
HAL Id: hal-04018753
https://hal.science/hal-04018753

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multi-Domain Virtual Network Embedding with
Coordinated Link Mapping

Shuopeng Li, Mohand Yazid Saidi, Ken Chen

To cite this version:
Shuopeng Li, Mohand Yazid Saidi, Ken Chen. Multi-Domain Virtual Network Embedding with
Coordinated Link Mapping. 2016 24th International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), Sep 2016, Split, Croatia. pp.1-6, �10.1109/SOFT-
COM.2016.7772158�. �hal-04018753�

https://hal.science/hal-04018753
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Multi-Domain Virtual Network Embedding with
Coordinated Link Mapping

Shuopeng LI
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France

li.shuopeng@univ-paris13.fr

Mohand Yazid SAIDI
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France
saidi@univ-paris13.fr

Ken CHEN
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France

ken.chen@univ-paris13.fr

Abstract—Network Virtualization, which allows the co-
existence of various logical networks on shared physical in-
frastructure, has become popular in recent years. The optimal
mapping of virtual resource to physical resource is a major issue
in network virtualization. This problem, called virtual network
embedding (VNE), has been well explored in the context of
one physical domain, which is in practice operated by a single
infrastructure provider (InP). However, the needs of virtual
network (VN) is rapidly growing, and quite a number of VNs
have to be established across multi-domain. For multi-domain
VNE, infrastructure providers can no longer just solve their own
single domain VNE problem, but have to cooperate to build the
whole VN. Therefore, new challenge arises for the multi-domain
VNE, compared to traditional single domain VNE. The existing
investigations on this problem mainly focus on decomposing a
VN to sub VN for each domain, but few attention has been
paid to the joint relation between intra-domain and inter-domain
(peering) links. In this paper, we propose a multi-domain link
mapping method which combines the intra and peering link
mapping so as to optimize the overall resource utilization. Our
approach is easy to be deployed since it is based on current
Internet architecture. Evaluation shows that our approach, brings
improvements related to existing methods.

I. INTRODUCTION

Network virtualization [1] is regarded as a solution to
overcome some weakness of traditional network architecture.
It makes easy to support various separated logical networks
running over shared physical network. In virtualized network
architecture, the service provider (SP) creates and manages vir-
tual networks (VN) for end users,while infrastructure provider
(InP) deploys the substrate network (SN) equipment and offers
the necessary physical resources.

An important step of network virtualization is to establish
VNs above SNs. This is referred as virtual network embedding
(VNE). The VNE problem aims to find a mapping from the
VN to SN in a way that objectives (e.g. cost) are optimized
and constraints (e.g. bandwidth) are satisfied.

Large networks in current Internet architecture are organized
by autonomous system (AS). An AS is one or several physical
networks controlled by a single authority. In this article, we
use the vocabulary of “domain” to denote the whole substrate
network under the control of a single InP.

As VNs are getting more and more deployed, VNs in multi-
domain will be more and more considered by potential VN

users. Establishment of multi-domain VN is more difficult than
the one on single domain for at least two reasons:
• First, a single domain VNE problem is mainly solved by

linear programming (LP). If we had a complete vision of
all the domains, a multi-domain VNE could be considered
as a single domain VNE with a very large domain, so
computationally harder to solve.

• More importantly, for various reasons (technical, com-
mercial, etc.), the acquisition of full information in multi-
domain is costly and often not possible. Only limited
information is exchanged between InPs via protocols like
BGP, so single domain approach cannot be re-used.

To address these challenges, multi-domain VNE frameworks
are developed. Usually, there is a VN decomposition step
followed by local sub VN mapping in each InP. Some au-
thors introduced a broker-like additional actor, termed Virtual
Network Provider (VNP) [2], between SP and InPs. The role
of this VNP consists in assembling multi-domain information,
decomposing VN and achieving the multi-domain VNE.

Existing solutions mainly focused on the decomposition of
a multi-domain VN to each domain. One of the shortcomings
in these frameworks is the lack of efficient link mapping
method especially for the peering links which interconnect
two domains.

In this paper, we propose an efficient framework of link
mapping in multi-domain virtual network embedding context,
which jointly consider the mapping of intra and peering links.
In our approach, the peering links are mapped simultaneously
along with intra domain links. Our approach is based on
information usually disseminated by classical routing protocol
(like BGP). Our simulation results prove that this solution
results in better utilization of substrate resources.

The rest of this paper is organized as follows. Section II
provides an overview of the related work. Section III presents
our network model. Section IV presents our multi-domain
VNE solution. The evaluation results are shown in section V.
Section VI concludes this paper.

II. RELATED WORK

A. Single domain VNE
The problem of single domain VNE is NP-hard [3] [4]. A

basic off-line approach is proposed in [5], which performs the



embedding in 2 stages (node then link mapping). The Multi
Commodity Flow (MCF) is introduced in [6] to embed the
virtual links The method in [7] takes into account the virtual
links in node mapping stage. It privileges such node mapping
that reduce the length of substrate link path.

Since 2-stage VNE solutions are lack of cooperation, some
solutions mapping nodes and links in the same stage have
been proposed. An approach based on subgraph isomorphism
detection is presented in [8]. An other model in [9] applies the
Markov Random Walk to rank nodes and then embeds links
and nodes by using back-tracking strategy based on breadth-
first search. In order to meet the change of requirements over
time, dynamic VNE is proposed in [10] .

B. Multi-domain information disclosure

Because of politic and efficiency reasons, InPs can’t disclose
their complete information to others, so it is critical to make
clear the information disclosure policy.

The proxy VNP could get peering links location and re-
source information but intra-domain links cannot be assumed
to be available to VNP [11].

In [12], three types of resource information in each domain
are provided to VNP:
• Node: its location, available capacity and unit price.
• Peering link: its vertices, available capacity and unit price.
• Intra-domain link: a length-based price for connecting

any two nodes in its domain.
Based on the information disclosure policy above, we will

describe our network model in the next section.

C. Multi-domain VNE

Multi-domain VNE framework can be decomposed into
three major components [13]:

(i) partitioning the VN request into each InP via multi-
domain node mapping method,

(ii) establishing inter-domain connection (peering links) be-
tween InPs using inter-domain paths,

(iii) embedding each sub VN request in each InP using intra-
domain algorithm.

Based on multi-domain information model introduced in
previous section, some centralized multi-domain VNE solu-
tions are proposed in [14][11][12][15].

Many of them mainly focus on the first component. In
[14], the authors introduce the cost of mapping a virtual node
to a domain and the cost of mapping a link between two
substrate nodes. Their node mapping algorithm optimizes the
total embedding cost. The approach in [12] adopts the node
mapping method [7] on a full-mesh topology which complies
with partial information disclosure policy.

The second component is not very well explored compared
to the first component. Existing solutions use simple policies to
establish peering links. In [14], each peering link is considered
as a single VPN (Virtual Private Network) connection. In [12],
the flow of peering links is unsplittable between two domains,
while the intra-domain sub virtual links are splittable. The

peering link path is determined by Dijkstra’s algorithm on
VNP layer. Since VNP layer topology is not modified over
time because of cost efficiency, Dijkstra’s algorithm based
peering links have always the same path. This phenomenon
will result in difficulty of later intra-domain mapping. In [11],
a virtual node is first mapped to substrate peering node to
determine the peering link and the InP it belongs to. This
approach is suitable for traffic matrix based VN [16] but not
topology based VN.

Since establishing peering links is a part of link map-
ping, the chosen peering nodes will probably influence the
intra-domain paths. We believe that there exist some inter-
dependencies between the 2nd and 3rd components. To this
end, we propose a framework which maps peering links jointly
with intra-domain links in each InP.

III. NETWORK MODEL

We adopt the usual substrate and virtual network model
[7]. In addition, we describe VNP layer information based on
existing multi-domain information model.

A. Substrate Network

A domain InPi is modelled as a undirected graph
GS

i (N
S
i , L

S
i ), where NS

i is the set of substrate nodes in
domain i, LS

i is the set of internal substrate links. Each
substrate node nsi ∈ NS

i is associated with a CPU capacity
cpu(nsi ) and a geographic location loc(nsi ). Each substrate
link lsi ∈ LS

i is associated with a bandwidth capacity bw(lsi ).
Assuming that the substrate network covers K domains,

there are some peering nodes (border nodes) which have peer-
ing links with other domains. The peering nodes set is denoted
by NSP

i (NSP
i ⊂ NS

i ). The peering links between InPi (i.e.
GS

i ) and InPj (i.e. GS
j ) is denoted by LS

ij . We denote by
PS
i = ∪Kj=1L

S
ij the set of all of the peering links of InPi,

and by PS with PS =
⋃K

i=1 P
S
i =

⋃
(i,j)∈(1...K)2 L

S
ij the set

of all of the peering links. The complete substrate network
GS(NS , LS) is thus obtained as follows: NS =

⋃K
i=1N

S
i ,

LS = (
⋃K

i=1 L
S
i )

⋃
PS .

B. Virtual network

The virtual network is also modelled as a undirected graph
GV (NV , LV ), where NV is the set of virtual nodes and LV

is the set of virtual links. Each virtual node nv ∈ NV is
associated with a CPU capacity demand cpu(nv), a geographic
location loc(nv) and a distance constraint dis(nv) specifying
how far a virtual node nv can be placed from its loc(nv). Each
lv ∈ LV is associated with a bandwidth demand bw(lv). In
addition, each virtual network GV has a lifetime t(GV ).

C. VNP layer model

VNP collects informations provided by InPs. We assume
that InPs provide exact information about their nodes, as well
as the peering links. On the contrary, there is no exact informa-
tion about the internal organisation of a domain. Similar to the
existing solution [12], we assume that this information is given
by InP for each couple of <node, peering node>, as if there



Fig. 1: VNP workflow to embed a VN

was a pseudo direct link between these two nodes. Denote the
set of these links by LP

i = {lmn / m ∈ NS
i , n ∈ NSP

i }, InPi

provides to VNP the set of linking cost CP
i defined by

CP
i = {C(lmn) / m ∈ NS

i , n ∈ NSP
i }

where C(lmn) represents a cost (distance, bandwidth, etc.)
characterizing the link lmn. This kind of information is actu-
ally what a routing protocol (BGP) reports to other AS.

Thus, the SN of an InPi is perceived by VNP as a graph
GP

i = (NS
i , L

P
i ). In this way, the whole substrate network

that VNP perceives, referred as GP , is defined as follows:

GP = (
⋃
i

GP
i )

⋃
PS

i.e. the perceived vision for each domain and the exact vision
of the inter-domain connections. With GP , VNP can establish
a kind of complete topology covering all the domains for
achieving VN decomposition and link mapping.

IV. OUR PROPOSITION

To solve VNE in the context of multi-domain, we propose
a novel algorithm that maps jointly intra and peering links.

We propose to handle each VN request with a 2-step process

• At the first step, VNP performs the node decomposition
optimizing the node embedding.

• Subsequently, VNP performs a series of iterative down-
sizing VNE sub-solution, each of them optimizes both
the intra and peering link mapping related to a domain.

The link mapping is determined, at each iteration, by the
acting InP (called mapper). VNP is in charge of providing
necessary information to the mapper. The generic work-flow
of our algorithm is given by figure 1. The details are explained
as below.

A. Decomposition

Firstly, VNP decomposes the VN request with objective
of minimizing the node mapping cost. In this stage, VNP
associates each virtual node with a candidate set of substrate
nodes that meet its loc(nv). VNP is free to use any multi-
domain VN partitioning method (e.g. [14][12]). At the end of
this stage, virtual nodes are embedded to different domains.

An example of VN decomposition is shown in figure 2.
Three InPs are shown with their substrate nodes from A to P.
They are connected via 2 or 3 peering links. Intra substrate
links are not drawn. We suppose that a VN {a, b, c, d} arrives.
The VN decomposition step tells us that a, b, c and d are
mapped to substrate nodes A, K, N and J , respectively. {a−
b, a−c, c−d} are virtual links which interconnect two different
domains, while {b− d} locates in only one domain.

B. An iterative downsizing VNE approach

Here we give a detailed presentation of the kernel of our
proposal, which is formally given in algorithm 1.

1) Rationale: After VN decompostition step, since there
is no domain who knows the complete information of any
other one, embedding the virtual links which interconnect two
different domains becomes an issue.

We notice that, VNP can build, for each InPi, a reduced
vision (denoted by GR

i ) from GP
i . This vision contains all the

peering links/nodes, as well as the substrate nodes on which a
virtual node is embedded. Formally, GR

i = (NR
i , L

R
i ) where

NR
i = NSP

i

⋃
{nSi ∈ NS

i / ∃nv ∈ NV ,M(nv) = nSi }

i.e., NR
i is the union of all the substrate nodes supporting

virtual nodes on domain i and all of its peering nodes. In a
similar way, we define LR

i as follows;

LR
i = {lmn ∈ LP

i /n ∈ NR
i ,m ∈ NSP

i }

i.e., LR
i is the subset of LP

i between NR
i and NSP

i containing
only the links interconnecting a peering node and a node
supporting a virtual node.

In order to achieve an efficient and pragmatic operation
mode, we prefer that VNP plays its role of coordinator: It is
VNP who decides which of the InP should have the privilege to
map its peering links with others. It is also VNP who provides
to the chosen InP (that we refer as mapper) the topology of
the rest of the network according to its perception. In other
words, the chosen InP (the mapper) extends its view to the
rest of the network, by using the vision provided by VNP,
the only one who has a kind of comprehensive view on all
domains. In this way, the mapper obtains an augmented graph
on which it will perform link mapping, including both its intra
and peering links.

This process continues, domain after domain, until all of
the virtual links are set. The selection criterion is the link
utilization, the InP has most stringent link utilisation will be
the first to map its peering links. The reason lies in that high
link utilization denotes more constraints in the choice of path.



Fig. 2: VN decomposition Fig. 3: downsizing link mapping by
InP1

Fig. 4: downsizing link mapping by
InP2

2) Building of the augmented graph: Let InPi be the
chosen mapper. Formally speaking, the vision of the other
domains provided by VNP is GC

i =
⋃

j 6=iG
R
j , i.e. the reduced

perceived vision of all the other domains. We only need to
consider the case where all the domains are adjacent to the
mapper. The case of a domain not adjacent to the mapper but
to which the mapper has virtual links can be reduced to the
adjacent case.

VNP communicates GC
i to the mapper (InPi) so that the

latter can creates an augmented graph GA
i , defined as follows:

GA
i = GS

i ∪ PS
i ∪GC

i

This topology covers all of the accessible domains and can
be used as a substrate graph on which the mapper performs
VNE.

3) VN sub-request: VNP asks the mapper to perform a
partial VNE, which concerns only the virtual links related to
the mapper. We refer this partial VNE as a sub-request (Lsubv

i ).
It is obtained from the current VN request by reducing it to
virtual links related to the mapper.

4) An MCF-based link mapping: At this stage, the mapper
gets an augmented vision of the whole substrate network,
and a VNE sub request (Lsubv

i ), both from VNP. We have
thus a classical VNE problem that we solve with the multi
commodity flow (MCF) based mapping algorithm (line 6 of
algorithm 1).

At the end of this step, InPi pre-allocates resources on the
intra and peering links related to it and sends to VNP a virtual
link update notification.

Let us illustrate it by our example. Assume in figure 2 that
InP1 is chosen as the 1st mapper. VNP builds the VNP-level
graph vision GC

1 = GR
2 ∪GR

3 (see figure 3) with GR
2 = ({F,

G, K}, {F-K, G-K}) and GR
3 = ({M, N, L}, {M-N, L-N}).

It builds also the sub-request Lsubv
1 = {a-b, a-c}, actually the

virtual links b-d and c-d will be pruned since they haven’t
any extremity node supported by a substrate node in InP1.
VNP then sends GC

1 and Lsubv
1 to InP1. The latter builds the

augmented graph GA
1 which includes GS

1 (all the nodes and
links in InP1), the peering links (B-F, C-F, C-G, E-M), and
G1

C . InP1 then applies the MCF-based algorithm to solve the
embedding of Lsubv

1 on GA
1 .

C. Update and iteration

After each sub-request, the mapper (say InPi) reports the
results. In particular, it gives the results of the mapping of all
of its inter-domain virtual links in the following manner.

Let lv(a, b) be the virtual link between a particular node
a ∈ InPi and a particular node b ∈ InPj , with bw(lv(a, b))
as the required bandwidth. The MCF algorithm will map
lv(a, b) into one or several paths. Denote by NF the set of
the peering nodes of InPj through which a fraction of lv(a, b)
is mapped. After the link mapping of InPi, the set of virtual
links {lv(c, b)}c∈NF is equivalent to the virtual link lv(a, b)
with bandwidth demand:∑

c∈NF

bw(lv(c, b) = bw(lv(a, b))

It is to be pointed out that these links are totally inside inPj

and they replace lv(a, b).
As the mapping of InPi is achieved, it will no longer appear

as domain in the subsequent problem which contains only the
remaining domains. However, the achieved mapping concerns
only the links related to InPi (intra as well as peering),
the part of inter-domain virtual links on the other domains
still has to be mapped. Each of such inter-domain virtual
link related to the mapper can be transformed into the above
described equivalent set which will be added to each concerned
domain. For the sake of reading simplicity, we prefer give
an informal description here, instead of a formal one, which
would generate some more heavyly-indexed notations.

In this way, we obtain a new VNE problem with:
• at the SN level, the retreat of InPi and all the peering

links related to it;
• at the VN side, the retreat of all the virtual links internal

to InPi and the replacement of all the inter-domain
virtual links related to InPi by their equivalent set which
are added to corresponding domain.

This allows us to execute iteratively the downsizing map-
ping described in § IV-B. VNP repeats the process till its
convergence which is certain, since the subset is reduced by
at least one domain (the mapper) at each iteration.

In the example of figure 2 and 3, assume that InP1 has
chosen link F-K to map virtual link a-b. After sending its



results to VNP, this latter deduces and creates a new virtual
link a’-b with node mapping a’ equal to F. This virtual link
a’-b replaces virtual link a-b.

Now, the new problem (figure 4) contains only InP2 and
InP3. Assuming that the InP2 is chosen as mapper, the same
process continues and our problem is eventually reduced to a
single domain which is the last step of our algorithm.

Algorithm 1: Link mapping of InPi as mapper

Input : sub request virtual links Lsubv
i

Input : reduced perceived graph GC
i

Output: virtual link update notification
1 begin
2 if Lsubv

i = NULL then
3 return
4 end
5 create augmented substrate network GA

i (N
A
i , L

A
i ) ;

6 solve single domain VNE MCF problem;
7 foreach flow on substrate link lmn do
8 if lmn ∈ LS

i ∪ LS
ij then pre-allocate resource on

link lmn ;
9 end

10 send virtual link update notification;
11 end

D. Reject of virtual request

The resources are definitively allocated only if all the com-
putation on different domains succeed. A COMMIT message
is then sent by VNP to InPs so as to validate the resource
reservation. Should a mapper report a failure, a DEALLOC
message would be sent by VNP, which stops the process (VNE
failure) and allows each domain to deallocate pre-allocated
resources.

V. PERFORMANCE EVALUATION

We implemented a discrete event simulator to evaluate
the performances of our method. The optimization problem
is solved by IBM CPLEX library. Since we are basically
interested by the link mapping, all the evaluated methods
work with the same node decomposition by using the greedy
algorithm of [6].

A. Evaluation Environment

To simulate the multi-domain environment, we chose 4 real
networks from SNDlib [17] interconnected via 44 peering
links. The 4 domains consist respectively of 35 nodes and
80 links, 40 nodes and 89 links, 50 nodes and 88 links, and
finally 54 and nodes 81 links. The CPU capacity of each node
is chosen in [100,150]. The bandwidth capacity is selected
in [100,150] for intra links and in [300,400] for peering links.
The cost of the pseudo link between a border node and an intra
node is chosen to be the inverse of the bandwidth capacity of
the shortest path between these two nodes.

The virtual networks are generated by GT-ITM tool [18].
The virtual nodes of each VN follow a uniform distribution

between 3 and 10. The virtual nodes are interconnected
with probability 0.4. The CPU and bandwidth demands are
uniformly chosen in [0,20]. The VN request arrival process is
Poisson with arrival rate λ ∈ (2 . . . 6) requests per 100 time
units. The life time of each VN follows an exponential dis-
tribution with an average of 1000 time units. Each simulation
lasts for 30000 time units.

B. Compared methods

Our method, called ciplm (Coordinated intra and peering
link mapping), is compared against 3 different methods.

(i) ideal: The MCF link mapping is done with full informa-
tion. This means that the multi-domain network is treated
as a single domain. This is not feasible in practice.

(ii) ciplm+: This is a reinforcement of our method. It uses
the real time attributes (residual bandwidth in particular)
to compute the pseudo direct link cost. This method
needs to update the residual bandwidth of each link in
VNP every time a VN is accommodated. This method
is not practical since it requires the exchange of a
large amount of information and it claims a less strict
information disclosure policy.

(iii) shen [12]: this approach computes separately intra and
peering links. The latter is determined according to
Dijkstra’s algorithm.

We used the following metrics for comparison:
• VN request acceptance ratio: the ratio of the accepted

VN request over the total arrived VN requests;
• Average link utilization: average percentage of substrate

link resource utilization over time;
• Total revenue: sum of VN demands (bandwidth, cpu).

C. Result analysis

The simulation results are shown in figure 5, 6 and 7. The
VN request acceptance ratio is shown in figure 5. The link
utilization and revenue are shown in figure 6 and figure 7,
respectively. We got the following observations:
• ideal is the best, followed by ciplm+, and our basic

method ciplm outperforms clearly shen over all the three
metrics.

• The difference between ciplm and shen is always sig-
nificant.

• The difference between ciplm+ and ciplm is not always
significant, this is true in particular for the case of link
utilisation (figure 6).

To summarize:
• Our approach is better than that of shen. Indeed, mapping

jointly intra and peering links increases the efficiency.
Our methods improves the performance in particular
under heavy loads. In these cases, traffic is splitted and
sent to less loaded links, achieving in this way a better
utilisation of the overall residual bandwidth.

• The comparison between ciplm and ciplm+ shows that
the out-performance of the latter maybe be small. Consid-
ering the over-cost (in terms of information exchange and



2 3 4 5 6 7
50

55

60

65

70

75

80

85

90

95

100

arrival rate λ

V
N

re
qu

es
t

ac
ce

pt
an

ce
ra

tio
%

ideal

ciplm+

ciplm

shen

Fig. 5: Acceptance ratio

2 3 4 5 6 7
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

arrival rate λ

A
ve

ra
ge

lin
k

ut
ili

za
tio

n
%

ideal

ciplm+

ciplm

shen

Fig. 6: Average link utilization

2 3 4 5 6 7
3

4

5

6

7

8

9
·104

arrival rate λ

R
ev

en
ue

ideal

ciplm+

ciplm

shen

Fig. 7: Total revenue

requirement on the information disclosure) of deploying
ciplm+, we think that the ciplm+ does not offer a good
trade-off between cost and performance.

VI. CONCLUSION

Network virtualization attracts more and more attention
in future network architecture, since it allows the (dynamic)
building of a network suited to end-users need, without mod-
ifying the underlay infrastructures. Part of them will be built
over several infrastructures run by different operators.

The virtual network embedding, which aims at establishing
the optimal virtual networks on substrate networks, is a key
issue in network virtualization. The fact of partial information
makes the multi-domain VNE quite different from the single-
domain VNE and this problem remains a challenge. Some
multi-domain VNE solutions have been proposed in literature.
Most of them focus more on VN decomposition into sub VN
requests for each domain, so that the single-domain VNE can
be applied subsequently. Few attention has been paid on the
mapping of peering (inter-domain) links.

In this paper, we propose a novel multi-domain VNE
algorithm which aims to optimize the peering link mapping.
For this, we introduce a coordinator (VNP, VN Provider).
The latter has the privilege to get a comprehensive vision of
all of the domains as well as the peering links. It performs
VN decomposition, then coordinates the optimized mapping
of both intra and peering links, domain after domain, in
an iterative (and converging) manner. The optimization is
achieved by applying the MCF algorithm on an augmented
graph related to each domain. Simulation shows that our
approach optimizes the substrate resource utilization compared
to existing method. Besides, our method is easy to deploy in
current Internet architecture.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, no. 4, pp. 34–41,
2005.

[2] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy,
“Network virtualization architecture: proposal and initial prototype,” in
Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, pp. 63–72, ACM, 2009.

[3] A. Belbekkouche, M. Hasan, and A. Karmouch, “Resource discovery
and allocation in network virtualization,” Communications Surveys &
Tutorials, IEEE, vol. 14, no. 4, pp. 1114–1128, 2012.

[4] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, 2013.

[5] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in INFOCOM, vol. 1200,
pp. 1–12, 2006.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[7] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM,
pp. 783–791, IEEE, 2009.

[8] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proceedings of the 1st ACM work-
shop on Virtualized infrastructure systems and architectures, pp. 81–88,
ACM, 2009.

[9] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 2,
pp. 38–47, 2011.

[10] G. Sun, H. Yu, V. Anand, and L. Li, “A cost efficient framework and
algorithm for embedding dynamic virtual network requests,” Future
Generation Computer Systems, vol. 29, no. 5, pp. 1265–1277, 2013.

[11] D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-domain virtual
network embedding with limited information disclosure,” in IFIP Net-
working Conference, 2013, pp. 1–9, IEEE, 2013.

[12] M. Shen, K. Xu, K. Yang, and H.-H. Chen, “Towards efficient virtual
network embedding across multiple network domains,” in Quality of
Service (IWQoS), 2014 IEEE 22nd International Symposium of, pp. 61–
70, IEEE, 2014.

[13] M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” in Proceedings
of the second ACM SIGCOMM workshop on Virtualized infrastructure
systems and architectures, pp. 49–56, ACM, 2010.

[14] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Computer Networks,
vol. 55, no. 4, pp. 1011–1023, 2011.

[15] K. Guo, Y. Wang, X. Qiu, W. Li, and A. Xiao, “Particle swarm opti-
mization based multi-domain virtual network embedding,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium
on, pp. 798–801, IEEE, 2015.

[16] C. Wang, S. Shanbhag, and T. Wolf, “Virtual network mapping with
traffic matrices,” in Communications (ICC), 2012 IEEE International
Conference on, pp. 2717–2722, IEEE, 2012.

[17] sndlib http://sndlib.zib.de.
[18] GT-ITM http://www.cc.gatech.edu/projects/gtitm/.


