Cauchy-Schwartz we have

E





(

θ̂⊤
boθt

d

)2




2

≤ E





(

θ̂⊤
boθt

d

)2


E

[(
w⊤

⋆ θt

d

)2
]

(142)

E





(

θ̂⊤
boθt

d

)2


 ≤ E

[(
w⊤

⋆ θt

d

)2
]

(143)

and as d→∞, we can use the concentration of the right hand side to m⋆
t to obtain

lim
d→∞

E





(

θ̂⊤
boθt

d

)2


 ≤ (m⋆
t )

2 (144)

so that, given the second moment has to be larger or equal to its (squared) mean:

lim
d→∞

E





(

θ̂⊤
boθt

d

)2


 = (m⋆
t )

2 (145)

We have thus shown that m⋆
t = mbo,t, proving Lemma D.1.

Computing the conditional variance Fix now the confidence f̂t = ℓ, the local field of the estimator
t is νt := σ−1

τ̂t
(ℓ). The conditional distribution of the Bayes-optimal local field λbo is a Gaussian

N (m⋆
t/q⋆t νt, q

⋆
bo − m⋆

t
2/q⋆t ). Thus,

E

(

f̂2bo|f̂ = ℓ
)

=

∫

dzσv⋆bo+τ20+τ2add
(z)2N (z|m⋆

t/q⋆t νt, q
⋆
bo − m⋆

t
2/q⋆t ) (146)

The last step to prove eq. (18) is to show that E

(

f̂bo|f̂t = ℓ
)

= ℓ−∆ℓ :

E

(

f̂bo|f̂t = ℓ
)

=

∫

στ20+τ2add+v̂∗bo
(z)N (z|m⋆

t/q⋆t νt, q
⋆
bo − m⋆

t
2/q⋆t )dz

= στ20+τ2add+v̂∗bo+q⋆bo−m⋆
t
2/q⋆t

(m
⋆
t/q⋆tνt)

= στ20+τ2add+ρ−m⋆
t
2/q⋆t

(m
⋆
t/q⋆t νt) = E

(

f⋆|f̂t = ℓ
)

= ℓ−∆ℓ

since, due to Bayes optimality, v̂∗bo = ρ− q⋆bo.
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E Additional numerical evaluations

E.1 Additional setting : τ 20 = 0, n/d = 10.0
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Figure 4: (Left) Test error of the estimators as a function of 1/α in the setting of Section E.1 :
‖θ⋆‖2 = 1, τ20 = 0, n/d = 10. (Middle) Calibration of the estimators. (Right) Variance of f̂bo
conditioned on f̂ = 0.75 for the different estimators.
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Figure 5: (Left) Calibration of f̂Lap and f̂erm in the setting of Section E.1. (Middle) Calibration of

f̂erm after temperature scaling. Curves for λerror and λloss are indistinguishable on the plot. (Right)
Variance of f̂bo conditioned on the confidence of temperature scaling.

In this section, we consider a setting where τ20 = 0.0. This allows us to consider a setting where
the test error of our estimators will be lower, as we reduce the noise in the teacher and increase the
amount of training data. This is confirmed by the first panel of Figure 4, where the test error of the
estimators is smaller than in Figure 1. Moreover, compared to the setting of Figure 1, the curves for
f̂erm(λerror), f̂erm(λloss) and f̂eb(λevidence) are much closer. Looking at the second panel, we note that
as before, doing ERM with λloss or empirical-Bayes with λevidence yields the best calibration. However,
the calibration curves ∆0.75 do not exhibit the double descent -like behaviour shown in Figure 1. On
Figure 5, we see the calibration of f̂Lap (left plot) and temperature scaling (center). We see that in this

setting, f̂Lap yields underconfident estimators for p/n large enough. On the other hand, temperature

scaling yields a well-calibrated estimator, whether we apply it on f̂erm(λ = 0) or f̂erm(λerror)

E.2 Additional setting 2 : τ 20 = 0, n/d = 20, ‖θ∗‖2 = 50

In the previous plots, we defined θ∗ = 1. This is of course not a limitation of our model and we
can assume any norm for the teacher. In this section, we will assume ‖θ∗‖2 = 50. This allows us to
significantly reduce the noise in the data. Indeed, as ‖θ∗‖2 →∞, the label becomes deterministic in the
input. As before, figures 6 and 5 show the test error, calibration and variance for the different estimators.
In the left panel of Figure 7, we observe that f̂Lap with λ ∈ {λerror, λloss, 10−4} systematically under-

confident for p/n large enough. As with the previous settings, we also note that f̂erm(λerror) used in
combination with temperature scaling is the most competitive estimator as it yields very good test
error and calibration.
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Figure 6: (Left) Test error of the estimators as a function of 1/α in the setting described in section E.2.
(Middle) Calibration of the estimators. (Right) Variance of f̂bo conditioned on f̂ = 0.75 for the
different estimators.
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Figure 7: (Left) Calibration of f̂Lap and f̂erm with the setting described in section E.2. (Middle)

Calibration of f̂erm after temperature scaling. Solid red line is f̂erm(λloss) before temperature scaling.
(Right) Variance of f̂bo conditioned on the confidence of temperature scaling.

40


	1 Introduction
	2 Setting
	2.1 Probabilistic classifiers and uncertainty
	2.2 The random features model

	3 Results
	3.1 Technical results
	3.2 Trade-off between performance and uncertainty
	3.3 Temperature scaling
	3.4 The calibration of the Laplace approximation

	4 Conclusion
	A Gaussian equivalence
	A.1 Informal discussion and key idea
	A.2 Gaussian equivalence theorem
	A.3 Beyond random features

	B Derivation of Theorem 3.1
	B.1 Recap of the setting
	B.2 State evolution for GAMP
	B.3 Self-consistent equation from the replica method
	B.3.1 Replica symmetric ansatz

	B.4 Rigorous version of replica and self-consistent equations
	B.5 Laplace approximation : computing the inverse Hessian
	B.6 Simplification for random features
	B.7 Temperature scaling

	C Confidence function and Hessian of Laplace Method
	C.1 Computing the Hessian of the training loss
	C.2 Comparison with numerics

	D Conditional variance of the Bayes-optimal estimator
	E Additional numerical evaluations
	E.1 Additional setting : 02= 0, nd = 10.0
	E.2 Additional setting 2 : 02= 0, nd = 20,  * 2 = 50


