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Introduction and results

Main consequence. This paper investigates the quantity ř q"Q ř a mod ˚q |Spφ, a{qq| 2 where pφ n q nďN is any sequence of complex numbers and Spφ, αq " ř nďN φ n epnαq. It is this quantity that we analyze. Our main steps in this analysis are Theorem 1.2, Formula (74) and Theorem 1.6. One of the main consequence of our work is the next theorem. This is to be compared with the lower bound given by W. Duke & H. Iwaniec in [START_REF] Duke | Estimates for coefficients of L-functions[END_REF]. Note that the summation therein extends over all classes a modulo q rather than over the reduced classes, see the remark following [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Theorem 2.7] on this issue. In particular, the principal character is included (i.e. q " 1) with a definite influence. J.-C. Schlage-Puchta in [START_REF] Schlage-Puchta | Lower bounds for expressions of large sieve type[END_REF] gives, for some random sequences, a lower bound of a large sieve quantity under the sole assumption that Q 2 {N goes to infinity. Read also the papers of P. Erdös & A. Renyi [START_REF] Erdős | Some remarks on the large sieve of Yu[END_REF] and of D. Wolke [START_REF] Wolke | A lower bound for the large sieve inequality[END_REF].

The proof of Theorem 1.1 will unfold in four steps:

' By appealing to the δ-symbol technique, we relate the above sum to a sum of similar kind but where the moduli h are much smaller, namely h ď H for some H of size roughly N {Q.

' We then interpret, for each h, the intervening quantity as a scalar product of some function R N,h pφq together with the value of a difference operator applied at this same vector. ' After analyzing the one-parameter family of compact operators that intervene, we use their eigenvalues to derive a spectral decomposition of the large sieve quantity we are interested in. ' When W is non-negative and N {Q is small enough, we prove that these eigenvalues are ă 1 by using the harmonic analysis uncertainty principle. Theorem 1.1 is a consequence of that.

Setting the horizon for a lower bound.

Question. Do we have

ÿ 1ăq{Qď2 ÿ a mod ˚q |Spφ, a{qq| 2 " N ÿ m |φ m | 2 when Q ě N 1{2`ε
for some positive ε?

When N " ř qďQ ϕpqq, we gave in [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Theorem 1.2] the (rather weak) lower bound }φ} 2 2 expp ´1`op1q 2 N log N q for the quantity ř qďQ ř a mod ˚q |Spφ, a{qq| 2 . Theorem 1.3 implies that the better lower bound Q 2 }φ} 2 2 holds true as soon as φ oscillates enough along small arithmetic progressions in intervals of length about Q. The main result of [START_REF] Conrey | Small gaps between zeros of twisted Lfunctions[END_REF]Theorem 2.4] by B. Conrey, H. Iwaniec and K. Soundararajan implies a similar lower bound for functions φ that are the convolution product of an oscillating factor supported on r1, Q 1´ε s and a rather general sequence. Some functional transforms of our weight function. The δ-symbol technique involves some functional transforms of our weight function W that we better treat before starting the analysis proper. Assumptions W being as above, we define W ‹ in [START_REF] Jutila | Transformations of exponential sums[END_REF], but the following expression valid for z P R is better:

W ‹ pzq " ´2 ÿ ně1 ϕpnq n ż 8 0 cosp2πnyqW pz{yqdy{y.
By Lemma 5.9, the function W ‹ is even, twice differentiable outside z " 0 where it vanishes, and is of bounded variations over r0, 1s and decreases like 1{z

7 2 ´ε at infinity. The expression for its Mellin transform, valid when ℜs P r0, 3{2q is simply W ‹ psq " W psqζp1´sq{ζp1`sq, see Lemma 5.6, where W psq is the Mellin transform of W . We finally mention the following expression for its Fourier transform, valid for u ‰ 0 and obtained in Lemma 5.7:

(1)

Ŵ ‹ puq " 6 π 2 ż 8 0 W ptqdt ´1 |u| ÿ ně1 ϕpnq n W pn{|u|q.
This Fourier transform satisfies Ŵ ‹ puq " 6 π 2 ş 8 0 W ptqdt when |u| ď 1{2 and |u Ŵ ‹ puq| ! exp ´c0 a log |u| otherwise, for some positive constant c 0 , ensuring that Ŵ ‹ puq belongs to L 1 . It is worth specifying that Ŵ ‹ puq varies in sign when W is nonnegative 1 .

1 Such a sign-change may be detected by using [START_REF] Amrein | On support properties of L p -functions and their Fourier transforms[END_REF] for u P r1{2, 1s. The positivity of Ŵ ‹ puq implies that 6 vπ 2 ş 2 1 W puqdu ě W pvq when v P r1, 2s, leading to a contradiction.

A smoothed setup. Our analysis revolves around the quantity (2)

ÿ qě1 W pq{Qq q ÿ a mod
˚q |Spφ, a{qq| 2 for some weight function W satisfying: pW 1 q ' The function W is C 3 over s ´8, 8r and C 4 per pieces. pW 2 q ' It is even and its support lies inside r´2, ´1s Y r1, 2s. pW 3 q ' We have ş 8 0 W puqdu ‰ 0. We do not need W to be non-negative, though nothing is made to avoid this natural condition. We do not seek generality but on the reverse to restrict ourselves to as smooth a situation as necessary.

We define

(3)

I 0 pW q " ÿ q ϕpqqW pq{Qq qQ " 6 π 2 ż 8 0 W puqdu `Opplog Qq{Qq.
The quantity I 0 pW q depends on Q, but in a very mild manner.

First step: an equality via δ-symbol. The proof of Theorem 1.1 will unfold in four steps. We start our journey with the following essential formula that is of independent interest.

Theorem 1.2. When 1{2 ď H ď ? N {plog N q 5 and log Q ! log N , we have The reader will find a refined version for primes in Theorem 10.2. Please note that the factor N pQHq ´1 is not polluted by any power of log N and that Ŵ ‹ puq belongs to L 1 . The proof shows clearly that a polarized version is accessible of the same strength, namely: [START_REF] Conrey | Asymptotic large sieve[END_REF] (which has been for the most part incorporated in [START_REF] Conrey | Small gaps between zeros of twisted Lfunctions[END_REF] by B. Conrey, H. Iwaniec & K. Soundararajan) and can be considered as an additive analogue of their result. Our main new ingredient at this stage, with respect to this proof, is the use of a maximal large sieve inequality. To introduce this part, we got inspired from another try at a large sieve equality due to W. Duke & H. Iwaniec and contained in [START_REF] Duke | Estimates for coefficients of L-functions[END_REF]. The treatment of the finite parts (meaning: for h ď H) diverges from [START_REF] Conrey | Asymptotic large sieve[END_REF], and in particular we show that what may appear like two main terms in the first coarse formula we get in fact cancels out in their leading contribution. This part of the treatment is similar to what happens for the δ-symbol of W. Duke, J. Friedlander & H. Iwaniec in [START_REF] Duke | Bounds for automorphic l-functions[END_REF] (see also [START_REF] Iwaniec | Analytic number theory[END_REF]Section 20.5] by H. Iwaniec & E. Kowalski. A more precise version of this remark is documented Section 8.1).

ÿ q W pq{Qq
Since Ŵ ‹ puq has its main contribution around u " 0, the sum over h contributes to the main term only when the sequence pφ n q accumulates in some arithmetic progression of modulus ď H. When it does not, we have the following result that implies a conditional large sieve equality.

Theorem 1.3. When 1 2 ď H ď ? N {plog N q 5 and log Q ! log N , we have

ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " `I0 pW q `OpN pQHq ´1q ˘ÿ m |φ m | 2 `Oˆÿ hďH N `hQ hQ 2 max uăvău`2hQ ÿ c mod h ˇˇˇÿ uănďv, n"crhs φ n ˇˇˇ2 ˙.
Recall that the size condition u, v ď N is included in the condition on the support of φ. See Theorem 9.1 for a sharper remainder term. See also the work [START_REF] Friedlander | A mean-value theorem for character sums[END_REF] of J.

Friedlander & H. Iwaniec, as well as [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Theorem 2.6] for a large sieve equality for coefficients of a special form (convolution of a shortly supported sequence with a smooth sequence). The case H " 1{2 has also an interesting methodological consequence. Second step: Functional rephrasing. Corollary 1.4 describes the situation satisfactorily when τ " N {Q goes to zero. When τ is larger, we show that the situation is controlled by a family of embeddings pR N,h q h of L 2 pt1 ¨¨¨N uq and a family of self-adjoined nuclear operators V τ,h on the subspace L 2 ˚pX h q of L 2 pX h q: we endow X h " Z{hZ ˆr0, 1s with the natural probability measure; the space L 2 ˚pX h q is the one of functions from L 2 pX h q whose Fourier transform with respect to the first variable is supported by pZ{hZq ˚ˆr0, 1s, see Section 11 for more details. We denote by U hÑh the orthonormal projection on this subspace.

Let us define the local embedding R N,h . We start by defining the (nearly) unitary (see Lemma 13.1) embedding Γ N,h of L 2 pt1 ¨¨¨N uq in L 2 pX h q by: (4)

Γ N,h : L 2 pt1 ¨¨¨N uq Ñ L 2 pX h q φ " pφ n q 1ďnďN Þ Ñ Γ N,h pφq : Z{hZ ˆr0, 1s Ñ C pb, yq Þ Ñ φ σ h pbq`hrN 1 y{hs
where σ h pzq is the unique integer b in t1 ¨¨¨hu that is congruent to z modulo h; we have set φ n " 0 when the index n is (strictly) larger than N and

(5)

N 1 " N `?N .
The embedding we need is given by

(6) R N,h " U hÑh ˝ΓN,h .
This is to be compared with the case of integers where we send Z inside Z p for every prime p, though we have here an "infinite place" for each modulus h (this is the factor r0, 1s) and that we may not rely on multiplicativity. It would be interesting to show that the diagonal embedding φ Þ Ñ pR N,h pφqq h has a dense range, as in the adelic case. The situation is somewhat more intricate because of the dependence in N . We next define the one-parameter family of operators V τ,h by [START_REF] James | The analysis of linear integral equations[END_REF] V τ,h pGqpb, yq "

ż 1 0
Gpb, y 1 qW ‹ ´τ py ´y1 q h ¯dy 1 .

They are shown to be compact symmetric nuclear operators in Theorem 12.4 and to verify a Mercer like theorem (see Theorem 12.5). The fundamental formula is (74) which we repeat here:

(74)

ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " I 0 pW q}φ} 2 2 p1 `Opτ {Hqq ´N ÿ hďH τ h " R N,h pφq|V τ,h R N,h pφq ‰ hˆr0,1s pH ! N 1{8 plog N q ´3{2 , τ " N {Q ! H, Q ! N 2 q.
Allowing H to be as large as a power of N requires quite some efforts and we have to rely on te moe technical formula [START_REF] Widom | Hankel matrices[END_REF] rather than on the simplified form given in Theorem 1.2. Ideally, we should be able to allow H roughly as large as ? N .

Analysis of a class of difference operators. We treat in Section 12 the analysis of the intervening family of operators in an abstracted setting. For a function V satisfying the regularity assumptions pR 1 q, pR 2 q and pR 3 q, we define

(8) V 0 : G P L 2 pr0, 1sq Þ Ñ ˆy Þ Ñ ż 1 0
Gpy 1 qV py ´y1 qdy 1

Ȧssumptions pR 1 q, pR 2 q and pR 3 q indeed hold when V pyq " W ‹ pτ y{hq. It is classical theory that V 0 is a compact Hilbert-Schmidt operator, see for instance [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]Theorem 7.7]. Let pλ ℓ , G ℓ q ℓ be a complete orthonormal system of eigenvalues / eigenfunctions, ordered with non-increasing |λ ℓ |. The Fredholm equation λGpy 1 q " ş 1 0 Kpy 1 , yqGpyqdy has been intensively studied. It is not the purpose of this paper to introduce to this theory, a task for which it is better to read the complete and classical [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF], or the more modern [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]. Kernel of type V py 1 ´yq are often called difference kernel, and lead to operators that are distinct from convolution operators as the integration and definition interval is not the whole real line. The book [START_REF] Sakhnovich | Integral equations with difference kernels on finite intervals[END_REF] is dedicated to the operators built from such kernels. The book [START_REF] James | The analysis of linear integral equations[END_REF] contains also many useful informations.

Here is a summary of what we prove in Section 12.

Theorem 1.5. The operator V 0 is nuclear. Given a complete collection pλ ℓ , G ℓ q ℓ of non-zero eigenvalues / eigenvectors, arranged with non-increasing |λ ℓ | and normalized by ş 1 0 |G ℓ ptq| 2 dt " 1, we have the three following properties:

' (Explicit nuclearity) ÿ ℓě1 |λ ℓ | ! }V } 2 e ´c1 ? 1`}V }8}V 1 }1{}V } 2
2 for some positive constant c 1 depending only on A, B and c. The notation }V 1 } 1 stands for the total variation. ' (Mercer like property) V py 1 ´yq "

ÿ ℓě1 λ ℓ G ℓ py 1 qG ℓ pyq uniformly. ' (Lidskii's Theorem) ÿ ℓě1 λ ℓ " 0.
This is proved in Theorem 12.4 and 12.5. These properties shows that this class of operators is indeed very regular. We recall that the Mercer Theorem concerns similar operators but having a non-negative reproducing kernel. On integrating the case y " y 1 of the Mercer like property, we recover the third property.

Third step: Spectral decomposition of the large sieve.

Theorem 1.6. Assume that ? N ď Q ď N . There exist two positive constants c 0 and c 3 such that the following holds. For each τ " N {Q and integer h ě 1, let pG ℓ,τ {h , λ ℓ pτ {hqq ℓ be a complete family of two by two orthonormal eigenfunctions of (7) coupled with their respective non-zero eigenvalues. These eigenfunctions are all continuous and of bounded variations. The sequence pλ h,ℓ pτ qq ℓě1 is arranged in non-increasing absolute value, and satisfies λ ℓ pτ {hq ! 1{ ? ℓ uniformly in h and τ . We also have

(9) ÿ ℓě1 λ ℓ pτ {hq " 0, ÿ ℓě1 |λ ℓ pτ {hq| ă 8, ÿ ℓě1 |λ ℓ pτ {hq| 2 " 2 ż 1 0 W ‹ ´τ y h ¯2p1 ´yqdy
and this last value is bounded uniformly in τ . Under the Riemann Hypothesis, we also have ř ℓě1 |λ ℓ pτ {hq| p ă 8 for any p ą 4{5. For any sequence of complex numbers φ, any L ě 1, any H ! N 1{8 plog N q ´3{2 and any ξ P r0, 1s, we have

ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " I 0 pW q}φ} 2 2 ´1 N ÿ hďH ÿ ℓďL |λ ℓ pτ {hq|ěξη0pN q τ h λ ℓ pτ {hq ÿ a mod ˚hˇÿ nďN φ n G ℓ,τ {h ´n N ¯e´n a h ¯ˇˇˇ2 `Oˆ´l og H L `1 H `ξη 0 pN q ¯τ }φ} 2 2
ẇhere η 0 pN q " exp ´c3 ? log N . We have furthermore

ÿ hďH ÿ ℓďL ÿ a mod ˚h |λ ℓ pτ {hq|ěη0pN q ˇˇˇÿ nďN φ n G ℓ,τ {h ´n N ¯e´n a h ¯ˇˇˇ2 ď N }φ} 2 2 `1 `H2 Lη 0 pN q ˘.
When W is non-negative, the one-sided inequality pτ {hqλ h,ℓ ď I 0 pW q `op1q holds true, where op1q is here a function of Q that goes to 0 with 1{Q.

We prove that infinitely many λ ℓ pτ {hq are positive (resp. negative), once h is also allowed to vary; see end of Subsection 15.3. When W is further assumed to be nonnegative, Theorem 12.6 shows that pτ {hqλ ℓ pτ {hq ď I 0 pW q `op1q. The parameter ξ above has only been introduced for flexibility purpose, in case one needs a lower bound that is independent on N .

Fourth step: Uncertainty principle and eigenvalues properties. A closer study of the eigenvalues that uses F.I. Nazarov's version [START_REF] Nazarov | On the theorems of Turán, Amrein and Berthier, and Zygmund[END_REF] of the uncertainty principle combined with some positivity argument leads to the following. Theorem 1.7. For any non-negative W satisfying the above conditions there exist c 4 , c 6 , c 7 ą 0 such that we have, for any H ď exppc 6 ? log N q and any Q P rN expp´c 6 ? log N q, N 2 s, pτ {I 0 pW qq|λ h,ℓ |{h ď 1 ´c6 e ´c4τ {h `Opexp ´c7 a log N q for any h ď H, any ℓ ě 1 and with τ " N {Q.

P. Jaming tells me that he believes c 4 " 120 to be an admissible choice.

Arithmetical consequences.

Corollary 1.8. For every ϵ ą 0, and every N ě 1 and Q ě 1, there exist a constant c 4 and a subspace of dimension Opτ 2 {rϵ 2 logp1{ϵqsq such that we have, for any pφ n q orthogonal to this subspace and when log Q ą c 4 log 2 pN {Qq, p1 ´ϵq

ÿ m |φ m | 2 ď ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 ď p1 `ϵq ÿ m |φ m | 2 .
Moreover, when τ -1 and for every integer K ě 1, there exist ϵ 0 ą 0 depending only on τ and K, and 2K unitary sequences pα k q kďK and pβ k q kďK , two by two almost orthogonal in the sense that @γ,

γ 1 P tα k u Y tβ k u, rγ, γ 1 s N " δ γ"γ 1 `O`e xp `´c 4 a log N ˘˘,
and such that, on one side, we have

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spα k , a{qq| 2 ą p1 `ϵ0 q ÿ m |α k,m | 2
while on the other side, we have

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spβ k , a{qq| 2 ă p1 ´ϵ0 q ÿ m |β k,m | 2 .
The orthogonality is according to the hermitian product defined by

(10) rφ, ψs N " 1 N ÿ 1ďnďN φ n ψ n .
The sequences pα k q and pβ k q are pull-backs of eigenvectors. Note that the pullingback process depends on N but that the eigenvectors do not. They are very regular and do not result from some exotic construction; in particular they are uniformly bounded and there exists ϵ ą 0 such that tn ď N, |α k,n | ě ϵu is a set of density (in short: their "essential support" is a set of density).

Notation. We note the Mellin transform by W psq " ş 8 0 W ptqt s´1 dt and the Fourier transform by Ŵ puq " ş 8 ´8 W ptqep´utqdt. Several other transforms of W will be used, W 7 , W , W , W ‹ and W ‹‹ ; they are described in section 5. We note here that the transform W 7 is very close to what appears in [25, section 20.5, (20.145)] provided the changes of notation is incorporated: our W pyq is their wpy{Cq. We recall that }σ 1 8 pψ, ¨q} 1,N "

ş N 1 |σ 1 8 pψ, tq|dt. We denote by a |t " pa n q nďt the truncated sequence. We also define Lpuq " exp a logp2 `uq.

We denote the Euler totient function by ϕ and distinguish it from the sequence by using a different script for the latter, namely φ. We use the following norms:

(11) }f } 1,N " ż N 1 |f ptq|dt, }f } 8,N " max 1ďtďN |f ptq|.

Related works

Influence of the Riemann Hypothesis. Under the Riemann Hypothesis (and not the Generalized one as one may believe), the proof we present allows to select Q as small as N {plog N q 1´ε for any positive ε. The coefficient e ´cN {Q may be questioned and may well be superfluous in this range.

Eigenvalues considerations when Q ! ? N . The eigenvalues of the quadratic form ř qďQ ř a mod ˚q |Spφ, a{qq| 2 are well understood when Q " op ? N q, see the paper of I. Kobayashi [START_REF] Kobayashi | A note on the Selberg sieve and the large sieve[END_REF] and this quantity is expected to behave like a Riemann sum when N " opQq (Corollary 1.4 below gives a precise form to this statement), but the behavior in the range Q P r ? N , cN s (for any positive constant c) is still mysterious. When Q " ? N , F. Boca and M. Radziwi l l have shown in [START_REF] Florin | Limiting distribution of eigenvalues in the large sieve matrix[END_REF] by a very delicate analysis that the distribution of the eigenvalues of this quadratic form tend to a limiting distribution, henceforth proving a conjecture made in [START_REF] Ramaré | Eigenvalues in the large sieve inequality[END_REF]. In fact, though this went unnoticed by the authors, the paper [START_REF] Chan | On sums of Ramanujan sums[END_REF] of T.H. Chan & A.V. Kumchev can be read as also providing some informations on the eigenvalues in the case Q " ? N . The values for the even moments of this limit distribution reveals that it is not a classical distribution, confirming what the (rather limited) computations from [START_REF] Ramaré | Eigenvalues in the large sieve inequality[END_REF].

Eigenvalues considerations when Q ě N . H. Niederreiter evaluated in [START_REF] Niederreiter | The distribution of Farey points[END_REF] the discrepancy of the Farey sequence, a study refined by F. Dress in [START_REF] Dress | Discrépance des suites de Farey[END_REF], and this, together with the Koksma-Hlawka's inequality, proves immediately that ÿ in very much the same way P. Gallagher in [START_REF] Gallagher | The large sieve[END_REF] derived the large sieve inequality. Note that the arithmeticity of the Farey sequence is only mildly used: a discrepancy estimate is enough.

Part 1. A large sieve equality

Large sieve ingredients

We adapt here the proof of S. Uchiyama [START_REF] Uchiyama | The maximal large sieve[END_REF] concerning the maximal large sieve to get a result which is a (weak) additive analogue of a result of P.D.T.A. Elliott [START_REF] Elliott | On maximal variants of the Large Sieve[END_REF]. This is [START_REF] Elliott | Additive arithmetic functions on arithmetic progressions[END_REF]Lemma 1] or [15, Chapter 29, exercise 3, page 254]. Lemma 3.1. Let px d q dďD be a δ-spaced sequence of points of R{Z. We have

ÿ dďD max uăvďu`L ˇˇÿ uănďv φ m epmx d q ˇˇ2 ď pL `2δ ´1 logpe{δqq ÿ m |φ m | 2 .
Here is the version we shall use. 

A functional transform

The transform we investigate here is given by ( 12)

W ‹ pzq " ´1 2iπ 
ż i8 ´i8 W psq ζp1 ´sq ζp1 `sq z ´sds.
Please note that |ζp1 ´sq{ζp1 `sq| " 1 on the line ℜs " 0. This transform of W is already the one the occurs in [START_REF] Ramaré | Eigenvalues in the large sieve inequality[END_REF], see for instance equation numbered p48q there, and in [START_REF] Chan | On sums of Ramanujan sums[END_REF], see their equation p4.19q. We keep the same hypothesis as before for W . In particular, it is compactly supported and W psq ! p1 `|s|q ´4. We follow [34, Section 9] pretty closely. We start by recalling a handy form of the complex Stirling formula. Γpz `aq " ? 2πe ´z z z`a´1{2 `1 `Op1{|z|q ˘.

uniformly for a P A.

As a (classical) conclusion and taking z " it in the above, we find that (13) | cospσ `itqΓpσ `itq| " a π{2|t| σ´1 1{2 `1 `Op1{|t|q ȗniformly in any domain σ 1 ď σ ď σ 2 and |t| ě 1.

Isolating the arithmetical behavior. We proceed as in [START_REF] Ramaré | Eigenvalues in the large sieve inequality[END_REF] and appeal to the functional equation of the Riemann ζ-function (see [START_REF] Titchmarsh | The Theory of Riemann Zeta Function[END_REF] or [START_REF] Iwaniec | Analytic number theory[END_REF]) which may be written as [START_REF] Elliott | On maximal variants of the Large Sieve[END_REF] ζp1 ´sq " 2 1´s π ´s cospπs{2qΓpsqζpsq.

To do so we first shift the line of integration in [START_REF] Duke | Estimates for coefficients of L-functions[END_REF] to ℜs " 9{8. Since |ζp´σ ìtq| ! ε p1 `|t|q p1`σq{2`ε when σ ě 0 and for any ε ą 0, it is enough to assume that W psq ! p1 `|s|q ´2 to ensure the convergence of our integrals. Since the line shifting does not meet any pole, we get

W ‹ pzq " ´1 iπ ż 9 
8 `i8 W psq cospπs{2qΓpsqu ´sds.

A bound at infinity. We infer from the estimate (13) that the line of integration in ( 16) can be pushed up to ℜs " 7{2 ´ε and thus

(17) F pW qp2πnzq ! ε pnzq ´7{2`ε .
Here is the main conclusion of this part.

Lemma 4.2. We have W ‹ pzq ! ε z ´7{2`ε , for any ε ą 0.

A real-valued formula. The next step is to proceed as in section 9 of [START_REF] Ramaré | Eigenvalues in the large sieve inequality[END_REF], which we only sketch here. We employ equation p35q therein: 

F pW qpuq " ´1 2iπ 
ż 1 2 `i8 1 2 ´i8 W psq cospπs{2qΓpsqu ´sds " ´ż 8 0 cospyq 1 2iπ ż 1 2 `i8

More auxiliary functional transforms

Several functional transforms of our bump-function W will occur. We have already seen W ‹ and Ŵ ‹ at (1) and (1). These two functions are central in our work, but it is expedient to introduce several others. We start with the couple

(19) W 7 pyq " ÿ kě1 W py{kq k , W 5 pyq " ÿ f ě1 W pyf q f .
We show in Lemma 5.1 that W 5 pyq " JpW q `Opyq where (20) JpW q "

ż 8 0 W puqdu u .
When y is small as in our case of application, the approximation of W 5 by JpW q is efficient. The proof will then lead us to understand W 7 ´JpW q, a quantity we call ´W , i.e.

(21) W 7 pyq " JpW q ´W pyq.

The situation is there more difficult than with W 5 , in particular because W 5 pyq is not small when y is small but takes the constant value JpW q! See Lemma 5.2. As it turns out, we do not need to grasp W but the average

(22) W ‹ C pzq " ÿ 1ďcďC µpcq c W pczq.
The value for small z, i.e. when |z| ď 1, is now JpW q ř 1ďcďC µpcq{c which tends to 0 when C is large. The rate of convergence is fast enough on the Riemann Hypothesis, but rather slow otherwise. As a consequence, we have to treat this point with care. In particular, we want to replace C by 8 and still save a power of C. We have already defined W ‹ at (12) and Lemma 5.3 will show that both definitions coincide. Let us start our journey. 5.1. Approximating W 5 . The transform W 5 is also studied in [25, section 20.5]: the function V pzq defined there in p20.143q corresponds to JpW q ´W 5 pzq where one should change W pyq into wpy{Cq (albeit the trivial facts that w is supported on rC, 2Cs, while our W is supported on r1, 2s and extended to the negative real axis by evenness).

Lemma 5.1. Assume that | Ŵ puq| ! 1{p1 `|u|q 2 . We have, when z ą 0, ( 23)

W 5 pzq " ÿ f ě1 W pzf q f " JpW q `Opzq.
with JpW q being defined at [START_REF] Gallagher | The large sieve[END_REF].

In practice, z is small (ď CE{Q). The proof we present uses the Fourier transform but one could also use the Mellin transform.

Proof. We introduce Fourier transforms to write

W 5 pzq " ż 8 ´8 Ŵ puq ÿ f ě1 epf uzq f du " ´ż 8 ´8 Ŵ puq logp1 ´epzuqqdu " ´ż 8 ´8 Ŵ puq `log |2 sinpπzuq| `iπptzuu ´1 2 q ˘du " ´ż 8 ´8 Ŵ puq `log |2 sinpπzuq| `iπB 1 pzuq ˘du.
For the sake of the evaluation next to z " 0, it is better to adopt the expression

W 5 pzq " ´ż 8 ´8 Ŵ puq `log |2 sinpπzuq| πz|u| `logpπz|u|q `iπptzuu ´1 2 q ˘du.
which we may simplify, with ş 8 ´8 Ŵ puqdu " W p0q " 0, into

W 5 pzq " ´2 ż 8 0 Ŵ puq log |u| du ´ż 8 ´8 Ŵ puq ´log |2 sinpπzuq| πz|u| `iπtzuu ¯du.
We split the integral according to whether |u| ď 1{z or not. In both cases we use We proceed by getting a simpler form for ´2 ş 8 0 Ŵ puq log |u| du. We readily check that

| Ŵ puq| ! 1{p1 `|u|q
ż L 0 Ŵ puq log |u| du " 2 ż L 0 ż 2 1 W ptq cosp2πutqdt log |u| du " 2 ż 2 1 W ptq ˆ" sinp2πutq 2πt log |u| ı L 0 ´1 2πt ż L 0 sinp2πutq u du Ñ ´1 2 ż 2 1 W ptqdt t
therefore concluding the proof of our lemma. □ 5.2. From W 7 to W . In this part, we start from the definition of W provided by ( 21) and we reach the definition [START_REF] Iwaniec | Analytic number theory[END_REF] given below. With v ą 0 fixed, we define [START_REF] Havin | The uncertainty principle in harmonic analysis[END_REF] f ptq " W `v{t ˘{t.

We simply write when v ą 0

ÿ gě1 f pgq " ´ÿ gě1 ż 8 g f 1 ptqdt " ´ż 8 0 rtsf 1 ptqdt " ż 8 0 f ptqdt `ż 8 0 ttuf 1 ptqdt " ż 8 0 W puq du u ´ż 8 0 ttu ˆvW 1 pv{t t 3 `W pv{tq t 2 ˙dt " JpW q ´1 v ż 8 0 tv{uupW 1 puqu `W puqqdu.
This establishes Eq. ( 25). The condition v ą 0 has been used on the last line: when v ă 0, we should reverse the integration path, or divide by |v| instead of by v.

5.3. Treatment of W . Define (25) W pzq " 1 |z| ż 8 0 tz{uupuW 1 puq `W puqqdu.
The expression W pzq " ş 8 0 t1{vupvzW 1 pvzq `W pvzqqdv shows that W is an even function 2 .

Lemma 5.2. The function W is C 1 and C 2 per pieces, and both derivatives are bounded.

When |z| ď 1, we have W pzq " JpW q.

When |z| ě 1, we have W pzq ! 1{z 2 .

Proof. Eq. [START_REF] Iwaniec | Analytic number theory[END_REF] shows that the first part of the Lemma, by distinguishing whether |z| ą 1 or not. When z P r0, 1q, then z{u P r0, 1q when u lies in the support of W , which implies that tz{uu " z{u in this case. Hence the first equality. We can furthermore write, when z ‰ 0, and with t " z{u, and with B 2 ptq " ş t 0 B 1 pvqdv:

W pzq " ż 8 0 pttu ´1 2 qpzt ´1W 1 pz{tq `W pz{tqqdt{t 2 " ż 8 0 B 2 ptqp4zt ´2W 1 pz{tq `2W pz{tqt ´1 `z2 t ´3W 2 pz{tqqdt{t 2 " z ´2 ż 8 0 B 2 pz{uqp4u 2 W 1 puq `2uW puq `u3 W 2 puqqdu
from which the bound claimed in the lemma follows readily. □

2 Still reading [START_REF] Iwaniec | Analytic number theory[END_REF]Section 20.5] by H. Iwaniec & E. Kowalski, we find that our W satisfies W pzq " pC{|z|q ş 8 0 tvz{CupW pC{vq{vq 1 dv, and is thus like their W pC{zq.

Study of W ‹

C and W ‹ . The function W ‹ C pzq is even since so is W . Lemma 5.2 tells us that this function is constant when |z| ď 1{C, with value JpW q ř 1ďcďC µpcq{c. We can even select C " 8 in which case we write simply W ‹ :

(26) W ‹ 8 pzq " W ‹ pzq " ÿ cě1 µpcq c W pczq.
The next expression of W ‹ will in particular establish that W ‹ is continuous at z " 0 where we have W ‹ p0q " 0.

Lemma 5.3. We assume that W is at least C 2 . We have, when ε ą 0 and z ą 0,

W ‹ C pzq " JpW q ÿ cďC µpcq c ´1 2iπ ż ε`i8 ε´i8 W psqζp1 ´sq ÿ cďC µpcq c 1`s z ´sds
where W psq " ş 8 0 W pxqx s´1 dx is the Mellin transform of W . When C " 8, the expression above is correct provided we select ε " 0 and replace ř cě1 µpcq{c 1`s by 1{ζp1 `sq.

Proof. We first reduce the case C " 8 to the case C finite. On using tzu " z ´rzs, we get

W ‹ pzq " ÿ cě1 µpcq c 2 z ż 8 0 tzc{uupuW 1 puq `W puqqdu " lim C 1 Ñ8 ˆÿ cďC 1 µpcq cz ż 8 0 uW 1 puq `W puq u du ´ÿ cďC 1 µpcq c 2 z ż 8 0 ÿ dďzc{u 1 puW q 1 puqdu " ´lim C 1 Ñ8 ÿ cďC 1 µpcq c ÿ dě1 W pzc{dq d .
We introduce the Mellin transform of W and write

ÿ dě1 W pzc{dq d " 1 2iπ ż ´1`i8 ´1´i8 W psqζp1 ´sqpzcq ´sds " W p0q `1 2iπ ż ε`i8 ε´i8
W psqζp1 ´sqpzcq ´sds which gives us (note that JpW q " W p0q)

W ‹ C pzq " JpW q ÿ cďC µpcq c ´1 2iπ ż ε`i8 ε´i8 W psqζp1 ´sq ÿ cďC µpcq c 1`s z ´sds
hence the expression given, seeing that the pole of ζp1 ´sq cancels out with the zero of 1{ζp1 `sq at s " 0 and that W psq is Op1{p1 `|s|q 2 q. □ Lemma 5.4. For ℜs P p´1, 0q, we have

ż 1 0 z s cosp2πzqdz ´s ż 8 1 z s´1 sinp2πzqdz 2π " p2πq ´s´1 Γps `1q cos πps `1q 2 .
Proof. We call the left-hand side jpsq. It is not difficult to see that (this is how is occurs below)

jpsq "

ż 8 0 z s cosp2πzqdz
and is thus the Mellin transform of cosp2πzq. On looking at [16, (21), page 319], we readily discover that, when ℜs P p´1, 0q (note the shift or `1 between the s variable jpsq and the one of the table we refer to), the above formula follows. Giving a full proof is not difficult by using cos w " pe iw `e´iw q{2. □

We define, when C ă 8,

W ‹‹ C puq " W ‹ C puq ´W ‹ C p0q " W ‹ C puq ´JpW q ÿ cďC µpcq c (27) " ´ÿ cďC µpcq c W 7 pcuq
on recalling ( 21) and [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]. Note also that W ‹‹ 8 " W ‹ 8 " W ‹ by [START_REF] Jutila | Transformations of exponential sums[END_REF]. We recall that W 7 is defined at [START_REF] Friedlander | A mean-value theorem for character sums[END_REF].

Lemma 5.5. When W psq ! 1{p1 `|s|q 3 , we have, when u ą 0,

Ŵ ‹‹ C puq " ´1 2iπ ż i8 ´i8 W psqζpsq u 1´s ÿ cďC µpcq c 1`s ds.
When C " 8, we replace ř cě1 µpcq{c 1`s by 1{ζp1 `sq. As a consequence, when C ă 8 and for any real number k ă 3{2, we have Ŵ ‹‹ C puq ! p1`|u|q ´1p1`|u|{C q ´k. Moreover, in the sense of distribution, we have Ŵ ‹ C puq " JpW q ř cďC µpcq{c¨δ u"0 Ẁ ‹‹ C puq where δ u"0 is the Dirac mass at u " 0.

Proof. The value Ŵ ‹‹ C puq is the limit, as Z goes to infinity, of

2 ż Z 0 W ‹‹ C pzq cosp2πuzqdz.
We employ Lemma 5.3 and reach the expression

´1 iπ ż ´ε`i8 ´ε´i8 W p´sqζp1 `sq ÿ cďC µpcq c 1´s ż Z 0 z s cosp2πzuqdz ds which is also ´1 iπ ż ´ε`i8 ´ε´i8 W p´sqζp1 `sq u 1`s ÿ cďC µpcq c 1´s ż uZ 0 z s cosp2πzqdz ds.
When C " 8, we start with ε " 0 and shift the line of integration in s just to the left-hand side of ℜs " 0 but still within the zero-free region of ζp1 ´sq. Concerning the inner integral, we write

ż uZ 0 z s cosp2πzqdz " ż 1 0 z s cosp2πzqdz `puZq s sin 2πuZ 2π ´s 2π ż uZ 1 z s´1 sinp2πzqdz.
It is then enough to use the Lebesgue dominated convergence Theorem to send Z to infinity (when u ą 0). We next appeal to Lemma 5.4 to get that ż 8 0 z s cosp2πzqdz " p2πq ´s´1 Γps `1q cospπps `1q{2q " ´p2πq ´1´s Γp1 `sq sinpπs{2q " 1 2 ζp´sq ζp1 `sq by using the functional equation of the Riemann zeta-function. This gives us [START_REF] Kobayashi | A note on the Selberg sieve and the large sieve[END_REF] Ŵ ‹‹ C puq " ´1 2iπ

ż i8 ´i8 W p´sqζp´sq u 1`s ÿ cďC µpcq c 1´s ds
The bound on Ŵ ‹‹ C puq comes by separating the cases |u| ď C and |u| ą C and in the latter case in shifting the line of integration to ℜs " k and using |ζp´sq| ! ε p1 `|s|q k`1{2`ε (for any positive ε) there. □

Let us mention the following consequence of Lemma 5.3 together with Mellin inversion formula.

Lemma 5.6. The hypothesis on W being as above, we have

W ‹‹ C psq " ´W psqζp1 ´sq ÿ cďC µpcq{c 1`s .
for ℜs P p0, 3{2q.

Lemma 5.7. When u ą 0 and for C ď 8, we have

Ŵ ‹‹ C puq " ÿ cďC µ 2 pcq c 2 Ŵ p0q ´1 u ÿ ně1 ϕ C pnq n W pn{uq
where ϕ C pnq{n " ř d|n,dďC µpdq{d. In particular, this gives

Ŵ ‹‹ puq " # 6 π 2 Ŵ p0q when |u| ď 1{2, 6 π 2 Ŵ p0q ´W p1{uq{u when 1{2 ă u ď 2{2. Proof.
We only treat the case C " 8. Lemma 5.5 gives us

Ŵ ‹‹ puq " ´1 2iπ ż i8 ´i8 W psqζpsq u 1´s ÿ cďC µpcq c 1`s ds.
We shift the line of integration to ℜs " 2 (since we move to the right, the contribution of the pole at s " 1 is multiplied with a coefficient ´1), use the development ζpsq{ζps `1q " ř ně1 ϕpnq{n 

µpdq d ! 2 ωpnq {C
where ωpnq is the number of prime factors of n. This implies that

W ‹‹ puq ´Ŵ ‹‹ C puq ! C ´1 `1 u ÿ u!n!u 2 ωpnq {C ! logp|u| `2q{C
as required. □

The size of W ‹ and Ŵ ‹ is well controlled as shown in the next lemma.

Lemma 5.9. Assume W is at least C 3 . We have W ‹‹ C pzq ´JpW q ř cďC µpcq{c ! 1{p1 `z2 q. There exists c 0 ą 0 (depending on W only) such that, when z ě 0 and δ P p0, 1{2s, we have |W ‹ pz `δq ´W ‹ pzq| ! exp ´c0 ? ´log δ and, when z P p0, 1s, W ‹1 pzq ! Lp1{zq c0 {z. This shows in particular that W ˚is of bounded variations on r0, 1s. Under the Riemann Hypothesis, we have |W ‹ pzq| ! ε |z| 1 2 ´ε for any positive ε.

When z ď 1{C, we have

W ‹‹ C pzq " 0. When W is four times differentiable, we have | Ŵ ‹ puq| ! u ´1Lpuq ´c0 . Moreover Ŵ ‹ p0q " 6 π 2 ş 8 0 W puqdu.
Proof. We split the proof is several stages. Bounding W ‹‹ C : When |z| ě 1, the first bound is a direct consequence of Lemma 5.2. When |z| ď 1, we write

W ‹‹ C pzq " ÿ cď1{|z|, cďC µpcq c JpW q `ÿ cą1{|z|, cďC µpcq c W pczq " op1q `Op1q
as required.

Bounding the modulus of continuity of W ‹ : Appealing to Lemma 5.3 with the change of variable s Þ Ñ ´s, we next write

W ‹ pz `δq ´W ‹ pzq " 1 2iπ ż i8 ´i8 W p´sq ζp1 `sq ζp1 ´sq sz s ż δ{z 0 p1 `tq s´1 dtds.
Recalling that W p´sq ! 1{p1 `|s|q 3 and ζp1 `itq{ζp1 ´itq ! plogp2 `|t|q 2 , this immediately gives us the bound |W ‹ pz `δq ´W ‹ pzq| ! δ{z. This proves what we need (and more!) when z ě ? δ. When z is smaller, we proceed as in the proof of the Prime Number Theorem: when t " ℑs P r´T, T s, we shift the line of integration to ℜs " σ " c 1 { log T where c 1 ą 0 is chosen so that ζpσ ´itq ˘1 ! log T when |t| ď T . The usual prime number theory gives us such a result, see e.g. [START_REF] Titchmarsh | The Theory of Riemann Zeta Function[END_REF]. Skipping some classical steps, we reach the bound

W ‹ pz `δq ´W ‹ pzq ! δ z z c 1 log T `plog T q 2 T ! z c 1 log T `plog T q 2 T ! δ c 1 2 log T `plog T q 2 T .
We select T " expp a logp1{δq. The reader will easily conclude from there. This is were the hypothesis W C 3 is needed. The bound for W ‹1 is obtained in the same manner. Some more upper bounds: By Lemma 5.2, we have W pzq " JpW q when |z| ď 1, hence W ‹‹ C pzq " 0 when |z| ď 1{C.

The bound for the Fourier transform follows by summation by parts. Concerning the value of the Fourier transform at 0, let Z be a large parameter that goes to infinity. We write

2 ż Z 0 W pzqdz " 2 ż 1 0 JpW qdz `2 ż Z 1 ż 8 0 B 1 pz{uq z puW 1 puq `W puqqdudz " 2JpW q `2 ż 8 0 ż Z{u 1{u B 1 pzqdz z puW 1 puq `W puqqdu " 2JpW q ´2 ż 8 0 ˆB1 pZ{uq Z{u ˆ´Z u 2 ˙´B 1 p1{uq 1{u ˆ´1 u 2 ˙˙uW puqdu " 2JpW q `2 ż 8 0 B 1 pZ{uqW puqdu ´2 ż 8 0 B 1 p1{uqW puqdu " 2 ż 8 0 B 1 pZ{uqW puqdu `ż 8 0 W puqdu
and the integral depending on Z goes to 0 as Z goes to infinity by Lebesgue's Lemma. This shows that Ŵ p0q " p1{2q Ŵ p0q. We next employ [START_REF] Gohberg | Traces and determinants of linear operators[END_REF] to deduce that

Ŵ C puq " ÿ cďC µpcq c 2 Ŵ pu{cq
hence the value at u " 0, whether C ă 8 or not. □

Numerical aspects related to the smoothing kernel and its transforms

It is interesting to produce some numerical datas, so as to explore our several transforms.

6.1. An explicit family of smoothing kernels. Let 1 1 r´1,1s be the characteristic function of the interval r´1, 1s. We are interested in explicit formulae for the m-th convolution-power 1 1 p˚mq r´1,1s , where m is a positive integer. This function is even with support within r´m, ms, and of class C m´1 . We readily check that Some more sweat brings the next formula:

1 1 p˚3q r´1,1s ptq " $ ' & ' % 3 ´t2 when |t| ď 1, p3 ´|t|q 2 {2 when 1 ď |t| ď 3, 0 when 3 ď |t|.
The general formula is given in [START_REF] Rényi | Probability theory[END_REF] and reads Guessing this expression is not obvious, but verifying it by recursion is only a matter of routine. The Fourier transform of 1 1 r´1,1s is sinp2πuq{pπuq, so the one of 1 1

p˚mq r´1,1s
is sinp2πuq m {pπuq m . Since we will use the case m " 5, it is worth giving its explicit expression:

(30) 1 1 p˚5q r´1,1s ptq " $ ' ' ' ' & ' ' ' ' % 115´30t 2 `3t 4 12
when |t| ď 1, 55`10|t|´30t 2 `10|t| 3 ´t4 6

when 1 ď |t| ď 3, 625´500t`150t 2 ´20|t| 3 `t4 24 when 3 ď |t| ď 5 0 when 5 ď |t|.

Formula ( 1) is handy for explicit computations. We introduce p m ptq " 4m 2 m 1 1 ˚m r´1,1s p4mt ´3mq for some integer m ě 5. Its support lies inside r1{2, 1s. We find that pm puq " ep3u{4q ˆsinpπu{p2mqq πu{p2mq ˙m .

Notice that ş 8 0 p m ptqdt " pm p0q " 1. We then select W pm; tq " p m p1{tq{t.

For such a choice, we readily get

W ‹ pm; zq " 2 ÿ ně1 ϕpnq n cosp3πnz{2q ˆsinpπnz{p2mqq πnz{p2mq ˙m .
When we truncate this series at the integer N , the error is bounded above by (31) 2

ˆ2m πz ˙m 1 pm ´1qN m´1 . We then use the following Sage script (see [START_REF]The Sage Developers[END_REF]): def Witself(t, m = 5):

if abs(t) > 2 or abs(t) < 1: return(0) res = 0 z = m*(4/t-3) coef = 2*m/factorial(m-1)/2^m asign = 1 for j in range(0, floor(float((m + abs(z))/2)) + 1):

res += asign*binomial(m, j)*(m + abs(z) -2*j)^(m-1) asign = -asign return(res*coef/t) plot(lambda t:Witself(t, 5), (1, 2)) 6.2. A specific kernel. In this section, we specify m " 5.

On W p5; tq: Here is a plot of our function. And here is a plot of Ŵ ‹ p5; tq. It is worth noticing that Ŵ ‹ p5; 1q " Ŵ ‹ p5; 0q. After u " 1, we indeed find that Ŵ ‹ p5; uq ă Ŵ ‹ p5; 0q. In analytic number theory, when we want to detect an equality, the quantity we really study is of the shape ř m,n φ m ψ m δ m"n and that what we use in an approximation of the δ-symbol. This is not only a tautology, it also imposes a framework which decides of what are the "trivial" estimates and of what can be expected or not. It also splits the problem in two parts: a combinatorial part, where one uses the fact m and n are integers, possibly in certain subsequences, and an analytical part where the quantities arising are to be estimated. There is of course an interplay between both parts and a "good" decomposition is a decomposition that leads to quantities that we know how to estimate. It is difficult to give a precise historical date, but the contributions of M. Jutila in [START_REF] Jutila | Transformations of exponential sums[END_REF] (see also [START_REF] Harcos | An additive problem in the Fourier coefficients of cusp forms[END_REF] and [START_REF] Jutila | Distribution of rational numbers in short intervals[END_REF]Theorem 2]) and of H. Iwaniec in [START_REF] Duke | Bounds for automorphic l-functions[END_REF] (see also [12, ] and [START_REF] Iwaniec | Analytic number theory[END_REF]Chapter 20], in particular Proposition 20.16 therein) seem to be prominent. One can say rapidly that in some sense, Iwaniec's way is to analyze the large sieve quantity to extract a diagonal contribution, under some hypotheses, while Jutila's way is to start from the diagonal contribution and to modify the circle to keep only the rationals one knows how to handle, with a possible weight.

The present study is centered on the quantity (32) S pQ, W q "

ÿ q W pq{Qq q ÿ a mod ˚q |Spφ, a{qq| 2 .

Moebius inversion readily yields

S pQ, W q " ÿ d ÿ d|q µpq{dqW pq{Qq q ÿ a mod d |Spφ, a{dq| 2 .
We expand the square, shuffle the terms around and get

(33) S pQ, W q " ÿ m,n φ m φ n ∆pm ´nq
where we have use the notation (on setting cd " q)

(34) ∆pvq " ÿ c,d, d|v µpcqW pcd{Qq c .
Here is the decomposition of the ∆-symbol we use. Note that we do not need the condition v ‰ 0 since W pcv{pgQqq " 0 when v " 0.

We then simply split the summation over h according to whether h ď H or not, getting the two quantities Lpvq and L 7 pvq.

Concerning U pvq we again detect the divisibility condition by using additive characters. This gives us φ m φ n L 0 pm ´nq " ˜ÿ q ϕpqqW pq{Qq q `OpQC ´1q ¸}φ} 2 2 .

Proof. The contribution is

ÿ cďC,d µpcqW pcd{Qq c }φ} 2 2 " ÿ q ÿ c|q,cďC µpcq c W pq{Qq}φ} 2 2 .
Since

ÿ cąC,d µpcqW pcd{Qq c ! ÿ cąC Q c 2 ! Q{C
we get that this diagonal term has value:

˜ÿ q ϕpqqW pq{Qq q `OpQC ´1q ¸}φ} 2 2
as announced. □

The large sieve inequality yields an efficient bound for the contribution of U 7 pmń q. 

□

The contribution of L 7 pm ´nq is somewhat more difficult to handle but also relies on the large sieve inequality. We shall most of the time employ the next lemma with a set I reduces to one element. It is only in the final applications that it is better to use the summation over some i P I. Lemma 7.4. Let w be an even and C 1 function that vanishes when the variable is larger than 1. We further assume that w is piecewise C 2 . Let I be a finite set. We have

ÿ iPI ˇˇÿ m,n ψ m,i ψ n,i wpαpm ´nqq ˇˇď 3}w 2 } 1 pN α `1q max uăvďu`3{α ÿ iPI ˇˇÿ uămďv ψ m,i ˇˇ2.
Proof. The problem is twofold: localizing the variables m and n and separating these two variables. The first problem is met by a subdivision argument: we cover the interval r1, N s by at most N α `1 disjoint intervals pa, a `α´1 s " I a of length α ´1 and localize n within such an interval. As a result we can assume that m lies in ra ´α´1 , a `3α ´1s " J a . We handle the separation of variables by a summation by parts and the formula 

wpαpn
´N ce ℓ `N ℓ Q `ℓe ℓ c ¯}φ} 2 2 logpQ{Hq ! ´N H ´1c ´1 `N Q ´1¯} φ} 2 
2 log 3 pQN q so this contribution is at most (on summing over c), up to a multiplicative constant:

(37) Q `N pHQq ´1 `N CQ ´2˘} φ} 2 2 log 4 pQN q.
□ This approximation provided by Lemma 5.1 together with the large sieve inequality leads to the following formula (recall the definition (19) of W 7 ):

(38) ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " ÿ m |φ m | 2 ´JpW q QI 0 pW q ÿ cďC, eďE µpcq ec ÿ a mod ˚e |Spφ, a{eq| 2 `ÿ cďC, hďH µpcq chQI 0 pW q ÿ a mod ˚h ÿ m,n φ m φ n W 7 pc|m ´n|{phQqqeppn ´mqa{hq `Oˆ´N EQ `N HQ `1 C `N C Q 2 ¯}φ} 2 2 log 5 pQN q
Ṫhe first main term comes from L 0 , the second one from U and the third one from L.

8. Proof of Theorem 1.2 8.1. From W 7 to W : cancellation of the two main terms. We introduce W by appealing to [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF]. The choice E " H ensures that, in [START_REF] Rényi | Probability theory[END_REF], the second main term is canceled out by the contribution of the factor linked with the JpW q{h above, getting (39)

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ cďC, hďH µpcq chQI 0 pW q ÿ a mod ˚h ÿ m,n φ m φ n W pc|m ´n|{phQqqeppn ´mqa{hq `Oˆ´N HQ `1 C `N C Q 2 ¯}φ} 2 2 log 5 pQN q ˙.
The same cancellation of the main term is what presides to the introduction of ∆ c puq in [25, section 20.5], see the proof of Lemma 20.17 therein. 8.2. Sharpening the error term in its H-dependence. One of the error term in Eq. ( 39) is Op N HQ }φ} 2 2 log 5 pQN qq and we want to (and need to!) remove the log 5 pQN q. We have to consider

(40) ΣpH 1 , H 2 q " ÿ H1ăhďH2 1 h ÿ a mod ˚h ÿ m,n φ m φ n W ‹ C p|m ´n|{phQqqeppn ´mqa{hq.
We somehow go backwards and use

W ‹‹ C from (27) to write ΣpH 1 , H 2 q " W ‹ C p0q ÿ H1ăhďH2 1 h ÿ a mod ˚hˇS ´φ, a h ¯ˇˇ2 `Σ1 pH 1 , H 2 q with Σ 1 pH 1 , H 2 q " ż 8 ´8 ÿ H1ăhďH2 1 h ÿ a mod ˚hˇS ´φ, a h `u Qh ¯ˇˇ2 Ŵ ‹‹ C puqdu.
The large sieve inequality readily yields (since

W ‹ C p0q ! 1) ΣpH 1 , H 2 q ´Σ1 pH 1 , H 2 q ! ´N H 1 `H2 ¯}φ} 2 2 .
The treatment of Σ 1 pH 1 , H 2 q is somewhat more difficult. When |u{Q| ď 1{2, by combining a summation by parts together with the large sieve inequality, we find that

ÿ H1ăhďH2 1 h ÿ a mod ˚hˇS ´φ, an h `un hQ ¯ˇˇ2 ď }φ} 2 2 ´N H 1 `8H 2 since
the points p a h `u hQ q a,h are 1 2 H ´2 2 -well spaced. When |u{Q| ě 1{2, we use the large sieve inequality for every h. In this case the shift by u{phQq is constant and the points are h ´1-well-spaced, giving

ÿ H1ăhďH2 1 h ÿ a mod ˚hˇS ´φ, an h `un hQ ¯ˇˇ2 ! }φ} 2 2 ´N log 2H 2 H 1 `H2 ¯.
As a consequence

Σ 1 pH 1 , H 2 q{}φ} 2 2 ! N H 1 `8H 2 `C Q ´N log 2H 2 H 1 `H2
¯ on using the bound | Ŵ ‹‹ C puq| ! C{p1 `|u| 2 q from Lemma 5.5 when |u| ě Q{2. This implies that

Σ 1 pH 0 , ? N q ! N H 0 `?N `CN Q log N.
We can use formula [START_REF] Sakhnovich | Integral equations with difference kernels on finite intervals[END_REF] with H " ? N and shorten the summation by the process above. On renaming H 0 " H, we have reached:

(41) ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ÿ m,n φ m φ n W ‹ C p|m ´n|{phQqqeppn ´mqa{hq `Oˆ´N HQ `log 5 pQN q C `N C log 5 pQN q Q 2 ¯}φ} 2 2 ˙.
The effect of the previous treatment is neat: the log-factor attached to N {pHQq has disappeared while the rest of the remainder term is still of the same order of magnitude. 

1 chQI 0 pW q ÿ a mod ˚h ÿ |m´n|ďhQ{c |φ m φ n | ! ÿ hďH, cąC 1 cQ ÿ m |φ m | 2 hQ c ! }φ} 2 2 H 2 {C.
We use W pzq ! 1{p1 `z2 q when |m ´n| ą hQ{c, getting a contribution bounded above, up to a multiplicative constant, by

ÿ hďH, cąC 1 chQI 0 pW q ÿ a mod ˚h ÿ |m´n|ąhQ{c |φ m φ n | 1 `c2 pm ´nq 2 {ph 2 Q 2 q ! ÿ hďH, cąC Q 2 h 3 c 3 hQ ÿ m |φ m | 2 c hQ ! }φ} 2 2 H 2 {C.
We thus get, for any C 1 ě C:

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ÿ m,n φ m φ n W ‹ C 1 p|m ´n|{phQqqeppn ´mqa{hq `Oˆ´N HQ `H2 C `log 5 pQN q C `N C log 5 pQN q Q 2 ¯}φ} 2 2 ˙.
The optimal choice C " QH{N 1{2 (provided that H ď N 1{4 ; Indeed we recall that Lemma 7.1 asks for E ď minpQ, 2Q{Cq and that we have chosen E " H) may be too large. Instead we select [START_REF] Swann | Some new classes of kernels whose Fredholm determinants have order less than one[END_REF] C " min

´QH ? N , 2Q H , C 1 ¯" min ´QH ? N , C 1 ānd get ( 43 
)
ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ÿ m,n φ m φ n W ‹ C 1 p|m ´n|{phQqqeppn ´mqa{hq `Oˆ´N HQ `H2 `log 5 pQN q C ¯}φ} 2 2 ˙.
We may reformulate this equality by using the Fourier transform of W ‹ :

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ż 8 ´8 Ŵ ‹ C 1 puq ˇˇS ´φ, an h `un hQ ¯ˇˇ2 du `Oˆ´N HQ `H2 `log 5 pQN q C ¯}φ} 2 2 ˙.
Later, to prove (71), it will be better to restrict the range of integration (note that the Fourier transform has two parts: a Dirac mass and a regular part; only the regular part is concerned, as the Dirac mass is concentrated at u " 0). We use the large sieve inequality with u and h fixed to infer that ( 44)

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ż U ´U Ŵ ‹ C 1 puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du `Oˆ´N HQ `N C 1 log H U Q `H2 `log 5 pQN q C ¯}φ} 2 2 ˙.
We can however proceed in a different fashion: majorize | Ŵ ˚puq| when |u| ě U by Op1{U q, uniformly in C, and use ş 8 ´8 |Spα `u{phQq| 2 du " hQ}φ} 2 2 by Parseval. This leads to [START_REF] Uchiyama | The maximal large sieve[END_REF] 

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ż U ´U Ŵ ‹ C 1 puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du `Oˆ´N HQ `H2 U `H2 `log 5 pQN q C ¯}φ} 2 2 ˙.
The difference from Ŵ ‹ C 1 to Ŵ ‹‹ C 1 is JpW q ř cďC 1 µpcq{c ¨δu"0 by Lemma 5.5. On using that JpW q ! 1, that ř cďC 1 µpcq{c ! 1 and the large sieve inequality, we get a contribution which is ! N H ´1}φ} 2 2 , thus incorporable in the already existing error term. We have obtained: [START_REF] Widom | Hankel matrices[END_REF] 

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´ÿ hďH 1 hQI 0 pW q ÿ a mod ˚h ż U ´U Ŵ ‹‹ C 1 puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du `Oˆ´N HQ `min ˆN C 1 log H U Q , H 2 U ˙`H 2 `log 5 pQN q C ¯}φ} 2 2 ˙.
We can send U to infinity and Theorem 1.2 follows by keeping U " 8 and sending also C 1 to infinity. 9. A case of large sieve equality. Proof of Theorem 1.3

We prove a first result that is suited for some applications.

Theorem 9.1. When 1 2 ď H ď ? N {plog N q 5 and log Q ! log N , we have

ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " `I0 pW q `OpN pHQq ´1q ˘}φ} 2 2 `O´ÿ hďH N `hQ h 2 Q 2 max uăvău`2hQ ÿ a mod ˚hˇÿ uănďv φ n epna{hq ˇˇ2 ¯.
Proof. Ideally, we would simply combine Theorem 1.2 (but we convert back Ŵ ‹ in W ‹ as in ( 43)) together with Lemma 7.4 applied to W ‹ , the set I being ta mod ˚hu.

The function W ‹ is however not regular enough, and we have to revert to W ‹ C and more precisely to Eq. [START_REF]The Sage Developers[END_REF]. We select C " QH{ ? N . When z ď 1{C, we have pW ‹ C q 2 " 0 while Lemma 5.3 with ε " 0 implies that pW ‹ C q 2 pzq ! 1 in general. The theorem follows readily. □

Proof of Theorem 1.3. We employ Theorem 9.1 and simplify the remainder term by appealing to

ÿ a mod ˚hˇÿ uănďv φ n epna{hq ˇˇ2 ď ÿ a mod h ˇˇÿ uănďv φ n epna{hq ˇˇ2 ď h ÿ c mod h ˇˇˇÿ uănďv, n"crhs φ n ˇˇˇ2 .
Such an extension of the variable a may look a weak step, but since this theorem is aimed at sequences oscillating highly in small arithmetic progressions, the loss is not noticeable (at least in the examples I could think of). □

A refinement for primes

When the sequence φ is supported on integers prime to every integer h ď H, we may refine Theorem 1.2 further, thanks to the next improved large sieve inequality. This is [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Theorem 5.3]. See also [START_REF] Ramaré | Notes on restriction theory in the primes[END_REF]Corollary 1.5].

Lemma 10.1. If pφ n q nďN is such that φ n vanishes as soon as n has a prime factor less than ? N , then

ÿ qďQ0 ÿ a mod ˚qˇS pφ, a{qq ˇˇ2 ď 7 N log Q 0 log N }φ} 2 2
for any Q 0 ď ? N and provided N ě 100.

This lemma enables us to improve Theorem 1.2 into the next result.

Theorem 10.2. When 1{2 ď H ď ? N {plog N q 5 , Q ď 10N and φ n vanishes when n has a prime factor below ? N , we have

ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " ˆI0 pW q `OˆN log 3H QH log N ˙˙ÿ m |φ m | 2 ´ÿ hďH 1 h ÿ a mod ˚h ż 8 ´8 Ŵ ‹ puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du.
Proof. We start from Theorem 1.2, but with say H 1 rather than H and now shorten the sum over h. To do so, we write

ÿ h"H1 1 hQ ÿ a mod ˚h ż 8 ´8 Ŵ ‹ puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du " 1 H 1 Q ż 8 ´8 max h"H1 ˇˇˇŴ ‹ ˆhv H 1 ˙ˇˇˇÿ h"H1 ÿ a mod ˚hˇS ´φ, a h `v H 1 Q ¯ˇˇ2 dv.
Lemma 10.1 tells us that this quantity is ! N log 3H1 QH1 log N }φ} 2 2 from which, after noticing the bound for Ŵ ‹ from Lemma 5.9, the theorem follows readily. □ Part 2. Operator Decomposition of the Large Sieve

A local geometrical space

We consider X h " Z{hZ ˆr0, 1s, equipped with the product of the probability measures. We denote by L 2 ˚pX h q the space of functions from L 2 pX h q whose Fourier transform with respect to the first variable is supported by pZ{hZq ˚ˆr0, 1s, i.e. functions f such that @y P r0, 1s, @d P Z{hZ { gcdpd, hq ą 1,

ÿ b mod h f pb, yqep´db{hq " 0.
It is maybe simpler to say that this is the space generated by the functions pc, yq Þ Ñ epac{qqf pyq for all f P L 2 pr0, 1sq and (this is where a restriction occurs) a prime to q. We reproduce rapidly the theory developed in [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Chapter 4]. Let k|h be two moduli. We consider (47)

L k h : L 2 pX k q Ñ L 2 pX h q F Þ Ñ L k h pF q : Z{hZ ˆr0, 1s Ñ C pb, yq Þ Ñ F pσ k pbq, yq
and correspondingly (48)

J h k : L 2 pX h q Ñ L 2 pX k q F Þ Ñ J h k pF q : Z{kZ ˆr0, 1s Ñ C pb, yq Þ Ñ 1 h{k ÿ c mod h, c"brks F pσ h pcq, yq.
We finally define (49)

U hÑ k " L k h J h k , U hÑk " ÿ d|k µpk{dqU hÑ d.
Here is the structure theorem we need. 3 Theorem 11.1. The maps L k h and J h k are adjoined one to the other. The collection pU hÑ kq k|h is a family of commuting orthogonal projectors. Furthermore

U hÑ k " ÿ d|k U hÑd
while, for any two divisors k 1 and k 2 of h, we have U hÑk1 U hÑk2 " δ k1"k2 U hÑk2 . We have L 2 ˚pX h q " U hÑh L 2 pX h q.

3 These results are easily proved. Details may be found in [START_REF] Ramaré | Arithmetical aspects of the large sieve inequality[END_REF]Chapter 4], though with no y-component. This component is inert here, so the proofs carry through mutatis mutandis.

An explicit expression. At the heart of this matter are the Gauss sums (50) τ h pχ, ¨q "

ÿ b mod h χpbqepb ¨{hq.
Theorem 11.2. For any h ě 1, any class b modulo c, any real number y and any function F P L 2 pX h q, the orthonormal projection U hÑh on L 2 ˚pX h q has the following explicit form:

U hÑh F pb, yq " 1 h ÿ c mod h c h pb ´cqF pc, yq.
Given a hilbertian orthonormal basis pf k q k of L 2 pr0, 1sq, the family pE h,χ b f k q χ,k where E h,χ " τ h pχ, ¨q{ a ϕphq and χ ranges the Dirichlet characters modulo h is a hilbertian orthonormal basis of L 2 ˚pX h q. Proof. We first check that

ÿ b mod h c h pb ´cqepbd{hq " ÿ a mod ˚h ep´ac{hq ÿ b mod h epbpa `dq{hq " # hepdc{hq when pd, hq " 1, 0 else. 
and since pb Þ Ñ epbd{hqq d mod h generates the whole space of functions over X h , this proves our first assertion. The introduction of the Dirichlet character may be arbitrary, but in fact pτ h pχ, ¨qq χ is the full set of eigenfunctions of f Þ Ñ ř c mod h c h pb ćqf pcq{h that are associated to a non-zero eigenvalue. We simply have (51) @b P Z{hZ, τ h pχ, bq " 1 h ÿ c mod h c h pb ´cqτ pχ, cq.

Note finally that 1 h ÿ

c mod h τ h pχ 1 , cqτ h pχ 2 , cq " ÿ a,b mod h χ 1 paqχ 2 pbq 1 h ÿ c mod h e ´cpa ´bq h " 1 1 χ1"χ2 φphq
as required. □

Analysis of a class of difference operators

We treat here the analysis of the intervening family of operators in an abstracted setting. Let V be a function satisfying the following assumptions: (R 1 ) ' V is a continuous real-valued even function of bounded variations and integrable over R. (R 2 ) ' V p0q " 0. (R 3 ) ' There exist B ě }V } 8 , c P p0, 1s and A ą 0 such that, for every δ P p0, 1q and x P r0, 1´δs, we have |V px`δq´V pxq| ď B expp´c a ´log minp1, Aδqq. Recall that we defined (8)

V 0 : G P L 2 pr0, 1sq Þ Ñ ˆy Þ Ñ ż 1 0
Gpy 1 qV py ´y1 qdy 1

İt is classical theory that V 0 is a compact Hilbert-Schmidt operator, see for instance [START_REF] Gohberg | Traces and determinants of linear operators[END_REF]Theorem 7.7]. Let pλ ℓ , G ℓ q ℓ be a complete orthonormal system of eigenvalues / eigenfunctions, ordered with non-increasing |λ ℓ |. The Fredholm equation λGpy 1 q " ş 1 0 Kpy 1 , yqGpyqdy has been intensively studied. It is not the purpose of this paper to introduce to this theory, a task for which it is better to read the complete and classical book [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] by I. Gohberg, I. C. & M.G. Kre ȋn, or the more modern [START_REF] Gohberg | Traces and determinants of linear operators[END_REF] by I. Gohberg, S. Goldberg & N. Krupnik. Kernel of type V py 1 ´yq are often called difference kernel, and lead to operators that are distinct from convolution operators as the integration and definition interval is not the whole real line. The book [START_REF] Sakhnovich | Integral equations with difference kernels on finite intervals[END_REF] by L. Sakhnovich is dedicated to the operators built from such kernels. The book [START_REF] James | The analysis of linear integral equations[END_REF] by J. Cochran contains also many useful informations.

12.1. L 2 -norm. We readily find that (52)

ż 1 0 ż 1 0 |V py 1 ´yq| 2 dy " ż 1 ´1 |V pzq| 2 p1 ´|z|qdz. Hence ÿ ℓě1 |λ ℓ | 2 " ż 1 ´1 |V pzq| 2 p1 ´|z|qdz ď 2 ż 1 0 |V pzq| 2 dz.
As a consequence, and enumerating the eigenvalues in such a way that |λ ℓ | is nonincreasing, we find that

(53) |λ ℓ | ď d 2 ż 1 0 |V pzq| 2 dz{ ? ℓ.
Theorem 12.4 will enable us to replace ? ℓ by ℓ, but it uses the above bound.

12.2. Properties of the eigenvectors. The eigenvectors of V 0 attached to nonzero eigenvalues are classically shown to be continuous. Since the L 1 -norm is not more than the L 2 -norm squared here, we have }G} 1 ď 1. Each of them thus satisfies (54)

|λ|}G} 8 ď 2 ż 1 0 |V pzq|p1 ´zqdz.
Furthermore, we find that (55) |λ||Gpy `δq ´Gpyq| ď }G} 1 ωpV, δq " }G} 1 max ´1ďzď1

|V pz `δq ´V pzq|.

These functions are also of bounded variation. Indeed, with obvious notation, we find that |λ| ÿ 1ďiďn |Gpy i`1 q ´Gpy i q| ď

ż 1 0 |Gpyq| ÿ 1ďiďn ˇˇV py i`1 ´yq ´V py i ´yq ˇˇdy ď ż 1 ´1 |V 1 pyq|dy ż 1 0 |Gpyq|dy ď ż 1 ´1 |V 1 pyq|dy since }G} 1 ď 1.
12.3. Nuclearity. A consequence of a theorem of Fredholm from [START_REF] Fredholm | Sur une classe d'équations fonctionnelles[END_REF] is that, when y Þ Ñ V pyq is Hölder of exponent α, then the eigenvalues verify ř ℓě1 |λ ℓ | p ă 8 for every p ą 2{p1`2αq. This proof is reproduced in the book [22, Chapter IV, Theorem 8.2] by I. Gohberg, S. Gohberg & N. Krupnik. This is too strong a condition for us if we are to avoid the Riemann Hypothesis (in which case α " 1{2 `ε would be accessible). D. Swann in [START_REF] Swann | Some new classes of kernels whose Fredholm determinants have order less than one[END_REF] considered the effect of bounded variation on a general kernel, but his theorem asks again for too strong hypotheses since the function py 1 , yq Þ Ñ V py 1 ´yq is a priori not of bounded variation. However, each function y Þ Ñ V py 1 ´yq is uniformly of bounded variation (i.e. its total variation is, as function of y 1 integrable; in our case, it is even bounded), a case that is mentioned (with more generality) in the paragraph preceding [42, Theorem 3] and more formally in [START_REF] James | The analysis of linear integral equations[END_REF]Theorem 16.2] in the monograph of J. Cochran. We follow this approach.

In this subsection, we use (56) log ´t " log minp1, tq;

We consider the coefficients of the Carleman determinant, see [7, Chapter 4, (3)], for ν ě 2:

(57) d ν " p´1q ν ν! ż 1 0 ¨¨¨ż 1 0 0
V py 1 ´y2 q ¨¨¨V py 1 ´yν q V py 2 ´y1 q 0 ¨¨¨V py 2 ´yν q . . . . . . . . .

V py ν ´y1 q V py ν ´y2 q ¨¨¨0 dy 1 dy 2 ¨¨¨dy ν .

As V py ´yq " 0, this is also the Fredholm determinant, see [22, Chapter VI, (1.5)].

The above determinant, say Kpy 1 , ¨¨¨, y ν q, can be rewritten as 0 V py 1 ´y2 q ´V py 1 ´y1 q ¨¨¨V py 1 ´yν q ´V py 1 ´yν´1 q V py 2 ´y1 q V py 2 ´y2 q ´V py 2 ´y1 q ¨¨¨V py 2 ´yν q ´V py 2 ´yν´1 q . . . . . . . . .

V py ν ´y1 q V py 2 ´yν q ´V py 2 ´yν´1 q ¨¨¨V py ν ´yν q ´V py ν ´yν´1 q .

We use the symmetry of the integral and now assume that 0 ď y 1 ă y 2 ă ¨¨¨ă y ν ď 1 (when an equality occurs between these variables, the determinant vanishes). We define δ i " y i`1 ´yi so that ř 1ďiďν´1 δ i ď 1. We divide the second column by ´log ´pAδ i qq in front of our determinant. We first note the following lemma.

Lemma 12.1. We have ř 1ďiďn b ´log ´pAδ i q ě n ? log n when the δ i 's are positive real numbers such that ř 1ďiďn δ i ď 1.

Proof. Given an n-tuple pδ 1 , ¨¨¨, δ n q, we note that the n-tuple obtained by replacing each δ i by minpA ´1, δ i q satisfies the same constraint with an equal sum of b ´log ´pA¨q. In order to find the minimum required, we may thus restrict our attention to variables that verify δ i ď 1{A. Set x i " p´log ´pAδ i qq 1{4 . This variable ranges possibly p0, 8q. The condition on δ i now reads ř 1ďiďn e ´x4 i {A " δ for some δ P p0, 1s, while we seek to minimize ř 1ďiďn x 2 i and we forget the condition e Its critical points, obtained by equating all the partial derivatives to 0, satisfy:

$ ' & ' % @i ď n, 2x i `4A ´1x 3 i λe ´x4 i {A " 0, ÿ 1ďiďn e ´x4 i {A " δ.
This implies that 4 λ{A " ´2e

´x4 i {A {x 2 i . The function y Þ Ñ 2e
´y4 {A {y 2 is decreasing, from which we conclude that all x i 's are equal, which in turn implies that all δ i 's are equal, and equal to δ{n. The choice δ " 1 is also optimal. □ Next we use Hadamard's inequality (as in all such proofs!) together with the previous lemma (and pν ´1q ě ν{2) and get

|Kpy 1 , ¨¨¨, y ν q| B ν{2 e ´pc{4qν ? logpν´1q ď ź i ´ÿ j |a i,j | 2 ¯1{2 ď ź i ´}V } 8 ˇˇV py i ´y1 q ´V py i ´yi q ˇˇ`B ÿ 2ďjďν
ˇˇV py i ´yj´1 q ´V py i ´yj q when H ranges r0, e 2 s is some positive constant, say c 3 , depending only on c (we have introduced logpH `1q rather tha log H earlier for this very purpose). As a consequence, we have, for any H ě 0, |DpV, zq| ď e e 2 6e c 2 e He ´c 30 ? logpH`1q minp1, c 3 q .

ˇˇ¯1 {2 ď ´2c ż 1 ´1ˇV 
Here is the lemma we have proved. with M " b 2B ş 1 0 ˇˇV 1 pyq ˇˇdy. We continue with the following general lemma.

Lemma 12.3. Let f be an entire function of finite order and such that f p0q " 1 and let pρ ℓ q be an enumeration of its zeroes with non-decreasing |ρ ℓ |. Let g be a C 2 -function over p0, 8q. Assume that, as t goes to infinity, The reader may want to read [START_REF] Philip Boas | Entire functions[END_REF], for instance Theorem 8.4.1, for general results on entire functions having only real zeroes.

Proof. We denote by nptq the number of zeroes of f (counted with multiplicities) that are of modulus not more than t. We use an integration by parts to write for some positive constant c 3 that depends only on B and c. In particular, we have

ÿ
(60) |λ ℓ | ! d ż 1 0 |V pzq| 2 dz{ℓ.
In our case of application, the L 2 -norm of V is controlled by Lemma 15.1.

Proof. λ ℓ " 0 and V is not identically 0. Proving that infinitely many of them are positive or negative seems to be more difficult, if true.

12.5. A Mercer Theorem. Let us select a complete system of non-zero eigenvectors pG ℓ q ℓě1 associated with the eigenvalues pλ ℓ q ℓ that are repeated according to multiplicity and arranged in non-increasing order of their absolute values.

Theorem 12.5. For every positive integer N , we have max y,y 1 Pr0,1s

ˇˇV py 1 ´yq ´ÿ ℓďN λ ℓ G ℓ pyqG ℓ py 1 q ˇˇď |λ N `1|.

This theorem contains the value of the trace. Indeed, on selecting y 1 " y, we get ř ℓě1 λ ℓ |G ℓ pyq| 2 " 0; we then integrate this equality over y and recover the trace ř ℓě1 λ ℓ " 0.

Proof. We have, for any y 1 in r0, 1s and any L 2 -function f :

ż 1 0 V py 1 ´yqf pyqdy " ÿ ℓě1 λ ℓ pf |G ℓ qG ℓ py 1 q " ÿ ℓďN λ ℓ ż 1 0
f pyqG ℓ pyqdyG ℓ py 1 q `ÿ ℓěN `1 λ ℓ pG ℓ |f qG ℓ py 1 q.

This implies that, for any test function h, we have (61)

ż 1 0 hpy 1 q ˇˇż 1 0
´V py 1 ´yq ´ÿ ℓďN λ ℓ G ℓ pyqG ℓ py 1 q ¯f pyqdy ˇˇdy 1 ! |λ N `1|}f }}h} by using Cauchy's inequality and

ż 1 0 ˇˇÿ ℓěN `1 λ ℓ pG ℓ |f qG ℓ py 1 q ˇˇ2dy ď ż 1 0 ÿ ℓěN `1 |λ ℓ pG ℓ |f q| 2 |G ℓ py 1 q| 2 dy ď |λ N `1| 2 ÿ ℓěN `1 |pG ℓ |f q| 2 ď |λ N `1| 2 }f } 2 .
Select a point y 0 from p0, 1q and a positive ε such that ry 0 ´ε, y 0 `εs Ă r0, 1s. We take f " 1 1 ry0´ε,y0`εs and get

ż 1 0 hpyq ˇˇˇ1 2ε ż y0`ε y0´ε
´V py 1 ´yq ´ÿ ℓďN λ ℓ G ℓ pyqG ℓ py 1 q ¯dy ˇˇˇd y 1 ! |λ N `1|}h}.

However we have

V py 1 ´y0 q ´1 2ε ż y0`ε y0´ε V py 1 ´yqdy ! 1 2ε ż y0`ε y0´ε
exp `´c a minp1, Aεq ˘dy ! exp `´c a minp1, Aεq which tends to zero with ε. The same applies to y Þ Ñ ř ℓďN λ ℓ G ℓ pyqG ℓ py 1 q. In case of the two endpoints y 0 " 0 and y 0 " 1, we simply select f " 1 1 r0,εs in the first case and f " 1 1 r1´ε,1s in the second one. We then employ the same trick regarding the variable y 1 . We leave the details to the reader. □ 12.6. Influence of the Riemann Hypothesis. As we already mentioned, under the Riemann Hypothesis, the function y 1 Þ Ñ V py 1 ´yq is uniformly Hölder with exponent 1{2 ´ε for any ε ą 0. In which case, [START_REF] James | The analysis of linear integral equations[END_REF] gives us that

ÿ ℓě1 |λ ℓ | p ! p 1
for every p ą 4{5. This implies that the number of eigenvalues below t, say nptq, satisfies nptq ! ε t 4{5`ε under the Riemann Hypothesis.

12.7. Bounds from Fourier analysis and non-negativity. Since the function V is even over R its Fourier transform is (a cosine transform and hence) real valued.

In practice, we will use V puq " W ‹ pτ u{hq where Ŵ ‹ is also given by ( 1); hence we can bound above the values of the eigenvalues when W is assumed to be nonnegative.

Theorem 12.6. Assume that V puq ď M 1 when u P R. Then the eigenvalues of V 0 are not more than M 1 . There exists a positive constant c 4 such that, if we further assume that V puq ď M 2 when |u| ě U 2 for some positive parameters M 1 ą M 2 and U 2 , then the eigenvalues of V 0 are not more than M 1 ´ce ´c4U2 for some positive constant c depending on M 1 and M 2 (but not on V nor on U 2 ).

The proof uses F.I. Nazarov's form [START_REF] Nazarov | On the theorems of Turán, Amrein and Berthier, and Zygmund[END_REF], [START_REF] Nazarov | Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type[END_REF] of the Amrein-Berthier Theorem [START_REF] Amrein | On support properties of L p -functions and their Fourier transforms[END_REF] (see also [START_REF] Havin | The uncertainty principle in harmonic analysis[END_REF]Section 4.11] in the monograph of V. Havin & B. Jöricke) that we now recall.

Theorem 12.7 (Nazarov). There exist two positive constants c 4 , c 8 such that, for any measurable subsets E and Σ of R of finite measure, and for any f P L 2 pRq, we have

}f } 2 2 ď c 8 e c4|E||Σ| ˆżxPRzE |f pxq| 2 dx `żuPRzΣ | f puq| 2 du ˙.
We thank P. Jaming for giving some advice on this result, for pointing out that a theorem of V.N. Logvinenko and Ju.F. Sereda [START_REF] Logvinenko | Equivalent norms in spaces of entire functions of exponential type[END_REF] would be enough here (since we consider only the case when E and Σ are intervals), and for giving us the reference to the paper [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF] of O. Kovrijkine that gives a simpler proof. P. Jaming also told us that he believes c 8 " 300 and c 4 " 120 to be an admissible choice.

Proof of Theorem 12.6. We write V py ´y1 q " ż 8 ´8 V puqep´upy ´y1 qqdu and thus, for any G P L 2 pr0, 1sq, we have (62) rG, V 0 pGqs " ż 8 ´8 V puq| Ĝpuq| 2 du. Some comments are called for here. We have Ĝpuq " ż 8 ´8 Gpvqep´uvqdv i.e. we have extended G from r0, 1s to R by 0 outside. By the result of Nazarov cited above, its Fourier transform is not accumulated on an interval. More precisely, on selecting E " r0, 1s and Σ " r´U 2 , U 2 s in Theorem 12.7, we find that

ż |u|ěU2 | Ĝpuq| 2 du ě e ´c4U2 }G} 2 2 {c 8
and thus rG, V 0 pGqs ď pM 1 ´e´c4U2 c ´1 8 pM 1 ´M2 qq}G} 2 2 . The theorem follows readily. □

In between, (62) implies the following.

Lemma 12.8. The eigenvalues of V 0 lie inside r´min V puq, max V puqs.

12.8. Spectral decomposition of V from the one of V 0 . Now that we have the spectral decomposition of V 0 with couples pλ ℓ , G ℓ q, we recover a spectral decomposition of V | L 2 ˚pZ{hZq (the restriction of V to L 2 ˚pZ{hZq), by considering the eigenvectors E h,χ b G ℓ , where E h,χ comes from Theorem 11.2. These eigenvectors are of norm 1 and are associated with the eigenvalues λ ℓ . When we want to refer to the eigenvalues of V | L 2 ˚pZ{hZq , we use the notation λ ℓ and we add the superscript for V 0 . We go from the latter to the former by repeating ϕphq times each eigenvalue.

From global to local: two embeddings

The hermitian product on t1 ¨¨¨N u is given by [START_REF] Dress | Discrépance des suites de Farey[END_REF].

From the sequence φ to a local function. We explore the embedding defined in (4).

Concerning (5), we specify here that we could select a uniform value for N 1 , typically N `H where H is a bound to be chosen (like exp c 1 ? log N ). Since N is supposed to be much larger than H, the introduction of this parameter in the next definition is only to correct some effects on the border of our domain, see the proof of Lemma 13.1 below. There are several ways to handle this situation, we could have considered r0, 2s rather than r0, 1s in the definition of X or we could also have kept N and r0, 1s and simply replaced the equality of Lemma 13.1 by an equality with an error term and carried this error term throughout the proofs. The choice above has the advantage of being independent of an external upper bound (but is not henceforth canonical).

As a consequence, we note directly5 here that (63) Γ N,h pφqpb, yq " 0 when y ě rN 1 {hsh{N 1 .

The fundamental property of Γ N,h is that it preserves the hermitian product up to a multiplicative constant (but is not isometric as it is not onto).

Lemma 13.1. For any positive integer h ď N 1 ´N , we have N N 1 rφ, ψs N " xΓ N,h pφq, Γ N,h pψqy h . The reader should notice a notational difficulty here: the norm }φ} 2 that we have used up to now corresponds to the scalar product only up to the scalar 1{N . We will thus refrain from using }φ} 2 N as a shortcut to rφ, φs N .

Proof. Indeed, we have noticing that the norm of an orthogonal projection is surely not more than the initial norm. We can also get an explicit expression of } R N,h pφq} 2 in terms of φ:

xΓ N,h pφq,Γ N,h pψqy h " 1 h ÿ 1ďbďh ż 1 0 Γ N,h pφqpb, yqΓ N,h pψqpb, yqdydz " 1 h ÿ 1ďbďh ÿ 0ďkď N 1 h ´1 ż pk`1qh{N 1 kh{N 1 Γ N,h pφqpb, yqΓ N,h pψqpb, yqdydz `1 h ÿ 1ďbďh ż 1 r N 1 h sh{N 1 Γ N,h pφqpb, yqΓ N,h pψqpb, yqdy " 1 N 1 ÿ 1ďbďh ÿ n"
} R N,h pφq} 2 " 1 h 2 ÿ b mod ˚h ÿ kě0 ż pk`1qh{N 1 kh{N 1 ˇˇˇÿ 0ďaăh φ a`kh ep´ba{hq ˇˇˇ2 dy " 1 hN 1 ÿ b mod ˚h ÿ kě0 ˇˇˇÿ n{rn{hs"k φ n ep´bn{hq ˇˇˇ2 . (70) 14. Theorem 1.

in functional form

We start with an easy lemma. Lemma 14.1. We have

S ´φ; a `ϑ h ¯" N 1 h ÿ 1ďbďh ż 1 0 Γ N,h pφqpb, yqe ´ab h ¯e´´b h `rN 1 y{hs ¯ϑ¯d y.
Proof. When m " brhs with 1 ď b, we have

φ m " N 1 h ż m´b N 1 `h N 1 m´b N 1 Γ N,h pφqpb, yqdy.
It is straightforward to get the lemma from this expression. □

When H ď N 1{8 plog N q ´3{2 , N ! QH and Q ď N 2 (this condition is only to control log Q in the error term. In practice, Q is not more than N , but we may want to select Q " constant ˆN ), we have the following.

(71)

ÿ q W pq{Qq qQI 0 pW q ÿ a mod ˚q |Spφ, a{qq| 2 " }φ} 2 2 ´1 `O´N QH ¯ÿ hďH ÿ 1ďbďh ż 1 0 ż 1 0 R N,h pφqpb, yqR N,h pφqpb, y 1 q h 2 W ‹ `τ y´y 1 h ˘dydy 1 QI 0 pW q{N 2 .
Remark 14.2. Most of the work below is to allow H to be a power of N . If one can control the continuity of W ‹ , like under the Riemann Hypothesis, then the proof is much simpler. We instead rely heavily on the bilinear structure.

Proof. We start from [START_REF] Widom | Hankel matrices[END_REF] and Lemma 14.1 to get that:

(72) ÿ a mod ˚h ż U ´U Ŵ ‹‹ C 1 puq ˇˇS ´φ, a h `u hQ ¯ˇˇ2 du " N 12 h 2 ÿ 1ďb1,b2ďh ż 1 0 ż 1 0 Γ N,h pφqpb 1 , yqΓ N,h pφqpb 2 , y 1 q ÿ a mod ˚h e ´pb 1 ´b2 qa h ż U ´U Ŵ ‹‹ C 1 puqe ´b1 ´b2 h u Q `´rN 1 y{hs ´rN 1 y 1 {hs ¯u Q ¯dudydy 1 .
In the inner integration, we replace e ´b1 ´b2 h u Q `´rN 1 y{hs ´rN 1 y 1 {hs ¯u Q ¯ by eppy ´y1 qN u{phQqq. We call ∆ h pb 1 , b 2 , y, y 1 q the difference of the two, integrated against Ŵ ‹‹ C 1 puq. We have

∆ h pb 1 , b 2 , y, y 1 q ! ż U ´U ˇˇŴ ‹‹ C 1 puq ˇˇminp1, |u|{Qqdu.
This gives rise to the error term

N 12 h 2 ÿ 1ďb1,b2ďh c h pb 1 ´b2 q ż 1 0 ż 1 0 Γ N,h pφqpb 1 , yqΓ N,h pφqpb 2 , y 1 q∆ h pb 1 , b 2 , y, y 1 qdydy 1 .
We get max |∆ h pb 1 , b 2 , y, y 1 q| out, separate Γ N,h pφqpb 1 , yq from Γ N,h pφqpb 2 , y 1 q by using 2|z We want to replace Ŵ ‹‹ C 1 puq by Ŵ ‹ . We assume U ď C 1 {2, hence Ŵ ‹ puq " Ŵ ˚C 1 puq `Constant when |u| ď U and this constant is Op1{C 1 q. Again using 2|z 1 z 2 | ď |z 1 | 2 `|z 2 | 2 on R N,h pφq, and noting that (with s " N U {hQ) 

A 2 ! ż 8 U ż 8 U Ŵ ‹ pu 1 q Ŵ ‹ pu 2 q ż 1 0
e ´py ´y1 q N pu 1 ´u2 q hQ ¯du.

We employ Lemma 5.8 on u 1 and u 2 . When |u 1 ´u2 | ď 1, we get the contribution Op1{U q; When |u 1 ´u2 | ě 1, we integrate in y and get the contribution

ż 8 U ż 8 U du 1 du 2 u 1 u 2 p1 `|u 1 ´u2 |q .
On splitting the path of integration on u 2 in rU, maxpU, u 1 {2qs, followed by rmaxpU, u 1 {2q, 2u 1 s and finally by r2u 1 , 8q, we readily see that this integral is Opplog U q{U q. Summing over h gives the contribution

N QI 0 pW q ÿ hďH 1 h }φ} 2 2 c hQplog U q N U ! ? N H log U ? U Q }φ} 2 2 " E 2 .
In total, we get the error term bounded above by a constant multiple of

ˆN QH `N log H QC 1 `d N H log U U Q `C1 N 3{2 Q 2 plog Hq 2 `H2 U `H2 `plog N q 5 C ˙}φ} 2 2 .
It is best to take U as large as possible, so we select U " C 1 {2. In turn, we select C 1 " QH 1{3 {N 2{3 and we check that C 1 " C (see [START_REF] Swann | Some new classes of kernels whose Fredholm determinants have order less than one[END_REF]). The error term becomes not more than a constant multiple times

ˆN QH `N 5{3 log H Q 2 H 1{3 `N 5{6 H 1{3 Q plog N q 2 `H2 `plog N q 5 QH 1{3 N 2{3 ˙}φ} 2 2 .
We then check that this reduces to

ˆN QH `N QH N H 5{3 QHN 1{3 `N 5{6 H 1{3 Q plog N q 2 ˙}φ} 2 2
when H ď N 1{8 . And we check further that N 5{6 H 1{3 Q ´1plog N q 2 ! N {pQHq when H ď N 1{8 plog N q ´3{2 . The second term equally disappears, as N ! QH. □ Hervé Queffélec has kindly pointed out to me that when q " 1, this process bears similarities with the one devised independently by [START_REF] Shampine | An inequality of E. Schmidt[END_REF] and [START_REF] Widom | Hankel matrices[END_REF], and which is nicely presented in [5, Section 3].

On recalling the definition of the operator V τ,h in [START_REF] James | The analysis of linear integral equations[END_REF], here is another manner of writing (71): Lemma 15.1.

ż 1 0 ˇˇW ‹ ´τ z h ¯ˇˇ2 dz !
# exp ´2c 0 a logp2 `h{τ q, h{τ.

We will use the latter when h ď 2τ and the former otherwise. It is however better for questions of uniformly to state them in general Proof. When h ě 2τ , we use Lemma 5.9 and bound the value |W ‹ pτ z{hq| by Opexp ´c0 a logph{τ qq. When h ď 2τ , we use

ż 1 0 W ‹ ´τ z h ¯2dz ď 2 ż 1 0 W ‹ ´τ w h ¯2dw ď 2h τ ż τ {h 0 W ‹ pwq 2 dw ! h{τ.
The lemma is proved. □ Since |λ h,ℓ | ! 1{ℓ by (60) and Lemma 15.1, we can explicitly shorten the spectral decomposition in (recall also Lemma 13.1)

" R N,h pφq|V τ,h R N,h pφq ‰ hˆr0,1s " ÿ ℓďL λ h,ℓ ÿ χ mod h " R N,h pφq| E h,χ b G h,ℓ
‰ 2 hˆr0,1s `OpN ´1}φ} 2 2 {Lq.

We can similarly restrict the summation to |λ h,ℓ | ě η 0 pN q 1{4 (with η 0 pxq " exp ´c0 `O`N ´1}φ} 2 2 pη 0 pN q 1{4 `1{Lq ˘.

The parameter ξ is here for flexibility, in case we want the sum not to depend on the parameter N . We may rewrite formula (74) by introducing the adjoint R N,h of R N,h , as follows.

( ¯ḟrom which the stated estimate readily follows, up to two blemishes: the factor N {N 1 " 1 `OpN ´1{2 q and the Gpt{N 1 q instead of Gpt{N q. This last modification follows from (78), the former one being trivial. For the L 8 -norm, note that (see (54)) }g h,ℓ,χ,N,τ } 8 ď 2}W ‹ pτ ¨{hq} 1 a ϕphq{|λ h,ℓ pτ q|.

□

Lemma 15.3. When h, h 1 ď H ď N 1{5 and N 1 ď N `?N , we have rg h,ℓ,χ,N,τ , g h 1 ,ℓ 1 ,χ 1 ,N,τ s N " δ h"h 1 δ ℓ"ℓ 1 δ χ"χ 1 `Oˆ1 ? N `H exp `´c0 4 ? log N |λ h,ℓ pτ q||λ h 1 ℓ 1 pτ q| ẇhere c 0 is defined in Lemma 5.9. The same applies when replacing g h,ℓ,χ,N,τ and g h 1 ,ℓ 1 ,χ 1 ,N,τ respectively by g 5 h,ℓ,χ,N,τ and g 5 h 1 ,ℓ 1 ,χ 1 ,N,τ .

Theorem 1 . 1 .

 11 There exists c ą 0 such that for every N large enough and Q P rcN { ? log N , 20N s, we have ÿ 1ăq{Qď2 ÿ a mod ˚q |Spφ, a{qq| 2 ě Q 2 e ´cN {Q ÿ m |φ m | 2 .

˚qφ m ψ m ´ÿ hďH 1 hQ ÿ a mod ˚h ż 8 ´8 Ŵ ‹ puqS ´φ,pQHq ´1q}φ} 2 }ψ} 2 where }φ} 2 "

 82 Spφ, a{qqSpψ, a{qq " I 0 pW q ÿ m ař m |φ m | and similarly for }ψ} 2 . Similar polarized versions are true for Theorems 1.3, 1.6 and Corollary 1.4. The beginning of our proof follows closely the one of B. Conrey & H. Iwaniec

Corollary 1 . 4 .

 14 When log Q ! log N , we have ÿ q W pq{Qq qQ ÿ a mod ˚q |Spφ, a{qq| 2 " p1 `OpN {QqqI 0 pW q ÿ m |φ m | 2 .

Lemma 4 . 1 (

 41 Uniform complex Stirling formula). Let ε Ps0, 1s and a compact subset A of C be fixed. In the domain | arg z| ď π ´ε and |z| ě 1, we have

8 0cospyqy s´1 dy " ż 8 0 cospyqy s dy{y valid for 0 ă

 880 ℜs ă 1 to infer that

  formula. This yilds formula[START_REF] Amrein | On support properties of L p -functions and their Fourier transforms[END_REF].

2

 2 and bound log | sinpπzuq| πzu by Opzuq when |u| ď 1{z and by logp|zu| `1q otherwise.

  ˆm j ˙pm `|t| ´2jq m´1 when 0 ď |t| ď m, 0 when m ă |t|.

Figure 1 . 2 ż 8 0WFigure 2 .

 1282 Figure 1. W p5; tq

Figure 3 .

 3 Figure 3. Ŵ ‹ p5; tq

Proof."

  We start by splitting the range for the variable c: Lpvq `U pvq say. When v " 0, the term Lpvq restricts to L 0 pvq. Otherwise, we switch to the complementary divisor by setting gd " |v| (and g ě 1 since v ‰ 0). We detect the divisibility condition by using additive characters:

Note that cd{Q ď 2 .

 2 We set d " ef and thus e ď 2Q{C. We continue by splitting the range for e:We recognize U 7 pvq in the last quantity. The first one needs a transformation. We note that cef and the first term vanishes because of the assumption E ď Q. □The diagonal term is easily handled.

Lemma 7 . 3 .|φ m | 2

 732 We have ÿ m,n φ m φ n U 7 pm ´nq ! ÿ m |φ m | 2 pN E ´1 `QC ´1q log Q. Proof. We use the bound (where c and e are fixed) φ m φ n U 7 pm ´nq ! plog Qq ÿ pN E ´1 `QC ´1q log Q.

8. 3 .

 3 Direct extension of the c-variable. We handle the sum over c essentially trivially. The contribution from the diagonal term m " n is bounded above by ř cąC µpcq c H}φ} 2 2 {Q. When |m ´n| ď hQ{c, we bound W pc|m ´n|{phQqq by Op1q, getting a contribution bounded above, up to a multiplicative constant, by ÿ hďH, cąC

? B expp´pc{2q b ´log ´pAδ 1 B expp´pc{2q b ´log ´pAδ 2

 12 qq, the third one by ? qq and so on, getting a factor B pν´1q{2 ź 1ďiďν´1 expp´pc{2q b

´x4ii

  {A ď 1{A. We use the Lagrange method and consider Y px 1 , . . . , x n , λq " {A ´δ˘.

Lemma 12 . 2 .

 122 There exists a positive constant c 1 " c 1 pcq such that we have |DpV, zq| ď c 1 e M |z|e ´c 30 ? logpM |z|`1q

loglog

  |f pte iθ q|dθ tg 1 ptq Ñ 0. Then, provided the RHS converges absolutely, we have ÿ ℓě1 gp|ρ ℓ |q " |f pte iθ q|dθptg 2 ptq `g1 ptqqdt for any a P r0, |ρ 1 |s.

R

  N,h pφqpb, yqR N,h pφqpb, y 1 q ż U ´U Ŵ ‹‹ C 1 puqe ´py ´y1 q N u hQ ¯dudydy 1 .

1 uniformly in s and y 1 , 8 UŴ

 118 we get an error term of size Opplog HqN 1 }φ} 2 2 {pQC 1 qq. We finally want to extend the path of integration in u to infinity. Again using 2|z1 z 2 | ď |z 1 | 2 `|z 2 | 2 ,this means boundingA " ‹ puqe ´py ´y1 q N u hQ ¯du ˇˇˇd y and similarly with y 1 . We employ Cauchy's inequality and open the square, getting:

2 ?

 2 log x) and get, for any ξ P r0, 1s:" R N,h pφq|V τ,h R N,h pφq ‰ hˆr0,1s " ÿ ℓďL, |λ h,ℓ |ěξη0pN q 1{4 λ h,ℓ ÿ χ mod h " R N,h pφq| E h,χ b G h,ℓ ‰ 2 hˆr0,1s

  1`s and the reverse Mellin transform to get

	Ŵ ‹‹ puq "	6 π 2 Ŵ p0q	´1 u	ÿ ně1	ϕpnq n	W pn{uq
	as expected.						□
	Lemma 5.8. We have Ŵ ‹‹ puq ´Ŵ ‹‹ C puq ! logp|u| `2q{C.
	Proof. Indeed, by Lemma 5.7, we have Ŵ ‹ puq ´Ŵ ‹‹ C puq ! 1{C when |u| ă C{2.
	When u is larger, we use					
	ϕpnq n	´ϕC pnq n	"	ÿ d|n,	
					dąC	

  Lemma 7.1 (Iwaniec's decomposition). Let C, E, H ě 1 be parameters that satisfy E ď minp1Q, 2Q{Cq. We have ∆pvq " U pvq `U 7 pvq `L0 pvq `Lpvq `L7 pvq where L 0 pvq is the diagonal contribution

			L 0 pvq "	ÿ cďC,	µpcqW pcd{Qq c	1 1 v"0 ,
							dě1
	$ ' ' ' ' ' '	U pvq "	´ÿ eďE	ÿ cďC,	µpcqW pcef {Qq cef	ÿ a mod	˚e epav{eq,
	&				f ě1
	' ' ' ' ' ' % U 7 pvq "	ÿ eąE	ÿ cąC,	µpcqW pcef {Qq cef	ÿ a mod
				f ě1		
	$ ' ' ' ' ' '	Lpvq "	ÿ hďH	ÿ h|g,		µpcq gc	ÿ a mod ˚h W pcv{pgQqqepav{hq,
	&			cďC		
	' ' ' ' ' ' %	L 7 pvq "	ÿ hąH	ÿ h|g,		µpcq gc	ÿ a mod
				cďC		

and U pvq and U 7 pvq are the "direct divisor" part: ˚e epav{eq, while Lpvq and L 7 pvq are the "complementary divisor" part: ˚h W pcv{pgQqqepav{hq.

  The condition v ą u is automatically satisfied. We continue with c fixed by localizing h and using k " g{h. Lemma 3.2 gives us:

	S !	ÿ 1ďkďQ{H,		ÿ e ℓ´1 ăhďe ℓ	´N {Q k 2 e 2ℓ `1 ke ℓ c	˚h ¯ÿ a mod	max vďu`9 ke ℓ Q c	uămďv φ m e ˇˇÿ	h ´am	¯ˇˇ2
	log Hďℓďlog cN Q					
	!	´mqq " " α 2 ´α ż n m´α ´1 w 1 pαpt ´mqqdt ż n m´α ÿ ´N {Q ¯´minpN, ke ℓ Qc ´1q `ℓe 2ℓ ¯}φ} 2 2 k 2 e 2ℓ `1 ke ℓ c log HďℓďlogpcN {Qq ´1 ´1 ż t`α m w 2 pαpt ´sqqdsdt ! 1ďkďQ{H ÿ ÿ 1ďkďQ{H ÿ log HďℓďlogpcN {Qq ´N kce ℓ `N ℓ Qk 2 ¯}φ} 2 `ℓe ℓ kc 2
	from which we infer that !	ř ÿ	nPIa,mPJa ψ m,i ψ n,i wpαpm ´nqq equals
	(35)		α 2	ż a`α a´2α log HďℓďlogpcN {Qq a´α ´1 sďmďt´α ´1 , ´1 ż t`α ´1 ÿ
										tďnďa`α
										uăvďu`3{α	iPI ÿ	uămďv ˇˇÿ	ψ m,i ˇˇ2.
	A change of variables readily shows that
					α 2	ż a`α a´2α ´1 ż t`α
										´1˘} φ} 2 2 log 4 pQN q.
	Proof. We have to control
										ÿ
	(36)								
										m,n
	ensures that |α| is small; this truncation has been introduced for this very purpose.
	Practically, we appeal to Lemma 7.4 and get
	S "	ÿ cďC	µpcq c	ÿ hąH	ÿ h|g	g	´1	ÿ a mod ˚h ÿ m,n	φ m epma{hqφ n epna{hqW pc|m ´n|{pgQqq
			!	ÿ cďC,hąH,	1 gc	´N c gQ	`1¯ÿ a mod ˚h	max uăvďu`9gQ{c	uămďv ˇˇÿ	φ m epam{hq ˇˇ2
					h|gďcN {Q

´1 ψ m,i ψ n,i w 2 pαpt ´sqqdsdt.

We find that t ´3α ´1 ď a ´α´1 ď s ď m ď t ´α´1 and that t ď n ď a `α´1 ď t `3α ´1, hence the inner sum over m and n is bounded above (after introducing the summation over i, by max

´1 a´α ´1 |w 2 pαpt ´sqq|dsdt ď 3}w 2 } 1 ,

clearing out any uniformity problem in applications. □ Lemma 7.5. We have

ÿ m,n φ m φ n L 7 pm ´nq ! `N H ´1 `N CQ ψ m ψ n W pαpm ´nqq

where ψ m " φ m epma{hq and α " c{pgQq ‰ 0. Note that the truncation in c

  M |z| ě 1 and for any real valued parameter N ě 1 that we may choose. When H ď e 2 , we use the upper bound |DpV, zq| ď e e 2 . When log H ě 2, we select Any choice x i " 0 means that δ i " 1, which implies that any other δ j vanishes, leading to the maximum being 8 when n ě 2.Next, He ´c 28 ?logpH`1q `log H is certainly not more than He ´c 30 ? logpH`1q provided H be larger than some constant depending on c. So, in general, we find that He ´c 28 H ě e 2 . The minimum of 6e c 2 e He ´c 30

	?	logpH`1q `log H ď He ´c 30	?	logpH`1q `c2 , where c 2 is a constant depending
	solely on c. We have proved that
					|DpV, zq| ď 6e c 2	e He ´c 30	?	logpH`1q
							?	logpH`1q
							1 pyq ˇˇdy	¯ν{2
	since B ě }V } 8 . As a consequence, we find that the Carleman determinant
	(58)		DpV, zq " 1	`ÿ νě2	d ν z ν "	ℓě1 ź p1 ´λℓ zqe λ ℓ z
	satisfies, with M "	b 2B	ş 1 0 ˇˇV 1 pyq ˇˇdy,
		|DpV, zq| ď 1	`ÿ νě2	M ν |z| ν e ´c 4 ν ν!	?	logpν´1q
		ď pM |z|q N `1e `eM|z|e ´c 4	? log N	ď H N `1e `eHe ´c 4	? log N
	with H " (59)				N " He ´c 4	?	logpH`1q { log H.
	When log H ě 2, we check that (recall that we have assumed that c ď 1)
		log N " log H	´c 4	a log H ´log log H
		" logpH `1q ´log H logpH `1q ´1 4 a logpH `1q	logpH `1q ´log log H	ě
		logpH `1q ´log 2 log 3 ´1 4 ? log 3 ´1 e	¯ě logpH `1q 49	.
	We thus find that, in this case, we have
		|DpV, zq| ď He He ´c 4	?	logpH`1q	e `eHe ´c 28	?	logpH`1q
					ď 6He He ´c 28	?	logpH`1q	.
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when

  Theorem 12.4. The hypothesis on V being as above, the operator V 0 is nuclear.

	Furthermore, it satisfies	ř ℓě1 λ ℓ " 0 and
		ÿ	|λ ℓ | !	d ż 1		|V pzq| 2 dz e ´c3	?	logp1`}V }8	ş 1 0 |V 1 ptq|dt{	ş 1 0 |V ptq| 2 dtq
		ℓě1			0			
	ℓě1	gp|ρ ℓ |q "	´ÿ ℓě1	ż 8 |ρ ℓ |	g 1 ptqdt "	´α ż 8 a	nptq t	tg 1 ptqdt
			"	´" ż t 0	npuqdu u	tg 1 ptq ȷ 8 a	`ż 8 a	ż t 0	npuqdu u	ptg 2 ptq `g1 ptqqdt
	We only have to introduce Jensen's formula in the RHS and use our hypothesis to
	get our lemma.						□
	When used with gptq " 1{t and appealing to Lemma 12.2, we get the following
	important result.					

  On combining Lemma 12.3 together with Lemma 12.2, we readily find that Oscillation of the eigenvalues. Let us consider the eigenvalues of V 0 . At least one of them is positive and at least one of them is negative because

		ÿ ℓě1	|λ ℓ | ! M	ż 1{|λ1|	t e ´c 30	?	logpM t`1q dt t 2
			! M	ż M {|λ1|	e ´c 30	?	logpt`1q dt t	! |λ 1 |e ´c 30	?	logpM |λ1| ´1`1q .
	By (53) with ℓ " 1, we find that |λ 1 | ď	b 2	ş 1 0 |V pzq| 2 dz, hence the bound for
	ř	ℓě1 |λ ℓ |. Lidskii's Theorem then applies giving us that	ř ℓě1 λ ℓ "	ş 1 0 V py ´yqdy "
	0.								□
	12.4. ÿ
								ℓě1

  Local adjoint. For every φ, the linear functional f Þ Ñ xΓ N,h pφq, f y can be uniquely represented in the form rφ, Γ N,h pf qs N , i.e. we have(64) xΓ N,h pφq, f y " rφ, Γ N,h pf qs N .

	φ n ψ n	
	brhs	
	on employing (63). Hence the result.	□

  1 z 2 | ď |z 1 | 2 `|z 2 | 2 and have to bound |Γ N,h pφqpb 1 , yq| 2 dy max y,y 1 ,b1,b2 |∆ h pb 1 , b 2 , y, y 1 q|. |∆ h pb 1 , b 2 , y, y 1 q|. Next by using Lemma 5.5, we check that |∆ h pb 1 , b 2 , y, y 1 q| ! C 1 {Q. The total error term is ! ř hďH pQhq ´1C 1 2 ωphq N 3{2 }φ} 2 2 {Q ! C 1 N 3{2 }φ} 2 2 plog Hq 2 {Q 2 which we call E 1 . Thus we have reduced the right-hand side de (72) to Γ N,h pφqpb 1 , yqΓ N,h pφqpb 2 , y 1 qc h pb 1 ´b2 q R N,h pφqpb 2 , yqΓ N,h pφqpb 2 , y 1 q

	Σ "	N 12 h 2	ÿ 1ďb1,b2ďh	|c h pb 1 ´b2 q|	ż 1 0
	We use						
		ÿ 1ďb2ďh	|c h pb 1 ´b2 q| "	ÿ 1ďbďh	|c h pbq| "	ÿ d|h	ÿ b mod h,	µ 2 pdq	ϕphq ϕpdq
									gcdpb,hq"h{d
							"	ÿ d|h	µ 2 pdqϕpdq	ϕphq ϕpdq	" 2 ωphq ϕphq.
	This and the isometrical property of Γ leads to
	Σ " ż 1 b1,b2,y,y 1 (73) 2 ωphq ϕphqN 1 h }φ} 2 2 max N 12 ÿ ż 1 h 2 1ďb1,b2ďh 0 0
									ż U ´U Ŵ ‹‹ C 1 puqe ´py ´y1 q	N u hQ	¯dudydy 1 .
	By (67), this is also		
	N 12	ÿ		ż 1	ż 1		
	h	1ďb2ďh	0		0		
									ż U ´U Ŵ ‹‹ C 1 puqe ´py ´y1 q	N u hQ	¯dudydy 1 ,
	which, by orthogonality, is also	

  Our task is now to replace R N,h E h,χ b G h,ℓ by a simpler expression. 15.3. Approximate diagonalization in the global space. We define (76)g h,ℓ,χ,N,τ " R N,h E h,χ b G h,ℓ " Γ N,h E h,χ b G h,ℓ ,The function g h,ℓ,χ,N,τ inherits from E h,χ b G h,ℓ a similar separation of behaviour between arithmetic and size characters.Lemma 15.2. When |t ´n| ď N 1{2 and Q ď N , we have g h,ℓ,χ,N,τ pnq " τ h pχ, nq is defined in Lemma 5.9. Moreover, we have|λ h,ℓ pτ q|}g h,ℓ,χ,N,τ } 8 !In particular, g 5 h,ℓ,χ,N,τ approximates g h,ℓ,χ,N,τ .We next use (55) together with Lemma 5.9 to infer that, when δ P r0, 1s, we have, for any y P r0, 1 ´δs, (78) |λ h,ℓ pτ q||G h,ℓ py `δq ´Gh,ℓ pyq| ! exp ´c0We note that τ ď 1 and that h ě 1. Hence, for any t such that |t ´n| ď ? N , we have g h,ℓ,χ,N,τ pnq " τ h pχ, nq

	as well as								
	(77)				g 5 h,ℓ,χ,N,τ pnq "	τ h pχ, nq a ϕphq	G h,ℓ	´n N	¯.
											ˆaϕphq
					a	ϕphq	G h,ℓ	´t N	¯`O	|λ h,ℓ pτ q|	exp	´´c 0 2	log N a	¯ẇhere
		c 0 a ϕphq.
	Proof. We have by (65):					
			g h,ℓ,χ,N,τ pnq "	N h	1 ϕphq a	τ h pχ, nq	ż n´σ h pnq`h N 1 N 1 n´σ h pnq	G h,ℓ pyqdy.
											c ´log min ´1,	h τ δ	¯.
										N ϕphqN 1 a	G h,ℓ	´t N 1	Ōˆτ
										h pχ, nq |λ h,ℓ pτ q| a ϕphq	exp	´´c 0 4	a log N
	75)	ÿ q	W pq{Qq qQ	ÿ a mod ˚q |Spφ, a{qq| 2 " I 0 pW q}φ} 2 2
			´N ÿ hďH	τ h		ℓďL, ÿ	λ h,ℓ	χ mod h ÿ	" φ| R N,h E h,χ b G h,ℓ	‰ 2 N
					|λ h,ℓ |ěξη0pN q 1{4
										`Oˆ´ξ log H exp c0 8 ? log N	L `1 H `log H	¯τ }φ} 2 2	˙.

Indeed, under the stated condition on y, we have rN 1 y{hs ě rN 1 {hs ě N {h and thus the index b `hrN 1 y{hs is strictly larger than N .

The choice of notation Γ N,h would lead to confusion since adjoints are present in the latter theory.

This paper was supported by the joint FWF-ANR project Arithrand: FWF: I 4945-N and ANR-20-CE91-0006.
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The functional f Þ Ñ Γ N,h pf q is of course linear. We find that rφ, Γ N,h pf qs N " We conclude from N N 1 rφ, ψs N " xΓ N,h pφq, Γ N,h pψqy " rΓ N,h Γ N,h φ, ψs N that (66) Γ N,h Γ N,h " N N 1 Id . And some easy manipulations tell us that Γ N,h Γ N,h " N N 1 P h where P h is the orthogonal projector on Im Γ N,h " Γ N,h `L2 pt1 ¨¨¨N uq ˘.

Proof. Indeed, we find that, for any φ and ψ, we have

The conclusion is easy. □ Pure embeddings. It will be clear in a moment that, if Γ N,h pφq is easier to grasp from a geometrical viewpoint, our object is in fact R N,h " U hÑh ˝ΓN,h as already defined in (6), i.e. the orthonormal projection of Γ N,h on the space L 2 ˚pX h q (see section 11) 6 . We call the function R N,h the pure embedding. From Theorem 11.2, we get

Eq. (69) shows immediately (by extending the summation in b to all of Z{hZ) that } R N,h pφq} ď }Γ N,h pφq}, a fact that could have been more easily obtained by (74)

15. Using spectral analysis Formula (74) involves the operators V τ,h ˝Uh Ñh . In this section, we first diagonolize them as local operators (i.e. on a space that depends on h), and control the dependance in h and τ . We then lift this diagonalization to the global space (where the sequence φ lives) and show that the resulting family of eigenvectors, h varying, is near-orthonormal (see Lemma 15.3). We encounter a problem (that may be only technical): the control we have of the modulus of continuity of these eigenfunctions is weak when they are associated with very small eigenvalues. But then, their total contribution is small, and we then introduce a trade-off point with the condition |λ h,ℓ | ě ξη 0 pN q 1{8 . We conclude this part with another consequence of the near-orthonormality which enables us to control the quadratic form resulting from taking some upper bound for the eigenvalues. This is required because, when using (80) to simplify our statement, the near-orthogonality is not apparent anymore.

15.1. Decomposing the implied operators. The operator V τ,h does not touch the b-variable, from which we infer that (recall the definition of the rothonormal projector U hÑh in (49))

This has two consequences: first the image of V τ,h lies inside L 2 ˚pX h q and second, its couples eigenvalues / eigenvectors are simply (tensor) products of the respective couples coming from the two operators:

ẇhere the only difference with the operators U hÑh and V τ,h are the spaces. The first operator is covered by Theorem 11.2. We are left with the second one which belongs to the class described in Section 12 (if we ignore the first variable, as we may). The regularity assumptions pR 1 q, pR 2 q and pR 3 q are met by Lemma 5.9. 15.2. Diagonalisation in the local spaces. We use the eigenvectors / eigenvalues pG h,ℓ,χ , λ h,ℓ q χ,ℓ of V τ,h as well as the ones of R τ,h (see Theorem 11.2) to write

We then divide this quantity by h and sum that over h. Before proceeding, let us note the following lemma.

Proof. In order to compute rg h,ℓ,χ,N,τ , g h 1 ,ℓ 1 ,χ 1 ,N,τ s N , we split the interval r1, N s in OpN {phh 1 qq sub-intervals containing hh 1 consecutive integers and a remaining one. We employ Lemma 15.2 on each sub-interval, selecting a t that is independent on the point n, for instance choosing it at the origin of such a segment, but we shall use the freedom on choice in t to shorten the argument below. We bound the L 8 -norm of the other factor by Lemma 15.2. The error term for each interval is

which we have to sum over all intervals and divide by N (since the scalar product r, s N is scaled in this manner). The total error term incurred is thus

The summand H 2 {N comes from the end interval. Concerning this end interval, we should have had }W ‹ pτ ¨{h 1 q} 1 ¨}W ‹ pτ ¨{hq} 1 rather than the maximum, but each norm is bounded (uniformly in τ ), which legitimates the bound above. Whenever h ‰ h 1 or χ ‰ χ 1 , the summation over the remaining intervals vanishes by orthogonality. We are left with the case when h " h 1 and χ " χ 1 , in which case we have to evaluate

The sum upon n is h 2 } E h,χ } 2 2 " h 2 . Concerning the sum upon t, we employ the following trick: given any interval we can use any t from within, hence we can integrate over t and divide by the length h 2 of the interval. Concerning the final interval, the reader will check that the contribution to include it is not more than what we already paid for discarding it. As a result, we get as a main term Lemma 15.4. Let pg i q iPI be a finite family of vectors in the Hilbert space H, and f be some fixed vector in this same space. We have

We apply Lemma 15.4 to the family ␣ g 5 h,ℓ,χ,N,τ : h ď H, χ mod h, ℓ ď L, |λ h,ℓ pτ q| ě η 0 pN q 1{4 ( . Note that, for each h, we have at a positive and a negative eigenvalue. Recalling (9), we see that max ℓ |λ h,ℓ pτ q| goes to zero. Hence these positive or negative values of λ h,ℓ pτ q cannot be the same one save for finitely many h's. This is how we prove that infinitely many of them are positive (resp. negative). 16.2. Proof of Theorem 1.1. To prove Theorem 1.1, we first introduce a smooth non-negative function W verifying pW 1 q, pW 2 q and pW 3 q stated in the introduction and write

˚q |Spφ, a{qq| 2 . We then use Theorem 1.2. Theorem 1.6 is our next step, with ξ " 1. We select H " L " exp c ? log N τ for some small but positive c. Given h ď H, we may first employ the first statement of Theorem 12.6 together with (1) and (3) to get that This is not quite enough. The full strength of Theorem 1.6 uses the non-negativity of W . We employ this theorem with U 2 " τ {h, and this gives us that τ h λ h,ℓ ď I 0 pW qp1 ´ce ´c4τ {h q `Op1{ a Qq.

Theorem 1.1 readily follows.