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Hybrid Scale-Based Approximation Algorithm for QoS Routing

With the widespread use of network applications (VoIP, IPTV, etc.) which are sensitive to multiple QoS parameters (delay, jitter, error rate, financial cost, etc.), multi-constrained QoS routing becomes increasingly desired. Such routing is proved to be N P-hard when the number of additive metrics to be optimized is equal or greater than two. Thus, multiple fully polynomial approximation algorithms have emerged. These algorithms are essentially based on two scales: linear and logarithmic. In this paper, we prove that both the two scales could be inefficient for QoS path pre-computations and then propose a new algorithm that employs a hybrid scale to enhance path computations. As we proved it formally and by simulations, our algorithm guarantees reduced time responses for the pre-computed QoS paths without deteriorating their approximation quality.

I. INTRODUCTION

With the large deployment of real time network applications in the last decade (VoIP, IPTV, teleconference, etc.), multi-constrained routing (MCR) becomes increasingly desired. Such routing consists in seeking for a path from a source node to a target node such that multiple additive QoS constraints are satisfied and/or optimized. Due to the N P-completeness of MCR [START_REF] Wang | Quality-of-service routing for supporting multimedia applications[END_REF], extensive researches resulting in many routing approximation algorithms and heuristics have been conduced. These algorithms and heuristics aim to reduce time complexity without deteriorating the quality of the computed paths.

Fully polynomial time approximation schemes (FP-TASs) can be preferred to ensure the determination of paths fulfilling the QoS criteria and ϵ-close to optimums in a reasonable time. FPTASs guarantee to find ϵ-approximate solutions to MCR with a running time polynomial in the encoding size of the instance and in 1 ϵ [START_REF] Xue | Polynomial time approximation algorithms for multi-constrained qos routing[END_REF]. FPTASs solve MCR in two main steps: discretization and computation. In the first step, the FPTAS discretizes the potential solution space by selecting a certain number of samples. These samples are chosen so that the distances between them and the path weights are as small as possible. As shown in the following, the discretization step is very important for FPTASs since it controls their complexity and their approximation rate. Generally, with the same discretization method, the less the number of selected samples is, the less computations are done and the greater the error rate is. Thus, the challenge is to define a new discretization method that decreases the number of selected samples while ensuring a reduced error rate. After the discretization and the approximation of the weights in the potential solution space by their closest samples, MCR with real weights is mapped to MCR with integer weights (each sample is replaced by its index in the scale). In this way, an exact polynomial time algorithm can be applied (second step of FPTASs) to find the ϵ-approximate paths.

In this article, we focus on the pre-computation of paths optimizing various real QoS metrics. The pre-computation accelerates the determination of the paths and allows the interdomain path computation whereas the optimization saves the resources. For the pre-computation of paths fulfilling QoS criteria, we propose here an efficient FP-TAS based on a new hybrid scale. This scale allows to decrease the running time by improving the discretization process. Our FPTAS decreases the number of selected samples without deteriorating the quality of the weight approximation by combining two discretization scales (linear and logarithmic).

This paper is organized as follows. In section II, we introduce some notations and define the problems. In section III, we review some works related to MCR and present in more details the existing FPTASs which are based on two main different scales: linear and logarithmic. In this section, we describe a generic algorithm which can be combined with any sampling scale for the path computation. In section IV, we show the weaknesses of the existing FPTASs and propose a new hybrid scalebased FPTAS that reduces the time computation. We expose the operation principles and show the correctness of our FPTAS. In section V, we present numerical results before the conclusion in section VI.

II. NOTATIONS AND DEFINITIONS

We use an edge weighted directed graph G = (V, E, -→ w ) to model a computer network, where V is the set of n vertices, E is the set of m edges and -→ w = (w 1 , .., w K ) is an edge weight vector of K components. We note that K is a natural constant corresponding to the number of QoS parameters and the k th 1≤k≤K weight of edge e denoted by w k (e) is a positive real number. For any path π in G, the k th weight is determined as the sum of the k th weights over the edges of π, i.e. w k (π) = ∑ e∈π w k (e). All paths in G have at most H edges (thus, H is a natural number that is lower or equal to n -1). Here, we will focus on the following problems:

A. Problem OM CP P (G, s, t, K, H, B inf , B sup )
Let G = (V, E, -→ w ) be a graph, K be a number of QoS parameters, H be a maximum path length, and B inf and B sup are respectively the lower and upper bound to the largest weight max 1 < k ≤ K w k (π) of any optimal path π 1 . For any positive real D corresponding to a delay constraint, we solve the optimization version of the multi-constrained path pre-computation problem OM CP P (G, s, t, K, H, B inf , B sup ) which consists in determining the set Π of paths connecting in G the source node s to the target node t and satisfying the following formula 1:

∀ π, ∃ D, ∀ π ′        w 1 (π) ≤ D < ∞ B inf ≤ max 1 < k ≤ K w k (π) ≤ Bsup w 1 (π ′ ) ≤ D ⇒ ( max 1 < k ≤ K w k (π) ≤ max 1 < k ≤ K w k (π ′ ) ) ⇔ π ∈ Π (1)
For each finite delay constraint D, the formula 1 garantees that only the paths optimizing the K -1 last metrics (w 2 , w 3 , .., w K ) and verifying the delay constraint D will be inserted in the set Π. We note that OM CP P (G, s, t, K, H, B inf , B sup ) is N P-hard since the problem to determine only one path belonging to Π is N P-hard [START_REF] Wang | Quality-of-service routing for supporting multimedia applications[END_REF]. Thus, instead of solving problem II-A, we will focus on the tightened version of OM CP P ϵ that gives us ϵ-approximate solutions.

B. Problem OM CP P

ϵ (G, s, t, K, H, B inf , B sup )
Let ϵ ∈ ]0, 1[ be a real constant, G = (V, E, -→ w ) be a graph, K be a number of QoS parameters, H be a maximum path length, and B inf and B sup are respectively lower and upper bound to the largest weight ( max

1 < k ≤ K w k (π)
) of any optimal path π. We solve the tightened optimization version of the multi-constrained path pre-computation problem OM CP P ϵ (G, s, t, K, H, B inf , B sup ) which consists in determining a set of paths Π ϵ connecting in G the source node s to the target node t and satisfying the following formula:

∀ π ∈ Π ∃ π ϵ ∈ Π ϵ    w 1 (π ϵ ) ≤ w 1 (π) max 1 < k ≤ K w k (π) ≤ max 1 < k ≤ K w k (π ϵ ) ≤ (1 + ϵ) × max 1 < k ≤ K w k (π) (2) 

III. RELATED WORK

Several works in literature are devoted to the study of the MCR problem. Three main classes of solutions are proposed: exact algorithms, heuristics and FPTASs.

The exact algorithms [START_REF] Feng | Heuristic and Exact Algorithms for QoS Routing with Multiple Constraints[END_REF], [START_REF] Van Mieghem | Hop-by-hop quality of service routing[END_REF] guarantee that all the optimal solutions will be found. To reduce the running time, exact algorithms often transform the K additive metrics to one non linear metric. For instance, with SAMCRA algorithm [START_REF] Van Mieghem | Hop-by-hop quality of service routing[END_REF], the K -1 last metrics are 1 [START_REF] Lorenz | A simple efficient approximation scheme for the restricted shortest path problem[END_REF] give an efficient algorithm to determine B inf and Bsup for each (u, v) ∈ E so that: combined and transformed into one non linear metric max

∀ 1 < k ≤ K: sample (i k ) -w k (u, v) > 0 do 6: ∀ 1 < k ≤ K: j k ← sample -1 (sample(i k ) -w k (u, v)) 7: if d[u;i 2 , ..,i K ] > d[v;j 2 , ..,j K ]+w k (u, v) then 8: d[u;i 2 , ..,i K ] ← d[v;j 2 , ..,j K ]+w k (u, v) 9: succ[u;i 2 , ..,i K ] ← (u,
1 < k ≤ K w i (π)/W i (W i is a constraint 2 on the i th metric)
that is optimized with respect to the delay constraint (i.e. w 1 (π) ≤ D). In order to decrease its convergence time, SAMCRA applies the k-shortest path algorithm and exploits the notion of path dominance [START_REF] Van Mieghem | Quality of service routing[END_REF].

Obviously, the exact algorithms are not scalable since their worst case time complexity is high. This led researchers to explore other approaches to solve MCR, referred here as heuristics. They are often polynomial but they do not ensure to find optimal or approximated solutions. [START_REF] Van Mieghem | Quality of service routing[END_REF] describes many heuristics which exploit several different ideas to decrease their time complexity. For instance, TAMCRA limits its node queue size (maximum number of paths stored on each node during the computation) to a positive constant while HMCOP uses a linear combination of weights to reduce the computations.

The third class of approaches (FPTASs) can be considered as a variant of heuristics that guarantees ϵapproximate solutions in function of the problem size and 1/ϵ. FPTAS follows two steps: discretization and computation. In the first step, some representative samples are chosen by discretizing the solution space. A sample is therefore a real weight that should belong to the approximate solution interval [0, W.(1+ϵ)]. After the mapping of samples and constraints into integers, the second step is run. It is common to all the FPTASs and consists in applying an exact polynomial time algorithm capable to solve MCR with integer weights 3 .

From above, we deduce that the efficiency of an FPTAS depends entirely from the discretization method it uses. The less the distance between the weight paths and the samples is, the less the approximation error is. Thus, 

; i 2 , .., i K ], π ϵ ) 4: u ← target node of edge(succ[u; i 2 , .., i K ]) 5: i k ← sample -1 (sample(i k ) -w k (succ[u; i 2 , .., i K ])) ∀ 1 < k ≤ K 6: end while 7: return π ϵ
to guarantee a reduced error rate, it could be sufficient to decrease enough the distance between the samples. However, such an approach leads to a significant increase of the computation time, that is why it is important to choose carefully the discretization method to be applied with FPTASs. The best discretization method is one that decreases the running time while ensuring a bounded error rate (ϵ).

Depending on the scale used for the solution space discretization, existing FPTASs can be grouped in two main classes: linear scale-based FPTASs and logarithmic scale-based FPTASs. With the linear scale-based FPTAS, the samples are chosen so that the distance between successive samples is constant. With the logarithmic scalebased FPTAS however, the samples are selected so that the ratio between successive samples is constant. For the sakes of completeness, we first give below a generic algorithm (algorithms 1 and 2) that could be combined with any discretization method for the path computation. After that, we describe in more details the two classes of FPTAS: linear and logarithmic.

A. Generic pseudo-polynomial time algorithm for OMCPP ϵ

Unlike the version of the MCR problem with real weights, that is proved to be N P-hard [START_REF] Wang | Quality-of-service routing for supporting multimedia applications[END_REF], the MCR problem with integer weights is solvable in polynomial time (with integer weights, the solution space can be covered in polynomial time). Thus, to solve efficiently the real version of MCR problem, the continuous solution interval can be discretized by choosing a limited number of sample values. Hence, the real version of MCR could be transformed to an integer version of MCR by mapping the real samples into integers and by tolerating a very low error rate ϵ.

Below, we describe a generic algorithm that could be combined with any discretization process for the path computation. It is illustrated in algorithm 1 which performs the computations (the distances to the target node, the next nodes, etc.) and calls the function path (illustrated in algorithm 2) to build and return the optimal paths, for each finite value of the delay constraint. To ease understanding of algorithms 1 and 2, we explain the operation performed in the case where the sampling function (which is a parameter of algorithms 1 and 2) corresponds to the identity.

To compute the set of paths Π ϵ satisfying the formula (2), algorithm 1 associates to each vertex v ∈ G two holds the least delay among v-t paths for the weight tuple (sample(i 2 ), .., sample(i K )) and succ [v ; i 2 , .., i K ] stores the next hop of v for the weight tuple (sample(i 2 ), .., sample(i K )). Recall that for integer weights, the number of different tuples for the K -1 last metrics is finite.

In the first three lines of algorithm 1, all the entries of tables d and succ are initialized respectively to infinite and null for each node v ̸ = t to indicate that the target node t is unreachable from all the other nodes.

After that, algorithm 1 (lines 5-12) checks each table entry (i.e. for each different tuple (sample(i 2 ), .., sample(i K )) of the K-1 last metric weights), if there is a path v -t interconnecting any node v to the target t, such that all its (approximated) weights on the last K -1 metrics are lower or equal to the K -1 indexes in that table entry. If such a path exists, it is compared with the previously determined path (for the same v's table entry) and the best one in terms of delay is stored in the corresponding entries of tables d and succ (it means that the target t could be reached from node v with the constraint vector (d [v ; i 2 , .., i K ], sample(i 2 ), .., sample(i K )). We note that algorithm 1 builds the paths step by step, i.e. for each table entry (v ; i 2 , .., i K ), all the edges u → v whose weights are lower than those of that table entry (∀1 < k ≤ K : w k (u → v) < sample(i k )) are added to the path v -t. In this way, after traversing all the table entries in a lexicographic order, one shortest path in terms of delay is determined for each different table entry.

Finally, after filling tables d and succ, the execution of lines from 13 to 19 in algorithm 1 permits the selection of ϵ-close optimal paths for each finite value of the constraint delay. For that, the function path (shown in algorithm 2) that explores the tables succ and d to return a path is called several times. Each path is then inserted in the set Π ϵ which is returned in line 20 of algorithm 1.

B. Linear scale-based FPTAS

The linear scale-based FPTAS was proposed for the first time by Hassin in [START_REF] Hassin | Approximation schemes for the restricted shortest path problem[END_REF]. With this FPTAS, p+1 samples (s 0 , s 1 , .., s p ) are selected by discretizing the interval [0, B sup .(1 + ϵ)] that contains all the possible weights for the k th 1<k≤K metric of path π ϵ . As shown in figure 1, the difference between each couple of successive samples is constant and equal to δ ln (∀ 0 < i ≤ p : s i -s i-1 = δ ln ). At each step i (0<i≤K) of path building, the weight w k (π i ) of the path π i , obtained by adding edge e to the sub-path 

δ ln ← B inf × ϵ/H 2: return ⌈w/δ ln ⌉ -1 π i-1
, is approximated by the sample ŵk (π i ) = s j such that: s j-1 ≤ ŵk (π i-1 ) + w k (e) < ŵk (π i ) = s j (with s 0 = 0 as shown in figure 1 (a)).

In this way, the problem OM CP P ϵ can be solved by calling the (fully) polynomial time algorithms 1 and 2 with the two following discretization functions as parameters: sample = linear sample (see algorithm 3) that maps the i th sample of the used scale to the corresponding real weight and sample -1 = linear sample -1 (see algorithm 4) that approximates any path weight by the nearer and greater sample in the linear scale.

At each addition of an edge to the path being computed, a maximal error of δ ln could be committed. Thus, we deduce that the distance between the paths returned by the hybrid scale based-FPTAS and the optimal paths is lower or equal to H × δ ln (recall that H corresponds to the maximal path length). As a result, to ensure the finding of an ϵ-approximate solution with the linear scalebased FPTAS, the distance between successive samples δ ln should be lower or equal to the ratio B inf .ϵ/H (as proved in [START_REF] Yuan | Heuristic algorithms for multiconstrained quality-ofservice routing[END_REF] and [START_REF] Xue | Polynomial time approximation algorithms for multi-constrained qos routing[END_REF]). In the same way, we deduce the number of samples in the linear scale as follows:

nb samples = ⌊ Bsup δ ln ⌋ + H = ⌊ Bsup.H B inf .ϵ ⌋ + H ≃ H.( Bsup B inf .ϵ + 1)
By following the same steps as in [START_REF] Xue | Polynomial time approximation algorithms for multi-constrained qos routing[END_REF], we conclude that the worst-case time complexity of algorithm 1 for a linear scale is equal to

O(m.( H ϵ ) K-1 .( Bsup B inf ) K-1 ).

C. Logarithmic scale-based FPTAS

By observing that the highest is the optimum solution to problem OM CP P , the highest is the authorized error, Orda and Sprintson proposed in [START_REF] Orda | Precomputation schemes for qos routing[END_REF] the logarithmic scalebased FPTAS that increases the distance between successive samples gradually as the paths weights increase. In particular, with this FPTAS, q + 1 samples weights (s 0 , s 1 , .., s q ) are selected by discretizing the interval [0, B sup .(1 + ϵ)] (see figure 1 (b)). These samples are chosen so that: (1) the first sample s 0 is null, (2) the second sample s 1 = mw is equal to the minimum nonnull weight in the graph, and (3) the ratio between any two successive samples (except for s 0 and s 1 ) is constant and equal to δ lg (δ lg > 1).

To ensure the determination of ϵ-approximate solutions, Orda et al. [START_REF] Orda | Precomputation schemes for qos routing[END_REF] proved that δ lg should be in ] parameters sample = logarithmic sample and sample -1 = logarithmic sample -1 (see algorithms 5 and 6).

To determine the complexity of the logarithmic scalebased FPTAS, we first deduce the number of samples that are used:

nb samples = ⌊ log(Bsup.(1+ϵ)/mw) log(1+0.5.ϵ/H) ⌋ + 2
As log(1 + 0.5.ϵ/H) ≥ ϵ/(2.H + ϵ), we deduce that:

nb samples ≤ log(B sup .(1 + ϵ)/mw).(2.H + ϵ)/ϵ + 2.
As a result, the complexity of the logarithmic scale-based FPTAS is determined as equal to:

O(m.( H ϵ ) K-1 .(log(B sup .(1 + ϵ)/mw)) K-1
).

IV. HYBRID SCALE-BASED APPROXIMATION

ALGORITHM

The linear and logarithmic scales ensure the determination of ϵ-approximate solutions with different sampling approaches and thus different time complexities. While the distance between successive samples is constant in the linear scale-based FPTAS, it varies continuously from very small to high distances in the logarithmic scalebased FPTAS. To understand and show the differences in performances between the two scales, we divide the potential solution interval [0,

B sup .(1 + ϵ)] into two sub- intervals [0, B inf ] and [B inf , B sup .(1 + ϵ)].
In the first sub-interval [0, B inf ], the linear scale-based approach is more efficient (in terms of computation time) than the logarithmic scale since it uses fewer samples. Indeed, the number of samples employed with the linear scale nbs [0,B inf ] (ln) in the interval [0, B inf ] is determined as follows:

nbs [0,B inf ] (ln) ≃ B inf /δ ln = H/ϵ
With the logarithmic scale, the number of samples nbs [0,B inf ] (lg) in [0, B inf ] is determined as follows:

We have:

nbs [0,B inf ] (lg) > log(B inf /mw)/log(δ lg ) since (δ lg ) nbs [0,B inf ] (lg)-1 .mw > B inf .
As log(δ lg ) = log(1+ϵ/(2.H)) < ϵ/(2.H) 1-ϵ/(2.H) , we deduce that: Thus, in [0, B inf ], the number of samples used with the logarithmic scale is at least log(B inf /mw) B inf ≥mw times higher than the number of samples used with the linear scale. By following the same steps as above, we deduce that, in the second sub-interval [B inf , B sup .(1 + ϵ)], the number of samples used with the logarithmic scale is at least (B sup /B inf -1)/log(B sup /B inf ) times smaller than the number of samples used with the linear scale.

nbs [0,B inf ] (lg) > log(B inf /mv) [(ϵ/(2.H))/(1-ϵ/(2.H))] > log(B inf /mv) (ϵ/(2H-ϵ)) > (H/ϵ).log(B inf /mv)
From above, we conclude that both the linear and logarithmic scales could be inefficient to solve problem OM CP P ϵ , especially when mw is much smaller than B inf , and B inf is also very smaller than B sup . Besides, when some edge weights are null, the logarithmic scalebased FPTAS is not applicable.

To cope with the insufficiencies of the previous scales, we propose here the hybrid scale-based FPTAS (see figure 1 (c)) that increases the mean distance between samples while keeping the maximum error rate equal to ϵ. Our FPTAS combines the linear and logarithmic discretizations in such a way that it only inherits from their major advantages. We note that if it seems easy to use or combine any types of discretization (linear, logarithmic or random), the guarantee of determining an ϵ-close optimal path could be very complicated. In the next section, we show, formally and by simulations, the correctness of our hybrid discretization proposition.

A. Principles and correctness

To solve OM CP P ϵ with our hybrid scale-based FP-TAS, it is sufficient to call algorithms 1 and 2 with the two hybrid scale-based discretization functions sample = hybrid sample (depicted in algorithm 7) and sample -1 = hybrid sample -1 (depicted in algorithm 8).

Clearly, with the hybrid scale-based FPTAS, the potential solution interval [0, B sup .(1 + ϵ)] is subdivided into two subintervals: [0, Binf ] that is discretized with the use of a linear scale, and [ Binf , B sup .(1 + ϵ)] that is discretized with the use of a logarithmic scale. For this purpose, four constants are computed in the four first lines of algorithms 7 and 8 (see figure 1 (c)): δ ′ ln that corresponds to the distance between successive samples in the linear part of the scale, nb samples ln that determines the number of positive samples in the linear part of the scale, Binf which is the last sample in the linear part of the scale and δ ′ lg that corresponds to the the ratio between successive samples in the logarithmic part of the scale. To map the index of a sample idS to the value of the sample, the function hybrid sample compares idS with the number of samples nb samples ln in the linear part of the scale. If idS is lower than nb samples ln then only the linear part of the scale is used. In other words, the corresponding sample value is obtained by multiplying δ ′ ln by idS. Otherwise, the corresponding sample is obtained by multiplying Binf with (δ ′ lg ) idS-nb samples ln . To ensure that all the K-1 last weights of a path π h = {a h , .., a 1 , a 0 } will be approximated by the nearer and higher samples in the hybrid scale, the function hybrid sample -1 maps the weights of the sub-path π h-1 = {a h-1 , .., a 1 , a 0 } to the nearer and smaller samples in the hybrid scale. As a result, when a weight w is in [0, Binf ], it will be approximated by ⌈w/δ ′ ln ⌉ -1 multiplied by δ ′ ln , otherwise it will be assigned the sample Binf .(δ ′ lg ) ⌈log(w/ Binf )/log(δ ′ lg )⌉-1 . Below, we prove the correctness of our FPTAS. Lemma 4.1: Given are a graph G = (V, E, -→ w ), a target node t, an approximation parameter ϵ, and two positive real constants B inf and B sup . For any path s -t = {s = v h , v h-1 , .., v 0 = t} = π ∈ Π (Π is the solution set of OM CP P (G, s, t, K, H, B inf , B sup )), there is at least one integer tuple (w s 2 , .., w s K ) so that:

{ d[s; w s 2 , .., w s K ] ≤ w 1 (π) ∀ 1 < k ≤ K, ∃ 0 ≤ j ≤ h : ŵs k ≤ (w k (π) + j.δ ′ ln ).(δ ′ lg ) h-j ( 3 
)
where d is the table maintained by algorithm 1 and ∀ 0 ≤ k ≤ K : ŵs k = hybrid sample(w s k ) Proof We prove the validity of formula 3 by the induction of the number of edges h (0 ≤ j ≤ h) .

The base step is trivial since for h = 0, there is a tuple (0, .., 0) satisfying the formula 3 (in this case: j = h = 0).

Suppose now that formula 3 is valid for (optimal) paths of no more than h -1 edges and prove that it remains valid for paths of h edges.

Formula 3 is valid for paths of h -1 edges means that it is valid for the sub-path {v h-1 , .., v 1 , v 0 = t}. Thus, there is a tuple (w

v h-1 2 , .., w v h-1 K
) so that:

d[v h-1 ; w v h-1 2 , .., w v h-1 K ] ≤ w 1 ({v h-1 , .., v 1 , v 0 = t}) = w 1 (π) -w 1 (v h , v h-1 ) = w 1 (v h-1 -t)
and

∀ 1 ≤ k ≤ K, ∃ 0 ≤ j ≤ h -1 : w v h-1 k ≤ (w k (v h-1 -t) + j.δ ′ ln ).(δ ′ lg ) h-1-j For any k in {2, .., K}, let i k = {min(i) | i ∈ N ∧ î = hybrid sample(i) > ŵv h-1 k + w k (v h , v h-1 )}. As for any k (1 < k ≤ K), i k > w v h-1 k , we deduce that d [v h-1 ; w v h-1 2 , .., w v h-1 K ] is set before d [v h ; i 2 , .., i K ] in algorithm 1. From lines 7 to 10 of algorithm 1, we con- clude that d[v h ; i 2 , .., i K ] ≤ d[v h-1 ; w v h-1 2 , .., w v h-1 K ] + w 1 (v h , v h-1 ) = w 1 (π).
Therefore, the first inequality of 3 is proven.

To prove the second inequality of 3, we consider for each i k (1 < k ≤ K) the two following cases: îk < Binf : From line 6 of algorithm 1, we deduce that:

w v h-1 k + w k (v h , v h-1 ) < îk ≤ w v h-1 k + w k (v h , v h-1 ) + δ ′ ln
Thus, there is j so that:

{ 0 ≤ j ≤ h -1 î ≤ (w k (v h-1 -t) + j.δ ′ ln ).(δ ′ lg ) h-1-j + w k (v h , v h-1 ) + δ ′ ln Since δ ′ lg > 1, we conclude that: î ≤ (w k (v h , v h-1 ) + w k (v h-1 -t) + j.δ ′ ln + δ ′ ln ).(δ ′ lg ) h-1-j = (w k (π) + (j + 1).δ ′ ln ).(δ ′ lg ) h-(j+1)
In other words:

∃ 0 ≤ p ≤ h : î ≤ (w k (π) + p.δ ′ ln ).(δ ′ lg ) h-p îk ≥ Binf :
From line 6 of algorithm 1, we have:

w v h-1 k + w k (v h , v h-1 ) < îk ≤ (w v h-1 k + w k (v h , v h-1 )).δ ′ lg
Thus, there is j so that:

{ 0 ≤ j ≤ h -1 î ≤ ((w k (v h-1 -t) + j.δ ′ ln ).(δ ′ lg ) h-1-j + w k (v h , v h-1 )) × δ ′ lg Since δ ′ lg > 1, we conclude that: î ≤ ((w k (v h , v h-1 ) + w k (v h-1 -t) + j.δ ′ ln ).(δ ′ lg ) h-1-j ) × δ ′ lg = (w k (π) + j.δ ′ ln ).(δ ′ lg ) h-j
From above, we conclude that there is at least one tuple

(w v h 2 , .., w v h K ) ≤ (i 2 , .
., i K ) satisfying the formula 3. Lemma 4.2: Given are a graph G = (V, E, -→ w ), a target node t, an approximation parameter ϵ, and two positive real constants B inf and B sup . For any path s -t = {s = v h , v h-1 , .., v 0 = t} = π ∈ Π (Π is the solution set of OM CP P (G, s, t, K, H, B inf , B sup )), there is at least one integer tuple (w s 2 , .., w s K ) (where

∀ 1 < k ≤ K, ŵs k = hybrid sample(w s k ) ≤ B sup .(1 + ϵ)) so that: ∀ 1 < k ≤ K, B inf ≤ w k (π) ≤ Bsup ⇒ ŵs k ≤ (1 + ϵ).w k (π) (4) 
Proof Let a be equal to B sup /B inf . From LEMMA 4.1, we have (note that 0 ≤ j ≤ h ≤ H): 

ŵs k ≤ (w k (π) + j.δ ′ ln ).(δ ′ lg ) h-j ≤ (w k (π) + H.δ ′ ln ).(δ ′ lg ) H = (w k (π) + H. B inf .ϵ H.( √ 2.a+1) ).(1 + ϵ H.( √ 2/a+2) ) H Since w k (π) ≥ B inf and (1 + x) H ≤ 1/(1 -xH) for any x ∈]0, 1[, we deduce that: ŵs k ≤ (w k (π) + w k (π).ϵ √ 2.a+1 ).(1 - H.ϵ H.( √ 2/a+2) ) -1 = w k (π).(1 + ϵ √ 2.a+1 ).(1 + ϵ √ 2/a+2-ϵ ) ≤ w k (π).(1 + ϵ √ 2.a+1 ).(1 + ϵ √ 2/a+1 ) = w k (π).(1 + ϵ. √ 2.a+ √ 2/a+2+ϵ √ 2.a+ √ 2/a+2+1 ) ≤ w k (π).(1 + ϵ) ≤ Bsup.(1 + ϵ)
) K-1 .(1 + log( Bsup B inf )) K-1 ).
Proof First determine the value of the largest sample s max = sample(nb samples -1). From algorithm 7, we have:

smax = Binf × (δ ′ lg ) nb samples-1-nb samples ln = Binf × (δ ′ lg ) ⌈log(Bsup.(1+ϵ)/ Binf )/log(δ ′ lg )⌉
Thus:

log smax = (⌈log(Bsup.(1 + ϵ)/ Binf )/ log(δ ′ lg )⌉). log(δ ′ lg ) + log( Binf ) ≥ log((Bsup.(1 + ϵ)/ Binf )/ log(δ ′ lg )). log(δ ′ lg ) + log( Binf ) = log(Bsup.(1 + ϵ)/ Binf ) + log( Binf ) = log(Bsup.(1 + ϵ)) Hence, s max ≥ B sup .(1 + ϵ)
From lemma 4.2, we deduce that for any optimal path π satisfying the formula (1), there is at least one integer tuple (w s 2 , .., w s K ) satisfying:

∀ 1 < k ≤ K, B inf ≤ w k (π) ≤ B sup ⇒ ŵs k ≤ (1 + ϵ).w k (π) ≤ s max
This means that there is a path π ϵ that is completely defined by the table succ and the tuple (s; w s 2 , .., w s K ). This path π ϵ is ϵ-close to the optimal path π. Now, compute the complexity of the hybrid scale-based FPTAS. By following the same steps as in [START_REF] Xue | Polynomial time approximation algorithms for multi-constrained qos routing[END_REF], we deduce that the complexity of our FPTAS is:

O(m.nb samples K-1 ) = O(m.( H ϵ ) K-1 .(1 + log( Bsup B inf )) K-1 )

V. NUMERICAL RESULTS

To measure the performances of our hybrid scale-based FPTAS, we compared it to the linear and logarithmicbased FPTASs. Due to the lack of space, we show here only the important results, i.e. those allowing to discern the parameters which impacts the performances of the different FPTASs.

For our simulations, we focused on the computation of the optimal QoS paths in interdomain networks. These paths connect two nodes (source and target) localized in different domains so that the path weight of the first metric is lower than a constant D (that corresponds to a delay constraint) and the highest path weight of the K -1 last metrics is minimized. As in interdomain networks the information about the topology and link weights is local and not shared between domains, each domain runs algorithm 1 to computes all the paths from its ingress nodes to its egress nodes before transmitting the resulting tables d of its ingress nodes to the precedent domain.

In our tests, we used the SYM-CORE topology network that is described in [START_REF] Dasgupta | Performance analysis of inter-domain path computation methodologies[END_REF] Clearly, figure 2 shows the evolution of the number of table entrees (NE) in function of the maximum length of paths and the approximation parameter ϵ. As proved previously, the number of entrees decreases as long as ϵ and H increase.

Figures 2 (a) and 2 (c) show that the number of entrees obtained with the linear and hybrid scales is greater than the number of entrees obtained with the logarithmic scale. This trend is completely reversed on figures 2 (b) and 2 (d). This is explained by the fact that with linear or hybrid scale approches, the number of entrees only depends on the B sup /B inf ratio (as well as m, ϵ and H) that is rather stable, even if it is lightly sensible to the change of the used weight generation function, whereas in the logarithmic approach, the number of entrees depends more on (the logarithm of) the ratio B sup /mw that increases noticeably during the selection of the border generation approach rather than the uniform generation. Indeed, with the border generation, mv is usually located within [START_REF] Wang | Quality-of-service routing for supporting multimedia applications[END_REF][START_REF] Dasgupta | Performance analysis of inter-domain path computation methodologies[END_REF] while with a uniform generation, mv is greater than (or equal to) 10 6 .

Figure 2 shows also that the number of entrees of the hybrid scale is always lower or close to the number of entrees obtained with linear and logarithmic scales. In principle, the number of entrees obtained with hybrid scale should be smaller than the one obtained with the other scales, except that to enable the transition between the linear and the logarithmic part of the hybrid scale, the distance between the successive samples is reduced. This increases slightly the number of entrees.

About the second comparison metric, figure 3 shows clearly that the sample weight rate obtained with the linear scale is lower than the one obtained with the hybrid scale, that is in turn lower than the one obtained with the logarithmic scale. Due to the high distance between the samples located between B inf and B sup in the logarithmic scale, the average possible error with the logarithmic scale is greater than the error corresponding to the linear scale. This error decreases slightly when using the hybrid scale because the ratio between the samples on the logarithmic part of the hybrid scale is lower than the one obtained with the logarithmic scale, i.e δ ′ lg < δ lg (although the distance between the samples on the [0, Binf ] interval of the hybrid scale is in mean greater than with the logarithmic scale). Note that figure 3 only shows the general case when the possible error with the hybrid scale is lower than the error obtained with the linear scale but greater than the error obtained with the logarithmic scale. This trend can change, in particular when the costs of the computed paths are really close to the lower bound B inf .

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed a new FPTAS based on a hybrid scale to solve the multi-constrained QoS routing with K ≥ 2 real additive metrics. For any weight value of the first metric, our FPTAS permits to pre-compute a set of paths that optimizes the highest weight of the K -1 other metrics.

By discretizing the (real) solution interval with the selection of a reduced number of samples, our FPTAS is able to pre-compute ϵ-approximate solutions, i.e. determine QoS paths which satisfy one (variable) constraint and optimize the (ϵ-approximated) highest weight of the K -1 other metrics. Comparatively to the linear and logarithmic scales-based FPTASs, our algorithm often decreases the number of selected samples and thus reduces the running time. Its worst-case time complexity, which is equal to O(m.( H ϵ ) K-1 .(1 + log( Bsup B inf )) K-1 ) (B sup and B inf are respectively lower bound and upper bound to the optimal solutions), is lower than that obtained with the application of a linear or logarithmic scale-based FPTAS. In addition, the hybrid scale-based FPTAS can treat all the weights, positive or null, contrarily to the logarithmic scale-based FPTAS which cannot deal with null weights.

In a future work, we plan to extend the hybrid scalebased FPTAS to provide QoS in multi-domain networks. In fact, we believe that the pre-computation of multiconstrained paths interconnecting the boundaries of each domain is only a first step to compute the multi-domain paths which optimize various QoS metrics. The other steps include (1) the selection of intra-domain paths which should be advertised outside the domain and (2) the determination of algorithms allowing the combination of the advertised paths. Various approaches could be adopted to achieve these three steps. For instance, we can run our FPTAS in each domain to pre-compute all the subpaths optimizing the QoS metrics and interconnecting the domain boundaries (first step), select and advertise all the pre-computed paths (second step), and apply again our FPTAS to combine the intra-domain paths and solve MCR in multi-domain networks (third step).

Figure 1 .

 1 Figure 1. Scales

Algorithm 3

 3 Function linear sample Parameter: 0..nb samples idS {idS is a sample index in the scale} 1: δ ln ← B inf × ϵ/H 2: return idS × δ ln Algorithm 4 Function linear sample -1 Parameter: Real w 1:

Figure 2 .Figure 3 .

 23 Figure 2. Number of table entrees (NE)

Algorithm 2

 2 Function path Parameter: 0..nb samples i 2 , .., i K {(i 2 , .., i K ) is a table entry num-ber} Parameter: functions sample and sample -1

1: u ← s 2: while succ[u; i 2 , .., i K ] ̸ = null do 3: add edge to path(succ[u

  1, 1 + ϵ 6.H ]. To be more precise, the value 1 + ϵ 2.H is sufficient. Using a logarithmic scale, we solve the OM CP P ϵ by calling algorithms 1 and 2 with the two function Algorithm 5 Function logarithmic sample Parameter: 0..nb samples idS {idS is a sample index in the scale} 1: δ lg ← 1 + ϵ

	2: mw ←	2.H min e∈E ∧ 1<k≤K	(w k (e) | w k (e) > 0)
	3: if idS = 0 then
	4:	return 0
	5: end if	
	6: return mw.(δ lg ) idS-1
	Algorithm 6 Function logarithmic sample -1
	Parameter: Real w
	1: δ lg ← 1 + ϵ 2.H 2: mw ← min e∈E ∧ 1<k≤K	(w k (e) | w k (e) > 0)
	3: if w < mw then
	4:	return 0
	5: end if	
	6: return ⌊	log(w/mw) log(δ lg ) ⌋ + 1

  ′ lg )⌉ + 2, the application of algorithms 1 and 2 with the two parameter functions sample = hybrid sample (algorithms 7) and sample -1 = hybrid sample -1 (algorithms 8) permits to solve the OM CP P ϵ (G, s, t, K, H, B inf , B sup ) problem in a worst-case time complexity of O(m.( H ϵ

Theorem 4.3: For a number of samples nb samples = ⌊B inf /δ ′ ln ⌋ + ⌈log(B sup .(1 + ϵ)/ Binf )/log(δ

  . It is composed of 4 areas interconnected via a symmetrical backbone. Two comparison metrics are chosen: number of entrees (NE) in the table d (or succ) of algorithm 1 and sample weight rate (SWR). The first metric measures the mean number of entrees in each node table d (or succ). It is highly correlated with the running time of each FPTAS. The second metric corresponds to the mean ratio between the best sample weight ŵ(π ϵ ) ( ŵ(π ϵ ) = { î | d[s; i, .., i] ≤ D ∧ d[s; i -1, .., i -1] > D})of the approximated path π ϵ minus the weight w(π) (w(π)

	This metric
	determines the number of required samples for each FPTAS (NE = ∑ nb tests i=1 (nb samples i ) K-1 /nb tests).

A feasible path π should satisfy ∀0 < k ≤ K : w i (π) ≤ W i .

We recall that problem MCR with integer weights is not N P-hard in the size of its inputs (n, m, K and (max(w i ) -min(w i )) 1<i≤K ).