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ABSTRACT: The asymmetric allylic alkylation (AAA) reaction using less reactive, stable allylic sources is challenging.  We 
achieved nickel(0)-catalyzed AAA reaction of -dicarbonyl compounds under ambient conditions through unstrained C–C 
bond activation of 2-allylated 2-methylcyclohexane-1,3-dione derivatives to afford the corresponding quaternary chiral 
compounds in high yield with high enantioselectivity.  The reaction proceeded almost irreversibly due to the low solubility 
of the side-product, 2-methylcyclohexane-1,3-dione.  Control experiments and DFT calculations allowed for the elucidation 
the mechanism of the AAA reaction with the Ni(0)-(S)-tol-MeO-BIPHEP catalyst system; the turnover limiting step is C–C 
bond formation, and the reverse reaction requires 4.0 kcal mol−1 higher activation energy than the forward reaction. 

The asymmetric allylic alkylation (AAA) reaction, known as 
the asymmetric version of the Tsuji-Trost reaction, is a 
highly versatile and useful reaction for constructing a chi-
ral quaternary stereogenic carbon center.1  The most well 
established system for the AAA reaction is a rational com-
bination of chiral complexes of precious metal, such as Pd, 
Rh, and Ir as catalyst, with typically activated allylic rea-
gents, such as allyl-halides, -phosphonates, -carbonates, 
and -acetates to generate -allyl intermediates.  The devel-
opment of sustainable synthetic protocols using non-
precious metals and nonactivated allylic reagents is in high 
demand.  In fact, Cu-,2 Ni-,3 and Co-based4 AAA catalysts 
have been extensively investigated, but these catalysts 
require reactive allylic sources.  Hence, the use of less-
reactive allylic sources for the AAA reaction remains chal-
lenging.5  In 2016, we reported the first AAA reaction using 
allyl alcohols as a less-reactive allyl source catalyzed by a 
Ni(0) complex;6,7 another example reported by Baeza in 
2017 was limited to a reaction via nucleophilic addition of 
chiral Cu-enolate species to allylic alcohols (Scheme 1a and 
1b).8  We also disclosed a Ni-catalyzed AAA reaction utiliz-
ing allylic amines as less reactive allylic sources (Scheme 
1c).9  In this context, we focused our attention on the ap-
plication of α-allylated-β-dicarbonyl compounds as attrac-
tive less-reactive, stable allylic sources (Scheme 1d), as 
some Pd and Ni catalysts are reported to cleave stable 
allylic C–C bonds of α-allylated-β-dicarbonyl compounds 
for yielding achiral compounds as shown in Scheme 2.10-14  
Herein, we report the first AAA reaction through an un-
strained stable C–C bond cleavage of α-allylated-β-
dicarbonyl compounds mediated by a chiral Ni(0) com-
plex;15 the reaction of a Ni(0) species with an achiral α-
allylated-β-dicarbonyl compound initiated the formation of 
the corresponding -allyl Ni(II) intermediate, and subse-

quent nucleophilic attack of a -ketoester derivative pro-
duced the corresponding quaternary chiral compounds in 
high yield with high enantioselectivity.  In addition, we 
reveal a plausible reaction mechanism based on control 
experiments and DFT calculations. 
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Scheme 1. Non-precious Metal-catalyzed AAA Reac-
tions Using Less-reactive Allylic Sources 

 

 

Scheme 2. Examples of Transformation by Using α-
Allylated-β-dicarbonyl Compounds as Allylic Sources 

 

 

We examined the AAA reaction of methyl 1-oxo-1,2,3,4-
tetrahydronaphthalene-2-carboxylate (6a) with 2-
cinnamyl-2-methylcyclohexane-1,3-dione (1a) as a test 
reaction in the presence of 10 mol% of Ni(cod)2 and 20 
mol% of chiral diphosphine ligands. Among the variety 
screened, we found that (S)-tol-MeO-BIPHEP (L1) offers 

the best performance in terms of enantioselectivity (Table 
S2).  Next, we searched for the best allylic source for the 
AAA reaction of 6a (Table 1).  The use of 2-cinnamyl-2-
methylcyclohexane-1,3-dione (1a), which includes a cyclic 
diketone moiety as the leaving group, afforded the corre-
sponding desired product 7aa in 76% yield with 89% ee; 
other cyclic diketones, such as 2,2-dicinnamylcyclohexane-
1,3-dione (2a), 2-cinnamyl-2-methylcyclopentane-1,3-
dione (3a), and 5-cinnamyl-2,2,5-trimethyl-1,3-dioxane-
4,6-dione (4a), exhibited lower reactivity with almost the 
same enantioselectivity.  In addition, the AAA reaction with 
an acyclic allylic source, such as dimethyl 2,2-
dicinnamylmalonate (5a), which was utilized for Ni-
catalyzed allylation reactions by Mortreux,13 yielded trace 
amounts of 7aa.  With the allylic source 1a, we next 
screened solvents (Table 2).  Other ethereal solvents such 
as THF and CPME decreased the yield of 7aa down to 14% 
and 23%, respectively, also with much lower enantioselec-
tivities (entries 2 and 3).  When the reaction was carried 
out in CH3CN and toluene, 7aa was obtained in 25% and 
16% yields with moderate enantioselectivities, 66% and 
76%, respectively.  Accordingly, we selected Et2O as the 
best solvent. 

 

Table 1. Screening of leaving groups. 

 

Reaction conditions: allylic sources 1a-5a (0.1 mmol), 6a 
(0.1 mmol), Ni(cod)2 (10 mol%), ligand L1 (20 mol%) in 
Et2O (1.0 mL), 30 °C, 16 h.  Yield was determined by 1H 
NMR analysis using Ph3CH as an internal standard.  ee was 
determined by HPLC. 
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Table 2. Screening of reaction solvent. 

 

entry solvent yield [%] ee [%] 

1 Et2O 76 89 

2 THF 14 59 

3 CPME 23 74 

4 CH3CN 25 66 

5 toluene 16 76 

Reaction conditions: 1a (0.1 mmol), 6a (0.1 mmol), Ni(cod)2 (10 
mol%), ligand L1 (20 mol%) in Et2O (1.0 mL), 30 °C, 16 h.  Yield was 
determined by 1H NMR analysis using Ph3CH as an internal standard.  
Ee was determined by HPLC. 

 

Upon using the best allylic source 1a and solvent (Et2O), 
we optimized the reaction conditions using L1, and the 
results are shown in Table 3.  Lowering the reaction tem-
perature from 30 °C to 15 °C and 0 °C improved the enan-
tioselectivity up to 92% and 93%, respectively; however, 
performing the reaction at 0 °C resulted in a low yield 
(29%) of 7aa (entries 1-3).  Thus, we decided the best 
reaction temperature as 15 °C, and such the higher tem-
perature slightly reduce the enantioselectivity than our 
previous report.6,9  An elongated reaction time (40 h) at 15 
°C was necessary to quantitatively produce 7aa with 90% 
ee (entry 4).  We were able to successfully reduce the lig-
and loading down to 12 mol% while keeping a quantitative 
formation of 7aa (97% isolated yield) with 90% ee (entry 
5).  Accordingly, the optimized conditions were judged to 
be as follows: 10 mol% of Ni(cod)2 and 12 mol% of L1 at 
15 °C for 40 h. 

 

Table 3. Optimization of the reaction conditions. 

 

entry temp. [°C] time [h] xx [mol%] yield [%] ee [%] 

1 30 16 20 76 89 

2 15 16 20 75 92 

3 0 16 20 29 93 

4 15 40 20 97 90 

5 15 40 12 97 a 90 

Reaction conditions: 1a (0.1 mmol), 6a (0.1 mmol), Ni(cod)2 (10 
mol%), in Et2O (1.0 mL).  Yield was determined by 1H NMR analysis 
using Ph3CH as an internal standard.  Ee was determined by HPLC.  
aIsolated yield. 

 

Under the optimized conditions, we examined the sub-
strate scope of allylic compounds 1 (Table 4).  Both elec-
tron-donating and electron-withdrawing groups such as p-
methoxy (1b), p-methyl (1c), and p-trifluoromethyl (1d) 
groups at the para-position of the Ph group yielded the 
corresponding product 7ba, 7ca, and 7da in high yields 
with high enantioselectivity (86% yield with 89% ee, 83% 
yield with 89% ee, and 85% yield with 89% ee, respective-
ly).  Substrates 1e and 1f were compatible with our proce-
dure to give 7ea and 7fa in high to moderate yields.  When 
an n-hexyl group was introduced in the allylic source (as 
1g), the yield and enantioselectivity of the product 7ga 
decreased to 30% and 76%, respectively, while the use of 
2-allyl-2-methylcyclohexane-1,3-dione (1h) as an allylic 
source afforded 7ha in moderate yield with moderate 
enantioselectivity (69%).  These lower ee were probably 
due to the small substituents of 1g and 1h. 

 

Table 4. Substrate scope of allylic sources. 

 

Isolated yield. a Determined by 1H NMR analysis due to 
inseparable starting material 6a. 

 

Next, we explored the substrate scope of -dicarbonyl 
compounds 6 (Table 5).  -Ketoester compounds contain-
ing 5,7-dimethyl (6b), 6-methoxy (6c), or 7-methoxy (6d) 
substituents on the tetralone skeleton were competent 
substrates to give the corresponding products 7ab-7ad in 
high yields (97–99%) with high enantioselectivities (85–
88%).  The AAA reaction of methyl 2-oxocyclohexane-1-
carboxylate (6e) proceeded in a highly enantioselective 
manner (90% ee), although the yield of 7ae was moderate 
(70%).  -Diester compounds 6g and 6h were applicable 
for this reaction as nucleophiles to afford products 7af and 
7ag in high yields (90% and 89%, respectively), yet with 
moderate enantioselectivities (40% and 48%, respective-
ly) because the structure of -diester compounds was not suit 
for our catalytic system. 
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Table 5. Substrate scope of -dicarbonyl compounds. 

Isolated yield. 

 

To gain insight into the reaction mechanism, we performed 
a series of control experiments (Scheme 3).  When we 
exposed racemic compound 7aa to chiral Ni(0)-L1 com-
plex at 30 °C for 16 h, 7aa was recovered without any 
enantio-enrichment (Scheme 3a).  The AAA reaction of 
nucleophile 8 and allylic source 7aa yielded no product 
(Scheme 3b).  A crossover reaction between 6c and 7aa 
gave only trace amounts of crossover product 7ac, as de-
tected by GC-MS and HPLC analysis (Scheme 3c).  All to-
gether, these results suggested that the AAA reaction of 1 
and 6 is almost irreversible.  In addition, we found that the 
addition of compound 8 negatively impacted toward cata-
lytic activity of nickel complex and enantioselectivity dur-
ing the reaction (Scheme S2). 

DFT calculations conducted on the model [{(S)-tol-MeO-
BIPHEP}Ni] catalyst allowed rationalizing a mechanism for 
these AAA reactions (Figure 1).16  Ligand exchange be-
tween one COD moiety and (S)-tol-MeO-BIPHEP gives int-
1; reaction of the latter with allylic source 1a reversibly 
forms int-2 which is stabilized by 7.4 kcal mol−1.  Cleavage 
of the C‒C bond of int-2 proceeds via transition state TS2-3 
with an activation energy of 18.9 kcal mol−1 and affords 
nickel -allyl complex int-3 which holds a -diketonate 
ligand.  Ligand exchange of -diketonate with -ketoester 
6a produces int-4 with compound 8 as a side product.  The 
C‒C bond formation step via TS4-5 requires the highest 
activation energy to yield int-5, which is 2.2 kcal mol-1 
more stable than int-2.  The low solubility of 2-
methylcyclohexane-1,3-dione (8: side product) in Et2O 
likely shifts the equilibrium to the product side of the AAA 
reaction (Scheme S1). 

 

 

 

 

Scheme 3. Control Experiments 

 

 

 

Figure 1. Energy diagram for the AAA reaction through C‒C 
bond cleavage of 1a. Calculations were conducted at 
M06(SMD)/SDD,6-311+G(2d,p)//M06(SMD)/lanl2dz,6-31+G(
d) level of theory. 
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According to the above control experiments and DFT stud-
ies, we propose the reaction mechanism of the Ni-
catalyzed AAA reaction using -allylated--dicarbonyl 
compound in Figure 2.  The initial step is coordination of 
the chiral bisphosphine ligand and C=C double bond of 3 
onto Ni(cod)2 to give catalytically active species A.  C‒C 
bond cleavage at the allyl position yields -allyl species B 
and a ligand exchange reaction with -ketoester 7 produc-
es complex C along with the poorly soluble (in Et2O) side-
product 8.  The C‒C bond formation step C → D is the 
turnover limiting step, and ligand exchange follows to 
afford product 7 and regenerate active species A. 

 

 

Figure 2. Proposed reaction mechanism. 

 

In summary, we developed an effective AAA reaction using 
a new allylic source through C‒C bond cleavage to give the 
desired products in high yields with high enantioselectivi-
ties.  Compared with other -allylated--dicarbonyl com-
pounds, the use of 2-allylated 2-methylcyclohexane-1,3-
dione (3a) allowed the reaction to proceed under much 
milder conditions.  On the basis of some control experi-
ments, we propose a possible reaction mechanism of the 
AAA reaction. 
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