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GLOBAL BOUNDED CLASSICAL SOLUTIONS TO A PARABOLIC-ELLIPTIC

CHEMOTAXIS MODEL WITH LOCAL SENSING AND ASYMPTOTICALLY

UNBOUNDED MOTILITY

JIE JIANG AND PHILIPPE LAURENÇOT

Abstract. Global existence and boundedness of classical solutions are shown for a parabolic-elliptic
chemotaxis system with local sensing when the motility function is assumed to be unbounded at
infinity. The cornerstone of the proof is the derivation of L∞-estimates on the second component of
the system and is achieved by various comparison arguments.

1. Introduction

Let Ω be a smooth bounded domain of RN , N ≥ 1, and consider the initial-boundary value problem

∂tu = ∆
(

uγ(v)
)

, (t, x) ∈ (0,∞)× Ω, (1.1a)

0 = ∆v − v + u, (t, x) ∈ (0,∞)× Ω, (1.1b)

∇
(

uγ(v)
)

· n = ∇v · n = 0, (t, x) ∈ (0,∞)× ∂Ω, (1.1c)

u(0) = uin, x ∈ Ω, (1.1d)

where n denotes the outward unit normal vector field to ∂Ω.
The system (1.1) is a classical parabolic-elliptic simplification of the well-known fully parabolic

system of partial differential equations named after Keller & Segel, which is originally proposed in
their seminal work [20] to model the chemotaxis phenomenon due to a local sensing mechanism:

∂tu = ∆(uγ(v)), (t, x) ∈ (0,∞)× Ω, (1.2a)

τ∂tv = ∆v − v + u, (t, x) ∈ (0,∞)× Ω, (1.2b)

∇
(

uγ(v)
)

· n = ∇v · n = 0, (t, x) ∈ (0,∞)× ∂Ω, (1.2c)

(u, τv)(0) = (uin, τvin), x ∈ Ω, (1.2d)

Here, u and v represent the cell density and the chemical concentration, respectively. The cellular
motility γ is a positive function on (0,∞) and its dependence on v accounts for the influence of the
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chemical signal on the motion of cells which is better seen after expanding

∆(uγ(v)) = div
(

γ(v)∇u+ uγ′(v)∇v) :

the diffusion of cells in space is governed by the values of γ(v), while the (chemotactic) bias on
their motion induced by the signal is attractive when γ′(v) < 0 and repulsive when γ′(v) > 0. More
recently, an extended model involving a third component n accounting for the nutrient level has been
introduced in [23] and reads:

∂tu = ∆(uγ(v)) + θuf(n), (t, x) ∈ (0,∞)× Ω, (1.3a)

τ∂tv = ∆v − v + u, (t, x) ∈ (0,∞)× Ω, (1.3b)

∂tn = ∆n− θuf(n), (t, x) ∈ (t, x) ∈ (0,∞)× Ω, (1.3c)

also supplemented with no-flux boundary conditions and initial conditions. In [23], the motility γ is
assumed to be a positive non-increasing function, which reflects a repressive effect of the signal on
cellular motility. Formation of spatially periodic patterns are shown by numerical simulations and
experimental analysis in a growing bacteria population merely under this motility control. We note
that setting θ = 0 in (1.3) cancels the coupling between u and n and we then recover the system (1.2)
for (u, v).
The mathematical analysis of the Keller–Segel-type system (1.2) and its variants (such as (1.1)

or (1.3)) has attracted a lot of interest in recent years. Besides the quasilinear structure of the
cell’s equation (1.2a) coupling in a nonlinear way the dynamics of the cells and the signal, the
cells’ equation (1.2a) features a (signal-dependent) degeneracy when γ vanishes, which is likely to
occur at infinity (γ(s) = s−k, k > 0, or γ(s) = e−χs, χ > 0, for instance) or at zero (γ(s) = sk,
k > 0, for instance). In that case, equation (1.2a) is a second-order degenerate quasilinear parabolic
equation which, unlike the celebrated porous medium equation ∂tz − ∆zm = 0, m > 1, does not
have a variational structure in general. Nevertheless, energy methods turn out to be adequate in
some special cases which we describe now. When γ ∈ W 1,∞(0,∞) ranges in a compact subinterval of
(0,∞), thereby excluding the aforementioned possible degeneracy, and Ω is convex, the existence of a
global bounded solution to (1.2) is shown in space dimension N = 2 in [26], along with the existence
of global weak solutions in higher space dimensions N ≥ 3. When the motility γ is the specific
algebraically decaying function γ(s) = c0s

−k with c0 > 0, it is proved in [29] that global bounded
classical solutions whatever the value of k > 0, provided that c0 is sufficiently small. The smallness
condition on c0 is subsequently relaxed in [1,27] when τ = 0 and k < 2

N−2
. When γ(s) = 1/(c+ sk),

c ≥ 0, global weak solutions to (1.2) are constructed in [7] when N ∈ {1, 2, 3} and k ∈ (0, kN) with
k1 = ∞, k2 = 2, and k3 = 4/3. When the motility function γ is a negative exponential, γ(s) = e−χs

with χ > 0, global existence of weak solutions is established in [6] in arbitrary space dimensions
N ≥ 1. Moreover, when N = 2, there is a threshold value of ‖uin‖1, which is exactly the same as
that of the minimal Keller–Segel system according to [19], separating two different dynamics of (1.2):
global classical solutions to (1.2) exist when ‖uin‖1 lies beyond the threshold value, while there are
initial conditions with ‖uin‖1 above the threshold value for which the corresponding classical solution
to (1.2) becomes unbounded in finite or infinite time.
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In a series of works [8–14, 16–18, 22, 24, 25, 28], a different approach is developed and proved to
be efficient in generic cases. The main idea is to exploit the specific structure of (1.2a) to derive
a quasilinear degenerate parabolic equation involving a non-local term for an auxiliary unknown
function. A systematic argument based on comparison techniques, monotonicity tricks, iteration
procedures as well as applications of abstract semi-group theory gives rise to advanced theories on
well-posedness and qualitative behavior of the solutions.
Let us summarize the results obtained in the literature for the initial-boundary value problem (1.2)

or its variant (1.3) (also supplemented with no-flux boundary conditions) by this alternative method.
When τ > 0, it is proved in [12,14,18] that there exists a unique global classical solution to (1.2) for
a large class of non-negative initial conditions under a rather general assumption on γ:

γ ∈ C3((0,∞)), γ > 0 on (0,∞), (1.4)

γ′ ≤ 0 on (0,∞), (1.5)

and
lim sup
s→∞

γ(s) < 1/τ. (1.6)

The monotonicity (1.5) of γ is actually not needed, as shown recently in [28], where the existence of
global classical solutions to (1.2) is established under the only assumptions (1.4) and (1.6). In the
same vein, global weak solutions are constructed in [22] when γ satisfies (1.4) and sups>0 γ(s) < 1/τ ,
and in [8] when γ satisfies (1.4) and decays at most algebraically at infinity. All these existence results
share the property that no finite time blowup occurs in (1.2), a feature which significantly differs
from the minimal Keller–Segel system or the logarithmic Keller–Segel system which both involve a
linear cellular diffusion and are well-known to trigger finite time singularities.
Furthermore, the boundedness of global solutions to (1.2) is shown to be closely related to the

decay property of γ at infinity. Specifically, for γ satisfying (1.4), (1.5), and vanishing at infinity

lim
s→∞

γ(s) = 0, (1.7)

it is proved that exponential decay is critical in space dimension N = 2 in the following sense: there
exist unbounded solutions to (1.2) when γ(s) = e−χs for some χ > 0 and the L1-norm of uin is
sufficiently large [12,19], whereas all solutions to (1.2) are bounded if γ decays slower than a negative
exponential function; that is, γ satisfies

lim inf
s→∞

eχsγ(s) > 0

for all χ > 0, typical examples including γ(s) = s−k1 log−k2(1 + s) with (k1, k2) ∈ (0,∞)× [0,∞), or
γ(s) = e−sα with 0 < α < 1. When N ≥ 3 and γ(s) ∼ s−k, boundedness of global solutions holds true
for k < N/(N − 2) [13, 18], which in particular improves previous results for the specific case τ = 0
and γ(s) = s−k by substantially enlarging the admissible range of k. Recently, the above boundedness
results have been improved in [28] by removing the monotonicity requirement (1.5) and replacing the
asymptotically vanishing property (1.7) by the asymptotically smallness assumption (1.6). Moreover,
if γ simply satisfies (1.4) and is bounded by positive constants from above and below, so that (1.2a)
is uniformly parabolic, existence of uniform-in-time bounded solution is also proved in [28] in any
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bounded domain Ω in arbitrary space dimension N ≥ 1, thus improving the corresponding one in [26]
obtained in two-dimensional convex domains.
As for the initial-boundary value problem (1.1), which is recovered from (1.2) by setting formally

τ = 0, the existence and boundedness/unboundedness results available for (1.2) are still true under
the same assumptions by setting 1/0 = ∞ in (1.6). Indeed, global existence of classical solutions is
proved in our previous work [17] for motility functions γ satisfying (1.4) and such that γ ∈ L∞(s,∞)
for any s > 0. Note that, thanks to the continuity (1.4) of γ, the latter is obviously equivalent to

lim sup
s→∞

γ(s) <∞. (1.8)

According to the above discussion, the studies of (1.1) and (1.2) performed up to now require
the motility γ to be a bounded function on [s,∞) for any s > 0, as implied by, either (1.6), or the
assumption that γ ranges in a compact subinterval of (0,∞). This raises the natural question of the
dynamics of (1.1) and (1.2) when γ becomes unbounded near infinity, and the main purpose of the
present contribution is a detailed analysis of the dynamics of (1.1) in that case.
We first show that the initial-boundary value problem (1.1) has a unique global bounded classical

solution when γ is, either non-decreasing, or asymptotically unbounded.

Theorem 1.1. Assume that γ satisfies (1.4), as well as, either γ′ ≥ 0 in (0,∞), or

lim sup
s→∞

γ(s) = ∞. (1.9)

Suppose that uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0, where

W 1,∞
+ (Ω) :=

{

z ∈ W 1,∞(Ω) : z ≥ 0 in Ω
}

and we use the short notation ‖ · ‖p for the norm ‖ · ‖Lp(Ω) with p ∈ [1,∞].
Then there is a unique non-negative global classical solution

u ∈ C
(

[0,∞)× Ω̄
)

∩ C1,2
(

(0,∞)× Ω̄
)

, v ∈ C1,2
(

(0,∞)× Ω̄
)

,

to (1.1) which satisfies the conservation of matter

‖u(t)‖1 = m = ‖uin‖1, t ≥ 0, (1.10)

and is uniformly bounded; that is,

sup
t∈(0,∞)

(‖u(t)‖∞ + ‖v(t)‖∞) <∞. (1.11)

Combining the outcome of Theorem 1.1 with [17, Theorem 1.1] provides the existence of a unique
non-negative classical solution to (1.1) under the sole assumption (1.4) on γ, as stated now for future
reference.

Corollary 1.2. Assume that γ satisfies (1.4) and that uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0. Then

there is a unique non-negative global classical solution to (1.1) which satisfies the conservation of
matter (1.10).
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Another consequence of Theorem 1.1 is the boundedness of the non-negative global classical solu-
tion to (1.1) given by Corollary 1.2 in the chemorepulsive case γ′ ≥ 0. The dynamics is more complex
in the chemoattractive case γ′ ≤ 0 as the solution to (1.1) may blow up in infinite time according
to [10].
We next supplement Theorem 1.1 with explicit L∞-bounds on u or v when γ is endowed with

additional properties. First, define the (unbounded) linear operator A on L2(Ω) by

D(A) :=
{

z ∈ H2(Ω) : ∇z · n = 0 on ∂Ω
}

,

A[z] := z −∆z, z ∈ D(A).
(1.12)

Then v = A−1[u] according to (1.1b) and (1.1c) and vin := A−1[uin] ∈ W 3,p(Ω) for any 1 ≤ p < ∞
by standard regularity theory of elliptic equations. In particular, vin is bounded and positive in Ω̄,
the latter following from Lemma 2.2 below while the former is ensured by Sobolev embeddings.
Now, we show that explicit upper and lower bounds on v are available under a local monotonicity

assumption on γ, implying the existence of an invariant region for the second component v.

Theorem 1.3. Assume that γ satisfies (1.4) and that uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0. Let

(u, v) be the corresponding non-negative classical solution to (1.1) given by Corollary 1.2. If

γ′ ≥ 0 on
[

min
Ω̄

{vin},max
Ω̄

{vin}
]

, (1.13)

then the solution to (1.1) satisfies the uniform bound (1.11). More precisely,

min
Ω̄

{vin} ≤ v(t, x) ≤ max
Ω̄

{vin}, (t, x) ∈ [0,∞)× Ω̄.

In the same vein, we have the following explicit upper bounds on u.

Theorem 1.4. Assume that γ satisfies (1.4), along with (1.13), and that uin ∈ W 1,∞
+ (Ω) with

m = ‖uin‖1 > 0. Let (u, v) be the corresponding non-negative global classical solution to (1.1)
provided by Corollary 1.2. Then

‖u(t)‖∞ ≤

∥

∥uinγ
(

vin
)
∥

∥

∞

γ(minΩ̄{v
in})

≤
‖uin‖∞γ

(

maxΩ̄{v
in}

)

γ(minΩ̄{v
in})

, t ≥ 0 .

Assume in addition that γ′′ ≤ 0 in
[

minΩ̄{v
in},maxΩ̄{v

in}
]

. Then ‖u(t)‖∞ ≤ ‖uin‖∞ for t ≥ 0.

We finally deal with the large time behaviour of solutions to (1.1) when γ is non-decreasing and
report that there is no pattern formation in that case, as intuitively expected in the chemorepulsive
regime.

Theorem 1.5. Assume that γ satisfies (1.4) and (1.13). Consider uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 >

0 and denote the corresponding non-negative global classical solution to (1.1) provided by Corollary 1.2
by (u, v). Then

lim
t→∞

(
∥

∥

∥

∥

u(t)−
m

|Ω|

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

v(t)−
m

|Ω|

∥

∥

∥

∥

W 1,∞

)

= 0.
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A similar stability result is proved in [1, Theorem 1.3] when γ(s) = s−k for some k ∈ (0, 1].
Their proof relies on the availability of a Liapunov functional for (1.1) when γ(s) = s−k for some
k ∈ (0, 1] which turns out to be also a Liapunov functional when γ is non-decreasing. The proof of
of Theorem 1.5 is thus the same as that of [1, Theorem 1.3], to which we refer.

The cornerstone of the proof of our existence and boundedness results is the derivation of an
upper bound for the second component v, which is achieved by a new delicate comparison argument
developed in the current contribution. Let us illustrate the difficulty to be faced and sketch the
main idea in the simple case where γ satisfies (1.4) and γ′ ≥ 0 on (0,∞). To begin with, we derive
from (1.1a)-(1.1b) the following key identity

∂tv − γ(v)∆v + vγ(v) = A−1[uγ(v)] , (t, x) ∈ (0,∞)× Ω , (1.14)

recalling that A is defined in (1.12). This identity is uncovered in [10] and has since then been used
efficiently to investigate the global existence and boundedness of classical solutions to (1.1) and its
variants, see [8,9,11–14,16–18,22,24,25,28], where an upper bound on γ is essentially used to control
the non-local source term on the right-hand side of (1.14). Indeed, supposing that γ(v) is bounded
from above on [0, T ] by some possibly time-dependent upper bound γ∗(T ) > 0, an application of the
elliptic comparison principle yields an upper control of the non-local term by a term growing linearly
as a function of v which reads

A−1[uγ(v)] ≤ γ∗(T )A−1[u] = γ∗(T )v , (t, x) ∈ [0, T ]× Ω̄ .

We also refer to [17] for a more tricky derivation of a sublinear control of this term when γ is
non-increasing on (0,∞). Then a systematic argument based on comparison techniques and Moser-
Alikakos iterations is developed in [10, 11, 17, 28] to derive estimate for v in L∞

(

(0, T )× Ω
)

.
In contrast, when γ is non-decreasing and unbounded at infinity, the non-local term features in

principle a superlinear growth with respect to v. Indeed, since γ(v) ≤ γ(‖v‖∞), it follows that

A−1[uγ(v)] ≤ γ(‖v‖∞)v , (t, x) ∈ (0,∞)× Ω ,

and thus
∂tv − γ(v)∆v + vγ(v) ≤ γ(‖v‖∞)v , (t, x) ∈ (0,∞)× Ω . (1.15)

The previous methods fail in this case due to the superlinear dependence of the right-hand side on
‖v‖∞.
To overcome this difficulty, we develop a novel approach to derive time-independent upper bounds

on v solely relying on comparison techniques. Specifically, introducing the solution V to the ordinary
differential equation

dV

dt
+ V γ(V ) = γ(‖v‖∞)V , t ≥ 0 ,

V (0) = ‖vin‖∞ ,
(1.16)

recalling that vin = A−1[uin], an immediate consequence of (1.16) is that V is a supersolution to (1.15)
and we deduce from the parabolic comparison principle that v(t, x) ≤ V (t) for (t, x) ∈ [0,∞)× Ω̄. In
particular, ‖v(t)‖∞ ≤ V (t) for t ≥ 0 and the monotonicity of γ, the non-negativity of V , and (1.16)
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entail that dV/dt = (γ(‖v‖∞) − γ(V ))V ≤ 0. As a result, we have ‖v(t)‖∞ ≤ V (t) ≤ ‖vin‖∞ for
t ≥ 0, as stated in Theorem 1.3. The lower bound in Theorem 1.3 is derived with a similar argument.
In the general case where γ satisfies (1.4) but need not be monotone, the main idea is to split

γ as a sum of its increasing and decreasing parts. A more delicate argument combining the above
technique and the monotonicity trick developed in our previous work [17] is carried out to derive the
time-independent upper bound for v; see Section 3.2. Once the upper bound for v is obtained, we
accomplish the proof according to Proposition 2.3.
The remainder of this paper is organized as follows. In Section 2, we recall the local existence result

and establish a blowup criterion, which ensures that global existence of classical solutions to (1.1) is
a direct, though far from straightforward, consequence of the boundedness of v. We then derive the
uniform-in-time boundedness of v by the new comparison technique and hence prove Theorem 1.1 in
Section 3. In addition, we discuss the continuous dependence of classical solutions of (1.1) on initial
conditions. We next derive explicit L∞-estimates for v and u in Section 4 and Section 5, respectively,
under additional conditions on γ. Finally, we study the stabilization of solutions to (1.1) and prove
Theorem 1.5 in Section 6.

2. Preliminaries

We first state the local well-posedness of (1.1), which can be proved as in [1, Lemma 3.1].

Proposition 2.1. Assume that γ satisfies (1.4) and that uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0. Then

the initial-boundary value problem (1.1) has a unique non-negative classical solution

u ∈ C
(

[0, Tmax)× Ω̄
)

∩ C1,2
(

(0, Tmax)× Ω̄
)

, v ∈ C1,2
(

(0, Tmax)× Ω̄
)

,

defined on a maximal time interval [0, Tmax) with Tmax ∈ (0,∞] which satisfies

‖u(t)‖1 = m = ‖uin‖1, t ∈ [0, Tmax). (2.1)

In addition, if Tmax <∞, then
lim

t→Tmax

‖u(t)‖∞ = ∞. (2.2)

We next recall the following lemma [15, Lemma 2.1].

Lemma 2.2. There is ω∗ > 0 depending only on Ω such that, for any f ∈ L1(Ω) satisfying

f ≥ 0 a.e. in Ω and ‖f‖1 = m,

there holds
A−1[f ] ≥ mω∗ in Ω ,

recalling that the elliptic operator A is defined by (1.12).

We now fix γ satisfying (1.4) and uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0 and denote the correspond-

ing classical solution to (1.1) defined on [0, Tmax) provided by Proposition 2.1 by (u, v). We then
infer from (1.1) that v solves

∂tv − γ(v)∆v + vγ(v) = A−1[uγ(v)], (t, x) ∈ (0, Tmax)× Ω, (2.3a)
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∇v · n = 0, (t, x) ∈ (0, Tmax)× ∂Ω, (2.3b)

v(0) = vin, x ∈ Ω, (2.3c)

where
vin = A−1

[

uin
]

. (2.4)

Observe that the properties of uin, the elliptic comparison principle, Lemma 2.2, (2.1), and (2.4)
imply that vin ∈ L∞(Ω) with ‖vin‖∞ ≤ ‖uin‖∞ and

v(t, x) ≥ v∗ := mω∗ > 0, (t, x) ∈ [0, Tmax)× Ω̄. (2.5)

We conclude this section by showing that an L∞-estimate on v on (0, T ) for some T > 0 guarantees
that Tmax ≥ T .

Proposition 2.3. Under the assumption of Proposition 2.1, if there is T > 0 such that

V(T ) := sup
[0,T ]∩[0,Tmax)

{

‖v(t)‖∞
}

<∞ , (2.6)

then Tmax ≥ T and
U(T ) := sup

[0,T ]

{

‖u(t)‖∞
}

<∞ . (2.7)

In addition, if (2.6) holds true for all T > 0 and there is V∞ > 0 such that V(T ) ≤ V∞ for all T > 0,
then there is U∞ > 0 such that U(T ) ≤ U∞ for all T > 0.

Proof. We outline the proof here since it relies on a well-established argument already described in
previous works [17, 18, 28], see also [13, 14].
First, arguing as in [17, Lemma 3.2], we derive a Hölder estimate for v in Cα

(

[0, T ]× Ω̄
)

, with a
possible dependence upon T of both the estimate and the exponent α ∈ (0, 1). Let us mention that,
as already noticed in [17], no monotonicity property of γ is needed here and the proof only requires
positive upper and lower bounds on γ(v).
The second step is the derivation of estimates for v in L∞

(

(0, T ),W 2,r(Ω)
)

for r > 1, still pos-
sibly depending on T , as well as on r. The just established Hölder continuity of v enables us to
regard γ(v)∆ as a generator of a parabolic evolution operator on Lr(Ω) for r ∈ (1,∞). Then es-
timates in L∞

(

(0, T ),W 2,r(Ω)
)

of v follows from (2.3) and applications of the abstract theory for
non-autonomous parabolic equations developed in [2–5]; see [17, Sect. 3.3 and Sect. 4.2] for detailed
proofs.
Finally, we finish the proof of Proposition 2.3 by establish estimates for u in L∞

(

(0, T ), Lr(Ω)
)

,
r ∈ [1,∞], by a bootstrap argument as done in [1]. �

3. Global existence and boundedness

The purpose of this section is two-fold: we show the global existence and uniform-in-time bound-
edness of classical solutions to (1.1), as well as their continuous dependence on initial data.
According to Proposition 2.3, it is sufficient to prove that the L∞-norm of v is bounded on [0, Tmax)

by a time-independent bound to obtain Theorem 1.1. In order to illustrate the approach we use and
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avoid some technicalities, we first provide a proof under the additional assumption that γ is non-
decreasing on (0,∞), see Section 3.1. The proof in the general case is then given in Section 3.2.

3.1. L∞-estimate on v: the non-decreasing case.

Lemma 3.1. Assume γ satisfy (1.4) and γ′ ≥ 0 on (0,∞). Then

‖v(t)‖∞ ≤ ‖vin‖∞, t ∈ [0, Tmax). (3.1)

Proof. Owing to (1.1b), the monotonicity of γ, and the non-negativity of u, there holds

uγ(v) ≤ γ(‖v‖∞)A[v] in (0, Tmax)× Ω.

Consequently, the elliptic comparison implies that

A−1[uγ(v)] ≤ γ(‖v‖∞)v in (0, Tmax)× Ω,

and it readily follows from (2.3) that v satisfies

∂tv − γ(v)∆v + vγ(v) ≤ γ(‖v‖∞)v , (t, x) ∈ (0, Tmax)× Ω , (3.2a)

∇v · n = 0, (t, x) ∈ (0, Tmax)× ∂Ω , (3.2b)

v(0) = vin , x ∈ Ω . (3.2c)

Introducing the solution V to the ordinary differential equation

dV

dt
+ V γ(V ) = γ(‖v‖∞)V , t ∈ (0, Tmax) , (3.3a)

V (0) = ‖vin‖∞ , (3.3b)

we infer from (3.2), (3.3), and the parabolic comparison principle that

v(t, x) ≤ V (t), (t, x) ∈ (0, Tmax)× Ω̄. (3.4)

In particular, for t ∈ (0, Tmax), there holds ‖v(t)‖∞ ≤ V (t) and we deduce from (3.3a), the non-
negativity of V , and the monotonicity of γ that

dV

dt
(t) + V (t)γ(V (t)) ≤ γ(V (t))V (t), t ∈ (0, Tmax).

Hence, dV/dt ≤ 0 in (0, Tmax), from which (3.1) follows after using (3.3b) and (3.4). �

3.2. L∞-estimate on v: the general case. When γ is not monotone but becomes unbounded near
infinity, the previous argument no longer works and requires to be suitably adapted. To this end, we
begin with the following auxiliary result.

Lemma 3.2. Under the assumptions (1.4) and (1.9), there is s∗ ≥ ‖vin‖∞ such that

γ(s∗) = max
s∈[v∗,s∗]

{γ(s)}, (3.5)

recalling that the lower bound v∗ on v is defined in (2.5).

We may obviously choose s∗ = ‖vin‖∞ when γ is non-decreasing.
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Proof. Let j ≥ 1 be a positive integer and set

Mj := max
s∈
[

v∗,j‖vin‖∞

]

{γ(s)},

sj := sup
{

s ∈
[

v∗, j‖v
in‖∞

]

: γ(s) =Mj

}

,

so that
γ(sj) =Mj = max

s∈
[

v∗,sj

]

{γ(s)}.

Then (Mj)j≥1 and (sj)j≥1 are non-decreasing sequences of positive real numbers and the unbound-
edness (1.9) of γ at infinity guarantees that

lim
j→∞

Mj = ∞ and lim
j→∞

sj = ∞.

Consequently,
j0 := inf{j ≥ 1 : sj ≥ ‖vin‖∞} <∞.

Setting s∗ := sj0 , it is clear that s∗ ≥ ‖vin‖∞ with

γ(s∗) = γ(sj0) =Mjs0
= max

s∈[v∗,sj0 ]
{γ(s)} = max

s∈[v∗,s∗]
{γ(s)},

and the proof is complete. �

We next define

γ′i(s) :=

{

0, s ∈ [v∗, s∗),

(γ′(s))+ = max
{

γ′(s), 0
}

, s ≥ s∗,
(3.6)

and

γ′d(s) :=

{

0, s ∈ [v∗, s∗),

−(γ′(s))− = min
{

γ′(s), 0
}

, s ≥ s∗,
(3.7)

with γi(s∗) = γd(s∗) = 0 and notice that

γi ≥ 0 ≥ γd on [v∗,∞) (3.8)

and
γ(s) = γ(s∗) + γi(s) + γd(s), s ∈ [s∗,∞). (3.9)

In addition,
γi(s) = γd(s) = 0, s ∈ [v∗, s∗]. (3.10)

We also set

Γd(s) :=

∫ s

s∗

γd(σ)dσ, s ∈ [v∗,∞), (3.11)

and deduce from (3.8) and (3.10) that

Γd(s) = 0, s ∈ [v∗, s∗],

0 ≥Γd(s) ≥ (s− s∗)γd(s) ≥ sγd(s), s ≥ s∗.
(3.12)
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With this notation, we are in a position to derive an upper bound on uγ(v).

Lemma 3.3. There holds

uγ(v) ≤ u
[

γ(s∗) + γi(‖v‖∞)
]

+A[Γd(v)] in (0, Tmax)× Ω.

Proof. Let t ∈ (0, Tmax). We first consider the case where ‖v(t)‖∞ ≥ s∗. Then, for x ∈ Ω, either
v(t, x) ≥ s∗ and it follows from (1.1b), (3.9), the monotonicity of γi and γd, and the non-negativity
of u that

u(t, x)γ(v(t, x)) =u(t, x)γ(s∗) + u(t, x)γi(v(t, x)) + u(t, x)γd(v(t, x))

≤u(t, x)γ(s∗) + u(t, x)γi(‖v(t)‖∞) + γd(v(t, x))(v −∆v)(t, x)

=u(t, x)γ(s∗) + u(t, x)γi(‖v(t)‖∞)− div(γd(v)∇v)(t, x)

+ v(t, x)γd(v(t, x)) + γ′d(v(t, x))|∇v(t, x)|
2

≤u(t, x)γ(s∗) + u(t, x)γi(‖v(t)‖∞)−∆Γd(v)(t, x) + v(t, x)γd(v(t, x)).

We next use (3.12) to arrive at

u(t, x)γ(v(t, x)) ≤ u(t, x)
[

γ(s∗) + γi(‖v(t)‖∞)
]

+A[Γd(v)](t, x).

Or v∗ ≤ v(t, x) < s∗, and there is r > 0 such v∗ ≤ v(t, y) < s∗ for all y ∈ Br(x) ⊂ Ω by the continuity
of v and (2.5). Therefore, Γd(v(t)) ≡ 0 in Br(x) by (3.12) and A[Γd(v)](t, x) = 0. Consequently,
recalling (3.5),

u(t, x)γ(v(t, x)) ≤ u(t, x)γ(s∗) ≤ u(t, x)
[

γ(s∗) + γi(‖v(t)‖∞)
]

+A[Γd(v)](t, x).

We next argue as above to conclude that, when ‖v(t)‖∞ < s∗, the inequality

u(t, x)γ(v(t, x)) ≤ u(t, x)γ(s∗) ≤ u(t, x)
[

γ(s∗) + γi(‖v(t)‖∞)
]

+A[Γd(v)](t, x)

also holds true for all x ∈ Ω. This completes the proof. �

After this preparation, we are ready to establish an L∞-estimate on v.

Proposition 3.4. Recalling that s∗ is defined in Lemma 3.2, there holds

‖v(t)‖∞ ≤ s∗, t ∈ [0, T
max

). (3.13)

Proof. It readily follows from Lemma 3.3 and the elliptic comparison principle that

A−1[uγ(v)] ≤
[

γ(s∗) + γi(‖v‖∞)
]

v + Γd(v) in (0, Tmax)× Ω.

Consequently, recalling (2.3), we realize that v satisfies

∂tv − γ(v)∆v + vγ(v) ≤
[

γ(s∗) + γi(‖v‖∞)
]

v + Γd(v), (t, x) ∈ (0, Tmax)× Ω, (3.14a)

∇v · n = 0, (t, x) ∈ (0, Tmax)× ∂Ω, (3.14b)

v(0) = vin, x ∈ Ω. (3.14c)
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We next introduce the solution V to the following ordinary differential equation

dV

dt
+ V γ(V ) =

[

γ(s∗) + γi(‖v(t)‖∞)
]

V + Γd(V ), t ∈ (0, Tmax), (3.15a)

V (0) = s∗, (3.15b)

noticing that the non-positivity (3.12) of Γd indeed guarantees that V is well-defined on [0, Tmax).
Since s∗ ≥ ‖vin‖∞ by Lemma 3.2, we deduce from (3.14), (3.15), and the parabolic comparison
principle that

‖v(t)‖∞ ≤ V (t), t ∈ (0, Tmax). (3.16)

Let T ∈ (0, Tmax). On the one hand, the continuity of v, the positivity of γ, and the non-
positivity (3.12) of Γd imply that

V (t) ≤ VT := s∗ exp

{

T

[

γ(s∗) + sup
τ∈[0,T ]

{γi(‖v(τ)‖∞)}

]}

, t ∈ [0, T ]. (3.17)

On the other hand, owing to the monotonicity of γi, it follows from (3.15a) and (3.17) that

dV

dt
+ V γ(V ) ≤

[

γ(s∗) + γi(V )
]

V + Γd(V ), t ∈ (0, Tmax). (3.18)

Now, set G(s) := Γd(s) − sγd(s) for s ≥ v∗ and notice that G(s) = 0 for s ∈ [v∗, s∗] by (3.10)
and (3.12). We infer from (3.9) and (3.18) that

d(V − s∗)+
dt

≤
[

γ(s∗) + γi(V )− γ(V )
]

V sign+(V − s∗) + Γd(V )sign+(V − s∗)

=
[

γ(s∗) + γi(V )− γ(s∗)− γi(V )− γd(V )
]

V sign+(V − s∗) + Γd(V )sign+(V − s∗)

=
(

G(V )−G(s∗)
)

sign+(V − s∗)

=
G(V )−G(s∗)

V − s∗
(V − s∗)+.

Now, since G′(s) = −sγ′d(s) ≥ 0 for s ≥ s∗, we deduce from (3.17) that

0 ≤
G(V )−G(s∗)

V − s∗
(V − s∗)+ ≤ (V − s∗)+ sup

s∈[s∗,VT ]

{G′(s)}, t ∈ [0, T ],

and we conclude that V (t) ≤ s∗ for t ∈ [0, T ]. As T is arbitrary in (0, Tmax), we have shown (3.13)
in view of (3.16). �

Proof of Theorem 1.1. Theorem 1.1 now readily follows from Proposition 3.4 and Proposition 2.3. �

Proof of Corollary 1.2. Either γ satisfies (1.9) and Corollary 1.2 is an immediate consequence of
Theorem 1.1. Or γ belongs to L∞(v∗,∞) and Corollary 1.2 follows at once from [17, Theorem 1.1]. �
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3.3. Continuous dependence. An interesting corollary of the previous analysis is the continuous
dependence of the solutions to (1.1) with respect to the initial condition uin, a property which is
likely to follow as well from the proof of [1, Lemma 3.1]. This property is needed later in the proof of
Theorem 1.3. We recall that, according to Corollary 1.2, the problem (1.1) is well-posed in a classical
sense under the sole assumption (1.4) on γ.

Proposition 3.5. Assume that γ satisfies (1.4) and consider a sequence (uinj )j≥1 in W 1,∞
+ (Ω) and

uin ∈ W 1,∞
+ (Ω) such that ‖uin‖1 > 0 and

lim
j→∞

‖uinj − uin‖∞ = 0. (3.19)

For j ≥ 1, let (uj, vj) be the classical solution to (1.1) with initial condition uinj and denote the

classical solution to (1.1) with initial condition uin by (u, v), their existence being guaranteed by
Corollary 1.2. Then, for any T > 0,

lim
j→∞

sup
t∈[0,T ]

{

‖(uj − u)(t)‖∞ + ‖(vj − v)(t)‖∞
}

= 0. (3.20)

Proof. Setting
vinj := A−1[uinj ], j ≥ 1, and vin := A−1[uin],

it readily follows from (3.19) that we may assume without loss of generality that there are m0 > 0
and M0 > 0 such that

‖uinj ‖1 ≥ m0 and ‖vinj ‖∞ ≤ M0, j ≥ 1. (3.21)

We then argue as in Section 3.2 (with m0 instead of m and M0 instead of ‖vin‖∞) to establish that
there is s0 ≥M0 such that

m0ω∗ ≤ vj(t, x) ≤ s0, (t, x) ∈ [0,∞)× Ω̄, j ≥ 1, (3.22)

the lower bound in (3.22) being a consequence of Lemma 2.2 and (3.21). Owing to (3.22), we next
proceed as in [17, Proposition 4.6] to show that there is α ∈ (0, 1/2) such that

(vj)j≥1 is bounded in BUC2α
(

[0,∞), C2α(Ω̄)
)

. (3.23)

In addition, arguing as in [17, Proposition 4.7], we obtain that, for any p ∈ (N,∞), there is C0(p) > 0
such that

‖vj(t)‖W 2,p ≤ C0(p), t ≥ 0, j ≥ 1. (3.24)

Fix p > 2N/(1−2α). Since C2α(Ω̄) is continuously embedded in Lp(Ω) and interpolation and Sobolev
inequalities guarantee that there are C1(p) > 0 and C2(p) > 0 such that

‖z‖C1+α ≤ C1(p)‖z‖W 3/2,p ≤ C2(p)‖z‖
3/4
W 2,p‖z‖

1/4
p , z ∈ W 2,p(Ω),

we infer from (3.24) and the above inequality that, for j ≥ 1 and (t, s) ∈ [0,∞)2,

‖vj(t)− vj(s)‖C1+α ≤ C2(p)
(

‖vj(t)‖
3/4

W 2,p + ‖vj(s)‖
3/4

W 2,p

)

‖vj(t)− vj(s)‖
1/4
p

≤ 2C0(p)
3/4C2(p)|Ω|

1/4p‖vj(t)− vj(s)‖
1/4

C2α.
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Hence, owing to (3.23), we conclude that

(vj)j≥1 is bounded in BUCα/2
(

[0,∞), C1+α(Ω̄)
)

. (3.25a)

It then follows from (3.22), (3.25a), and parabolic regularity for linear equations [21, Chapter V,
Theorem 1.1] applied to (1.1a) considered as a linear equation for uj that there is α1 ∈ (0, 1) such
that

(uj)j≥1 is bounded in Cα1/2,α1
(

[0, T ]× Ω̄
)

for any T > 0. (3.25b)

We now use elliptic regularity theory to deduce from (1.1b) and (3.25b) that

(vj)j≥1 is bounded in Cα1/2,2+α1
(

[0, T ]× Ω̄
)

for any T > 0, (3.25c)

which, together with parabolic regularity applied to (1.1a), see [21, Chapter IV], gives that

(uj)j≥1 is bounded in C(2+α1)/2,2+α1
(

(0, T )× Ω̄
)

for any T > 0. (3.25d)

We now infer from (3.25) and the Arzelà-Ascoli theorem that there are a subsequence of (uj, vj)j≥1

(not relabeled) and

ũ ∈ C
(

[0,∞)× Ω̄
)

∩ C1,2
(

(0,∞)× Ω̄
)

, ṽ ∈ C
(

[0,∞), C1(Ω̄)
)

such that

lim
j→∞

sup
t∈[0,T ]

{‖(uj − ũ)(t)‖∞ + ‖(vj − ṽ)(t)‖C1} = 0 for any T > 0. (3.26)

Since (uj, vj) solves (1.1) with initial condition uinj , we combine (3.25) with the convergence (3.26)

to conclude that (ũ, ṽ) is a non-negative global classical solution to (1.1) with initial condition uin;
that is, (ũ, ṽ) = (u, v) by the uniqueness of classical solutions to (1.1), see Proposition 2.1, so that
it is the whole sequence

(

(uj, vj)
)

j≥1
which actually converges to (u, v) and satisfies (3.26). We have

thus completed the proof. �

4. Explicit upper and lower bounds on v

The main building block of the proof of Theorem 1.3 is the following lemma, which is somewhat
a generalisation of Lemma 3.1.

Lemma 4.1. Assume that γ satisfies (1.4) and let uin ∈ W 1,∞
+ (Ω) with m = ‖uin‖1 > 0. We denote

the corresponding global classical solution to (1.1) by (u, v), see Corollary 1.2. Assume further that
there are 0 < a < b such that

γ′ ≥ 0 on [a, b], (4.1)

a < min
Ω̄

{vin} ≤ max
Ω̄

{vin} < b, (4.2)

where vin = A−1[uin]. Then

a ≤ v(t, x) ≤ b, (t, x) ∈ [0,∞)× Ω̄.
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Proof. For t ≥ 0, we put

v∗ ≤ µ(t) := min
x∈Ω̄

{v(t, x)} ≤M(t) := max
x∈Ω̄

{v(t, x)},

which are well-defined and positive according to elliptic regularity and Lemma 2.2. Owing to the
continuity of v, it follows from (4.2) that

τ := inf {t > 0 : M(t) > b or µ(t) < a} ∈ (0,∞].

In particular,
a ≤ µ(t) ≤M(t) ≤ b, t ∈ [0, τ). (4.3)

By (4.1), (4.3), and the non-negativity of u,

uγ(µ) ≤ uγ(v) ≤ uγ(M) in [0, τ)× Ω̄,

and the elliptic comparison principle and (1.1b) imply that

γ(µ)v = A−1[γ(µ)u] ≤ A−1[γ(v)u] ≤ A−1[γ(M)u] = γ(M)v in [0, τ)× Ω̄. (4.4)

It follows from (2.3) and (4.4) that v satisfies

γ(M)v ≥ ∂tv − γ(v)∆v + vγ(v) ≥ γ(µ)v, (t, x) ∈ (0, τ)× Ω, (4.5a)

∇v · n = 0, (t, x) ∈ (0, τ)× ∂Ω, (4.5b)

v(0) = vin, x ∈ Ω. (4.5c)

The parabolic comparison principle then entails that

Vu(t) ≥ v(t, x) ≥ Vl(t), (t, x) ∈ [0, τ)× Ω̄, (4.6)

where Vl and Vu are the solutions to the ordinary differential equations

dVl
dt

+ Vlγ(Vl) = γ(µ)Vl, t ∈ (0, τ), (4.7a)

Vl(0) = µ(0), (4.7b)

and
dVu
dt

+ Vuγ(Vu) = γ(M)Vu, t ∈ (0, τ), (4.8a)

Vu(0) =M(0), (4.8b)

respectively. Since b > Vu(0) ≥ Vl(0) > a by (4.2),

τ∗ := inf {t ∈ (0, τ) : Vu(t) > b or Vl(t) < a} ∈ (0, τ ],

and we infer from (4.1), (4.3), and (4.6) that

γ(Vl(t)) ≤ γ(µ(t)) ≤ γ(v(t, x)) ≤ γ(M(t)) ≤ γ(Vu(t)), (t, x) ∈ [0, τ∗)× Ω̄. (4.9)

Combining (4.6), (4.7), (4.8), and (4.9), we deduce that

dVl
dt

(t) ≥ 0 ≥
dVu
dt

(t), t ∈ (0, τ∗).
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Hence, owing to (4.2)

Vl(t) ≥ Vl(0) > a and Vu(t) ≤ Vu(0) < b, t ∈ [0, τ∗),

so that τ∗ = τ . Gathering (4.6) and the above inequalities, we conclude that

a < Vl(t) ≤ v(t, x) ≤ Vu(t) < b, (t, x) ∈ [0, τ)× Ω̄.

Consequently, τ = ∞ and the proof of Lemma 4.1 is complete. �

Proof of Theorem 1.3. If uin ≡ m/|Ω|, then (u, v) = (m/|Ω|, m/|Ω|) and Theorem 1.3 is obvious.
Let us thus assume that uin is not constant, so that vin is also not constant. We then pick ν ∈
(

minΩ̄{v
in},maxΩ̄{v

in}
)

and define

uinj :=
j − 1

j
uin +

1

j
ν, vinj := A−1[uinj ] =

j − 1

j
vin +

1

j
ν, j ≥ 1.

Clearly, for each j ≥ 1,

min
Ω̄

{vin} <
j − 1

j
min
Ω̄

{vin}+
1

j
ν = min

Ω̄
{vinj },

max
Ω̄

{vin} >
j − 1

j
max
Ω̄

{vin}+
1

j
ν = max

Ω̄
{vinj },

and we infer from Lemma 4.1 that the global classical solution (uj, vj) to (1.1) with initial condition
uinj satisfies

min
Ω̄

{vin} ≤ vj(t, x) ≤ max
Ω̄

{vin}, (t, x) ∈ [0,∞)× Ω̄.

We then pass to the limit j → ∞ in the above inequality with the help of Proposition 3.5 to complete
the proof. �

5. Explicit L∞-estimates on u

This section is devoted to the proof of Theorem 1.4 and we begin with the case of non-increasing
and concave motility function γ. In this case, the evolution equation (2.3a) for v is not used and the
proof relies on direct computations involving (1.1a) and (1.1b) and comparison arguments.

Proof of Theorem 1.4 (Part 1). Let us thus consider a function γ satisfying (1.4) and being non-
decreasing and concave on

[

minΩ̄{v
in},maxΩ̄{v

in}
]

. By (1.1a) and (1.1b),

∂tu = div
(

γ(v)∇u+ uγ′(v)∇v
)

= γ(v)∆u+ 2γ′(v)∇v · ∇u+ uγ′′(v)|∇v|2 + uγ′(v)∆v

= γ(v)∆u+ 2γ′(v)∇v · ∇u+ uγ′′(v)|∇v|2 + uγ′(v)(v − u).

Since v = A−1[u] and u ≤ ‖u‖∞ in Ω, the elliptic comparison principle implies that

v(t, x) ≤ ‖u(t)‖∞, (t, x) ∈ [0,∞)× Ω̄.
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Consequently, recalling that v ranges in
[

minΩ̄{v
in},maxΩ̄{v

in}
]

by Theorem 1.3, it follows from the
monotonicity and concavity of γ and the non-negativity of u that

uγ′′(v)|∇v|2 + uγ′(v)(v − u) ≤ uγ′(v)
(

‖u‖∞ − u
)

≤ Y u
(

‖u‖∞ − u
)

with Y := γ′ (minΩ̄{v
in}) ≥ 0 and we conclude that

∂tu− γ(v)∆u− 2γ′(v)∇v · ∇u ≤ Y u
(

‖u‖∞ − u
)

in (0,∞)× Ω, (5.1a)

∇u · n = 0 on (0,∞)× ∂Ω, (5.1b)

u(0) = uin in Ω. (5.1c)

Introducing the solution U ∈ C1([0,∞)) to the ordinary differential equation

dU

dt
= Y U

(

‖u‖∞ − U
)

, t > 0, (5.2a)

U(0) = ‖uin‖∞, (5.2b)

it readily follows from (5.1), (5.2), and the parabolic comparison principle that

u(t, x) ≤ U(t), (t, x) ∈ [0,∞)× Ω̄. (5.3)

In particular, ‖u(t)‖∞ ≤ U(t) for all t ≥ 0 by (5.3) and we infer from (5.2a) and the non-negativity of
Y that dU/dt ≤ 0 in (0,∞). Therefore, U(t) ≤ U(0) for t ≥ 0 which, together with (5.2b) and (5.3),
completes the proof. �

We next turn to general non-decreasing motility functions γ and use the comparison principle
applied to the parabolic equation satisfied by the auxiliary function uγ(v).

Proof of Theorem 1.4 (Part 2). We assume here that γ satisfies (1.4) and (1.13). Introducing ϕ :=
uγ(v), we infer from (1.1a) and (2.3a) that

∂tϕ = γ(v)∂tu+ uγ′(v)∂tv = γ(v)∆ϕ+ uγ′(v)
(

A−1[ϕ]− ϕ
)

= γ(v)∆ϕ+
γ′

γ
(v)ϕ

(

A−1[ϕ]− ϕ
)

.

Since
A−1[ϕ] ≤ ‖ϕ‖∞ in [0,∞)× Ω̄

by the elliptic comparison principle, it follows from the monotonicity of γ, the non-negativity of ϕ,
and Theorem 1.3 that

γ′

γ
(v)ϕ

(

A−1[ϕ]− ϕ
)

≤
γ′

γ
(v)ϕ (‖ϕ‖∞ − ϕ) ≤ Y ‖γ′(v)‖∞ϕ

(

‖ϕ‖∞ − ϕ
)

,

with 1/Y := γ(minΩ̄{v
in}) > 0. Therefore, ϕ satisfies

∂tϕ− γ(v)∆ϕ ≤ Y ‖γ′(v)‖∞ϕ
(

‖ϕ‖∞ − ϕ
)

in (0,∞)× Ω, (5.4a)

∇ϕ · n = 0 on (0,∞)× ∂Ω, (5.4b)

ϕ(0) = uinγ
(

vin
)

in Ω. (5.4c)
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Let ψ ∈ C1([0,∞)) be the solution to the ordinary differential equation

dψ

dt
= Y ‖γ′(v)‖∞ψ

(

‖ϕ‖∞ − ψ
)

, t > 0, (5.5a)

ψ(0) = ‖uinγ(vin)‖∞. (5.5b)

Owing to (5.4), (5.5), and the parabolic comparison principle,

ϕ(t, x) ≤ ψ(t), (t, x) ∈ [0,∞)× Ω̄. (5.6)

In particular, for t > 0, ‖ϕ(t)‖∞ ≤ ψ(t) and we deduce from (5.5a) that dψ/dt ≤ 0 on (0,∞).
Combining the just established time monotonicity of ψ with (5.6) gives

‖ϕ(t)‖∞ ≤ ψ(t) ≤ ψ(0) = ‖uinγ(vin)‖∞, t ≥ 0. (5.7)

Now, on the one hand, the monotonicity of γ and Theorem 1.3 imply that

γ(min
Ω̄

{vin})u(t, x) ≤ ϕ(t, x) ≤ ‖ϕ(t)‖∞, (t, x) ∈ [0,∞)× Ω̄. (5.8)

On the other hand, the elliptic comparison principle and the definition vin = A−1[uin] entail that
‖vin‖∞ ≤ ‖uin‖∞ and we use once more the monotonicity of γ to obtain

‖uinγ(vin)‖∞ ≤ ‖uin‖∞γ
(

max
Ω̄

{vin}
)

. (5.9)

Gathering (5.7), (5.8), and (5.9) completes the proof. �

6. Large time behaviour for non-decreasing γ

Proof of of Theorem 1.5. As already pointed out in the introduction, the monotonicity of γ implies
the existence of a Liapunov function. Indeed, it readily follows from (1.1) that

1

2

d

dt

(

‖∇v‖22 + ‖v‖22
)

=

∫

Ω

v∂t(v −∆v) dx =

∫

Ω

v∂tu dx

=

∫

Ω

uγ(v)∆v dx =

∫

Ω

γ(v)(v −∆v)∆v dx

= −

∫

Ω

(vγ′(v) + γ(v))|∇v|2 dx−

∫

Ω

γ(v)|∆v|2 dx,

and the monotonicity and positivity of γ, along with Theorem 1.3, guarantee that the right-hand
side of the above identity is non-positive. We then proceed as in the proof of [1, Theorem 1.3] to
complete that of Theorem 1.5. �
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73000 Chambéry, France

Email address : philippe.laurencot@univ-smb.fr


