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A SPECTRAL RESOLUTION OF THE LARGE SIEVE

O. RAMARE

ABSTRACT. The quadratic form V(p,Q) = ¥, g meatq |S(¥;a/q)|? and

its eigenvalues are well understood when Q@ = o(v/N), while V (g, Q) is ex-
pected to behave like a Riemann sum when N = o(Q). The behavior in the
range @ € [\/ﬁ ,100N] is still mysterious. In the present work we present a full
spectral analysis when Q > N7/8 in terms of the eigenvalues of a one-parameter
family of nuclear difference operators. We show in particular that (a smoothed
version of) the quadratic form V (¢, Q) may stay away from (6/72)Q Y., |¢n|?
when @ = N, though only on a vector space of positive but small dimension.

1. INTRODUCTION AND RESULTS
Main consequence. This paper investigates the quantity Zq~Q D mod¥q IS (0, a/q)|?
where (¢, )n<n is any sequence of complex numbers and S(p, a) = >,y ¥ne(na).
It is this quantity that we analyze. Our main steps in this analysis are Theorem 1.2,
Formula (74) and Theorem 1.6. One of the main consequence of our work is the
next theorem.

Theorem 1.1. There exists ¢ > 0 such that for every N large enough and Q €
[eN/y/log N,20N], we have

DD 1S(ea/g)l? = Q%N ol

1<q/Q<2 a mod*q

This is to be compared with the lower bound given by W. Duke & H. Iwaniec in
[12]. Note that the summation therein extends over all classes ¢ modulo ¢ rather
than over the reduced classes, see the remark following [35, Theorem 2.7] on this
issue. In particular, the principal character is included (i.e. ¢ = 1) with a definite
influence. J.-C. Schlage-Puchta in [40] gives, for some random sequences, a lower
bound of a large sieve quantity under the sole assumption that Q?/N goes to infinity.
Read also the papers of P. Erdds & A. Renyi [17] and of D. Wolke [47].

The proof of Theorem 1.1 will unfold in four steps:

e By appealing to the §-symbol technique, we relate the above sum to a sum
of similar kind but where the moduli A are much smaller, namely h < H
for some H of size roughly N/Q.
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e We then interpret, for each h, the intervening quantity as a scalar product
of some function Ry p(p) together with the value of a difference operator
applied at this same vector.

e After analyzing the one-parameter family of compact operators that inter-
vene, we use their eigenvalues to derive a spectral decomposition of the
large sieve quantity we are interested in.

e When W is non-negative and N/Q is small enough, we prove that these
eigenvalues are < 1 by using the harmonic analysis uncertainty principle.
Theorem 1.1 is a consequence of that.

Setting the horizon for a lower bound.

Question. Do we have Z Z 1S(p,a/q)|* » NZ lom|? when Q = N1/2+e
1<q/Q<2 a mod*q m
for some positive £?

When N = > 5 #(q), we gave in [35, Theorem 1.2] the (rather weak) lower

bound | |3 exp(_HTo(l)N log N) for the quantity > o 2o moaxq [9(#s a/q)|?. The-
orem 1.3 implies that the better lower bound Q?|¢|% holds true as soon as ¢ os-
cillates enough along small arithmetic progressions in intervals of length about Q.
The main result of [9, Theorem 2.4] by B. Conrey, H. Iwaniec and K. Soundararajan
implies a similar lower bound for functions ¢ that are the convolution product of
an oscillating factor supported on [1,Q*~¢] and a rather general sequence.

Some functional transforms of our weight function. The §-symbol technique in-
volves some functional transforms of our weight function W that we better treat
before starting the analysis proper. Assumptions W being as above, we define W*
in (26), but the following expression valid for z € R is better:

x ¢(n) [~

W*(z) = =2 Z % cos(2mny)W (z/y)dy/y.

0

n=1
By Lemma 5.9, the function W™ is even, twice differentiable outside z = 0 where
it vanishes, and is of bounded variations over [0,1] and decreases like 1/2% 7 at
infinity. The expression for its Mellin transform, valid when Rs € [0,3/2) is simply
W*(s) = W(s)¢(1—5)/¢(145), see Lemma 5.6, where W (s) is the Mellin transform
of W. We finally mention the following expression for its Fourier transform, valid
for u # 0 and obtained in Lemma 5.7:

(1) W () = O JOO Wy — 3 (),
™ 0 |U| n>=1 n

This Fourier transform satisfies W* (u) = 5 SSO W (t)dt when |u| < 1/2 and [uW* (u)| «
exp —co+/log |u| otherwise, for some positive constant ¢y, ensuring that w* (u) be-

longs to L'. It is worth specifying that W*(u) varies in sign when W is non-
negative!.

1Such a sign-change may be detected by using (1) for u € [1/2,1]. The positivity of W*(u)
implies that U% Sf W (u)du = W (v) when v € [1, 2], leading to a contradiction.
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A smoothed setup. Our analysis revolves around the quantity

@) S VWD 556, a/g)?

g=1 q amod*q

for some weight function W satisfying:

(W1) e The function W is C3 over | — o0, c0[ and C* per pieces.

(W3) e Tt is even and its support lies inside [—2,—1] u [1, 2].

(W3) e We have {° W (u)du # 0.

We do not need W to be non-negative, though nothing is made to avoid this natural
condition. We do not seek generality but on the reverse to restrict ourselves to as
smooth a situation as necessary.

We define

@  aw = YA 5w+ (10 Q)Q)

The quantity Io(W) depends on @, but in a very mild manner.

First step: an equality via §-symbol. The proof of Theorem 1.1 will unfold in four
steps. We start our journey with the following essential formula that is of indepen-
dent interest.

Theorem 1.2. When 1/2 < H < v/N/(log N)® and log Q < log N, we have

y W@ 5 S(p.0/0) = (fo(W) + OWN(QH) ™) Xlew’

q qQ a mod¥q
w2
- ¥ WS (e 5 + )| do
h<H a mod¥*h J hQ

The reader will find a refined version for primes in Theorem 10.2. Please note
that the factor N(QH)™! is not polluted by any power of log N and that W*(u)
belongs to L'. The proof shows clearly that a polarized version is accessible of the
same strength, namely:

S S S(./a)Sal) = (W) Y e

q amod*q m

*h;H Qam%*h‘f W hQ) (1/1, +@)du
+O(N@QH) ™Y ell2l¢]2)

where [¢|la = 4/>.,, |¥m| and similarly for [¢[2. Similar polarized versions are
true for Theorems 1.3, 1.6 and Corollary 1.4. The beginning of our proof follows

closely the one of B. Conrey & H. Iwaniec [8] (which has been for the most part
incorporated in [9] by B. Counrey, H. Iwaniec & K. Soundararajan) and can be
considered as an additive analogue of their result. Our main new ingredient at this
stage, with respect to this proof, is the use of a maximal large sieve inequality. To
introduce this part, we got inspired from another try at a large sieve equality due
to W. Duke & H. Iwaniec and contained in [12]. The treatment of the finite parts
(meaning: for h < H) diverges from [8], and in particular we show that what may
appear like two main terms in the first coarse formula we get in fact cancels out in
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their leading contribution. This part of the treatment is similar to what happens
for the d-symbol of W. Duke, J. Friedlander & H. Iwaniec in [11] (see also [25,
Section 20.5] by H. Iwaniec & E. Kowalski. A more precise version of this remark
is documented Section 8.1).

Since W*(u) has its main contribution around u = 0, the sum over h contributes
to the main term only when the sequence (¢,) accumulates in some arithmetic
progression of modulus < H. When it does not, we have the following result that
implies a conditional large sieve equality.

Theorem 1.3. When § < H < vV N/(log N)® and log Q « log N, we have

ZM > ISt a/g))? = (Io(W) + O(N ZW’”F

q QQ a mod¥q
N+ hQ
(XL e ST
h<H hQ u<v<u+2thmodhu<n<v,
n=c[h]

)

Recall that the size condition u,v < N is included in the condition on the support
of . See Theorem 9.1 for a sharper remainder term. See also the work [19] of J.
Friedlander & H. Iwaniec, as well as [35, Theorem 2.6] for a large sieve equality
for coefficients of a special form (convolution of a shortly supported sequence with

a smooth sequence). The case H = 1/2 has also an interesting methodological
consequence.

Corollary 1.4. When log@Q < log N, we have

SL T IS0 = 1+ O/@)IW )l

q a mod*q

Second step: Functional rephrasing. Corollary 1.4 describes the situation satisfac-
torily when 7 = N/Q goes to zero. When 7 is larger, we show that the situation
is controlled by a family of embeddings (Ryx)n of L2({1---N}) and a family of
self-adjoined nuclear operators ¥;j, on the subspace L2 (X},) of L?*(X}): we endow
Xy, = Z/hZ x [0,1] with the natural probability measure; the space L2 (X}) is the
one of functions from L?(X}) whose Fourier transform with respect to the first vari-
able is supported by (Z/hZ)* x [0, 1], see Section 11 for more details. We denote
by U;_,,, the orthonormal projection on this subspace.

Let us define the local embedding Ry, We start by defining the (nearly) unitary
(see Lemma 13.1) embedding I'nj, of L2({1--- N}) in L*(X}) by:

Ty L2({1---N}) — L*(X3)

(4) Y = (@n)lSnSN — FN,h(SD) : Z/hZ X [07 1] —-C
(6,9) = ©oy, (b)+h[N"y/R]

where o,(z) is the unique integer b in {1--- h} that is congruent to z modulo h; we
have set ¢, = 0 when the index n is (strictly) larger than N and

(5) N' =N ++/N.

The embedding we need is given by
(6) Rnn=Ui_,, olnp.
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This is to be compared with the case of integers where we send Z inside Z,, for every
prime p, though we have here an “infinite place” for each modulus h (this is the
factor [0, 1]) and that we may not rely on multiplicativity. It would be interesting
to show that the diagonal embedding ¢ — (Rn.(¢)), has a dense range, as in the
adelic case. The situation is somewhat more intricate because of the dependence
in N. We next define the one-parameter family of operators ¥; 5 by

(7) Y5 (G (b, y) = jG (h ))d’

They are shown to be compact symmetric nuclear operators in Theorem 12.4 and to
verify a Mercer like theorem (see Theorem 12.5). The fundamental formula is (74)
which we repeat here:

(74) 2@%”§]wmmW—mmw@uwmm

q amod¥*q
-N Z [Rnn(0)|Yen R (e )]hx[O,l]
h<H
(H « N'3(log N)*, 7 = N/Q « H,Q < N?).

Allowing H to be as large as a power of IV requires quite some efforts and we have
to rely on te moe technical formula (46) rather than on the simplified form given
in Theorem 1.2. Ideally, we should be able to allow H roughly as large as v/N.

Analysis of a class of difference operators. We treat in Section 12 the analysis of the
intervening family of operators in an abstracted setting. For a function V satisfying
the regularity assumptions (R;), (Rz2) and (R3), we define

1
0 hoi Gera) - (v [ GVl
Assumptions (R1), (Rz) and (Rs3) indeed hold when V(y) = W*(ry/h). It is
classical theory that %{ is a compact Hilbert-Schmidt operator, see for instance
[22, Theorem 7.7]. Let (Ag, G¢)¢ be a complete orthonormal system of eigenvalues /
eigenfunctions, ordered with non-increasing |A¢|. The Fredholm equation AG(y') =
S(l) K(y',y)G(y)dy has been intensively studied. It is not the purpose of this paper
to introduce to this theory, a task for which it is better to read the complete and
classical [21], or the more modern [22]. Kernel of type V(y — y) are often called
difference kernel, and lead to operators that are distinct from convolution operators
as the integration and definition interval is not the whole real line. The book [39]
is dedicated to the operators built from such kernels. The book [7] contains also
many useful informations.
Here is a summary of what we prove in Section 12.

Theorem 1.5. The operator ¥ is nuclear. Given a complete collection (Mg, Ge)e
of non-zero eigenvalues / eigenvectors, arranged with non-increasing |X¢| and nor-

malized by Sé |Ge(t)]2dt = 1, we have the three following properties:
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o (Ezplicit nuclearity) Z | « [V ] VIEEIVIIVIVIE for some positive

=1
constant ¢ depending only on A, B and c. The notation |V'||; stands for

o {Macietd wheiptiperty) V(y — y) = Z MG (y")Ge(y) uniformly.
o (Lidskii’s Theorem) Z Ae=0. =1
=1
This is proved in Theorem 12.4 and 12.5. These properties shows that this class
of operators is indeed very regular. We recall that the Mercer Theorem concerns

similar operators but having a non-negative reproducing kernel. On integrating the
case y = 3 of the Mercer like property, we recover the third property.

Third step: Spectral decomposition of the large sieve.

Theorem 1.6. Assume that VN < Q < N. There exist two positive constants co
and c3 such that the following holds. For each 7 = N/Q and integer h = 1, let
(Goepns Me(T/R))e be a complete family of two by two orthonormal eigenfunctions
of (7) coupled with their respective non-zero eigenvalues. These eigenfunctions are
all continuous and of bounded variations. The sequence (Apo(T))e=1 s arranged in

non-increasing absolute value, and satisfies \¢(1/h) < 1/3/€ uniformly in h and 7.
We also have

(9) 2 Xe(r/h) =0, X e(r/m)] < 0, 3 Inelr/R)[2 =2 j W (T~ )y
=1 =1 =1

and this last value is bounded uniformly in 7. Under the Riemann Hypothesis, we
also have Y },o |\e(T/R)[P < o0 for any p > 4/5. For any sequence of complex
numbers ¢, any L =1, any H « NY/*(log N)~%/2 and any € € [0,1], we have

W(q/Q)

Zq:qQan;*q|S(gp,a/q)|2 = I(W)¢l3
1 . n na 2
S S mun 3 [S oo

h<H (<L a mod*h
[Ae(T/h)|=Eno (N)

n<N

logH 1
O (224 L emw)rlold)

where no(N) = exp —cs/log N. We have furthermore

20

h<H (<L a mod*h
[Xe(m/h)|Zm0(N)

When W is non-negative, the one-sided inequality (7/h)Ane < Io(W) + o(1) holds
true, where o(1) is here a function of Q that goes to 0 with 1/Q.

Y eaGrmn (5 )e(5) \ < Nlol3(1 + H*Lno(N)).

n<N

We prove that infinitely many A\;(7/h) are positive (resp. negative), once h is also
allowed to vary; see end of Subsection 15.3. When W is further assumed to be non-
negative, Theorem 12.6 shows that (7/h)A\¢(7/h) < Io(W) + o(1). The parameter
¢ above has only been introduced for flexibility purpose, in case one needs a lower
bound that is independent on N.
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Fourth step: Uncertainty principle and eigenvalues properties. A closer study of
the eigenvalues that uses F.I. Nazarov’s version [31] of the uncertainty principle
combined with some positivity argument leads to the following.

Theorem 1.7. For any non-negative W satisfying the above conditions there ex-
ist ca,c6,c7 > 0 such that we have, for any H < exp(cgv/log N) and any Q €

[N exp(—cg+/log N), N?],
(t/Io(W))|Anel/h <1— cee /M 4 O(exp —c74/log N)
forany h < H, any £ > 1 and with 7 = N/Q.

P. Jaming tells me that he believes ¢4 = 120 to be an admissible choice.

Arithmetical consequences.

Corollary 1.8. For every ¢ > 0, and every N = 1 and @ = 1, there exist a
constant ¢4 and a subspace of dimension O(72/[e?1log(1/€)]) such that we have, for
any (@n) orthogonal to this subspace and when log Q > c4log?(N/Q),

-9 lonl < T oD 3 I8t 0/ < (140 X leml

Moreover, when T = 1 and for every integer K > 1, there exist g > 0 depending
only on 7 and K, and 2K wunitary sequences (ax)r<r and (Br)r<i, two by two
almost orthogonal in the sense that

Vv, €{an} v {Br},  [7.7 1N = 8y—y + O(exp(—csn/log N)),
and such that, on one side, we have

W(q/Q)

a mod¥q

Yt O 1S(aka/a)l? > (1+ €)Y lamnl?
q QQIO(W) a mod¥*q m
while on the other side, we have

W(q/Q) 2 2
o S(Br,a/q)|” < (1 —¢ Bre,m|”-

Zq]qQIO(W)M;*qI (B> a/q)|” < ( 0);| |

The orthogonality is according to the hermitian product defined by
1 _
1<n<N

The sequences (ay) and (8g) are pull-backs of eigenvectors. Note that the pulling-
back process depends on IV but that the eigenvectors do not. They are very regular
and do not result from some exotic construction; in particular they are uniformly
bounded and there exists € > 0 such that {n < N, |ak | = €} is a set of density (in
short: their “essential support” is a set of density).

Notation. We note the Mellin transform by W (s) = Sgo W (t)t*~1dt and the Fourier
transform by W (u) = Siooo W (t)e(—ut)dt. Several other transforms of W will be

used, W W, W, W* and W**; they are described in section 5. We note here that
the transform W# is very close to what appears in [25, section 20.5, (20.145)] pro-
vided the changes of notation is incorporated: our W (y) is their w(y/C). We recall
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that |0l (¢, )|1.nv = Sfi lo%s (1, t)|dt. We denote by a|, = (an)n<: the truncated
sequence. We also define

£(u) = exp/log(2 + u).

We denote the Euler totient function by ¢ and distinguish it from the sequence by
using a different script for the latter, namely . We use the following norms:

N
(11) |\f||1,zv=f |f@)ldt, [ flloo,y = max |f(2)].

1 I<tSN

2. RELATED WORKS

Influence of the Riemann Hypothesis. Under the Riemann Hypothesis (and not the
Generalized one as one may believe), the proof we present allows to select @) as small
as N/(log N)'~¢ for any positive €. The coefficient e~N/Q may be questioned and
may well be superfluous in this range.

Figenvalues considerations when Q « v/N. The eigenvalues of the quadratic form
Y0<0 Zamoarq S (@, a/q)|? are well understood when Q = o(v/N), see the paper
of I. Kobayashi [28] and this quantity is expected to behave like a Riemann sum
when N = 0o(Q) (Corollary 1.4 below gives a precise form to this statement), but the
behavior in the range Q € [v/N, ¢cN] (for any positive constant c) is still mysterious.
When @ ~ +/N, F. Boca and M. Radziwill have shown in [3] by a very delicate
analysis that the distribution of the eigenvalues of this quadratic form tend to a
limiting distribution, henceforth proving a conjecture made in [34]. In fact, though
this went unnoticed by the authors, the paper [6] of T.H. Chan & A.V. Kumchev
can be read as also providing some informations on the eigenvalues in the case
Q ~ V/N. The values for the even moments of this limit distribution reveals that it
is not a classical distribution, confirming what the (rather limited) computations
from [36].

Figenvalues considerations when @ > N. H. Niederreiter evaluated in [33] the
discrepancy of the Farey sequence, a study refined by F. Dress in [10], and this,
together with the Koksma-Hlawka’s inequality, proves immediately that

DD IS/ = D) 6(a) D lenl’(1+ O(N/Q))
q<Q amod*q q<Q n

in very much the same way P. Gallagher in [20] derived the large sieve inequality.
Note that the arithmeticity of the Farey sequence is only mildly used: a discrepancy
estimate is enough.

Part 1. A large sieve equality
3. LARGE SIEVE INGREDIENTS

We adapt here the proof of S. Uchiyama [45] concerning the maximal large sieve
to get a result which is a (weak) additive analogue of a result of P.D.T.A. Elliott
[14]. This is [13, Lemma 1] or [15, Chapter 29, exercise 3, page 254].

Lemma 3.1. Let (x4)q<p be a §-spaced sequence of points of R/Z. We have
Somax | Y pmelmag)” < (L + 25 log(e/8)) Y loml?.

u<v<u-+L
d< = u<n<v
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Here is the version we shall use.

Lemma 3.2. We have

Z Z max | Z apme(ma/q)|2 & (L—&—QQlogQ)Z\gme,

u<v<u+L
4<Q a mod*q = u<n<v

4. A FUNCTIONAL TRANSFORM

The transform we investigate here is given by

o -1 i e C(l_s) —s
2w _MW(S)C(Hs)Z s

Please note that |[¢(1 — s)/¢(1 + s)| = 1 on the line Rs = 0. This transform of W is
already the one the occurs in [34], see for instance equation numbered (48) there,
and in [6], see their equation (4.19). We keep the same hypothesis as before for
W. In particular, it is compactly supported and W (s) « (1 + |s|)~*. We follow
[34, Section 9] pretty closely. We start by recalling a handy form of the complex
Stirling formula.

(12) W*(2)

Lemma 4.1 (Uniform complex Stirling formula). Let e €]0,1] and a compact subset
A of C be fized. In the domain |argz| < ™ — e and |z| = 1, we have

I(z +a) = V2re #2772 (1 + O(1/]2])).
uniformly for a € A.
As a (classical) conclusion and taking z = it in the above, we find that
(13) |cos(o + it)T(o + it)] = /7/2[t]7Y2(1 + O(1/|t)))
uniformly in any domain 07 < 0 < 02 and [t]| > 1.
Isolating the arithmetical behavior. We proceed as in [34] and appeal to the

functional equation of the Riemann (-function (see [44] or [25]) which may be
written as

(14) C(1 —s) =257 % cos(ms/2)T'(5)((5).

To do so we first shift the line of integration in (12) to Rs = 9/8. Since |{(—0o +
it)] «e (14 [t])1+9)/2+¢ when ¢ > 0 and for any € > 0, it is enough to assume
that W(s) « (1 + |s|)~2 to ensure the convergence of our integrals. Since the line
shifting does not meet any pole, we get

vy T[T cos(as/AT()C(s) o o
W (Z) - i %—ioo W( ) C(1+S) (2 ) d ’
(15) =2 Z @E(W)(QTFTLZ)
n=1
where
1 g+ico
(16) F(W)(u) W (s)cos(ms/2)T'(s)u™"ds.
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A bound at infinity. We infer from the estimate (13) that the line of integration
in (16) can be pushed up to Rs = 7/2 — € and thus

(17) F(W)(2mnz) <. (nz)”7/2Fe,
Here is the main conclusion of this part.
Lemma 4.2. We have W*(z) <. 2~ 7?*¢, for any € > 0.

A real-valued formula. The next step is to proceed as in section 9 of [34], which
we only sketch here. We employ equation (35) therein:

0
(18) cos T 0(s) = [ costy)y iy = [ cos(utayy
0 0
valid for 0 < Rs < 1 to infer that
1 [3tio
FW)(u) = W (s) cos(ms/2)T'(s)u™"ds

20w J1 oo

= [Ceostwg- | o W) /)

1
0 3 —100

= LOO cos(y)W (u/y)dy/y

by Mellin inversion formula. This yilds formula (1).

o0

5. MORE AUXILIARY FUNCTIONAL TRANSFORMS

Several functional transforms of our bump-function W will occur. We have
already seen W* and W* at (1) and (1). These two functions are central in our
work, but it is expedient to introduce several others. We start with the couple

(19) wi) = ) T ) - 3 D,
k>1 =1

We show in Lemma 5.1 that W°(y) = J(W) + O(y) where

(20) J(W) = L @

When y is small as in our case of application, the approximation of W’ by J (W)
is efﬁci§nt. The proof will then lead us to understand W# — J(W), a quantity we
call =W, i.e.

(21) Wh(y) = J(W) = W (y).

The situation is there more difficult than with W?, in particular because W’ (y) is

not small when y is small but takes the constant value J(W)! See Lemma 5.2. As
it turns out, we do not need to grasp W but the average

(22) We(z) = Z @W(cz)

1<e<C
The value for small z, i.e. when |z <1, is now J(W) >, .. p(c)/c which tends
to 0 when C is large. The rate of convergence is fast enough on the Riemann
Hypothesis, but rather slow otherwise. As a consequence, we have to treat this
point with care. In particular, we want to replace C' by oo and still save a power
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of C. We have already defined W* at (12) and Lemma 5.3 will show that both
definitions coincide. Let us start our journey.

5.1. Approximating W’. The transform W is also studied in [25, section 20.5]:
the function V(z) defined there in (20.143) corresponds to J(W) — W*(z) where
one should change W (y) into w(y/C) (albeit the trivial facts that w is supported

n [C,2C], while our W is supported on [1,2] and extended to the negative real
axis by evenness).

Lemma 5.1. Assume that |W (u)| < 1/(1 + |u])?. We have, when z > 0,

(23) W) = Y W(Jff ) _ Jw)+ o).
f=1

with J(W) being defined at (20).

In practice, z is small (< CE/Q). The proof we present uses the Fourier trans-
form but one could also use the Mellin transform.

Proof. We introduce Fourier transforms to write

b = " u e(fUZ) u = — Y u)lo — elZu U
W(z)—fwvv(); Flau =~ [ Wi log(1 — e(zu)a

o JOO W (u) (log 2 sin(mzu)| + im({zu} — 1)) du

0
- J W (u) (log |2sin(mzu)| + in By (2u))du.
—o0
For the sake of the evaluation next to z = 0, it is better to adopt the expression

—— [ W) og BT sy + iz — )

which we may simplify, with {* W (u)du = W(0) = 0, into

|2 sin(7zu)|

z|ul
We split the integral according to whether |u| < 1/z or not. In both cases we use
W (u)| « 1/(1 + |u|)? and bound log% by O(zu) when |u| < 1/z and by
log(]zu| + 1) otherwise.

We proceed by getting a simpler form for —2 SSO W (u) log |u| du. We readily check
that

W' (z) = =2 fooo W (u) log u| du — J_OOOO W (u) (log + m{zu}) du.

L L 2
f W (u)log [u| du = QJ J W (t) cos(2mut)dt log |u| du
0

_ QJ Wt ( sm (2mut) o u |] 1t sin(27rut) du)

ot U

—1 Wt
t

therefore concluding the proof of our lemma. O
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5.2. From W% to W. In this part, we start from the definition of W provided
by (21) and we reach the definition (25) given below. With v > 0 fixed, we define

(24) f(t) =W (v/t)/t.

We simply write when v > 0

St =Y f Fiod = | "1

g=1 g=1

:L f(t)dHF{t}f’(t)dt

_ JOOO W(u)d J‘ {t}(vW'(v/t (;;/t))dt

_ W) — % L {0/ (W (w)u + W () du.

This establishes Eq. (25). The condition v > 0 has been used on the last line: when
v < 0, we should reverse the integration path, or divide by |v| instead of by v.

5.3. Treatment of W. Define

(25) W) = 4 [ ) @) + W
The expression W(z) = So {1/v}(vzW'(vz) + W (vz))dv shows that W is an even
function?.

Lemma 5.2. The function W is C* and C? per pieces, and both derivatives are
bounded.

When |z| < 1, we have W (z) = J(W).

When |z| = 1, we have W (z) « 1/22.

Proof. Eq. (25) shows that the first part of the Lemma, by distinguishing whether
|z| > 1 or not.

When z € [0,1), then z/u € [0,1) when u lies in the support of W, which implies
that {z/u} = z/u in this case. Hence the first equality We can furthermore write,

when z # 0, and with ¢ = z/u, and with B3 (¢ So B (v)dv:
_ 0
W(z) = J ({t} — L)zt W' (2/t) + W (z/t))dt/t?
0
0
= J B3 (1) (42t 2W' (2/t) + 2W (2/t)t ™ + 22t 3W (2/t))dt /1>
0
0
=272 f B (z/u)(4u* W' (u) + 2uW (u) + u> W’ (u))du
0
from which the bound claimed in the lemma follows readily. O

25¢i1l reading [25, Section 20.5] by H. Iwaniec & E. Kowalski, we find that our W satisfies
W(z) = (C/|z|) SSO{UZ/C}(W(C/v)/v)’dv, and is thus like their W(C/z).
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5.4. Study of W¢, and W*. The function W¢(z) is even since so is W. Lemma 5.2
tells us that this function is constant when |z| < 1/C, with value J(W) >3, . ..o u(c)/c.
We can even select C' = o in which case we write simply w*:

(26) W2 (z) = =2 E= #le)
c=1

The next expression of W* will in particular establish that W* is continuous at
z = 0 where we have W*(0) = 0.

Lemma 5.3. We assume that W is at least C2. We have, when ¢ >0 and z > 0,

e+100
Wz o) L W(s)¢(1—s) ul(fz 2 %ds
C<C 2 i e
where W (s) = So Yzs~tdx is the Mellin transform of W. When C' = oo, the

expression above is correct provided we select € = 0 and replace Y, p(c)/c** by

1/¢(1 + 5).

Proof. We first reduce the case C' = o0 to the case C finite. On using {z} = z —[2],
we get

Wiz = Y % L " e ud (W () + W () du

c=1
3 4 [F a0 W,

u

- A28 vy wm)

0 d<zc/u

: pn(e) o Wize/d)
B C'—>o Z Z d ’

c<C’ ¢ d=1

Il
5

We introduce the Mellin transform of W and write

> M - ﬁ W ()1 - s)(z0) s

le —1—200
. 1 £+4100 .
- — 1— —s
W(0) + Sim ) W(s)¢(1 — s)(zc)"%ds

which gives us (note that J(W) = W(0))

:u C et e /’[’(C) —s
Wiz C;C % . W(s)¢(1—s) pa s ? ds

hence the expression given, seeing thfit the pole of ¢(1 — s) cancels out with the
zero of 1/¢(1 + s) at s = 0 and that W (s) is O(1/(1 + |s])?). O

Lemma 5.4. For Rs e (—1,0), we have

1 0 —1 .-

s 2nz)d 1
J z° cos(2mz)dz — sj M = (2m) 77 (s + 1) cos M
0 1 2w 2
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Proof. We call the left-hand side j(s). It is not difficult to see that (this is how is
occurs below)

@
j(s) = J 2% cos(2m2)dz
0

and is thus the Mellin transform of cos(27z). On looking at [16, (21), page 319], we
readily discover that, when Rs € (—1,0) (note the shift or +1 between the s variable
j(s) and the one of the table we refer to), the above formula follows. Giving a full
proof is not difficult by using cosw = (e + e~)/2. O

We define, when C' < 0,

(27) WE (1) = We(u) — W (0) = Wau) — J(W) 3 @
ce<C

=— Z @Wﬁ(cu)

c<C

on recalling (21) and (22). Note also that Wi = Wi = W* by (26). We recall
that W* is defined at (19).

Lemma 5.5. When W(s) « 1/(1 + |s|)3, we have, when u > 0,
. 1
i) — Wis)Cls) o ale),

T 9, i 1—s 1+s .
2w ) 0 U e

When C = o0, we replace Y, - p(c)/c' by 1/¢(1 + s). As a consequence, when
C < o and for any real number k < 3/2, we have W (u) < (14|u]) = (1+|ul/C)~*.
Moreover, in the sense of distribution, we have W (u) = J(W) X <o p(c) /e du=o+
Wé*(u) where 6y,—o 1s the Dirac mass at u = 0.

Proof. The value Wé*(u) is the limit, as Z goes to infinity, of
z
2 J WE(2) cos(2muz)dz.
0

We employ Lemma 5.3 and reach the expression

_1 —e+100

VT

z
W(=s)C(1+ s) Z #ie) L 2% cos(2mzu)dz ds

. 1—s
—E—100 c<C c

which is also

ST W )G s) o) [
3 L (272)dz ds.

1+s 1—
u Cc
c<C

T J_e—ioo

When C = o0, we start with ¢ = 0 and shift the line of integration in s just to the
left-hand side of Rs = 0 but still within the zero-free region of {(1 —s). Concerning
the inner integral, we write

uZ 1
J 2% cos(2mz)dz = J 2% cos(2mz)dz
0 0

uZ

in2ruZ
+ (uZ)SM > 2*Lsin(2n2)dz.

2m S om 1
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It is then enough to use the Lebesgue dominated convergence Theorem to send Z
to infinity (when u > 0). We next appeal to Lemma 5.4 to get that

L 2% cos(2mz)dz = (2m) " 7T (s + 1) cos(m(s + 1)/2)

1 (—
= —(27) 71 T(1 + s) sin(7s/2) = 2C(E+S)s)
by using the functional equation of the Riemann zeta-function. This gives us
1 (% W(— _
L[ W) o),

T 9, ) 1+s 1—s
2im )i U =

(28) W (u)

The bound on Wg*(u) comes by separating the cases |u| < C and |u| > C and in
the latter case in shifting the line of integration to s = k and using |((—s)| <.
(1 + |s|)k+1/2+2 (for any positive ) there. O

Let us mention the following consequence of Lemma 5.3 together with Mellin
inversion formula.

Lemma 5.6. The hypothesis on W being as above, we have

W (s) = =W (s)C(1 =) > plc) /e

c<C
for Rs € (0,3/2).
Lemma 5.7. When u > 0 and for C < o0, we have
2
- 1)) s 1 ol
W) = 3 i) - L 3 2y

C
c<C n>=1

where ¢c(n)/n =Yg, a<c #(d)/d. In particular, this gives

u) = .
SW(0) - W(1/u)/u when 1/2 <u < 2/2.
Proof. We only treat the case C' = 0. Lemma 5.5 gives us

9. i 1—s 1+s
28m ) 0 U e

We shift the line of integration to Rs = 2 (since we move to the right, the contribu-
tion of the pole at s = 1 is multiplied with a coefficient —1), use the development
C(s)/¢(s+1) = 3,51 ¢(n)/n'** and the reverse Mellin transform to get

W () = %VT/(O) - % D @W(n/u)

as expected. O
Lemma 5.8. We have W**(u) — Wg* (u) < log(|u| + 2)/C.

Proof. Indeed, by Lemma 5.7, we have W*(u) — Wg&*(u) « 1/C when [u] < C/2.
When v is larger, we use

o) doln) _ 5 #d) o gwm)
o — d%; 7 < patiyie;
d>é



16 O. RAMARE
where w(n) is the number of prime factors of n. This implies that

N 1
W (u) = Wt (u) « CH 4 = Y 240 /C « log(Ju] +2)/C

uLn<Kuy,

as required. (I

The size of W* and W* is well controlled as shown in the next lemma.

Lemma 5.9. Assume W is at least C°. We have W (z) — J(W) X . pu(c)/c «
1/(1 + 22). There exists co > 0 (depending on W only) such that, when z > 0 and
§ € (0,1/2], we have [W*(z + §) — W*(2)| « exp —coy/—logd and, when z € (0,1],
W (2) « £(1/2)¢ /z. This shows in particular that W* is of bounded variations on
[0,1]. Under the Riemann Hypothesis, we have |W*(2)| <. |2|27¢ for any positive
€.

When z < 1/C, we have WE*(z) = 0.

When W is four times differentiable, we have |[W*(u)| « u=1£(u)~. Moreover
W*(0) = % §° W(uw)du.

Proof. We split the proof is several stages.
Bounding W¢*: When |z| > 1, the first bound is a direct consequence of Lemma 5.2.
When |z| < 1, we write

W) = . @J(W) + ) @W(cz) — o(1) + O(1)
c<1/|z|, ¢ c>1/|z|, ¢
c<C c<C
as required.
Bounding the modulus of continuity of W*: Appealing to Lemma 5.3 with the
change of variable s — —s, we next write

1 io 1+ s ’ 6/z ’

W*(z+0) —W*(z) = o W(_S)EHSZ6 L (1 +t)* dtds.
Recalling that W (—s) « 1/(1 + |s|)® and ¢(1 + it)/¢(1 — it) « (log(2 + |t|)?, this
immediately gives us the bound |W*(z 4+ §) — W*(z)| « 0/z. This proves what
we need (and more!) when z > V6. When z is smaller, we proceed as in the
proof of the Prime Number Theorem: when t = s € [T, T], we shift the line of
integration to Rs = o = ¢1/log T where ¢; > 0 is chosen so that ((o —it)*! « logT
when |t| < T. The usual prime number theory gives us such a result, see e.g. [44].
Skipping some classical steps, we reach the bound

c log T2
W* (2 4 6) — W*(2) < gzﬁ + %
2 2
1;71T M 521§§T (IOgT)
KL zlogT T < + T .

We select T = exp(4/1og(1/d). The reader will easily conclude from there. This is
were the hypothesis W C? is needed. The bound for W*' is obtained in the same
manner.

Some more upper bounds: By Lemma 5.2, we have W (z) = J(W) when |z| < 1,
hence Wi5*(z) = 0 when |z| < 1/C.
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The bound for the Fourier transform follows by summation by parts. Concerning
the value of the Fourier transform at 0, let Z be a large parameter that goes to
infinity. We write

2 LZ W(2)ds = 2 f T(W)dz +2 JZ Jm M(uw'(u) W (w))dudz
)+ 2j fz/u Bz ) + W () du

a2 (</> (;;) B (1)) g

_2J(W) +2 J " B2 /)W (w)du — 2 f: By (1/u)W (u)du

0
= ZL B1(Z/u)W (u)du + J; W (u)du

and the integral depending on Z goes to 0 as Z goes to infinity by Lebesgue’s
Lemma. This shows that ﬁ/( 0) = (1/2)W (0 ) We next employ (22) to deduce that
Z M
c<C
hence the value at u = 0, whether C' < o0 or not. O

6. NUMERICAL ASPECTS RELATED TO THE SMOOTHING KERNEL AND ITS
TRANSFORMS

It is interesting to produce some numerical datas, so as to explore our several
transforms.

6.1. An explicit family of smoothing kernels. Let 1[_; 1 be the characteristic

function of the interval [ ,1]. We are interested in explicit formulae for the m-th

(#m
Cry

support within [—m,m], and of class C"™~!. We readily check that

convolution-power 1 Where m is a positive integer. This function is even with

(29) 147, = {(2) ~ I XEZE |2t|<\|t|.
Some more sweat brings the next formula:
32 when [t] < 1,
1 (8) =2 (3 1t)?*/2 when 1 <[] <3
0 when 3 < |¢].

The general formula is given in [38] and reads

[(m+]t)/2] j
(71)‘7 (m) . —1
— . J(m+ [t] —25)™ when 0 < || < m,
6 =9 & m=Di\y

0 when m < [t].

Guessing this expression is not obvious, but verifying it by recursion is only a matter

of routine. The Fourier transform of 1;_; 1y is sin(27u)/(7u), so the one of 1(*71’1)1]
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is sin(27u)™/(wu)™. Since we will use the case m = 5, it is worth giving its explicit
expression:
115—30t>+3t*

o when [¢| < 1,
55410|t|—30t%+10[¢|> —t*
(30) 1% () = S vhen 1< <3,
[-1,1] 625—500t+152(31t —20[t|° +¢ when 3 < |t\ <5
0 when 5 < |¢].

Formula (1) is handy for explicit computations. We introduce
Am _m
p’rn(t) = 271?11’1] (4mt — 3m)
for some integer m > 5. Its support lies inside [1/2,1]. We find that

bu) = ef3u/1) (TR )

Notice that §” pm(t)dt = p;n(0) = 1. We then select
W(m;t) = pm(1/1)/t.

For such a choice, we readily get

W*(m;z) =2 ), @ cos(3mnz/2) (Sm(w/@m)))m

= mnz/(2m)

When we truncate this series at the integer N, the error is bounded above by

(31) 2 (i’:})m m

We then use the following Sage script (see [43]):
def Witself(t, m = 5):
if abs(t) > 2 or abs(t) < 1:
return(0)
res = 0
z = m*(4/t-3)
coef = 2*xm/factorial(m-1)/2"m
asign = 1
for j in range(0, floor(float((m + abs(z))/2)) + 1):
res += asign*binomial(m, j)*(m + abs(z) -2xj) (m-1)
asign = -asign
return(res*xcoef/t)

plot(lambda t:Witself(t, 5), (1, 2))
6.2. A specific kernel. In this section, we specify m = 5.

On W (5;t): Here is a plot of our function.
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FIGURE 1. W (5;1)

The command integral numerical (lambda t:Witself(t,5), (1,2)) gives us
6 o0
7[ W (5 )dt — 0.816---
™ Jo

On W*(5;t): We get the following plot on [0.0001, 3]:

-0.15

WM\ /\ .
- ”UU\/V v

(b)

FIGURE 2. W*(5;2) for 0.0001 < z < 0.1 and for 0.1 < z < 3

And here is a plot of W*(5;¢). It is worth noticing that W*(5;1) = W*(5;0).
After u = 1, we indeed find that W*(5;u) < W*(5;0).



20 O. RAMARE

HEAWA
1Vz\/

FIGURE 3. W*(5;1)

7. A GENERAL FORMULA, FIRST STEP IN THE PROOF OF THEOREM 1.2

In analytic number theory, when we want to detect an equality, the quantity
we really study is of the shape »,,, , OmWUmOm=n and that what we use in an
approximation of the d-symbol. This is not only a tautology, it also imposes a
framework which decides of what are the “trivial” estimates and of what can be
expected or not. It also splits the problem in two parts: a combinatorial part, where
one uses the fact m and n are integers, possibly in certain subsequences, and an
analytical part where the quantities arising are to be estimated. There is of course
an interplay between both parts and a “good” decomposition is a decomposition
that leads to quantities that we know how to estimate. It is difficult to give a
precise historical date, but the contributions of M. Jutila in [26] (see also [23] and
[27, Theorem 2]) and of H. Iwaniec in [11] (see also [12, ] and [25, Chapter 20], in
particular Proposition 20.16 therein) seem to be prominent. One can say rapidly
that in some sense, Iwaniec’s way is to analyze the large sieve quantity to extract
a diagonal contribution, under some hypotheses, while Jutila’s way is to start from
the diagonal contribution and to modify the circle to keep only the rationals one
knows how to handle, with a possible weight.

The present study is centered on the quantity

(32) y(@W)—ZW(Z”Q) S IS(p /o)l

q amod¥*q
Moebius inversion readily yields

S(Q.W) :ZEW S [S(p.a/d).

d d|q amodd

We expand the square, shuffle the terms around and get

(33) L(QW) = omPal(m —n)
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where we have use the notation (on setting cd = q)
plc cd/ Q)
(34) Z
d|v
Here is the decomposition of the A-symbol we use.

Lemma 7.1 (Iwaniec’s decomposition). Let C, E, H = 1 be parameters that satisfy
E <min(1Q,2Q/C). We have

A(v) = U(v) + U¥(v) + Lo(v) + L(v) + LF(v)

where Ly(v) is the diagonal contribution

u07

p(e cd/ Q),
C;’
d=1

and U(v) and Ut (v) are the “direct divisor” part:

U(v) =— Z Z M Z e(av/e),

e<FE c<C, ef a mod¥e
fz1
()W (cef/Q
Ut(v) = Z Z ()cif/) Z e(av/e),
e>E Cf>C7 a mod¥e
=1

while L(v) and L*(v) are the “complementary divisor” part:

ZZ“ S W(eo/(9@Q))e(av/h),

h<H hlg, a mod*h
c<C
w(e)
=2, 25 LY Wiew/(g@)elav/n).
h>H h|g, a mod*h
c<C

Proof. We start by splitting the range for the variable c:

S p(c cd/Q s p(e cd/Q)

c<C, c>C,
d|v dlv
= L) +U(v)

say. When v = 0, the term L(v) restricts to Lo(v). Otherwise, we switch to the
complementary divisor by setting gd = |v| (and g = 1 since v # 0). We detect the
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divisibility condition by using additive characters:
p(e)W(clvl/(9@Q))
L(v) = Z | |

c<C,
glv

Z D p(e Clvl/(gQ))e(bv/g)

c<C, 9 bmod g
g=1

3 Z 3 (e C|U|/(9Q))e(bv/h)

c<C, 9 h|g bmod*h
g=1

which amounts to

L(v) = )] Z Z W (cv/(9Q))e(bv/h).

h=1c<C, ge bmod*h
hlg

Note that we do not need the condition v # 0 since W(cv/(9Q)) = 0 when v = 0.
We then simply split the summation over h according to whether A < H or not,
getting the two quantities L(v) and L¥(v).

Concerning U(v) we again detect the divisibility condition by using additive
characters. This gives us

cd
Z G /Q Z 2 e(av/e).

c>C, e|ld amod*e
d=1

Note that cd/Q < 2. We set d = ef and thus e < 2Q/C. We continue by splitting
the range for e:

Uv) = Z Z w Z e(av/e)

(&
e<E c>C, f amod¥e
f=1

+ Z Z jcef/Q) Z e(av/e).

e>FE c>C, amod¥*e
=1

We recognize U*(v) in the last quantity. The first one needs a transformation. We
note that

Z ul(e cef/Q) B Z p(c cef/Q) Z ple)W (cef/Q)

c>C, c=1, c<C, e'f
=1 f>1 =1

_ Z 2 p(c Je/Q) Z ()W (cef/Q)

j=lcef=j c<C, C@f
f=1
_ e/Q p(c cef/Q)
=1
and the first term vanishes because of the assumption E < Q. O

The diagonal term is easily handled.
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Lemma 7.2.
S pmgnLo(m —n) = (Z A om-l)) Il2.
Proof. The ;ontribution is 4
s MOVl s 57 57 Mg )iz,
e e

Since

3 UV 5 Qg0

c>C,d ¢ c>C

we get that this diagonal term has value:

(Z¢ Wig/@) O(QC‘1)> ol

as announced. O

The large sieve inequality yields an efficient bound for the contribution of U*(m—
Lemma 7.3. We have

Z OmPaU(m —n) < Z lem 2 (NE™ + QC 1) 1og Q.

Proof. We use the bound (where ¢ and e are fixed)

2 W(cef/Q) « Z 1

«1
7 f Q/eer<T30/(ce) @/ (C€)

to get:

Y Ut m—n) « (log@) Y et Y |S(p.afe)?

m,n E<e<3Q/C amod¥*e

< > emP(NE™H +QC™ 1) log Q.
0

The contribution of Lf(m — n) is somewhat more difficult to handle but also
relies on the large sieve inequality. We shall most of the time employ the next
lemma with a set I reduces to one element. It is only in the final applications that
it is better to use the summation over some ¢ € I.

Lemma 7.4. Let w be an even and C' function that vanishes when the variable is
larger than 1. We further assume that w is piecewise C2. Let I be a finite set. We
have

S| vmitmawtatm = )| < 3’ (Na+ 1) _wax S| S v

- u<v<u+3/a
el m,n +3/ el u<m<v
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Proof. The problem is twofold: localizing the variables m and n and separating
these two variables. The first problem is met by a subdivision argument: we cover
the interval [1, N] by at most Na + 1 disjoint intervals (a,a + a~1] = I, of length
a~! and localize n within such an interval. As a result we can assume that m lies
in [a—a~!,a+3a"!] = J,. We handle the separation of variables by a summation
by parts and the formula

n

w(a(n —m)) = —aj w' (a(t —m))dt

m—a—1

_ fma th alt — s))dsdt

from which we infer that > ., VYo, ithn sw(a(m — n)) equals

a+o t+a71
(35) o2 f f S G (alt — 5))dsdt.
a—2a~t Ja—a~t s<m<t—a71,
t<n<a+a !
We find that t —3a ' <a—a'<s<m<t—altandthatt<n<a+a <

t + 3a~!, hence the inner sum over m and n is bounded above (after introducing
the summation over i, by

max Z’ Z wm,iZ

<v<u+3/a
“ ut3/ el u<m<v

A change of variables readily shows that

at+a t+a™
a2j J a(t — s))|dsdt < 3|w"|1,
a—2a~ 1

clearing out any uniformity problem in applications. (I

Lemma 7.5. We have
D omPali(m—n) « (NH' + NCQ™ ") [¢|3log" (QN).

Proof. We have to control

(36) D Um W (a(m — n))

where ¥, = pme(ma/h) and o = ¢/(gQ) # 0. Note that the truncation in ¢
ensures that |«| is small; this truncation has been introduced for this very purpose.
Practically, we appeal to Lemma 7.4 and get

S = Z M Z Z -1 2 Egome ma/h)ppe na/h) (c|m —n|/(gQ))

c<C h>H h|g amod*h m,n

1 /Nc
& Z — (— + 1) 2 max
e<Cohonr, 9¢\9€ amodk, WSUSUTI9Q/e
hlg<eN/Q

S melam/h)|

u<m<v
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The condition v > wu is automatically satisfied. We continue with ¢ fixed by local-
izing h and using k = g/h. Lemma 3.2 gives us:

N 1 am\ |2
s« XN (EEren) X ma |3 ewe(%)
k2e ketc <ut et h
1<k<Q/H, e’~'<h<e’ amod*p VSut u<m<v
logHsfslog%

<« S (M ) (win(v k@) 1 16 ol

1<k<Q/H log H</(<log(cN/Q)

N Nt et
« Z Z (W+w+%)“<ﬁ”%

1<k<Q/H log H<(<log(cN/Q)
N N?
< Y (E Y s
ce Q
log H</¢<log(cN/Q)

& (NH71071 + NQfl) liol3 log®(QN)

so this contribution is at most (on summing over ¢), up to a multiplicative constant:

(37) Q(N(HQ)™ ' + NCQ?)|¢|3log* (QN).
O

This approximation provided by Lemma 5.1 together with the large sieve in-
equality leads to the following formula (recall the definition (19) of W#):

(38) ZWWQ)) S 1560/ = 3 lonl

— qQLo(W
_ J(W) Z ILL(C) Z ‘S( a/e)|2
QILy(W) L ec L

e<FE

amod*q

amod¥*e

: Zc ch@fo >amg*m;@m“"”mclm—nl/<hQ>> ((n—m)a/n)
h<H

+0((55+ g+ & + o) lelBlos’iem)

The first main term comes from Lg, the second one from U and the third one from
L.

8. PROOF OF THEOREM 1.2

8.1. From W* to W: cancellation of the two main terms. We introduce W
by appealing to (21). The choice E = H ensures that, in (38), the second main
term is canceled out by the contribution of the factor linked with the J(W)/h above,
getting
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(30) gm S IS(pa/a)? = 613

amod*q

2 M) S oW clm — nl/(hQ))e((n — m)a/h)

c<C, ChQIO( amod*h m,n
h<H

¢ :
* O((;IVQ + é + ]ZP )I@I%log"(QN))_

The same cancellation of the main term is what presides to the introduction of
A, (u) in [25, section 20.5], see the proof of Lemma 20.17 therein.

8.2. Sharpening the error term in its H-dependence. One of the error term
in Eq. (39) is (’)(HLQHgoﬂglog%QN)) and we want to (and need to!) remove the

log”(QN). We have to consider
1
(40) S(Hi, Ho) = D> 5 Do D) em@aWel(lm —nl/(hQ))e((n — m)a/h).
Hi<h<H> amod*hmn

We somehow go backwards and use W2* from (27) to write

S(Hi ) =Wa0) S & Y

Hi<h<Hz  amod*h

S(cp, %)’2 +S/(Hy, Hy)

with

S (Hy, Hs) f (e, + 2\ W (u)du
b ocH<h<H2h Z (wh Qh)‘ o e

amod*h

The large sieve inequality readily yields (since W (0) « 1)
N
S(Hy, H) = 5 (Hy, Hy) < (- + o) o3

The treatment of ¥'(H;y, Hs) is somewhat more difficult. When |u/Q| < 1/2, by
combining a summation by parts together with the large sieve inequality, we find

that
1
)IDY

Hi<h<H> amod*h

an

N
s(2 %+ a0)| <IeB(5, +502)
Y7 hQ lll3 2
since the points (§ + 75)a,n are 1 H;?-well spaced. When |u/Q| > 1/2, we use the
large sieve inequality for every h. In this case the shift by u/(hQ) is constant and
the points are h~!-well-spaced, giving

DD

Hi<h<H, amod*h

an 2 2H.
S 2 +@)] < ol (N log = + Hy).

As a consequence
2H. 2 )

N C
(1, H)/ Il < g+ 8Ha + 5 (Nlog 2 + I,
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on using the bound [Wg* (u)| « C/(1+ |u|?) from Lemma 5.5 when |u| > Q/2. This
implies that

>'(Hy, VN) « % ++v/N + %V log N.

We can use formula (39) with H = +/N and shorten the summation by the process
above. On renaming Hy = H, we have reached:

(41) ZM S IS(pa/a)? = 613

QQIO(W) amod*q
~ 2 QR TR X3 oWl ol (hQ))el(n = mah
N 1log’(QN) NClog’(QN)Y, 2
+O<(HQ * C + Q2 )”802)

The effect of the previous treatment is neat: the log-factor attached to N/(HQ)
has disappeared while the rest of the remainder term is still of the same order of
magnitude.

8.3. Direct extension of the c-variable. We handle the sum over ¢ essentially
trivially. The contribution from the diagonal term m = n is bounded above by

> o M H(0)2/Q. When |m —n| < hQ/c, we bound W (c[m — n|/(hQ)) by O(1),

C
getting a contribution bounded above, up to a multiplicative constant, by

Z ChQIU Z Z “Pm‘pn‘

h<H, amod*h|m n|<hQ/c
c>C

« ¥ QZ\W—Q « |gl2H?/C.

h<H, m
c>C

We use W(z) « 1/(1 + 22) when |m — n| > hQ/ec, getting a contribution bounded
above, up to a multiplicative constant, by

1 |‘pm90n|
h;, chQIy(W) am§*h |m—n|Z>hQ/c 1+ c2(m —n)2/(h2Q?)
c>C

<<Z

h<H,
c>C

2 C 2
ShQZW < lpl3H?/C:
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We thus get, for any C' > C:

W(q/Q) 5 2
ZWZ (e a/q)” = lel3

m@Pn Wi (Im — n|/(hQ))e((n —m)a/h
;HWO Wy 2 el (m =l (hQ)e((n — ma/h)

2 0} 5 O
+O<<ﬁ]{vQ H? | log (CQN) NC’lgz(QN))W‘%).

The optimal choice C' = QH/N'? (provided that H < N/4; Indeed we recall that
Lemma 7.1 asks for £ < min(Q,2Q/C) and that we have chosen E = H) may be
too large. Instead we select

(42) C = min(QH &,C’/) = min(Q—H,C’)

and get

(43) me;d* 1S(¢,a/q)* = | o|2

- Y gmar 5 3 en W m =l (h@)e(n —~ ma/h)

h<H amod®h m,n
N H?+1og’(QN) )
+0( (g + LD ).

We may reformulate this equality by using the Fourier transform of W*:

S H@WD $ 50 )P = |2

q qQ[O(W) amod*q
- h;H hQIi(W) amod*hf Wer(u ’5(% Zg)‘ du
+ O((éVQ - 12 + log (QN) IOC% (QN))W@).

Later, to prove (71), it will be better to restrict the range of integration (note that
the Fourier transform has two parts: a Dirac mass and a regular part; only the
regular part is concerned, as the Dirac mass is concentrated at u = 0). We use the
large sieve inequality with u and A fixed to infer that
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() YLD S0 s ) = o3

q QQIO(W) amod*q
1 J‘ 2
- S W 7 S <p7
EH hQL(W)  ~. &l ’ ( hQ)’
N NC'logH H? +log’(QN) 9

We can however proceed in a different, fashion: majorize |W*(u)| when |u| > U by

O(1/U), uniformly in C, and use Siooc |S(a + u/(hQ)|*du = hQ|p|3 by Parseval.
This leads to

) YWD S 50 0/ = o3

7 aQL(W) | =,
*h;[ hQIO Z(;*J Wer(u ‘S ‘p’ )‘ du
+o((mg+ 5 W)nw%).

The difference from Wé, to Wé? is J(W) X< it(c)/c - du=o by Lemma 5.5. On

using that J(W) « 1, that >, .~ pu(c)/c < 1 and the large sieve inequality, we get a
contribution which is « NH~1|p|3, thus incorporable in the already existing error
term. We have obtained:

(46) ;m S IS(pa/a)? = o3

- 3 o B[ we]s(e )

N . (NC'logH H? H? +1og” (QN) )
+(9<(HQ+m1n< 7o ,U>+C)||¢2).

We can send U to infinity and Theorem 1.2 follows by keeping U = o0 and sending
also C’ to infinity.

9. A CASE OF LARGE SIEVE EQUALITY. PROOF OF THEOREM 1.3
We prove a first result that is suited for some applications.

Theorem 9.1. When % < H <+/N/(log N)® and log Q « log N, we have

ZM N 1S(p,a/q)? = (Io(W) + O(N(HQ)™)) ]2

qQ
O(}L;H]\;;—thu@glgfzm Z ‘ Z @ne(na/h)‘z).

q a mod¥*q
a mod¥h u<n<v
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Proof. Ideally, we would simply combine Theorem 1.2 (but we convert back W* in
W* as in (43)) together with Lemma 7.4 applied to W*, the set I being {a mod™ h}.
The function W* is however not regular enough, and we have to revert to W¢ and
more precisely to Eq. (43). We select ¢ = QH/v/N. When z < 1/C, we have
(W&)” = 0 while Lemma 5.3 with ¢ = 0 implies that (W5)”(z) < 1 in general. The
theorem follows readily. O

Proof of Theorem 1.3. We employ Theorem 9.1 and simplify the remainder term
by appealing to

Z ‘ Z gpne(na/h)‘2< Z ) Z <pne(na/h)’2

amod¥*h u<n<v amod h u<n<v

TN

cmod hlu<n<wv,
n=c[h]

2

Such an extension of the variable a may look a weak step, but since this theorem
is aimed at sequences oscillating highly in small arithmetic progressions, the loss is
not noticeable (at least in the examples I could think of). O

10. A REFINEMENT FOR PRIMES

When the sequence ¢ is supported on integers prime to every integer h < H, we
may refine Theorem 1.2 further, thanks to the next improved large sieve inequality.
This is [35, Theorem 5.3]. See also [37, Corollary 1.5].

Lemma 10.1. If (¢n)n<n 18 such that ¢, vanishes as soon as n has a prime factor
less than /N, then

NlogQo, 9
Z Z <p,a/q \7w||80“2

3<Qo a mod*q
for any Qo < VN and provided N = 100.
This lemma enables us to improve Theorem 1.2 into the next result.

Theorem 10.2. When 1/2 < H < +/N/(log N)®, Q < 10N and ¢,, vanishes when
n has a prime factor below /N, we have

D) |s<@,a/q>|2_(zo<w>+o(g;[°f§§))2| ul?

_Z ZJW* )S(p, )'du

h<H a mod¥*h

Proof. We start from Theorem 1.2, but with say H' rather than H and now shorten
the sum over h. To do so, we write

hZHl Qam%*hf W (u ‘S <p, ))Qdu
( DS X slesmg) e

h~Hj amod*h

HlQ h~H1
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Lemma 10.1 tellAs us that this quantity is « %ngug from which, after noticing
the bound for W* from Lemma 5.9, the theorem follows readily. O

Part 2. Operator Decomposition of the Large Sieve
11. A LOCAL GEOMETRICAL SPACE

We consider X, = Z/hZ x [0, 1], equipped with the product of the probability
measures. We denote by L2(X},) the space of functions from L?(X},) whose Fourier
transform with respect to the first variable is supported by (Z/hZ)* x [0,1], i.e.
functions f such that

Wy [0,1],Yd € Z/hZ [ ged(d,h) > 1, > f(b,y)e(—db/h) = 0.
bmod h

It is maybe simpler to say that this is the space generated by the functions (¢, y) —
e(ac/q) f(y) for all f € L?([0,1]) and (this is where a restriction occurs) a prime
to q. We reproduce rapidly the theory developed in [35, Chapter 4]. Let k|h be two
moduli. We consider

LF : L2(Xy) — L*(Xp)

(47) F i LE(F):Z/hZ x [0,1] - C
(b7 y) = F(Uk(b)ﬂy)

and correspondingly
JP L2 (X)) — L*(Xy)
F i JMNF):Z/kZ x [0,1] > C

(48) 1
(byy) — mcm%]ih F(on(c),y).
c=b[k]’
We finally define
(49) Ui = LiJE, Up_y = D uk/d)U; g

dlk
Here is the structure theorem we need.?

Theorem 11.1. The maps Lfl and J,? are adjoined one to the other. The collection
(Ui _i)kln is a family of commuting orthogonal projectors. Furthermore

Upoio = 2 Una
dlk

while, for any two divisors ki and ko of h, we have Uj_,, Uy ;= 0, =k, Uj, .-
We have LZ(X},) = Uj_,, L*(X3).

3These results are easily proved. Details may be found in [35, Chapter 4], though with no
y-component. This component is inert here, so the proofs carry through mutatis mutandis.
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An explicit expression. At the heart of this matter are the Gauss sums
(50) () = Y, x(bed- /h).
bmod h

Theorem 11.2. For any h = 1, any class b modulo ¢, any real number y and
any function F € L*(X}), the orthonormal projection U;_, on L2(X}) has the
following explicit form:

UiaFby) =3 Y enlb—F(e,y)

cmodh

Given a hilbertian orthonormal basis (fi)r of L*([0,1]), the family (En ® fi)x.k
where &p = Th(X, )/v/¢(h) and x ranges the Dirichlet characters modulo h is a
hilbertian orthonormal basis of L2(X},).

Proof. We first check that
Z cn(b—c)e(bd/h) = Z e(—ac/h) Z e(b(a+d)/h)

bmodh amod¥®h bmod h
_ ) he(dc/h) when (d,h) =1,
0 else.

and since (b — e(bd/h))amod » generates the whole space of functions over X, this
proves our first assertion. The introduction of the Dirichlet character may be arbi-
trary, but in fact (7, (x, )y is the full set of eigenfunctions of f — > ., cn(b—
¢)f(c)/h that are associated to a non-zero eigenvalue. We simply have

(51) b e Z/hZ, Th(X,b):% S enlb— (0.

cmod h

Note finally that

LY awomtaa= Y @@ Y oY)

cmod h a,bmod h cmod h
=Ly o(h)

as required. 0

12. ANALYSIS OF A CLASS OF DIFFERENCE OPERATORS

We treat here the analysis of the intervening family of operators in an abstracted
setting. Let V' be a function satisfying the following assumptions:
(Ry) e V is a continuous real-valued even function of bounded variations and in-
tegrable over R.
(Rg) e V(0)=0.
(R3) o There exist B = |V, ¢ € (0,1] and A > 0 such that, for every § € (0,1)
and z € [0,1—0], we have |V (z+0)—V(z)| < Bexp(—cy/—logmin(1, AJ)).

Recall that we defined
1

®) hi e~ (v [ GuIV -y
0

It is classical theory that 7§ is a compact Hilbert-Schmidt operator, see for instance
[22, Theorem 7.7]. Let (Ag, G¢)¢ be a complete orthonormal system of eigenvalues /
eigenfunctions, ordered with non-increasing |A¢|. The Fredholm equation AG(y’) =
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S(l) K(y',y)G(y)dy has been intensively studied. It is not the purpose of this paper
to introduce to this theory, a task for which it is better to read the complete and
classical book [21] by 1. Gohberg, I. C. & M.G. Krein, or the more modern [22] by
I. Gohberg, S. Goldberg & N. Krupnik. Kernel of type V(y' — y) are often called
difference kernel, and lead to operators that are distinct from convolution operators
as the integration and definition interval is not the whole real line. The book [39]
by L. Sakhnovich is dedicated to the operators built from such kernels. The book
[7] by J. Cochran contains also many useful informations.

12.1. L?-norm. We readily find that

1,1 1
") Pdy = 221 — |2])dz=.
(52) L L V(' =yl dy Jl V(2)[7(1 = [z])d

Hence . )

S P = | VP i <2 | V)P

=1 -1 0
As a consequence, and enumerating the eigenvalues in such a way that || is non-
increasing, we find that

1
(53) Aol <A/2 i [V (2)[2dz/V2.

Theorem 12.4 will enable us to replace /¢ by ¢, but it uses the above bound.

12.2. Properties of the eigenvectors. The eigenvectors of ¥#; attached to non-
zero eigenvalues are classically shown to be continuous. Since the L'-norm is not
more than the L2-norm squared here, we have |G||; < 1. Each of them thus satisfies

(54) Gl < 2 j V()1 - 2)d=.

Furthermore, we find that

(55)  IG(y +6) = G)| < [Glaw(V:9) = |Gl _max [V(z+6) —V(2)].

These functions are also of bounded variation. Indeed, with obvious notation, we
find that

NS [Gi) - Gl < f G S Vi —9) — Vi — v)ldy

1<igsn 1<igsn

1 1 1
< f V() ldy f Gy)ldy < f V' ()l dy
—1 0 —1
since |G|1 < 1.

12.3. Nuclearity. A consequence of a theorem of Fredholm from [18] is that, when
y — V(y) is Holder of exponent «, then the eigenvalues verify >, [A¢|? < oo for
every p > 2/(142«). This proof is reproduced in the book [22, Chapter IV, Theorem
8.2] by I. Gohberg, S. Gohberg & N. Krupnik. This is too strong a condition for
us if we are to avoid the Riemann Hypothesis (in which case a = 1/2 + ¢ would
be accessible). D. Swann in [42] considered the effect of bounded variation on
a general kernel, but his theorem asks again for too strong hypotheses since the
function (y',y) — V(y' — y) is a priori not of bounded variation. However, each
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function y — V(y' — y) is uniformly of bounded variation (i.e. its total variation
is, as function of gy’ integrable; in our case, it is even bounded), a case that is
mentioned (with more generality) in the paragraph preceding [42, Theorem 3] and
more formally in [7, Theorem 16.2] in the monograph of J. Cochran. We follow this
approach.

In this subsection, we use

(56) log™ t = logmin(1,t);

We consider the coefficients of the Carleman determinant, see [7, Chapter 4, (3)],
forv>=2:

0 Viyr—y2) - V(g1 — )
—1yv (V2 =) 0 o V2 — )
(57) dy, = ( ,) Jf . . : dydys - - - dy, .
v Jo Jo : : :
V(e —y1) V(yw —y2) - 0
As V(y—y) = 0, this is also the Fredholm determinant, see [22, Chapter VI, (1.5)].
The above determinant, say K(y1,---,¥y,), can be rewritten as
0 Viyi —y2) =V =) Vi —w) = V(i —y-1)

Vg —y1) Ve —wy2) =V —wn) - V(ye—w) = V(e —y-1)

V(yu.— v1) V(y2 — ) —.V(yz Y1) o V(Y — ) —.V(yu —Yo-1)

We use the symmetry of the integral and now assume that 0 < y; < yo < -+ <
Y, < 1 (when an equality occurs between these variables, the determinant vanishes).
We define 6; = y;41 — ;i so that >}, ;. 0; < 1. We divide the second column
by v/ B exp(—(c/2)4/—log™ (Ad1)), the third one by /B exp(—(c/2)4/—log™ (Ady))
and so on, getting a factor

BU U2 T exp(—(c/2)y/—log™ (Ad;))

I<isv—1

in front of our determinant. We first note the following lemma.

Lemma 12.1. We have 3, ;. 1/ —log™ (Ad;) = ny/logn when the ;s are posi-
tive real numbers such that 3}, ;. 6; < 1.

Proof. Given an n-tuple (d1,-- - ,d,), we note that the n-tuple obtained by replac-
ing each 6; by min(A~1,§;) satisfies the same constraint with an equal sum of

—log™ (A-). In order to find the minimum required, we may thus restrict our
attention to variables that verify &; < 1/A. Set z; = (—log™ (Ad;))*/4. This vari-
able ranges possibly (0,00). The condition on §; now reads >}, ;. e~i/4 = § for
some § € (0,1], while we seek to minimize >}, ;. 2? and we forget the condition

e~Ti/A < 1/A. We use the Lagrange method and consider

Y(x,...,xn,A) = Z xf—)\( Z efm?/A_é).

1<i<n 1<isn
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Its critical points, obtained by equating all the partial derivatives to 0, satisfy:

Vi<n, 2x;+ 4A_1a:?)\e_’”?/‘4 =0,

Z e~Ti/A = 5,

1<igsn

This implies that* \/A = —26_96?/‘4/1‘12. The function y — 26_‘714/‘4/y2 is decreasing,
from which we conclude that all z;’s are equal, which in turn implies that all §;’s
are equal, and equal to §/n. The choice § = 1 is also optimal. ([

Next we use Hadamard’s inequality (as in all such proofs!) together with the
previous lemma (and (v — 1) = v/2) and get

Ky, 5yl 1/2
Br/2e—(c/Vv Vog(v—1) H<Z|aw| )
1/2
< H(HVHoo‘V(yz —y1) = V(i —y)| + B Z V(g — yj—1) — V(yi — yJ)D

i 2<j<v
1 v/2
< (20‘[ |V’(y)‘dy>
-1
since B = ||V |x. As a consequence, we find that the Carleman determinant

(58) D(V,z) =1+ Z dyz" = H(l — /\gz)eAL’Z

v=2 =1

satisfies, with M = 1/2B S3|V’(y)|dy7
MV|Z‘y€_1Vm
DVl <1+
v=2
< (Mz))N e+ e

with H = M|z| = 1 and for any real valued parameter N > 1 that we may choose.
When H < e?, we use the upper bound |D(V, 2)| < ¢®". When log H = 2, we select

(59) N = He~iVIeeH+1) /160 [,
When log H > 2, we check that (recall that we have assumed that ¢ < 1)
log N =log H — f«/logH loglog H

M|zle”$VIEN < HN+le 4 eHe‘ZvlogN

=1lo (H+1)( logH __ ! _ loglog H )
=08 log(H +1)  44/log(H +1) log(H +1)
log 2 1 1 log(H + 1)
>log(H +1 —_— L) =7
og(H + )(log?) 410 3 e> 49

We thus find that, in this case, we have

|D(V Z)| <H6H67%\/m6+ He™ 28\/101;(T+1
B x

6H He™ 281/log(H+1

4Any choice x; = 0 means that J; = 1, which implies that any other J; vanishes, leading to
the maximum being c0 when n > 2.
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Next, He™ 3 V198(H+1) L ]og H is certainly not more than He ™50 V18(H+1) provided
H be larger than some constant depending on c¢. So, in general, we find that
He ssVIos+1) 4 o0 {f < He™ 3 V108(H+1) L \where ¢” is a constant depending
solely on c¢. We have proved that

ID(V, 2)| < 6 e & /loR(HF1)

when H > 2. The minimum of 6e¢ e¢” VI Ghen H ranges [0, e?] is some
positive constant, say ¢”, depending only on ¢ (we have introduced log(H + 1)
rather tha log H earlier for this very purpose). As a consequence, we have, for any
H >0,

og(H+1)
.2 6e€ "eHe™ £y

DV, 2)| < e

min(1, ")
Here is the lemma we have proved.
Lemma 12.2. There exists a positive constant ¢ = ¢(¢) such that we have

DV, )] < ¢eMisle” 9V

with M = /2B §,|V'(y)|dy.

We continue with the following general lemma.

Lemma 12.3. Let f be an entire function of finite order and such that f(0) =1
and let (pg) be an enumeration of its zeroes with non-decreasing |pg|. Let g be a
C?-function over (0,00). Assume that, ast goes to infinity,

1 2T )

— | 1 te'?)|do g (t) — 0.

7 |, ol ldotg'(6) — 0
Then, provided the RHS converges absolutely, we have

2m

Salond = 5 [ [ oslrtee)ianteg 0 + o ()
=1
for any a e [0, |pu]].

The reader may want to read [2], for instance Theorem 8.4.1, for general results
on entire functions having only real zeroes.

Proof. We denote by n(t) the number of zeroes of f (counted with multiplicities)
that are of modulus not more than ¢t. We use an integration by parts to write

Diglpe) = =] f t)dt = —a JOO @tg’(t)dt

=1 =1

=_H0t”(u) ] J f g"(t) + ¢'(t))dt

We only have to introduce Jensen’s formula in the RHS and use our hypothesis to
get our lemma. O

When used with g(¢) = 1/t and appealing to Lemma 12.2, we get the following
important result.
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Theorem 12.4. The hypothesis on V being as above, the operator ¥y is nuclear.
Furthermore, it satisfies Y}, A\e = 0 and

1
S A « J IV (2)[2dz o/ Ios(H VI G IV D1/ 5 1V (0P
=1 0

for some positive constant cs that depends only on B and c. In particular, we have

1
(60) Ae| « L IV (2)[2dz/¢.

In our case of application, the L?-norm of V is controlled by Lemma 15.1.

Proof. On combining Lemma 12.3 together with Lemma 12.2, we readily find that

2 |)\Z‘ « MJ %\/log(MtJrl)di;
0>1 1/1A1] t

<« M e—ﬁw/log(t—&-l)d < |Arle” 50/ 108(M|[A1|~1+1)
t

M/|M]

By (53) with ¢ = 1, we find that |A\;| < 1/280 |V (2)|2dz, hence the bound for

2¢>1 |Ae|. Lidskii’s Theorem then applies giving us that »;,-, A¢ = So (y—y)dy =
0. O

12.4. Oscillation of the eigenvalues. Let us consider the eigenvalues of 7. At
least one of them is positive and at least one of them is negative because

DA=0
£=1

and V is not identically 0. Proving that infinitely many of them are positive or
negative seems to be more difficult, if true.

12.5. A Mercer Theorem. Let us select a complete system of non-zero eigenvec-
tors (Gy)e=1 associated with the eigenvalues (A¢), that are repeated according to
multiplicity and arranged in non-increasing order of their absolute values.

Theorem 12.5. For every positive integer N, we have

max V(' —v)— > MNGo(y)Ge(y)| < [ A1l
Jmax | W =) Z;V (Ge(y)Ge(y')| < [An+1]

This theorem contains the value of the trace. Indeed, on selecting ¢y’ = y, we get
Yie=1 M|Ge(y)]? = 0; we then integrate this equality over y and recover the trace
D=1 =0.

Proof. We have, for any 3’ in [0, 1] and any L?-function f:

1
[ v = 9swis = ¥ 51606 )

0 >1

:ZMJng@Q 3 MG HGu).

L<N {=N+1
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This implies that, for any test function h, we have

60 [ ][ (Vi 0~ X AT G) sl < i all i)

0 0 <N

by using Cauchy’s inequality and

1 1
|15 seancawav= | 5 I@nPiGaty) Py
0 0 ¢=N+1

¢(=N+1
<Pl Y 1G AP < v PI£1P
{=N+1

Select a point yo from (0, 1) and a positive € such that [yo — &, yo + €] < [0, 1]. We
take f = 1[y,—c yo+] and get

1 1 Yyo+e
[l [ (vt =0 = B AGiwG))anfa < Dl
However we have

Yo—¢€ /<N
, 1 Yyo+e , 1 Yo+e :
V(Y =) = o5 V(Y —y)dy « o exp(—cy/min(1, Ae))dy

Yo—¢€ Yyo—¢€
« exp(—cy/min(1, Ae))

which tends to zero with . The same applies to y — >,y AeGe(y)Ge(y'). In case
of the two endpoints yo = 0 and yo = 1, we simply select f = 1[g ] in the first case
and f = 1j;_. 1] in the second one. We then employ the same trick regarding the
variable y'. We leave the details to the reader. O

12.6. Influence of the Riemann Hypothesis. As we already mentioned, under
the Riemann Hypothesis, the function y’ — V(y' — y) is uniformly Holder with
exponent 1/2 — ¢ for any € > 0. In which case, [7, Theorem 16.3-1] gives us that

Z [AeP <, 1

=1
for every p > 4/5. This implies that the number of eigenvalues below t, say n(t),
satisfies n(t) «. t*5*¢ under the Riemann Hypothesis.

12.7. Bounds from Fourier analysis and non-negativity. Since the function
V is even over R its Fourier transform is (a cosine transform and hence) real valued.
In practice, we will use V(u) = W*(ru/h) where W* is also given by (1); hence
we can bound above the values of the eigenvalues when W is assumed to be non-
negative.

Theorem 12.6. Assume that V(u) < My when u € R. Then the eigenvalues of %
are not more than M. There exists a positive constant c4 such that, if we further
assume that V(u) < My when |u| = Uy for some positive parameters My > My and
Us, then the eigenvalues of ¥y are not more than M, — ce~“V2 for some positive
constant ¢ depending on My and My (but not on V nor on Us).

The proof uses F.I. Nazarov’s form [31], [32] of the Amrein-Berthier Theorem
[1] (see also [24, Section 4.11] in the monograph of V. Havin & B. Joricke) that we
now recall.
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Theorem 12.7 (Nazarov). There exist two positive constants cy, cg such that, for
any measurable subsets E and ¥ of R of finite measure, and for any f € L*(R), we

have
1712 <z%ef“E'E(J' e+ | |f<un2du).
zeR\E ueR\Z

We thank P. Jaming for giving some advice on this result, for pointing out that a
theorem of V.N. Logvinenko and Ju.F. Sereda [30] would be enough here (since we
consider only the case when F and X are intervals), and for giving us the reference
to the paper [29] of O. Kovrijkine that gives a simpler proof. P. Jaming also told
us that he believes cg = 300 and ¢4 = 120 to be an admissible choice.

Proof of Theorem 12.6. We write
V)= [ Vel =)

and thus, for any G € L?([0,1]), we have

(62) G0 = [ V)G P

Some comments are called for here. We have

Glu) = J G(v)e(—uv)dv

—0

i.e. we have extended G from [0, 1] to R by 0 outside. By the result of Nazarov cited
above, its Fourier transform is not accumulated on an interval. More precisely, on
selecting F = [0,1] and ¥ = [—Us, Uz] in Theorem 12.7, we find that

f G(w)Pdu = e~V | G5 /cs
|u|=Uz
and thus

[G, 70(G)] < (M — ™25 (M1 — M2))|G3.
The theorem follows readily. (]

In between, (62) implies the following.
Lemma 12.8. The eigenvalues of ¥ lie inside [— min V (u), max V (u)].

12.8. Spectral decomposition of ¥ from the one of 7;. Now that we have
the spectral decomposition of ¥, with couples (A, G¢), we recover a spectral de-
composition of ”f/\Li(Z/hZ) (the restriction of ¥ to L2(Z/hZ)), by considering the
eigenvectors &, ® Gy, where &, ,, comes from Theorem 11.2. These eigenvectors
are of norm 1 and are associated with the eigenvalues A\y. When we want to refer to
the eigenvalues of 7| L2,(z/hz7), We use the notation Ay and we add the superscript
for #5. We go from the latter to the former by repeating ¢(h) times each eigenvalue.

13. FROM GLOBAL TO LOCAL: TWO EMBEDDINGS

The hermitian product on {1--- N} is given by (10).
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From the sequence ¢ to a local function. We explore the embedding defined
in (4).

Concerning (5), we specify here that we could select a uniform value for N,
typically N + H where H is a bound to be chosen (like exp c¢14/log N). Since N is
supposed to be much larger than H, the introduction of this parameter in the next
definition is only to correct some effects on the border of our domain, see the proof
of Lemma 13.1 below. There are several ways to handle this situation, we could
have considered [0, 2] rather than [0, 1] in the definition of X or we could also have
kept N and [0, 1] and simply replaced the equality of Lemma 13.1 by an equality
with an error term and carried this error term throughout the proofs. The choice
above has the advantage of being independent of an external upper bound (but is
not henceforth canonical).

As a consequence, we note directly® here that

(63) Tn.n(p)(byy) =0 when y > [N'/h]h/N’.

The fundamental property of I'yj, is that it preserves the hermitian product up to
a multiplicative constant (but is not isometric as it is not onto).

Lemma 13.1. For any positive integer h < N’ — N, we have

Nlo,ln = Tnnle), Tun(@)n.

The reader should notice a notational difficulty here: the norm |||z that we have
used up to now corresponds to the scalar product only up to the scalar 1/N. We
will thus refrain from using ||||% as a shortcut to (¢, o]n-

Proof. Indeed, we have

Tnn(e)Tnn(@)n

N O e on e

1<b<h

(k+1)h/N’ -
30 D YN I SN pomnca TS

’ kh/N'
I<b<hoghg 8 —1

1

1 -
S I IO S eIV eI Y
1<b<h Y5 1R/N

1 _

1<b<h n=b[h]

on employing (63). Hence the result. [

Local adjoint. For every ¢, the linear functional f — (I'y (), f) can be uniquely
represented in the form [¢,I'% , (f)]n, i.e. we have

(64) Tnn(e) )= o, Ty n(H)In

5Indeed, under the stated condition on y, we have [N’y/h] = [N'/h] = N/h and thus the index
b+ h[N'y/h] is strictly larger than N.
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The functional f — I'% , (f) is of course linear. We find that

1
[(vaTV,h(f)]N = % Z J) <Pc+h[Nm/h]f(C, y)dy

cmod h

:h > wnf[w’w]f(c,y)dy

cmodh n<N,
n mod h c

and thus, for any integer n < N, we deduce the following explicit expression:
N
(65) D30 = 3 [ vy Fn0) )
[, =2

We conclude from %[(p, YIn = Tnnle), T (@) = [F*MhFN,hap, Y] n that
(66) Ty Tns = 45 1d.

And some easy manipulations tell us that I'y ,I'% Nh =N N P, where Pj, is the or-
thogonal projector on ImI'y,;, = I, (L2({1 - N}))

Proof. Indeed, we find that, for any ¢ and v, we have
ONp TN TN TN e ) = [DN DN AT pe, TR Y]
= %[F;k\/ hSDaF}kV Wln = %[FN,hF*N,h%T/)]N

We conclude from these equalities that (I'y, hI‘N h) = %FN,hF}kv »- The conclusion
is easy. (I

Pure embeddings. It will be clear in a moment that, if I'y () is easier to grasp
from a geometrical viewpoint, our object is in fact Ry, = U;,_,, o 'y, as already
defined in (6), i.e. the orthonormal projection of I'y j on the space L2(X}) (see
section 11)°. We call the function R, the pure embedding. From Theorem 11.2,
we get

(67) Ra@)by) =1 3 enld— P wae)(e.y)
cmod h

from which we readily compute that

n—op(n)+h

1 N7
(63) @ = X ab-w [T ek
bmod h N7
Note that
2
IRaalo)? =5 3 f (b— )T wa(0)(ey)| dy
bmod h cmod h
(69) == > f Y. Tval@)(a,y)e(- ab/h)
bmod*h 0<a<h

Eq. (69) shows immediately (by extending the summation in b to all of Z/hZ)
that || Ry n()|l < ITn,n(p)], a fact that could have been more easily obtained by

6The choice of notation F* b would lead to confusion since adjoints are present in the latter

theory.
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noticing that the norm of an orthogonal projection is surely not more than the
initial norm. We can also get an explicit expression of | Ry 4(p)|? in terms of ¢:

(k+1)h/N’ 2
| Ry (@) = > S il —ba/h)| dy
bmod*hk>0 kh/N’ 0<a<h
2
(70) hN’ Z Z Z w,be(—bn/h)
bmod*h k=0'n/[n/h]=

14. THEOREM 1.2 IN FUNCTIONAL FORM
We start with an easy lemma.
Lemma 14.1. We have
a+ 19 ab b ,
S(% Z FNh )(b,y)e ( ) ((*Jr[Ny/h])z?)dy
h h
1<b<h
Proof. When m = b[h] with 1 < b, we have
N/ ~7 TN
Pm = - L_b I n(9)(b, y)dy.
It is straightforward to get the lemma from this expression. O

When H < NY8(log N)™32, N « QH and Q < N? (this condition is only to
control log @ in the error term. In practice, @ is not more than N, but we may
want to select @ = constant x N), we have the following.

() %m > s/l = lel(1+0( 7))

amod*q

B R (@) (b, ) R n(9) (b, /) W (r 45 ) dydy
5.2 00 |

h<H 1<b<h h? QIO(W)/N2

Remark 14.2. Most of the work below is to allow H to be a power of N. If one can
control the continuity of W*, like under the Riemann Hypothesis, then the proof
is much simpler. We instead rely heavily on the bilinear structure.

Proof. We start from (46) and Lemma 14.1 to get that:

(72) amod*hJ W ‘S SO’ hQ)‘ du =
12 )
MY [ [ reora@ey ¥ (B
1<by,ba<h o

f_U W*t(u)e(bl ;’”% v ([N’y/h] - [N’y’/h]) %)dudydy’.

In the inner integration, we replace

(P2 g+ (Iv/n) - (V' /b)) )
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by e((y—y")Nu/(hQ)). We call Ay (b1,bs,y,y’) the difference of the two, integrated
against W7 (u). We have

Ao, tasy) < [0 min( ol @

This gives rise to the error term

12
Y adh-m) f f P () (b1 )T () (b2 ) (b, b,y oy

1<by,b2<h

We get max |Ap(b1,b2,y,y’)| out, separate I'y 5 (¢)(b1,y) from Ty n(9)(ba,y') by
using 2|2122| < |21]? + |22|? and have to bound

N/2 1
Y= = 2 |Ch(b1_b2)‘j T .1 () (b1, y) Pdy max, |AR (b1, b2, y, )]
0

b
1<by bo<h Y,y’,b1,b2

We use
o(h
I CICR TR Y EIUTED Y Wt F
1<bs<h 1<b<h d|h bmod h,
ged(b,h)=h/d
h w
= @) 2 — g4,
a o(d)
This and the isometrical property of I' leads to
2w(h) (b
= 0 oy (Ao, b )

Next by using Lemma 5.5, we check that |Ah(b1, ba,y,y")| « C'/Q. The total error
term is « ZhSH(Qh)*lC"Q“’(”)N?’/zngHg/Q « C'N32|p|2(log H)?/Q? which we
call E;. Thus we have reduced the right-hand side de (72) to

™ 2y ferh O)(b1, 1)1 () (02, )en (b — o)

1<by,ba<h

R Nu
Wer(wel (y — )+ | dudydy’.
J_U ()((y y)hQ) ydy
By (67), this is also

N/2

f f RN () (b2, y)T v on () (b2, y')
1<ba<h
. Nu
Wei(wel( (y —v) — ) dudydy’,
[ ezt - Ny
which, by orthogonality, is also

N12 _
R b,y)R b,
> KMH 3 () (b )R 1 () B,

J,U Wer (u)e((y — y')%)dudydy’.



44 O. RAMARE

We want to replace W& (u) by W*. We assume U < C'/2, hence W*(u) =
WEF(u) + Constant when |u| < U and this constant is O(1/C”). Again using
2|21 20| < |21]% + |22]? on Ry n(p), and noting that (with s = NU/hQ)

1 . ;- y's .
J sin((y y)s)dy :J sine , 4
, x

0 (y/ - y)S y's—y

uniformly in s and 3, we get an error term of size O((log H)N'|¢[3/(QC")). We
finally want to extend the path of integration in u to infinity. Again using 2|z1 25| <
|21|% + |22/, this means bounding

Yoo Nu
A=JJ W*(wel(y —y)— )du
), T we(w-07g)
and similarly with ¢'. We employ Cauchy’s inequality and open the square, getting:
Q0 Q0 1
S = N(Ul — UQ)
A? <<J f W*(ul)W*(UQ)J ey —y)————=)du.
v Ju 0 ( hQ )

We employ Lemma 5.8 on u; and us. When |u; — ug| < 1, we get the contribution
O(1/U); When |u; — uz| = 1, we integrate in y and get the contribution

JOO foc duldug
v Ju U1UQ(1 + |U1 — U2|)

On splitting the path of integration on us in [U, max (U, u1/2)], followed by [max (U, u1/2), 2u1]
and finally by [2u1, 00), we readily see that this integral is O((log U)/U). Summing
over h gives the contribution

N Z 1”80H2 hQ(logU) . v/NHlogU
Zlelz

QL(W) S, T NU S TVTR

In total, we get the error term bounded above by a constant multiple of

N  NlogH NHlogU (C'N3/? , H? H? 4 (logN)° )
— Al logH)? + — 4+ ——2—~_ .
(QH+ oc + 00 + o (log H)” + i + C lel2

It is best to take U as large as possible, so we select U = C’/2. In turn, we select
C' = QH'Y3/N??3 and we check that C’ = C (see (42)). The error term becomes
not more than a constant multiple times
N  N°B3logH NOS/SHY3
<QH Trems T Q
We then check that this reduces to
N N NH5/3 N5/6H1/3
Y v 1 N 2 2
(g7 * g gmm * g —UosNP ) Iok
when H < N8, And we check further that N>SH'3Q~(log N)?> « N/(QH)
when H < N'/3(log N)~%2. The second term equally disappears, as N « QH. [

dy

loll3 = Eo.

H? + (log N)®
QHl/S

(log N)? + N“) lol2.

Hervé Queffélec has kindly pointed out to me that when ¢ = 1, this process bears
similarities with the one devised independently by [41] and [46], and which is nicely
presented in [5, Section 3].

On recalling the definition of the operator #; ;, in (7), here is another manner of
writing (71):
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(74) 2% S 1S(pa/a)? = To(W)ol3(1 + O(r/H)

q amod¥*q
- N Z RNh NV Ry w(p )]hx[O,l]
h<H
(H « Nl/s(logN)_S/Q,N < QH,Q « NQ).

15. USING SPECTRAL ANALYSIS

Formula (74) involves the operators #;j o U;_,. In this section, we first di-
agonolize them as local operators (i.e. on a space that depends on h), and control
the dependance in h and 7. We then lift this diagonalization to the global space
(where the sequence ¢ lives) and show that the resulting family of eigenvectors,
h varying, is near-orthonormal (see Lemma 15.3). We encounter a problem (that
may be only technical): the control we have of the modulus of continuity of these
eigenfunctions is weak when they are associated with very small eigenvalues. But
then, their total contribution is small, and we then introduce a trade-off point with
the condition |\p¢| = &no(N)Y/®. We conclude this part with another consequence
of the near-orthonormality which enables us to control the quadratic form result-
ing from taking some upper bound for the eigenvalues. This is required because,
when using (80) to simplify our statement, the near-orthogonality is not apparent
anymore.

15.1. Decomposing the implied operators. The operator ¥; ; does not touch
the b-variable, from which we infer that (recall the definition of the rothonormal
projector U;_,, in (49))

Ui],%h o %,h = V‘r,h o U];A,h'

This has two consequences: first the image of ¥; j, lies inside LZ(X}) and second,
its couples eigenvalues / eigenvectors are simply (tensor) products of the respective
couples coming from the two operators:

1
Fe L*(Z/hZ) — (b D (= c)F(c)>
h
cmod h

where the only difference with the operators U;_,, and ¥ are the spaces. The
first operator is covered by Theorem 11.2. We are left with the second one which
belongs to the class described in Section 12 (if we ignore the first variable, as we
may). The regularity assumptions (R;), (Rz) and (R3) are met by Lemma 5.9.

15.2. Diagonalisation in the local spaces. We use the eigenvectors / eigen-
values (Gh o, Ane)y,e of ¥z as well as the ones of R, (see Theorem 11.2) to
write

(R (@) on RN pony = 20 At D5 RN,h(soﬂoﬁ’h,x®Gh.z]ix[o,1]-
(=1 x mod h

We then divide this quantity by A and sum that over h. Before proceeding, let us
note the following lemma.
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Lemma 15.1.

RIS A

We will use the latter when h < 27 and the former otherwise. It is however better
for questions of uniformly to state them in general

Proof. When h > 27, we use Lemma 5.9 and bound the value |W*(rz/h)| by
O(exp —co+/log(h/T)). When h < 27, we use

LW*(T;) dz < LW*(T“’ dw\—f W* (w)2dw « /7.
The lemma is proved. [l

Since |Ap,¢| « 1/¢ by (60) and Lemma 15.1, we can explicitly shorten the spectral
decomposition in (recall also Lemma 13.1)

[Ryn(@)[Vrn RN,h(‘P)]hx[O,l] -
2 _
Z Ahe Z [RN,h(S@” gh’X®Gh7z]hx[O,1] +O(N 1H(‘0H§/L)

(<L x mod h

We can similarly restrict the summation to [ A ¢| = no(N)Y* (with no(z) = exp —%L+/log z)
and get, for any & € [0,1]:

[Ryn ()Y n RN,h(SD)]hX[OJ] =
Z Ahe Z [RN,lz(<P>|5h,x®Gh7€]f2Lx[o,1]

(<L, x mod h
[An,e|=Eno(N)/*

+ O(N" [0 (M) + 1/L)).
The parameter £ is here for flexibility, in case we want the sum not to depend on

the parameter N. We may rewrite formula (74) by introducing the adjoint T\’,}k\, 5 of
RNk, as follows.

(75) T VWL 0 a/g) P = L(W)]pl3

q qQ amod*q
-N Z 7 Z At Z [ol RN.n éah,X®Gh,z]i,
h<H I<L, x mod h

[An,e|=€no (N)/*

ElogH logH 1 9
@) — .
* ((exp 2L+/log N * L * H)THQOH2

Our task is now to replace R}k\f,h Enx ®Gh e by a simpler expression.
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15.3. Approximate diagonalization in the global space. We define
(76) Intx N =RNpEnx @G =TN j Enx @G,

as well as

(77) g%,@,x,N,T(n) =

Th (X7 n) n
G (7)
o(h) N
The function gne,n,- inherits from &, ®Ghr ¢ a similar separation of be-
haviour between arithmetic and size characters.

Lemma 15.2. When |t —n| < NY? and Q < N, we have

Gh.t N, (M) = Th(;(é:)) Gh,e(%) + O(% exp(—?@))

where cq is defined in Lemma 5.9. Moreover, we have
loo < A/B(h).

In particular, g,bl 0, N,+ approximates gn ¢y, N,z

A e (T gh,ex. N7

Proof. We have by (65):

n—op(n)+h

N 1 N7
- e j() Gne(y)dy.

We next use (55) together with Lemma 5.9 to infer that, when 6 € [0, 1], we have,
for any y € [0,1 — 4],

gh,e,X,N,r(n)

, 5
(78) M (7)]|Ge(y + 8) — Ge(y)| < exp —co\/ “log mm(1, %)

We note that 7 < 1 and that h > 1. Hence, for any t such that |t — n| < VN, we
have

N
gh,e,x,N,r(n) = Th(X, n)WGh,Z <%)

Th(x,n) R —
+O(|Ah,e?T;CIWeXp(_£ logN)>

from which the stated estimate readily follows, up to two blemishes: the factor
N/N" =1+ O(N-Y?) and the G(t/N’) instead of G(t/N). This last modifica-
tion follows from (78), the former one being trivial. For the L*-norm, note that
(see (54))

o < 2|W*(r - /h) i/ G(h) /[ Ane(T)]-

lgn,e.x, v,

Lemma 15.3. When h,h/ < H < N'% and N’ < N + /N, we have

1 Hexp(—@\/logN)
Ts 1P oA T = 6 — /5 - /6 =/ O Y —— 4
[9n,0.x,N.7 90 5 N LN = Oy i Oy—yr + (\/N+ e () [ Awe (7)]

where cy is defined in Lemma 5.9. The same applies when replacing gn ¢, N+ and
9w o' x' N, Tespectively by g?’L,Z,X,N,T and g%’l’,x’,Nﬁ'
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Proof. In order to compute [gh ¢, N7, gn' & x',N,7|N, We split the interval [1, N]| in
O(N/(hh')) sub-intervals containing hh' consecutive integers and a remaining one.
We employ Lemma 15.2 on each sub-interval, selecting a t that is independent on
the point n, for instance choosing it at the origin of such a segment, but we shall use
the freedom on choice in t to shorten the argument below. We bound the L*-norm
of the other factor by Lemma 15.2. The error term for each interval is

smax([W* (7 - /)1, W (r - /W) |)N/B0T00) co
«hh Do () e ()] exp(~ 5 Viog V)

which we have to sum over all intervals and divide by N (since the scalar product
[, ]~ is scaled in this manner). The total error term incurred is thus

Hamas([W* (- /W), IW* (/W) (2o o
P (DA e (N+exp( NW))

The summand H?/N comes from the end interval. Concerning this end interval,
we should have had |[W*(7 - /h/)|1 - |[W*(7 - /h)|1 rather than the maximum, but
each norm is bounded (uniformly in 7), which legitimates the bound above.

Whenever h # h' or x # X/, the summation over the remaining intervals vanishes
by orthogonality. We are left with the case when h = h’ and x = X/, in which case
we have to evaluate

v 3R

nmod h?

The sum upon n is h?| & |3 = h?. Concerning the sum upon ¢, we employ the
following trick: given any interval we can use any t from within, hence we can
integrate over ¢t and divide by the length h? of the interval. Concerning the final
interval, the reader will check that the contribution to include it is not more than
what we already paid for discarding it. As a result, we get as a main term

1
J Gh’g(u)Gh’y (u)du
0
which is 55=g1. O

15.4. External control of the eigenvectors. Let us recall an inequality due to
Selberg (given in [4, Proposition 1] or in extended form in [35, Lemma 1.1-1.2]).

Lemma 15.4. Let (g;)icr be a finite family of vectors in the Hilbert space H, and
f be some fized vector in this same space. We have

2 LAg1P/ D gilgs1l < 111

el jel
We apply Lemma 15.4 to the family
{Dhonnrh<Hx mod h,t <L |Ae(r)] = mo(N)V4}
By Lemma 15.3, we infer that
2 c
1) N N YN [elgheneln < Iel3(1+ H2Lexp—2/log N).

h<H (<L xmodh
[An,¢|=exp — 2 y/Tog N
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Finally we use the identity:

5 % %™ de(3) - ¥

x mod h'n<N amod *h

2

Z @(n)e(na/h)G(%)

nn

16. DEDUCING THEOREM 1.6 AND 1.1

16.1. Proof of Theorem 1.6. The spectral decomposition is treated in Subsec-
tion 15.2. The family gy ¢y, n - is defined in the next subsection at (76) and its
near orthonormal property in proved in Lemma 15.3. The global decomposition is
given in (75) once T\’,*N’h Ehyx ®Gh e is replaced by gn ¢y, n,- and the relative sizes
are taken into account. The final property is in (79).

Note that, for each h, we have at a positive and a negative eigenvalue. Recall-
ing (9), we see that max, |\, ¢(7)| goes to zero. Hence these positive or negative
values of Aj, ¢(7) cannot be the same one save for finitely many h’s. This is how we
prove that infinitely many of them are positive (resp. negative).

16.2. Proof of Theorem 1.1. To prove Theorem 1.1, we first introduce a smooth
non-negative function W verifying (W7), (W3) and (W3) stated in the introduction
and write

D SRR TN e Sl LA S FTPAI

1<q/Q<2 amod*q g=1 q amod*q

We then use Theorem 1.2. Theorem 1.6 is our next step, with £ = 1. We select
H = L = expcy/log N7 for some small but positive ¢. Given h < H, we may first
employ the first statement of Theorem 12.6 together with (1) and (3) to get that
e < Io(W) + O(1/4/Q). This already ensures us that

NZ% D Ane Y, 1S(p,a/q)?

h<H (<L, amod*q
[An,e|=€ exp —c3+/Tog N

< IO(W)NHcpH%(l + H?Lexp —cs/log N + Q*W).

This is not quite enough. The full strength of Theorem 1.6 uses the non-negativity
of W. We employ this theorem with Us = 7/h, and this gives us that

%/\M < To(W)(1 — ce™ /™) + O(1/4/Q).

Theorem 1.1 readily follows.
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