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1. Abstract

Noise, Vibration, and Harshness (NVH) performance is a key aspect to evaluate passengers’ comfort in vehicles.
At the gearbox level, the gear tooth profile deviations give rise to vibrations during the gear meshing process,
which is the source of gear whine noise. Therefore, an NVH design should account for the uncertainties at
the gear micro-geometry level, demanding several evaluations of the gearbox model. Our study introduces a
gearbox surrogate model based on Neural Networks (NN) to create a fast and accurate copy of the static and
dynamic gearbox simulations made in Romax software. An accurate surrogate model was built, enabling a
reduction of uncertainty propagation analyses time by a factor of 380, compared with traditional modeling by
Romax.

2. Introduction

Gear whine is a tonal and annoying noise that originates in the gear meshing process in gear transmissions.
The main cause of gear whine is the Static Transmission Error (STE), which can be defined as the difference
between the actual contact position of the output teeth and its theoretical position in a perfect conjugated
contact [16] accounting for deviations from an involute profile due to profile modifications, manufacturing
errors, misalignments, and elastic deflections [4]. The challenges to designing a silent gearbox increase in
the cases of lightweight gearbox design, a crucial requisite to more sustainable vehicles [14], as lightweight
gearboxes tend to be more flexible, leading to more misalignments, higher STE, and greater amplitudes of
housing vibration, radiating more noise.

The proper evaluation of the whining noise includes the evaluation of the STE and, subsequently, the application
of the STE as a source of excitation of the system to evaluate its dynamic behavior, which closely correlates
with the whining noise [14]. Akerblom [1] provided a review of the methodologies used to model the STE
and the gear transmission dynamic analysis. Guo et al. [6] showed that the housing should be included in the
system model, allowing to account for the coupling effects of it with the system and to quantify the housing
vibration. Besides, the effect of manufacturing errors and other uncertainties in the gear teeth profile cannot
be neglected, once the profile errors are the cause of the system excitation, and, therefore, micro-geometry
uncertainty propagation must be performed even for tight tolerances [4].

To alleviate the computational burden of the numerous and costly evaluations involved in the uncertainty prop-
agation of the static and dynamic analyses of the entire gearbox, this paper proposes to create a surrogate model
based on Neural Networks (NN). The surrogate models or response surface methods are simple and efficient
input-output maps of a more complex model with little loss of accuracy and are currently used to speed up
many engineering problems [2,13].

A surrogate model of the STE was developed by Park [11] using a parametric second-order regression to fit
the model. However, Machine Learning (ML) methods usually have better generalization capabilities than
parametric methods and can deliver better prediction results. This statement is supported by the results from
the comparison of three different STE surrogates done by Korta and Mundo [8]. To the author’s knowledge,
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the development of a surrogate to predict dynamic responses of an entire fully-coupled gearbox system has
not been achieved so far. By implementing an automatic integration of Python with the Romax software [12],
this work will enable the creation of a novel NN-based surrogate model for the static and dynamic analysis of
complete gear transmission. The present paper adds to the current state of the art as it analyzes a surrogate of a
complete gearbox model, including housing and dynamic effects.

3. Construction of the Surrogate Model of the Gear Whine Analyses and Uncertainty
Propagation Methodology

The first step in building a surrogate is to have a high-fidelity simulation model being used as the ground
truth. Therefore, a complete model of gearbox with gears, shafts, bearings and housing was built in Romax
software. The gear bodies are modeled as integral with the shafts using Timoshenko beam elements, while the
bearings are modeled as [6x6] stiffness matrix by linearizing their behavior near the operational condition. The
housing is modeled by a Finite Element (FE) model reduced with the Craig-Bampton method to decrease the
computational cost of the simulations while still taking into account the dynamic behavior, which results in a
fully-coupled system of the gearbox [7].

First, a static analysis of the system is performed on each load condition to evaluate the system elastic deflection,
which includes bearing displacements and the deformations of the shafts, gears, and housing and results in the
gear mesh misalignment. The FE-based model of the tooth contact provides the tooth compliance matrix C,
the mesh stiffness k£ and tooth deflection in relation to the input angular position 6 [4]. The tooth compliance
matrix accounts for tooth bending, root rotation and translation, Hertz deformation, and radial deformations.
Then, STL can be evaluated simultaneously with the static load distribution in the contact line p for a given
static force transmitted F', by solving:

(1) {C (0)p(0) = STE(6) — e(9)

>ipi(0)=F

where, e is the vector with the initial gap between the teeth at each discrete point, including the effects of the
micro-geometric modifications, manufacturing errors, and gear mesh misalignment.

The STE displacement multiplied by the system compliance at the gear mesh location results in the force
resulting from the transmission error. This force is then applied as the excitation source of the system in the
dynamic analysis. In this paper, the dynamic system is modeled by a linear analysis with constant mesh stiffness
approximated to its average value and it is solved in the frequency domain. The resulting frequency response
functions (FRF) allow evaluating, e.g., the bearing forces and housing responses across the operating speed
range.

Using the physics-driven gear transmission model, M pairs of input-outputs are sampled based on Latin Hyper-
cube Sampling (LHS) to create a database of supporting points in the design space of interest. The LHS results
in an informative database, with good space-filling properties and allows capturing the effects of the iterations
among the variables. The Python routine integrated with Romax enables to perform the sampling by running
the gear transmission model with the parameters defined by the LHS.

A fully-connected NN is used to create the surrogate model in this paper and it can be trained to predict all
static and dynamic quantities of interest related to the gear whine at once. The inputs of a fully-connected NN
are combined through a sequence of arithmetic operations that depend on the NN parameters called weights
and biases. In supervised training, as in this paper, the NN outputs are compared with the reference outputs
from the physical-driven model and an assessment of the error between them defines the NN loss function. The
training process consists of optimizing the weights and biases of the NN to minimize the loss function. In order
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to improve the NN performance and the optimization convergence, the inputs and outputs are scaled before
training, in the data preprocessing stage.

The ML performance is evaluated in the remaining samples of the database, known as the test dataset. The
workflow for the construction of the surrogate model is presented in Figure 1 and further details on the imple-
mentation of NN can be found at [5, 10]. Once trained, the surrogate model can predict the gearbox static and
dynamic results with little loss of accuracy and with low computational cost.

1
Physics -Driven 2 Sampling
Model
_____ o ' ____  Surrogate Workflow
Y =f(X)

|{ Design \l |’ System \l 1. Create physics-driven model
. Traini . .
: Variables : Dr;l:;:tg Prepare Data : Response : 2. Sample supporting p01r}ts
\ J XY & ML Training \ ; 3. Preprocess data anq t.ram ML
5. Evaluate new predictions

—— = —_—

Surrogate
Model 1
8§
= Expensive path 0
s Cheap path S
eap pa Y~7=Fx)

4 Predictions

Figure 1: Workflow for the construction of the surrogate model of the gear transmission.

Hence, surrogate models are widely used in analyses that demand a large number of evaluations of the same
function, as in uncertainty propagation analyses. These analyses provide the output uncertainties given the
input uncertainties and are necessary to develop robust and reliable designs. Popular and accurate uncertainty
propagation methods are based on Monte Carlo (MC) simulation methods [9], which generate random samples
from the input statistical distribution and evaluate the deterministic response of each sample. The ensemble of
all deterministic responses converges towards the stochastic response as the number of samples tends to infinity.

MC methods are convenient as they use the non-modified deterministic model, but are computationally costly
as they demand numerous evaluations of this model. Thus, the joint use of MC with surrogates is advantageous
and, therefore, largely used in the literature [3], as it enables fast evaluations of the deterministic model, opti-
mized simultaneous evaluation of large sets of samples by using batch prediction and automatic parallelization
of the solution.

4. Gear Whine Static and Dynamic Uncertainty Propagation Results via the Surrogate Model

This section presents the results of the investigation of the use of the NN-based surrogate model to propagate
the effects of micro-geometry errors on static and dynamic indicators of gear whine noise. The analyses were
carried out using a single-stage gear transmission with helical gears with module equals two, face width of
20 mm and having 55 and 49 teeth in the wheel and pinion, respectively. Figure 2a shows the main dimensions
of the gearbox used and Figure 2b shows the Romax model with the position where the housing acceleration
was evaluated. The results were obtained for a load case with 50 N'm of input torque. All analyses were carried
out using a desktop with 4 cores with 3.6GGH z and an NVIDIA Quadro P400 GPU.

The gear micro-geometry parameters illustrated in Figure 3 were considered as inputs, namely the involute
crowning Cj,, the lead crowning C's and lead slope Cg, for both pinion and wheel teeth, implying a six-
dimensional design space. Table 1 presents the design space of interest considered for the input variables, from
where M = 1000 input-output pairs were sampled using the Latin hypercube sampling method with Romax,
which took 1891.85 seconds. Any output of the high-fidelity model can be used to train the surrogate model.
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(a) Top view of 2D drawing. (b) Model in Romax with red arrow indicating the position where the
housing acceleration was evaluated.

Figure 2: Single stage gear transmission.

Table 1: Design space of the gear teeth micro-geometry input variables. The ranges apply to both pinion and
gear micro-geometries.

‘ Cua Cs Cug
[pm] [pm] [pm]
Lower Bound 0 0 -20
Upper Bound ‘ 15 15 20

In this paper, the peak-to-peak transmission error (PPTE) and the housing acceleration at the position indicated
by the red arrow in Figure 2b were chosen as the static and dynamic indicators of the gear whine performance,
respectively.

Figure 3: Gear tooth micro-geometry parameters used: involute crowning Cl,, lead crowning C and lead slope
Crp. Source: [15].

4.1. NN-based Surrogate Accuracy

The surrogate model is based on a fully-connected NN with one input layer with six neurons, four hidden layers
with 16 neurons each, and 101 neurons in the output layers, which correspond to the number of evaluated output
results for each design, that is the PPTE and the housing acceleration evaluated at 100 different frequencies
input shaft speed ranging from 0 to 4000 rpm, as illustrated in Figure 4. The neural units use the sigmoid
function as activation function, excepted by the output layer that uses softmax function. The Adam optimizer
is used to optimize the mean squared error during the NN training, which takes place in 3000 epochs with
batches of 16 samples. The database was divided into 200 samples for the test database and 800 samples for
the training dataset, from which 80 samples are used as the validation dataset.The inputs and the outputs were
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scaled using respectively StandardScaler and MinMaxScaler from scikit-learn library and are fitted solely in

Warsaw, July 10-13, 2022

the training dataset. The NN implementation was done with Keras library in Python.

C

QPinion
Chrinion
CHBpinion
CQWheel

CBVVheel
CHBH’heel

Figure 4: Representation of the

The NN training took 434.84 seconds and the final surrogate achieved a root mean squared error (RMSE) in the
test database of 0.08 ym for the PPTE and 0.08 m/s? for the housing acceleration at any frequency. Figures
5a and 5b shows the scatter plot of the true values and the prediction values in the test dataset for PPTE and
housing acceleration, respectively. Figure 5c shows the good agreement between the true and the predicted
curve for the housing acceleration for an illustrative design sample from the test dataset. Once the NN-based
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Neural-Network used to implement the surrogate model.

surrogate is trained, it can predict new results in a negligible time.
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(a) Scatter plot of testing data of true observations versus
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(c) True and predicted housing acceleration curves for one
design in the test dataset.

Figure 5: Accuracy of the Neural Network-based surrogate model.
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4.2. Uncertainty Propagation

Table 2: Design space of the gear teeth micro-geometry.

Capinion  CBpinion  CHBpinion  Cawnea  CBwnea  CHBwhew
wm pm wm wm wm wm
Design 1 11 5 5 0 7 5 -3
Design 2 2 11 8 14 7 2 5
Design 3 13 3 10 -10 2 10 -5
Tolerance A; 33 1 1 1 1 1 1

The use of surrogate models becomes beneficial when multiple evaluations are necessary, as in the uncertainties
propagation analysis by the MC method. The Monte Carlo simulation is performed for the three micro-geometry
designs in Table 2 using both Romax and the surrogate in order to illustrate the time-saving capabilities of the
surrogate. The input distribution is given by a uniform distribution 1 + A, where p is the design mean and A
is the tolerance, and M = 2500 random samples from this distribution are evaluated in order to evaluate the
output distributions, leading to an MC error of the order of 0.02 [17].

The time spent propagating the uncertainties for each design averages 4751.8 s with Romax and 12.5 s with the
surrogate model, that is, the surrogate is 380 times faster than Romax. The sampling time (1891.85 s) and the
training time (434.84 s) must be considered once since after creating the surrogate it can be used to propagate
uncertainties of all designs contained in the defined space of interest.

Figure 6 shows the PPTE confidence interval obtained with both Romax and with the NN-based surrogate for
the three designs. It is observed that the results obtained with the NN-based surrogate model are very close
to those obtained with Romax, being that only the propagation of uncertainties of design 3 presents a visible
difference in Figure 6, which is still acceptable. Figure 7 shows the M = 2500 housing acceleration curves of
the MC estimator for design 1 obtained with Romax and with the surroate model.

Both static and dynamic results show a good agreement between Romax and surrogate results, therefore, the
proposed NN-based surrogate model was successfully used to speed-up uncertainty propagation analyses of
gear whine. Any other quantity of interest of the gear transmission model could be added to the NN training to
be predicted by the surrogate.

[ Design 1
2.57 [ Design 2
Design 3

PPTE [pm]
T

=
1

0.5+

ML-Based Surrogate Romax Model

Figure 6: Comparison of the peak to peak transmission error uncertainty propagation using a Romax model
and the correspondent surrogate model for three different gear micro-geometry designs.
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Figure 7: Uncertainty propagation results of the housing acceleration curve using Monte Carlo method for the
Design 1.

5. Conclusion

This paper investigates the use of Neural-Network (NN) based surrogate models applied to gear whine problems
and its application to robust design modeling. An NN-based surrogate was constructed to predict the housing
acceleration for several shaft speeds and the peak-to-peak transmission error (PPTE) regarding the gear micro-
geometry parameters, namely lead crowning, lead slope, and profile crowning of wheel and pinion teeth. The
surrogate uses a high-fidelity physical simulation modeled with Romax software as ground truth, including
gears, shafts, bearings, and housing.

The NN-based surrogate has reasonable accuracy, with root mean square errors of 0.08m/s? for the housing
acceleration and 0.08m for the PPTE. It was shown that the proposed surrogate is suitable to perform un-
certainty propagation using methods like Monte Carlo, which relies on several evaluations of the model. The
uncertainty propagation results with the surrogate are computed 308 times faster than with the high-fidelity
model and present minor precision loss.

Therefore, the proposed surrogate model is adequate to assist the robust design of the gear micro-geometries
considering static and dynamic results, making an extensive exploration of the design space feasible. Further
work could use the proposed surrogate in a robust optimization analysis.

Acknowledgments The authors acknowledge the financial support of the European Union’s Horizon 2020 research and
innovation program under Marie-Curie grant agreement No 860243 to the LIVE-I project

References

[1] Mats Akerblom. Gear noise and vibration: a literature survey. 2001.

[2] Agnes Bérkanyi, Tibor Chovén, Sandor Németh, and Janos Abonyi. Modelling for digital twins—potential role of
surrogate models. Processes, 9(3):476, 2021.

[3] Daniel A DeLaurentis and Dimitri Mavris. Uncertainty modeling and management in multidisciplinary analysis and
synthesis. In 38th Aerospace sciences meeting and exhibit, page 422, 2000.

[4] P. Garambois, J. Perret-Liaudet, and E. Rigaud. Nvh robust optimization of gear macro and microgeometries using
an efficient tooth contact model. Mechanism and Machine Theory, 117:78-95, 2017.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[6] Yi Guo, Tugan Eritenel, Tristan M Ericson, and Robert G Parker. Vibro-acoustic propagation of gear dynamics in a
gear-bearing-housing system. Journal of Sound and Vibration, 333(22):5762-5785, 2014.

[71 B. James, M. Douglas, and D. Palmer. Predicting the contact conditions for hypoid gear sets by analysis and a
comparison with test data. SAE Transactions, 111:1489-1494, 2002.

[8] J.A. Korta and M. Domenico. Multi-objective micro-geometry optimization of gear tooth supported by response
surface methodology. Mechanism and Machine Theory, 109:278-295, 2017.

[9] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American statistical association,
44(247):335-341, 1949.

[10] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press San Francisco, CA, USA,

198



7th European Conference on Structural Control Warsaw, July 10-13, 2022

2015.

[11] CIL. Park. Multi-objective optimization of the tooth surface in helical gears using design of experiment and the
response surface method. Journal of mechanical science and technology, 24(3):823-829, 2010.

[12] Romax Technology Ltd. Romax spectrum.

[13] Andris Sobester, Alexander Forrester, and Andy Keane. Engineering design via surrogate modelling: a practical
guide. John Wiley & Sons, 2008.

[14] M. Sun, C. Lu, Z. Liu, Y. Sun, H. Chen, and C. Shen. Classifying, predicting, and reducing strategies of the mesh
excitations of gear whine noise: a survey. Shock and Vibration, 2020.

[15] Jan Troge, Eric Hensel, Sebastian Zumach, and Jan Bréiunig. Acoustical optimization of a train gearbox based on
overall system simulation. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, volume 253,
pages 1-10. Institute of Noise Control Engineering, 2016.

[16] DB Welbourn. Fundamental knowledge of gear noise: a survey. Technical report, 1979.

[17] Jiaxin Zhang. Modern monte carlo methods for efficient uncertainty quantification and propagation: A survey. Wiley
Interdisciplinary Reviews: Computational Statistics, 13(5):e1539, 2021.

199



