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The electronic band structure and crystal structure are the two 

complementary identifiers of solid-state materials. Although convenient 

instruments and reconstruction algorithms have made large, 

empirical, crystal structure databases possible, extracting the 

quasiparticle dispersion (closely related to band structure) from 

photoemission band mapping data is currently limited by the available 

computational methods. To cope with the growing size and scale of 

photoemission data, here we develop a pipeline including probabilistic 

machine learning and the associated data processing, optimization 

and evaluation methods for band-structure reconstruction, leveraging 

theoretical calculations. The pipeline reconstructs all 14 valence bands 

of a semiconductor and shows excellent performance on benchmarks 

and other materials datasets. The reconstruction uncovers previously 

inaccessible momentum-space structural information on both global and 

local scales, while realizing a path towards integration with materials science 

databases. Our approach illustrates the potential of combining machine 

learning and domain knowledge for scalable feature extraction in mul- 

tidimensional data. 

 

Modeling and characterization of the electronic band structure (BS) of 

a material play essential roles in materials design1 and device simula- 

tion2. The BS exists in momentum space, Ω(kx, ky, kz, E), and imprints 

the multidimensional and multivalued functional relations between 

the energy (E) and momenta (kx, ky, kz) of periodically confined elec- 

trons3. Photoemission band mapping4 (Fig. 1a) using momentum- and 

energy-resolved photoemission spectroscopy (PES), including angle- 

resolved PES (ARPES)5,6 and multidimensional PES7,8, measures the BS as 

an intensity-valued multivariate probability distribution directly in Ω. 

The proliferation of band-mapping datasets and their public availability 

brought about by recent hardware upgrades7–10 have ushered in pos- 

sibilities regarding the comprehensive benchmarking of theories and 

experiments, which is especially challenging for multiband materials 

with complex band dispersions11–13. The available methods for inter- 

preting photoemission spectra fall into two categories: physics-based 

methods, which require least-squares fitting of one-dimensional line- 

shapes, named energy or momentum distribution curves (EDCs or 

MDCs), and analytical models5,14,15. Although physics-informed data 

models guarantee high accuracy and interpretability, upscaling the 

pointwise fitting (or estimation) to large, densely sampled regions in 
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Fig. 1 | From band mapping to BS. a, Schematic of a photoemission band- 

mapping experiment. The electrons from a crystalline sample’s surface are 

liberated by extreme-ultraviolet (XUV) or X-ray pulses and collected by a 

detector through either angular scanning or time-of-flight detection schemes. 

b, Overview of the computational framework for reconstruction of the 

photoemission (or quasiparticle) BS: (1) the volumetric data obtained from a 

band-mapping experiment (2) go through pre-processing steps, then are (3) 

fed into the probabilistic machine-learning algorithm along with electronic 

structure calculations as initialization of the optimization. The reconstruction 

algorithm for volumetric band-mapping data is represented as a 2D probabilistic 

graphical model with the band energies as nodes, leading to tens of thousands 

of nodes in practice. (4) The outcome of the reconstruction is post-processed 

(for example, symmetrization) to (5) yield the dispersion surfaces (energy 

bands) of the photoemission BS ordered by band indices. c–f, Effects of the 

intensity transforms in data pre-processing viewed in both 3D and along the 

high-symmetry line of the projected Brillouin zone (hexagonal as in b(1)), 

starting from the original data (c) through intensity symmetrization (d), contrast 

enhancement29 (e) and Gaussian smoothing of intensities (f). The intensity data 

in c–f are normalized individually for visual comparison. 

 
 

 
momentum space (for example, including 104 or more momentum 

locations) presents challenges due to the limited numerical stability 

and efficiency. Therefore, their use is limited to selected momentum 

locations determined heuristically from physical knowledge of the 

materials and experimental settings. Image-processing-based meth- 

ods apply data transformations to improve the visibility of dispersive 

features16–19. They are more computationally efficient and can operate 

on entire datasets, yet offer only visual enhancement of the underlying 

band dispersion. They do not allow reconstruction and are therefore 

insufficient for truly quantitative benchmarking or archiving. 

A method balancing the two approaches will extract the band 

dispersion with sufficiently high accuracy and be scalable to mul- 

tidimensional datasets, therefore providing the basis for distilling 

structural information from complex band-mapping data and for 

building efficient tools for annotating and understanding spectra. In 

this regard we propose a computational framework (Fig. 1b) for global 

reconstruction of the photoemission (or quasiparticle) BS as a set of 

energy (or electronic) bands, formed by energy values (that is, band 

loci) connected along momentum coordinates. This local connected- 

ness assumption is more valid than using local maxima of photoemis- 

sion intensities, because local maxima are not always good indicators of 

band loci20. We exploit the connection between theory and experiment 

in our framework, based on a probabilistic machine-learning21,22 model, 

to approximate the intensity data from band-mapping experiments. 

The gist of the model is rooted in Bayes rule: 

p(X|𝒟𝒟𝒟 𝒟 p(𝒟𝒟|X𝒟p(X𝒟, (1) 

 
where X are the random variables to be inferred and the data 𝒟𝒟 are 
mapped directly onto unknowns and experimental observables. 
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We assign the energy values of the photoemission BS as the model’s 

variables to extract from data, and a nearest-neighbor (NN) Gaussian 

distribution as the prior, p(X), to describe the proximity of energy values 

the pre-processed data, I,̃ are used effectively as the likelihood to 

calculate the MRF joint distribution: 

at nearby momenta. The EDC at every momentum grid point relates to  
p({E }𝒟 = 

1 
∏ I(̃ k 

 
 

 
, k    , E 

 
𝒟⋅ ∏ 

 
exp [− (Ei, j 

2 

− El, m𝒟 ]. 

the likelihood, p(𝒟𝒟|X𝒟, when we interpret the photoemission intensity 
probabilistically. The optimum is obtained via maximum a posteriori 

(MAP) estimation in probabilistic inference21 (Methods and Supplemen- 

i, j Z x, i 

ij 
y, j i, j 

(i, j)(l, m)|NN 
2η2  

(2) 

tary Fig. 2). Given the form of the NN prior, the posterior, p(X|𝒟𝒟𝒟, in the 
current setting forms a Markov random field (MRF)21,23,24, which encap- 

sulates the energy-band continuity assumption and the measured 

intensity distribution of photoemission in a probabilistic graphical 

model. In one benefit, the probabilistic formulation can incorporate 

imperfect physical knowledge algebraically in the model or numerically 

as the initialization (that is, warm start; Methods) of the MAP estimation, 

without requiring the de facto ground truth and training as in supervised 

machine learning25. In another benefit, the graphical model representa- 

tion allows convenient optimization and extension to other dimensions 

(Supplementary Fig. 1 and Supplementary Section 1). 

To demonstrate the effectiveness of the method, we first recon- 

structed the entire 3D dispersion surface, E(kx, ky), of all 14 valence 

bands within the projected first Brillouin zone (in (kx, ky, E) coordi- 

nates) of the semiconductor tungsten diselenide (WSe2), spanning 

~7 eV in energy and ~3 Å−1 along each momentum direction. We also 

adapted the informatics tools to BS data to sample and compare the 

reconstructed and theoretical BSs globally. The accuracy of the recon- 

struction was validated using synthetic data and the extracted local 

structural parameters along with pointwise fitting. The available data 

and BS informatics enable a detailed comparison of band dispersion 

at a resolution of <0.02 Å−1. We performed various tests and bench- 

marking on datasets of other materials and simulated data, where 

ground truth is available to evaluate the accuracy and computational 

efficiency. 

Results 
BS reconstruction and digitization 

Our main example is the 2D layered semiconductor WSe2, with its hex- 

agonal lattice and bilayer stacking periodicity (denoted 2H-WSe2), as 

a model system for band-mapping experiments11,26,27. Earlier valence- 

band mapping and reconstruction in ARPES experiments on WSe2 

demonstrated a high degree of similarity between theory and experi- 

ments11,26,27, but a quantitative assessment within the entire (projected) 

Brillouin zone is still lacking. The valence BS of 2H-WSe2 contains 14 

strongly dispersive energy bands, formed by a mixture of the 5d4 and 

6s2 orbitals of the W atoms and the 4p4 orbitals of the Se atoms, in 

its hexagonal unit cell. The strong spin–orbit coupling (SOC) due to 

these heavy elements produces large momentum- and spin-dependent 

energy splitting and modifications to the BS11,28. 

We use a 2D MRF to model the loci of an energy band within the 

intensity-valued 3D band-mapping data, regarded as a collection of 

momentum-ordered EDCs. This is graphically represented by a rec- 

tangular grid overlaid on the momentum axes with indices (i, j) (where 

i, j are non-negative integers), as shown in step (3) of Fig. 1b. The 

undetermined band energy of the EDC at (i, j), with the associated 

momentum coordinates (kx, i, ky, j), is considered a random variable, 

Ẽi, j, of the MRF. Together, the probabilistic model is characterized by 
a joint distribution, expressed as the product of the likelihood and 

the Gaussian prior in equation (1). To maintain its simplicity, we do 

not explicitly account for the intensity modulations of various origins 

(such as imbalanced transition matrix elements20) in the original 

band-mapping data, which cannot be remediated by upgrading the 

photon source or detector. Instead, we pre-process the data to mini- 

mize their effects on the reconstruction (Fig. 1c–f). The pre-process- 

ing steps include (1) intensity symmetrization and (2) contrast 

enhancement29, followed by (3) Gaussian smoothing (Methods), after 

which the continuity of band-like features is restored. The EDCs from 

Here, Z is a normalization constant, η is a hyperparameter defining the 

width of the Gaussian prior, ∏ij denotes the product over all discrete 

momentum values sampled in the experiment, and ∏(i, j)(l, m)∣NN is the 

product over all NN terms. A detailed derivation of equation (2) is given 

in Supplementary Section 1. Reconstruction of the photoemission BS 

is carried out sequentially for all bands and relies on local optimization 

of the MRF’s variables, {Ẽi, j}. 
To optimize over large graphical models, we adopt multiple paral- 

lelization schemes to achieve efficient operations on scalable comput- 

ing hardware. A single band reconstruction involving optimization over 

104 random variables is achieved within seconds and hyperparameter 

tuning within tens of minutes (Methods and Supplementary Figs. 3 and 

4). In comparison, pointwise fitting often requires individual hand- 

tuning and is therefore difficult to scale up to whole bands within a 

meaningful timeframe. To correctly resolve band crossings and nearly 

degenerate energies, we inject relevant physical knowledge into the 

optimization by using density functional theory (DFT) BS calculations 

with semi-local approximation30 as a starting point for the reconstruc- 

tion. The calculation qualitatively involves physical symmetry informa- 

tion for WSe2, albeit not quantitatively reproducing the experimental 

quasiparticle BSs at all momentum coordinates. As shown with four 

DFT calculations with different exchange-correlation functionals30 

to initiate the reconstruction for WSe2 and in various cases using syn- 

thetic data with known ground truths (Methods, Supplementary Table 

3 and Supplementary Figs. 4–8), the reconstruction algorithm is not 

particularly sensitive to the initialization as long as the information 

about band crossings is present. The current framework can also sup- 

port initialization from more advanced electronic-structure methods, 

such as GW31 or those including electronic self-energies renormalized 

by electron–phonon coupling32, where semi-local approximation yields 

not only quantitatively, but also qualitatively wrong quasiparticle BSs 

compared with the experiment. However, a systematic benchmarking 

of theory and experiment goes beyond the scope of this work. 

The 14 reconstructed valence bands of WSe2 initialized by the 

local density approximation (LDA)-level DFT are shown in Fig. 2b–d 

and Supplementary videos. To globally compare the computed and 

reconstructed bands at a consistent resolution, we expand the BS in 

orthonormal polynomial bases33, which are global shape descriptors 

and unbiased by the underlying electronic detail. The geometric featur- 

ization of band dispersion allows multiscale sampling and comparison 

using coefficient (or feature) vectors34. We chose Zernike polynomials 

(ZPs) to decompose the 3D dispersion surfaces (Fig. 3 and Methods) 

because of their existing adaptations to various boundary conditions35. 

In Fig. 3a,b, the band dispersions show generally decreasing 

dependence (seen from the magnitude of coefficients) on basis terms 

with increasing complexities (Fig. 3a), and the majority of disper- 

sion is encoded into a subset of the terms (Fig. 3b). This observa- 

tion implies that moderate smoothing may be applied to remove 

high-frequency features to improve the reconstruction in the case 

of limited-quality data (acquired without sufficient accumulation 

time), which is often unavoidable when materials exhibit vacuum 

degradation, or during experimental parameter tuning. The example 

in Fig. 3b and additional numerical evidence in Supplementary Fig. 14 

illustrate the approximation capability of the hexagonal ZPs. These 

coefficients act as geometric fingerprints of the energy band disper- 

sion, enabling the use of similarity or distance metrics (Methods) for 

their comparison34. In Fig. 3c, the positive cosine similarity confirms 

the strong shape (or dispersion) resemblance of the seven pairs of 

http://www.nature.com/natcomputsci
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Fig. 2 | Band reconstruction from WSe2 photoemission data. a, Comparison 

between the pre-processed WSe2 valence-band photoemission data along the 

Γ–M direction, the DFT BS calculated with different exchange-correlation 

functionals (solid red lines), and their final positions after band-wise rigid-shift 

alignment (dashed yellow lines) as part of hyperparameter tuning. The energy 

zero of each DFT calculation is set at the K point (not shown). b, Exploded view 

(with enlarged spacing between bands for better visibility) of the reconstructed 

energy bands of WSe2. c, Overlay of the reconstructed band dispersion (red lines) 

on the pre-processed photoemission band-mapping data, cut along the 

high-symmetry line of the hexagonal Brillouin zone of WSe2. d, Band-wise 

comparison between the LDA-level DFT (LDA-DFT) calculation used to initialize 

the optimization and the 14 reconstructed valence bands of WSe2 (symmetrized 

in post-processing). The dashed hexagons trace out the boundaries of the first 

Brillouin zone. The band indices on the upper right corners in d follow the 

ordering of the electronic orbitals in this material, obtained from LDA-DFT. b and 

d are paired plots (Methods) that share the same color bar, which shows the 

per-band normalized energy in arbitrary units (a.u.). 

 
 

 

spin-split energy bands in the reconstructed BS of WSe2, and the low 

negative values, such as those for bands 1–2 and 13–14, reflect the 

opposite directions of their respective dispersion (Fig. 2d). These 

observations are consistent with the outcome obtained from DFT 

calculations (Supplementary Fig. 13). 

 
Computational metrics and performance 

To quantify the computational advantages of the machine-learning- 

based reconstruction approach, we examine the outcome from diverse 

perspectives related to consistency, accuracy and cost. To assess the 

consistency of reconstruction in its entirety, we introduce a BS distance 

metric (Methods), invariant to the global energy shift frequently used 

to adjust the energy zero, to quantify the differences in band disper- 

sion and the relative spacing between bands, which are the two major 

sources of variation between theories and experiments. The distance 

is calculated using the geometric fingerprints to bypass interpolation 

errors while reconciling the coordinate spacing difference between 

reconstructed and theoretical BSs, essential for differentiating BS 

data from heterogeneous sources in materials science databases36,37. 

The results in Fig. 3d refer to the valence BS of WSe2 discussed in this 

work, with the distances (Methods) and their spread (that is, standard 

errors) displayed in the upper and lower triangles, respectively. A high 

degree of consistency exists among the reconstructions (pairwise 

distance no larger than 60 ± 8 meV per band), regardless of the level 

of DFT calculation used for initialization, indicating the robustness 

of the probabilistic reconstruction algorithm, whereas the distances 

between the DFT calculations are much larger, both in energy shifts 

and their spread. As shown in Fig. 3d and Supplementary Fig. 5, the 

learning algorithm can effectively reduce the epistemic uncertainty38 

between theories to obtain a consistent reconstruction. 

To demonstrate the computational advantage of the MRF recon- 

struction over traditional line-fitting methods, we benchmarked the 

outcome over selected regions in synthetic photoemission data. The 

regions are chosen based on their importance, and we limit the size to 
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Fig. 3 | Digitization and comparison of WSe2 BSs. a, Decomposition of the 14 

energy bands of WSe2 into hexagonal ZPs, with selected major terms displayed 

on the left. The zero spatial frequency term in the decomposition is subtracted 

for each band. The counts of large (>10−2 by absolute value) coefficients of all 14 

bands are accumulated in the bottom row of the decomposition to illustrate their 

distribution; these decrease towards higher-order terms. b, Approximation of 

the shape (or dispersion) of the fourth energy band using 5, 15 and 45 hexagonal 

ZPs are compared with the reconstruction. The three approximated ones are 

Number of terms 

indicated in the right figure by the vertical dashed lines intercepting the solid 

blue line. The errors in meV are calculated using equation (9) in Methods. 

c, Cosine similarity matrix for pairwise comparison of the reconstructed band 

dispersion in Fig. 2. The band indices follow those in Fig. 2d. d, Two-part similarity 

matrix showing BS distances (in the upper triangle) and their corresponding 

standard errors (in the lower triangle) between the computed and reconstructed 

BSs of WSe2. The abbreviation ‘LDA recon.’ denotes reconstruction with the LDA- 

level DFT BS as the initialization. 

 
 

 

have a manageable computing time (about an hour on our comput- 

ing cluster, at maximum, for a single run), determined by the slower 

method, and to allow for hyperparameter tuning, which requires tens 

of runs. The line-fitting approach uses the Levenberg–Marquardt least- 

squares optimization39 with bound constraints for multicomponent 

photoemission spectra composed of a series of lineshape functions. 

We used the benchmark established in ref. 40 for pointwise line fitting, 

employing high-performance computing and two synthetic datasets 

with known ground-truth dispersion, representing the local and global 

settings of the BS reconstruction problem (Supplementary Section 2.5). 

The synthetic data were based on a BS at the LDA-DFT level around the 

K-point and along the high-symmetry line of the Brillouin zone. To limit 

the hardware requirements, we used only distributed multicore-CPU 

computing for performance benchmarking. The estimated comput- 

ing times are normalized to the per-band per-spectrum level40. The 

accuracy of the reconstruction is calculated using the same-resolution 

root-mean-squared (r.m.s.) error, and the (in)stability is quantified by 

the standard deviation (s.d.) of the residuals, which measures surface 

roughness41. The benchmarking results are compiled in Fig. 4 and 

Supplementary Table 2. They show that, compared with pointwise 
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Fig. 4 | Performance evaluation on benchmarks. Visual summary of the 

benchmarking outcomes for BS reconstruction using normalized metrics 

that are able to compare across datasets. a,b, Computing time (a) and same- 

resolution r.m.s. error (reconstruction error) (b), both normalized to the 

per-band, per-spectrum level40. c,d, Hyperparameter tuning time (c) and 

reconstruction instability (s.d. of the residuals) (d), normalized to the per-band 

level. The methods used in reconstruction include pointwise line fitting (LF) and 

the MRF approach presented in this work, and the synthetic data are around the 

K-point and along the high-symmetry line (HSL) of the WSe2 BS. The benchmarks 

were run with synthetic datasets terminated at fixed energy ranges that contain 

the specified number of bands (2, 4, 8 and 14, the maximum band index in the 

dataset) shown in a–d. 

 
 

 

line fitting, the MRF reconstruction offers a considerable reduction 

in both normalized computing time and hyperparameter tuning time, 

while achieving consistently higher accuracy and stability in all but the 

two-band case. The combination of accuracy and stability in MRF recon- 

struction is due to the connectivity built into the prior, whereas in the 

pointwise fitting approach, information is not explicitly shared among 

neighbors. Because the number of bands reflects the complexity of the 

multicomponent spectra, near-constant normalized computing time 

and hyperparameter tuning time (Fig. 4a,b) in the MRF reconstruction, 

regardless of the number of bands (or spectral components), allow us 

to scale up the computation to datasets comprising 104 to 105 or more 

spectra. The substantial gain in computational efficiency is a result 

of the inherent divide-and-conquer strategy in our BS reconstruc- 

tion problem formulation and the associated distributed optimiza- 

tion method in the algorithm design. Comparatively, the distributed 

pointwise fitting exhibits a quasi-linear computational scaling with 

respect to the number of bands. When hyperparameter tuning is taken 

into account, in practice it is only feasible for fitting small datasets with 

up to 103 multicomponent spectra40. 

 
Extended use cases and applications 

The band dispersions recovered from photoemission data are often 

examined locally near dispersion extrema. We show in Fig. 5 that, 

besides providing the global structural information, the reconstruction 

improves the robustness of traditional pointwise lineshape fitting in 

extended regions of the momentum space, when used as an initial 

guess, because BS calculations may exhibit appreciable momentum- 

dependent deviations from experimental data that prevent them from 

being a sufficiently good starting point. Pointwise fitting in turn acts 

as the refinement of local details not explicitly included in the 
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Fig. 5 | Local BS parameters of WSe2. a, The first valence band of 2H-WSe2, with 

constant-energy contours, from LDA-DFT calculation. The patches overlaid in 

color around high-symmetry points K and M ′are from reconstruction (with 

LDA-DFT as the initialization). b,c, Patch around the M ′-point, a saddle point in 

the dispersion surface, visualized in 3D (b) and 2D (c). The energy gap at M ′due 

 
 

to SOC results in the energy difference ΔE  ′ . d,e, Patch around the K-point, 

the energy maximum of the valence band, visualized in 3D (d) and 2D (e). The 

SOC results in the energy gap ΔE . The outcome of fitting to a trigonal 

warping (TW) model around K from a k⋅p theory model28 is shown in e. 

 
 

 

probabilistic reconstruction model, which prioritizes efficiency. This 

sequential approach recovers large regions in the Brillouin zone at high 

energy resolution, without laborious hand-tuning of the fitting param- 

eters per photoemission spectrum. Adopting this approach to WSe2, 

we first recovered a compendium of local BS parameters (Supplemen- 

tary Table 4). The trigonal warping parameters of the first two valence 

bands around the K-point are 5.8 eV Å3 and 3.9 eV Å3, respectively, 

confirming the magnitude difference between these spin-split bands 

predicted by theory28. The warping signature extends further to high- 

energy bands. Dispersion fitting around the saddle point M (and M) 
of the BS reveals that the gap opened by the spin–orbit interaction 

extends beyond it anisotropically on the dispersion surfaces, with the 

minimum gap at 338 meV, markedly larger than in the DFT results, 

which predict degeneracy28. We expect this observation to contribute 

to the spin-dependent optical absorption due to the association of the 

saddle point, in energy dispersion, with a van Hove singularity28,42. 

In addition to WSe2, we performed BS reconstruction on two other 

photoemission datasets for other classes of material. The first dataset 

is from bismuth tellurium selenide (Bi2Te2Se), a topological insulator, 
measured using the same laboratory photoemission set-up (Fig. 6a–e) as 

(Gaussian and paraboloid) to initialize the MRF reconstruction, the 

outcome demonstrates correct discrete momentum–space symmetry 

and details of energy dispersion down to the concave-shaped hexagonal 

warping in the band energy contours around the Dirac point43. Four 

energy bands, including the two low-energy valence bands, a surface- 

state energy band, and a partially occupied conduction band, were 

recovered using our approach for Bi2Te2Se. The second is the bulk gold 

(Au) photoemission dataset measured at a synchrotron X-ray source 

(Fig. 6f,g). We used DFT calculations as the initialization to reconstruct 

four of the bulk energy bands, which are usually very challenging to 

extract by hand-tracing or parametric function-fitting, due in part to 

blurring (kz dispersion) from the 3D characteristics of the electrons in 

the metallic bulk. Further discussions on these two materials and their 

band reconstructions are provided in Supplementary Section 3. 

Discussion 
The reconstruction approach described here provides a quantitative 

connection between empirical band dispersion ( Eemp) obtained from 
photoemission band mapping and the theoretical counterparts 
( Etheory) through various orders of momentum-dependent ‘perturba- 

for the WSe2 dataset. Although we used only simple numerical functions 
b 

tions’ ( ΔE(n)). The connection may be expressed as 
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Fig. 6 | Band reconstruction for Bi2Te2Se and Au(111). a, 3D view of the 

photoemission band-mapping data of the topological insulator Bi2Te2Se around 

the Dirac point (DP). b, The energy bands near the DP are labeled in a 2D data 

slice through the DP. CB, conduction band; VB, valence band; SS, surface state. 

c, The outcome of reconstruction (after smoothing) is superimposed on the 

pre-processed data. d,e, Momentum-resolved reconstruction, shown in 2D 

 
(d) and 3D (e), where the color map represents the normalized energy values 

within each band. f, Experimental photoemission data for Au(111), shown with 

orbital character labels (s, p, d) of the energy bands, and the Fermi energy EF. 

g, Reconstruction of some of the d bands of Au(111), along with the theoretical 

calculations used for initialization. 
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b b b b b 

= Etheory(k, Σ𝒟 + ∑ ΔE(n)(k, Σ𝒟 

results here demonstrate that this formulation leads to practical band 

reconstruction, which recovers the accumulated perturbations (ΔEb) 
b 

n 
b in equation (3) for every experimentally resolvable energy band. The 

= Etheory(k, Σ𝒟 + ΔE  (k, Σ𝒟. 
b 

(3) 

In equation (3), b is the band index, Σ represents electron self-energy, 

the zeroth-order term (ΔE(0)) means a rigid shift, and higher-order 

outcome with current reconstruction accuracy and stability should 

assist interpretation of deep-lying bands, parametrizing multiband 

Hamiltonian models44. The data size reduction by over 5,000 times 

from 3D band-mapping data to geometric features vectors (Methods) 

facilitates database integration37,45. 
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Apart from the benefits, we want to outline three limitations of our 

reconstruction approach. First, the reconstruction approach does not 

work ab initio and requires knowing the number of energy bands, Nb, as 

implicated by equation (3) for an indexed band (b = 1, 2, ..., Nb). Although 

in simple datasets with up to several bands, Nb can be estimated using 

prior knowledge of the material or from visual inspection, correctly 

estimating Nb in complex datasets still requires calculated BSs. Second, 

when the electron self-energy modulation is substantial, separating 

the so-called bare-band dispersion (that is, single-particle dispersion) 

from the quasiparticle dispersion is needed to understand the material 

physics46. This requires re-evaluating the BS reconstruction concept 

and considering the full spectral function (Supplementary Section 

1.1) explicitly to account for non-standard lineshapes. Nevertheless, 

the outcome of our current approach may act as a trial solution for 

disentangling the bare-band dispersion relation from the electron 

self-energy46. Because the local connectedness assumption in equa- 

tion (2) remains largely valid, our reconstruction may still recover 

the quasiparticle dispersion. We demonstrate this in Supplementary 

Fig. 10 using simulated photoemission data with a kink anomaly, a 

strong modification of dispersion from electron self-energy5,6. Third, 

an appropriate initialization may be expensive or impossible to obtain, 

either due to the computational cost, if higher-level theories (such as 

DFT with hybrid functionals and GW) are required, or due to the com- 

plexity of the materials system, including undetermined microscopic 

interactions, sample defects or structural disorder, creating strong 

intensity blurring from kz dispersion and so on. These scenarios will 

remain challenging for band reconstruction. 

Besides our demonstrations, we anticipate additional use cases. 

These include (1) online monitoring47 of band-mapping experiments 

in the study of materials’ phase transitions48 or functioning devices49, 

where changes in atomic structure or carrier mobility are often accom- 

panied by detectable changes in the electronic structure (including band 

dispersion), resulting in I(k, E, t) with time (t) dependence in addition 

to momentum (k) and energy. There is also (2) spatial mapping of BS 

variations for electronic devices via scanning photoemission measure- 

ments50,51, resulting in I(k, E, x) with spatial (x) dependence. In cases (1) 

and (2), a fast reconstruction and evaluation framework may be used in 

a feedback loop to steer or optimize experimental conditions. The next 

use case is (3) implementation of the reconstruction across various mate- 

rials and to band-mapping data7 conditioned on external parameters, 

including temperature, photon energy, dynamical time delay, and spin 

as resolved quantities, which will generate comprehensive knowledge 

about the (non)equilibrium electronic structure of materials to bench- 

mark theories. Moreover, the reconstruction method is (4) transferable 

to extracting the band dispersion of other quasiparticles (phonons52, 

polaritons53 and so on54) in periodic systems, given the availability ofcor- 

responding multidimensional datasets. Finally, (5) the analogy between 

band mapping and spatially resolved spectral imaging, which produces 

location-dependent spectra, or I(x, y, E) suggests that the reconstruction 

algorithm may find use in teasing out the spatial (x, y) variation of the 

spectral shifts, complementary to the outcome of clustering algorithms55. 

The increasing amount of publicly accessible and reusable data- 

sets from materials-science communities45 motivates future extensions 

to the model with other types of informative prior that account for 

the full complexity of the physical signal while maintaining computa- 

tional efficiency. Overall, the multidisciplinary methodology provides 

an example of building next-generation high-throughput materials- 

characterization toolkits combining learning algorithms with physical 

knowledge56 to arrive at a comprehensive understanding of materials 

properties that has been unattainable so far. 

Methods 

 

and 500 kHz and a METIS 1000 (SPECS) momentum microscope featur- 

ing a delay-line detector coupled to a time-of-flight drift tube8,57. The 

experiment captures photoelectrons directly in their 3D coordinates, 

(kx, ky, E)7,8. Single-crystal samples of WSe2 (>99.995% pure) were pur- 

chased from HQ Graphene and were used directly for measurements 

without further purification. Before measurements, the WSe2 samples 

were attached to the Cu substrate with conductive epoxy resin (EPO- 

TEK H20E). The samples were cleaved by cleaving pins attached to the 

sample surface upon transfer into the measurement chamber, which 

operated at an ambient pressure of 10−11 mbar during photoemission 

experiments. No effect of surface termination was observed in the 

measured WSe2 photoemission spectra, similar to previous experimen- 

tal observations11,26. For the valence-band-mapping experiments, the 

energy focal plane of the photoelectrons within the time-of-flight drift 

tube was set close to the top valence band. Although effects of sample 

degradation have been reported27 during the course of long-duration 

angular scanning in ARPES measurements, with our high-repetition- 

rate photon source9 and the fast electronics of the momentum micro- 

scope, band mapping of WSe2 achieves a sufficient signal-to-noise ratio 

for valence-band reconstruction within only tens of minutes of data 

acquisition, without the need for angular scanning and subsequent 

reconstruction from momentum–space slices. 

 
Data processing and reconstruction 

The raw data, in the form of single-electron events recorded by the 

delay-line detector, were pre-processed using home-developed soft- 

ware packages58. The events were first binned to the (kx, ky, E) grid with 

dimensions of 256 × 256 × 470 to cover the full valence-band range in 

WSe2 within the projected Brillouin zone (PBZ), which amounts to a 

pixel size of ~0.015 Å−1 along the momentum axes and ~18 meV along 

the energy axis. The bin sizes are within the limits of the momentum 

resolution (<0.01 Å−1) and energy resolution (<15 meV) of the photo- 

electron spectrometer59. 

Data binning was carried out in conjunction with the necessary 

lens distortion correction60 and calibrations, as described in ref. 58. 

The outcome provided a sufficient level of granularity in momentum 

space to resolve the fine features in band dispersion while achieving 

higher signal-to-noise ratio than when using single-event data directly. 

Afterwards, we applied intensity symmetrization to the data along 

the six-fold rotation symmetry and mirror symmetry axes11 of the 

photoemission intensity pattern in (kx, ky) coordinates, followed by 

contrast enhancement using the multidimensional extension of the 

contrast limited adaptive histogram equalization (MCLAHE) algorithm, 

where the intensities in the image are transformed by a look-up table 

built from the normalized cumulative distribution function of local 

image patches29. Finally, we applied Gaussian smoothing to the data 

along the kx, ky and E axes with s.d. of 0.8, 0.8 and 1 pixels (or ~0.012 Å−1, 

0.012 Å−1, and 18 meV), respectively. 

After data pre-processing, we sequentially reconstructed every 

energy band of WSe2 from the photoemission data using the MAP 

approach described in the main text. The reconstruction requires tuning 

of three hyperparameters: (1) momentum scaling and (2) the rigid 

energy shift to coarse-align the computed energy band, for example, 

from DFT, to the photoemission data, and (3) the width of the NN Gauss- 

ian prior (η in equation (2)). Hyperparameter tuning is also carried out 

individually for each band to adapt to a specific environment. An exam- 

ple of hyperparameter tuning is given in Supplementary Fig. 4. The MAP 

reconstruction method involves optimization of the band-energy ran- 

dom variables, {Ẽi, j }, to maximize the posterior probability, p = p({E ̃
i, j }𝒟, 

or to minimize the negative log-probability loss function, ℒ ∶= − log p, 
obtained from equation (2) as is used in our actual implementation: 

Band-mapping measurements of WSe2 
Multidimensional PES experiments were conducted with a laser-driven, 

 
ℒ({E 

 
}𝒟 = − ∑ log I(k 

 
, k   , E 

 
𝒟+ ∑ (Ei, j 

2 

− El, m 𝒟 
 
+ const. (4) 

high-harmonic-generation-based XUV light source9 operating at 21.7 eV 
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We implemented the optimization using a parallelized version 

of the iterated conditional mode61 method in TensorFlow62 to run on 

multicore computing clusters and GPUs. The parallelization involves 

a checkerboard coloring scheme (or coding method) of the graph 

nodes63 and subsequent hierarchical grouping of colored nodes, which 

allows alternating updates on different subgraphs (that is, subsets of 

the nodes) of the MRF during optimization. Typically, the optimiza- 

tion process in the reconstruction of one band converges within and 

therefore is terminated after 100 epochs, which takes ~7 s on a single 

NVIDIA GTX980 GPU for the above-mentioned data size. Details on the 

parallelized implementation are provided in Supplementary Section 1. 

In addition, because symmetry information is not explicitly included 

in the MRF model, the reconstructed bands generally require further 

symmetrization, such as refinement or post-processing, to be ready 

for database integration. 

We have described our approach of using BS calculations to initial- 

ize the MAP optimization as a warm start. The term ‘warm start’ in the 

context of numerical optimization generally refers to the initialization 

of an optimization using the outcome of an associated but more solv- 

able problem (for example, a surrogate model) obtained beforehand 

that yields an approximate answer, instead of starting from scratch 

(cold start). Warm-starting an optimization improves the effective use 

of prior knowledge and its convergence rate39. In the current context, 

we regard the BS reconstruction from photoemission band-mapping 

data as the optimization problem to warm start, and the outcome 

from an electronic-structure calculation can produce a sufficiently 

good approximate to the solution of the optimization problem. For 

WSe2, straightforward DFT calculations with semi-local approximation 

(which in itself involves explicit optimizations such as geometric opti- 

mization of the crystal structures) are sufficient, but our approach is 

not limited to DFT. Therefore, the use of ‘warm start’ in our application 

is conceptually well-aligned with the origin of the term. 

To validate the MAP reconstruction algorithm in a variety of sce- 

narios, we used synthetic photoemission data where the nominal 

ground-truth BSs are available. The BSs are constructed using analytic 

functions, model Hamiltonians or DFT calculations. The initializations 

are generated by tuning the numerical parameters used to generate the 

ground-truth BSs. The procedures and results are presented in Sup- 

plementary Section 2. In simple cases, such as single or well-isolated 

bands, the reconstruction yields a close solution to the ground truth, 

even with a flat band initialization. In the more general multiband 

scenario with congested bands and band crossings (or anti-crossings), 

an approximate dispersion (or shape) of the band and the crossing 

information is required in the initialization (warm start) to converge 

to a realistic solution. We further tested the robustness of the initializa- 

tions by (1) scaling the energies of the ground truth and (2) using DFT 

calculations with different exchange-correlation (XC) functionals, to 

capture sufficient variability of available BS calculations in the real 

world. We quantify the variations in the initializations and the perfor- 

mance of the reconstruction using the average error (equation (9) or 

Fig. 4b), calculated with respect to the ground truth. Among the differ- 

ent numerical experiments, we find that the optimization converges 

consistently to a set of bands that better match the experimental data 

than the initialization. This is manifested in the fact that the average 

errors of the initializations are reduced to a similar level in the corre- 

sponding reconstruction outcomes, a trend seen over all bands, regard- 

less of their dispersion. In the synthetic data with an energy spacing 

of ~18 meV, the average error in the reconstruction is on the order of 

40–50 meV for each band, which amounts to an average inaccuracy of 

<3 bins along the energy dimension at a momentum location. The inac- 

curacy is, however, dependent on the bin sizes used in pre-processing 

and the fundamental resolution in the experiment. We have made the 

code for the MAP reconstruction algorithm and the synthetic data 

generation publicly accessible from the online repository Fuller64 for 

broader applications. 

Visualization strategies 

Band-mapping and BS data contain unique multidimensional data 

structures in materials science that are often presented with specific 

visualizations motivated by the underlying solid-state physics and 

symmetry properties. In this Article we select a fixed set of 2D and 3D 

visualization techniques to illustrate their links and allow comparison 

with other photoemission studies of the same materials. Typically, 

ARPES data6 of the form I(E, k) are sampled and visualized along a par- 

ticular path (the k-path65) in momentum space26,27, where only specific 

high-symmetry positions are labeled with capital letters3. A canonical 

k-path exists for each space group symmetry setting65. Photoemission 

band mapping generates datasets with a dimensionality of three or 

higher, and often contains a lower symmetry (in intensity I) as a result 

of the photoemission matrix elements20 and the experimental condi- 

tions. These factors lead to more flexibility in data representation58 

and motivate the use of alternate k-paths that capture the complexity 

of the photoemission spectra. In Fig. 1c–f for WSe2 and Fig. 6a–c for 

Bi2Te2Se, we combine 3D volumetric rendering and 2D k-path views 

to illustrate both the data symmetry and the intensity modulations 

present in the data. 

To visualize the band dispersion surfaces, Eb(kx, ky) (b = 1, 2, ...), we 

combine 3D stacked surfaces and 2D image sequences, as exemplified 

in Fig. 2b,d for WSe2 and Fig. 6d,e for Bi2Te2Se. This paired visualiza- 

tion approach balances the strengths and shortcomings of different 

viewpoints to achieve a comprehensive representation of the data type. 

The 3D stacked surface representation highlights the entirety and com- 

plexity of the data, but often contains occluded regions imperceptible 

from a fixed viewing direction. The 2D-image-sequence representation 

includes all energy dispersion information, yet loses the inter-relation- 

ship on the energy scale between energy bands, which matters in the 

event of (anti)crossings. In combining these two approaches, we typi- 

cally choose the same color map and scale to maintain referenceability 

between the two representations. For each energy band, the full color 

scale is used to cover its energy range, becoming the normalized energy 

(norm. ener.) scale, which illustrates the local detail of the dispersion 

that otherwise may be hard to discern. 

 
BS calculations 

Electronic BSs were calculated within (generalized) DFT using the 

LDA66,67, the generalized-gradient approximation (GGA-PBE)68 and GGA- 

PBEsol69), and the hybrid XC functional HSE0670, which incorporates a 

fraction of the exact exchange. All calculations were performed with 

the all-electron, full-potential numeric-atomic orbital code, FHI-aims71. 

They were conducted for the geometries obtained by fully relaxing the 

atomicstructure with the respective XCfunctionaltokeepthe electronic 

and atomic structures consistent. SOC was included in a perturbational 

fashion72. The momentum grid used for the calculation was equally sam- 

pled with a spacing of 0.012 Å−1 in both kx and ky directions, which covers 

the irreducible part of the first Brillouin zone at kz = 0.35 Å−1, estimated 

using the inner potential of WSe2 from a previous measurement11. The 

calculated BS is symmetrized to fill the entire hexagonal Brillouin zone 

used to initialize the BS reconstruction and synthetic data generation. We 

note here that, for MAP reconstruction, the momentum grid size used in 

the theoretical calculations (such as DFT at various levels as used here) 

need not be identical to that of the data (or instrument resolution), and 

in such cases an appropriate upsampling (or downsampling) should be 

applied to the calculation to match the momentum resolution. Further 

details are presented in Supplementary Section 4. 

 

BS informatics 

The shape feature-space representation of each electronic band is 

derived from the decomposition 

 
Eb (k𝒟 = ∑ alϕl(k𝒟 = a ⋅ Φ. (5) 
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Here, k = (kx, ky) represents the momentum coordinate, Eb(k) is the 

single-band dispersion relation (for example, the dispersion surface in 

3D), and al and ϕl(k) are the coefficient and its associated basis term, 

respectively. The latter are grouped separately into the feature vector, 

 

where Nk is the number of momentum grid points and the summation 

runs over the PBZ. In addition, we construct the relative approximation 

error, ηrel, following the definition of the normwise error74 in matrix 

computation: 

a = (a1, a2, ...) and the basis vector, Φ = (ϕ1, ϕ2, ...). The orthonormality 
‖ ‖

 

of the basis is guaranteed within the PBZ of the material:  
η (E 

 
, E 𝒟 =  ‖

Eapprox − Erecon‖ 2 . (10) 
 

 

rel approx recon ‖E ‖ 

∫ 
k∈ΩPBZ 

ϕm(k𝒟ϕn (k𝒟dk = δmn . (6) 
recon  2 

 
 

Equations (9) and (10) are used to compute the curves in Fig. 3b 

For the hexagonal PBZ of WSe2, the basis terms are hexagonal ZPs 

constructed using a linear combination of the circular ZPs via Gram– 

Schmidt orthonormalization within a regular (that is, equilateral and 

equiangular) hexagon35. A similar method can be used to generate the 

ZP-derived orthonormal basis adapted to other boundary conditions35. 

The representation in feature space34 provides a way to quantify the 

difference (or distance) d between energy bands or BSs at different 

resolutions or scales, without additional interpolation. To quantify the 

shape similarity between energy bands Eb and Eb′, we calculate the 

cosine similarity using the feature vectors 

a ⋅ a′ 
dcos(Eb, Eb′ 𝒟 = 

|a| ⋅ |a′ | 
, (7) 

 
where the cosine similarity is bounded within [−1, 1], with a value of 0 

describing orthogonality of the feature vectors and a value of 1 and −1 

describing parallel and anti-parallel relations between them, respec- 

tively, both indicating high similarity. The use of cosine similarity in fea- 

ture space allows comparison of dispersion while being unaffected by 

their magnitudes. In comparing the dispersion between single energy 

bands using equation (7), the first term in the polynomial expansion, 

or the hexagonal equivalent of the Zernike piston73, is discarded as it 

only represents a constant energy offset (with zero spatial frequency) 

instead of dispersion, which is characterized by a combination of finite 

and nonzero spatial frequencies. 

The electronic BS is a collection of energy bands  EB  = {Eb  } 

(i = 1, 2, ...). To quantify the distance between two BSs, EB  = {Eb } and 

EB = {Eb }, containing the same number of energy bands while ignoring 
their global energy difference, we first subtract the energy grand mean 

(that is, the mean of the energy means of all bands within the region of 

the BS for comparison). We then compute the Euclidean distance, or 

the ℓ2-norm, for the ith pair of bands, db, i: 

as a function of the number of basis terms included in the approxima- 

tion. The relevant code for the representation using hexagonal ZPs 

and the computation of the metrics is also accessible in the public 

repository Fuller64. 

 
Data reduction 

The raw data and intermediate results are stored in the HDF5 format58. 

The file sizes quoted here for reference are calculated from storage 

as double-precision floats or integers (for indices). The photoemis- 

sion band-mapping data of WSe2 (256 × 256 × 470 bins) have a size of 

~235 MB (240,646 kB) after binning from single-event data (7.8 GB or 

8,176,788 kB). The reconstructed valence bands at the same resolution 

occupy ~3 MB (3,352 kB) in storage, and the size further decreases to 

46 kB when we store the shape feature vector associated with each 

band. If only the top-100 coefficients (ranked by the absolute values of 

their amplitudes) and their indices in the feature vectors are stored, the 

data amounts to 24 kB. For the case of WSe2, the top-100 coefficients 

can approximate the band dispersion with a relative error (equation 

(10)) of <0.8% for every energy band, as shown in Supplementary Fig. 14. 

Data availability 
The electronic-structure calculations for WSe2 are available from the 

NOMAD repository (https://doi.org/10.17172/NOMAD/2020.03.28-1)75. 

The raw and processed photoemission datasets used in this work for 

WSe2 (https://doi.org/10.5281/zenodo.7314278)76, Bi2Te2Se (https://doi. 

org/10.5281/zenodo.7317667)77 and Au(111) (https://doi.org/10.5281/ 

zenodo.7305241 including DFT calculation)78 are available on Zenodo. 

Source data are provided with this paper. 

Code availability 
The code developed for band structure reconstruction, including 

examples, is available on GitHub (https://github.com/mpes-kit/fuller)79. 
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