N
N

N

HAL

open science

A Cloud-Oriented Algorithm for Virtual Network
Embedding over Multi-Domain
Shuopeng Li, Mohand Yazid Saidi, Ken Chen

» To cite this version:

Shuopeng Li, Mohand Yazid Saidi, Ken Chen. A Cloud-Oriented Algorithm for Virtual Network
Embedding over Multi-Domain. 2016 IEEE 41st Conference on Local Computer Networks: Workshops

(LCN Workshops), Nov 2016, Dubai, France. pp.50-57, 10.1109/LCN.2016.028 . hal-04018747

HAL Id: hal-04018747
https://hal.science/hal-04018747
Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04018747
https://hal.archives-ouvertes.fr

A Cloud-oriented Algorithm for Virtual Network
Embedding Over Multi-Domain

Shuopeng LI
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France
li.shuopeng @univ-paris13.fr

Abstract—The rapid deployment of cloud computing service
needs a robust and efficient virtualization layer between the
application and the physical hardware. Network Virtualization,
which allows the co-existence of various logical networks on
shared physical infrastructure, is an important technique to
face this challenge. The optimal mapping of virtual resource
to physical resource is a major issue in network virtualization.
This problem, called virtual network embedding (VNE), has been
well explored in the context of one physical domain, which is
in practice operated by a single infrastructure provider (InP).
However, with the rapid growing of cloud computing services,
quite a number of VNs have to be established across multi-
domain. For multi-domain VNE, infrastructure providers can no
longer just solve their own single domain VNE problem, but have
to cooperate to build the whole VN. Therefore, new challenge
arises for the multi-domain VNE, compared to traditional single
domain VNE. The existing investigations on this problem mainly
focus on decomposing a VN to sub VN for each domain, but few
attention has been paid to the joint relation between intra-domain
and inter-domain (peering) links. In this paper, we propose
a multi-domain link mapping framework which combines the
intra and peering link mapping so as to optimize the overall
resource utilization. Our approach is easy to be deployed since it
is based on current Internet architecture. Evaluation shows that
our approach, brings improvements related to existing methods.

I. INTRODUCTION

Cloud computing services are more and more deployed in
recent years. End users and service providers (SP) benefit
the scalability and flexibility offered by cloud computing.
The need to host cloud applications across multi datacenters
attracts many attentions, and network virtualization is regarded
as a solution to meet this need [1].

Network virtualization [2] allows SP to create and manage
their cloud applications in a on-demand way without having
to touch the underlying infrastructure. The physical resources,
provided by Infrastructure Provider (InP, also called domain),
become cost-efficient and easy to manage.

An important step of network virtualization is to establish
virtual networks (VN) above substrate networks (SN). This
is referred as virtual network embedding (VNE). The VNE
problem aims to find a mapping from the VN to SN in a way
that objectives (e.g. cost) are optimized and constraints (e.g.
bandwidth) are satisfied.

Mohand Yazid SAIDI
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France
saidi@univ-paris13.fr

Ken CHEN
L2TI, Institut Galilée
Université Paris 13
Villetaneuse, France
ken.chen @univ-paris13.fr

With the rapid development of cloud computing, services
across multi domain turn into an intuitive evolution. For
various reasons (technical, commercial, etc.), an InP will
not disclose its complete intra domain information to other
InPs, only limited information is exchanged between InPs via
exterior gateway protocols like BGP. This kind of information
is usually static over a long period since frequent exchange
of real-time information would significantly increase network
load.

Establishment of multi-domain VN is more difficult than
the one on single domain for at least two reasons:

« First, a single domain VNE problem is mainly solved by
linear programming (LP). If we had a complete vision of
all the domains, a multi-domain VNE could be considered
as a single domain VNE with a very large domain, so
computationally harder to solve.

e More importantly, for various reasons (technical, com-
mercial, etc.), the acquisition of full information in multi-
domain is costly and often not possible. Only limited
information is exchanged between InPs via protocols like
BGP, so single domain approach cannot be re-used.

To address these challenges, multi-domain VNE frameworks
are developed. Usually, there is a VN decomposition step
followed by local sub VN mapping in each InP. Some au-
thors introduced a broker-like additional actor, termed Virtual
Network Provider (VNP) [3], between SP and InPs. The role
of this VNP consists in assembling multi-domain information,
decomposing VN and achieving the multi-domain VNE.

Existing solutions mainly focused on the decomposition of
a multi-domain VN to each domain. One of the shortcomings
in these frameworks is the lack of efficient link mapping
method especially for the peering links which interconnect
two domains.

In this paper, we propose an efficient method of link
mapping in multi-domain virtual network embedding context,
which jointly consider the mapping of intra and peering links.
In our approaches, the peering links are mapped simulta-
neously along with intra domain links. Our approaches are
based on information usually disseminated by classical routing
protocol (like BGP), thus it is ready to be deployed in current
Internet architecture. Our simulation results prove that this
solution results in better utilization of substrate resources.

The rest of this paper is organized as follows. Section II
provides an overview of the related work. Section III presents
our network model. Section IV and section V present our
multi-domain VNE solutions. The evaluation results are shown
in section VI. Section VII concludes this paper.

II. RELATED WORK
A. Single domain VNE

The problem of single domain VNE is NP-hard [4] [5]. A
basic off-line approach is proposed in [6], which performs the
embedding in 2 stages (node then link mapping). The Multi
Commodity Flow (MCF) is introduced in [7] to embed the
virtual links The method in [8] takes into account the virtual
links in node mapping stage. It privileges such node mapping
that reduce the length of substrate link path.

Since 2-stage VNE solutions are lack of cooperation, some
solutions mapping nodes and links in the same stage have
been proposed. An approach based on subgraph isomorphism
detection is presented in [9]. An other model in [10] applies the
Markov Random Walk to rank nodes and then embeds links
and nodes by using back-tracking strategy based on breadth-
first search. In order to meet the change of requirements over
time, dynamic VNE is proposed in [11] .

B. Multi-domain information disclosure

Because of politic and efficiency reasons, InPs can’t disclose
their complete information to others, so it is critical to make
clear the information disclosure policy.

The proxy VNP could get peering links location and re-
source information but intra-domain links cannot be assumed
to be available to VNP [12].

In [13], three types of resource information in each domain
are provided to VNP:

« Node: its location, available capacity and unit price.
« Peering link: its vertices, available capacity and unit price.
o Intra-domain link: a length-based price for connecting
any two nodes in its domain.
Based on the information disclosure policy above, we will
describe our network model in the next section.

C. Multi-domain VNE

Multi-domain VNE framework can be decomposed into
three major components [14]:

(i) partitioning the VN request into each InP via multi-
domain node mapping method,
(i1) establishing inter-domain connection (peering links) be-
tween InPs using inter-domain paths,
(iii) embedding each sub VN request in each InP using intra-
domain algorithm.

Based on multi-domain information model introduced in
previous section, some centralized multi-domain VNE solu-
tions are proposed in [15][12][13][16].

Many of them mainly focus on the first component. In
[15], the authors introduce the cost of mapping a virtual node
to a domain and the cost of mapping a link between two

substrate nodes. Their node mapping algorithm optimizes the
total embedding cost. The approach in [13] adopts the node
mapping method [8] on a full-mesh topology which complies
with partial information disclosure policy.

The second component is not very well explored compared
to the first component. Existing solutions use simple policies to
establish peering links. In [15], each peering link is considered
as a single VPN (Virtual Private Network) connection. In [13],
the flow of peering links is unsplittable between two domains,
while the intra-domain sub virtual links are splittable. The
peering link path is determined by Dijkstra’s algorithm on
VNP layer. Since VNP layer topology is not modified over
time because of cost efficiency, Dijkstra’s algorithm based
peering links have always the same path. This phenomenon
will result in difficulty of later intra-domain mapping. In [12],
a virtual node is first mapped to substrate peering node to
determine the peering link and the InP it belongs to. This
approach is suitable for traffic matrix based VN [17] but not
topology based VN.

Since establishing peering links is a part of link map-
ping, the chosen peering nodes will probably influence the
intra-domain paths. We believe that there exist some inter-
dependencies between the 2nd and 3rd components. To this
end, we propose a framework which maps peering links jointly
with intra-domain links in each InP.

III. NETWORK MODEL

We adopt the usual substrate and virtual network model
[8]. In addition, we describe VNP layer information based on
existing multi-domain information model.

A. Substrate Network

A domain InP; is modelled as a undirected graph
G? (NP, L?), where N7 is the set of substrate nodes in
domain 1, Lf is the set of internal substrate links. Each
substrate node n{ € N7 is associated with a CPU capacity
cpu(nf) and a geographic location loc(n?). Each substrate
link I§ € L7 is associated with a bandwidth capacity bw(l$).

Assuming that the substrate network covers K domains,
there are some peering nodes (border nodes) which have peer-
ing links with other domains. The peering nodes set is denoted
by NP (NSP C N7). The peering links between InP; (i.e.
Gis) and InP; (ie. G]S) is denoted by LZS’] We denote by
P = UK LY the set of all of the peering links of InP;,
and by P¥ with PS =L, P5 = U ;e k) LS the set
of all of the peering links. The compfete substrate network
GS(NS,L5) is thus obtained as follows: N5 = (JX, NS,
L% = (Ui, LU PS.

B. Virtual network

The virtual network is also modelled as a undirected graph
GV (NV,LV), where NV is the set of virtual nodes and L"
is the set of virtual links. Each virtual node n* € NV is
associated with a CPU capacity demand cpu(n"), a geographic
location loc(n?) and a distance constraint dis(n") specifying
how far a virtual node n¥ can be placed from its loc(n?). Each

Yes!

No

Fig. 1: VNP workflow to embed a VN

I € LYV is associated with a bandwidth demand bw(I). In
addition, each virtual network GV has a lifetime t(G"").

C. VNP layer model

VNP collects informations provided by InPs. We assume
that InPs provide exact information about their nodes, as well
as the peering links. On the contrary, there is no exact informa-
tion about the internal organisation of a domain. Similar to the
existing solution [13], we assume that this information is given
by InP for each couple of <node, peering node>, as if there
was a pseudo direct link between these two nodes. Denote the
set of these links by LY = {l,,, / m € N7, n € NT}, InP,
provides to VNP the set of linking cost C{" defined by

CF ={C(lyny) / m e N ,ne NP}

K3

where C(l,,,,) represents a cost (distance, bandwidth, etc.)
characterizing the link /,,,,. This kind of information is actu-
ally what a routing protocol (BGP) reports to other AS.
Thus, the SN of an InP; is perceived by VNP as a graph
GFP = (N7,LF). In this way, the whole substrate network
that VNP perceives, referred as G?F, is defined as follows:

¢’ =(JehHyr®

i.e. the perceived vision for each domain and the exact vision
of the inter-domain connections. With G¥, VNP can establish
a kind of complete topology covering all the domains for
achieving VN decomposition and link mapping.

IV. OUR PROPOSITION

To solve VNE in the context of multi-domain, we propose
a novel algorithm that maps jointly intra and peering links.
We propose to handle each VN request with a 2-step process

o At the first step, VNP performs the node decomposition
optimizing the node embedding.

o Subsequently, VNP performs a series of iterative down-
sizing VNE sub-solution, each of them optimizes both
the intra and peering link mapping related to a domain.

The link mapping is determined, at each iteration, by the
acting InP (called mapper). VNP is in charge of providing
necessary information to the mapper. The generic work-flow
of our algorithm is given by figure 1. The details are explained
as below.

A. Decomposition

Firstly, VNP decomposes the VN request with objective
of minimizing the node mapping cost. In this stage, VNP
associates each virtual node with a candidate set of substrate
nodes that meet its loc(n”). VNP is free to use any multi-
domain VN partitioning method (e.g. [15][13]). At the end of
this stage, virtual nodes are embedded to different domains.

An example of VN decomposition is shown in figure 2.
Three InPs are shown with their substrate nodes from A to P.
They are connected via 2 or 3 peering links. Intra substrate
links are not drawn. We suppose that a VN {a, b, ¢, d} arrives.
The VN decomposition step tells us that a, b, ¢ and d are
mapped to substrate nodes A, K, N and J, respectively. {a —
b, a—c, c—d} are virtual links which interconnect two different
domains, while {b — d} locates in only one domain.

B. An iterative downsizing VNE approach

Here we give a detailed presentation of the kernel of our
proposal, which is formally given in algorithm 1.

1) Rationale: After VN decompostition step, since there
is no domain who knows the complete information of any
other one, embedding the virtual links which interconnect two
different domains becomes an issue.

We notice that, VNP can build, for each InP;, a reduced
vision (denoted by GT?) from G This vision contains all the
peering links/nodes, as well as the substrate nodes on which a
virtual node is embedded. Formally, GI* = (N, LE) where

NF = NFP | J{nf € N§ / 3n" € NV, M(n") = nf}

i.e., NF is the union of all the substrate nodes supporting
virtual nodes on domain ¢ and all of its peering nodes. In a
similar way, we define LZR as follows;

LE = {ly € LY /n € NE,m € N°T}

i.e., L is the subset of LT between N/ and N;°F containing
only the links interconnecting a peering node and a node
supporting a virtual node.

In order to achieve an efficient and pragmatic operation
mode, we prefer that VNP plays its role of coordinator: It is
VNP who decides which of the InP should have the privilege to
map its peering links with others. It is also VNP who provides
to the chosen InP (that we refer as mapper) the topology of
the rest of the network according to its perception. In other
words, the chosen InP (the mapper) extends its view to the
rest of the network, by using the vision provided by VNP,
the only one who has a kind of comprehensive view on all

domains. In this way, the mapper obtains an augmented graph
on which it will perform link mapping, including both its intra
and peering links.

This process continues, domain after domain, until all of
the virtual links are set. The selection criterion is the link
utilization, the InP has most stringent link utilisation will be
the first to map its peering links. The reason lies in that high
link utilization denotes more constraints in the choice of path.

2) Building of the augmented graph: Let InP; be the
chosen mapper. Formally speaking, the vision of the other
domains provided by VNP is G§' = | it Gf, i.e. the reduced
perceived vision of all the other domains. We only need to
consider the case where all the domains are adjacent to the
mapper. The case of a domain not adjacent to the mapper
but to which the mapper has virtual links can be reduced to
the adjacent case. Actually, assume that the mapper has to
establish a virtual link with a node ¢ € InP, and InP; is not
adjacent to the mapper. We have necessarily one of the two
situations,

« The node c is known by none of the adjacent domain to
the mapper, then we know that it is technically impossible
to establish the virtual link, since there is no way to route
traffic between the mapper and c. This leads to the failure
of VNE embedding;

o There is at least one adjacent InP, say InP; who knows
¢, it means that InP; can include ¢ among its pseudo
direct link announcement, thus, ¢ can be considered by
VNP as being attached to InP; and announced as is to
InP; through G¢.

VNP communicates G$ to the mapper (InP;) so that the

latter can creates an augmented graph G, defined as follows:

GA=ac’upr’uGgt

In other words, the mapper has a complete knowledge of its
own domain (G7) as well as its peering links (P?). The
augmented topology of the whole network is obtained by
using information (Gic) communicated by VNP. This topology
covers all of the accessible domains and can be used as a
substrate graph on which the mapper performs VNE.

3) VN sub-request: VNP asks the mapper to perform a
partial VNE, which concerns only the virtual links related to
the mapper. We refer this partial VNE as a sub-request (L{**).
It is obtained from the current VN request by reducing it to
virtual links related to the mapper.

4) An MCF-based link mapping: At this stage, the mapper
gets an augmented vision of the whole substrate network,
and a VNE sub request (Lf“b”), both from VNP. We have
thus a classical VNE problem that we solve with the multi
commodity flow (MCF) based mapping algorithm (line 6 of
algorithm 1).

At the end of this step, InP; pre-allocates resources on the
intra and peering links related to it and sends to VNP a virtual
link update notification.

Let us illustrate it by our example. Assume in figure 2 that
InPj is chosen as the 1st mapper. VNP builds the VNP-level

Node mapping
Virtual peering link
Intra domain virtual link

Fig. 2: VN decomposition

<> Pseudo link
— — — — Node mapping

——— Virtual peering link

Local
Virtual
Network

Augmented
Substrate
Network

Fig. 3: downsizing link mapping by InP;

graph vision G{ = GI U GE (see figure 3) with G = ({F,
G, K}, {F-K, G-K}) and G§¥ = ({M, N, L}, {M-N, L-N}).
It builds also the sub-request L{“*" = {a-b, a-c}, actually the
virtual links b-d and c-d will be pruned since they haven’t
any extremity node supported by a substrate node in InP;.
VNP then sends G{' and L{“*V to InP;. The latter builds the
augmented graph G‘f‘ which includes G¥ (all the nodes and
links in InP;), the peering links (B-F, C-F, C-G, E-M), and
G&. InP; then applies the MCF-based algorithm to solve the
embedding of L;“% on G{.

C. Update and iteration

After each sub-request, the mapper (say InP;) reports the
results. In particular, it gives the results of the mapping of all
of its inter-domain virtual links in the following manner.

Let [”(a,b) be the virtual link between a particular node
a € InP; and a particular node b € InP;, with bw({"(a,b))
as the required bandwidth. The MCF algorithm will map
[(a,b) into one or several paths. Denote by N* the set of
the peering nodes of InP; through which a fraction of [”(a, b)
is mapped. After the link mapping of InFP;, the set of virtual

«—> Pseudo link
— — — = Node mapping

—-—-— Virtual peering link

Intra domain virtual link

Local
Virtual
Network

Augmented
Substrate
Network

Fig. 4: downsizing link mapping by InP;

links {{”(c,b)}cenr is equivalent to the virtual link {¥(a,b)
with bandwidth demand:

> bw(¥(c,b) = bw(*(a,b))

ceNF
It is to be pointed out that these links are totally inside inP;
and they replace [Y(a,b).

As the mapping of InFP; is achieved, it will no longer appear
as domain in the subsequent problem which contains only the
remaining domains. However, the achieved mapping concerns
only the links related to InP; (intra as well as peering),
the part of inter-domain virtual links on the other domains
still has to be mapped. Each of such inter-domain virtual
link related to the mapper can be transformed into the above
described equivalent set which will be added to each concerned
domain. For the sake of reading simplicity, we prefer give
an informal description here, instead of a formal one, which
would generate some more heavyly-indexed notations.

In this way, we obtain a new VNE problem with:

o at the SN level, the retreat of InP; and all the peering

links related to it;

o at the VN side, the retreat of all the virtual links internal
to InP; and the replacement of all the inter-domain
virtual links related to InP; by their equivalent set which
are added to corresponding domain.

This allows us to execute iteratively the downsizing map-
ping described in § IV-B. VNP repeats the process till its
convergence which is certain, since the subset is reduced by
at least one domain (the mapper) at each iteration.

In the example of figure 2 and 3, assume that InP; has
chosen link F-K to map virtual link a-b. After sending its
results to VNP, this latter deduces and creates a new virtual
link a’-b with node mapping a’ equal to F. This virtual link
a’-b replaces virtual link a-b.

Now, the new problem (figure 4) contains only InP», and
InP;. Assuming that the In P, is chosen as mapper, the same
process continues and our problem is eventually reduced to a
single domain (figure 5) which is the last step of our algorithm.

— — — — Node mapping

Intra domain virtual link

Local
Virtual
Network

Augmented
Substrate
Network

Fig. 5: InPs, end of iteration

Algorithm 1: Link mapping of InP; as mapper

Input : sub request virtual links L$“?

Input : reduced perceived graph G¢

Output: virtual link update notification

1 begin

2 if L;*" = NULL then

3 return

4 end

5 | create augmented substrate network G (N, L4) ;

6 solve single domain VNE MCF problem;

7 foreach flow on substrate link l,,,, do

8 if I, € LY U L7 then pre-allocate resource on
link Z,,,, ;

9 end

10 send virtual link update notification;

11 end

D. Reject of virtual request

The resources are definitively allocated only if all the com-
putation on different domains succeed. A COMMIT message
is then sent by VNP to InPs so as to validate the resource
reservation. Should a mapper report a failure, a DEALLOC
message would be sent by VNP, which stops the process (VNE
failure) and allows each domain to deallocate pre-allocated
resources.

V. REINFORCEMENT OF OUR METHOD

As mentioned at the end of IV-B1, we choose the link
utilization criterion to determine mapping sequence. This
choice simplifies the algorithm, but may fail to get the optimal
solution. In this section, we propose a reinforcement of our
algorithm, which waives the constraint of sequence selection.

Fundamentally, domains are peers. From a domain’s point
of view, there are actually 2 “domains” : a single domain
(itself) and a outside domain (others). Using our downsizing
algorithm, a domain tries its best to map its intra and peering
virtual links, but how does the outside domain (others) map
the remaining virtual links? We notice that after the first

downsizing mapping, the problem is reduced to a multi-
domain VNE on the outside domain (others) because the first
mapper has mapped its own intra and peering virtual links.
Following the downsizing logic, the problem will finally be
reduced to a 2 domain VNE, on which a better solution can
be easily found. Therefore We first study the case of only 2
domains, and then we move to K domains VNE.

A. Two domain basic method

First, we consider the case of 2 domains. Assuming that the
multi-domain VNE problem consists of 2 domains (denoted
by InP; and InP), there are obviously 2 possible mapping
sequences.

o First Solution S;_so : InP; starts up the mapping
processus as mapper and then InP», solves a single
domain VNE.

o Second solution: Sy_~; : InPs starts up the mapping
processus as mapper and then InP; solves a single
domain VNE.

These two solutions are sent to VNP, which compares the
embedding cost of these solutions. The final solution of the 2
domain basic multi-domain VNE (denoted by M DV N E(2))
is the better one among the 2 solutions above:

SupvNE@R) = min{Si_>2,52_>1}

Algorithm 2: M DV NE(K)

Input : VN request
Output: embedding cost
Output: mapping solution
1 begin

2 foreach InP; do

3 link mapping of InP; as mapper;
4 get embedding cost C'(mapper);
5 if K > 2 then
6

7

8

9

solve MDVNE(K —1) ;
get embedding cost C(others);

end
else

10 solve MDV NE(2);
u get embedding cost C'(others);
12 end
13 InP; solution cost
C(i) = C(mapper) + C(others) ;
14 end
15 return minimum C'(¢) and correspond solution;
16 end

B. Towards K domain solution

From the 2 domain basic method, K domain multi-domain
VNE (denoted by M DV NE(K)) can be determined by a
recursive algorithm. The detail of M DV NE(K) is shown in
algorithm 2.

The multi-domain is fundamentally divided into 2 elements,
a mapper and the others. The former is mapped using our
downsizing method (line 3 in algorithm 2), and the later is
reduced to a K-1 domain problem (line 6 in algorithm 2),
until the basic 2 domain problem. The cost of the candidate
is the sum of cost of the 2 elements (line 13 in algorithm 2).
The minimum cost candidate will be adopted as the mapping
solution.

VI. PERFORMANCE EVALUATION

We implemented a discrete event simulator to evaluate
the performances of our method. The optimization problem
is solved by IBM CPLEX library. Since we are basically
interested by the link mapping, all the evaluated methods
work with the same node decomposition by using the greedy
algorithm of [7].

A. Evaluation Environment

The substrate networks are generated by GT-ITM tool [18].
3 domains are generated. Each domain consists of 50 nodes
and 100 links. The 3 domains are interconnected by 26 peering
links. The CPU capacity of each node is chosen in [50,150].
The bandwidth capacity is selected in [50,100] for intra links
and in [300,400] for peering links. The cost of the pseudo link
between a border node and an intra node is chosen to be the
inverse of the bandwidth capacity of the shortest path between
these two nodes.

The virtual networks are also generated by GT-ITM tool.
The virtual nodes of each VN follow a uniform distribution
between 3 and 8. The virtual nodes are interconnected with
probability 0.4. The CPU and bandwidth demands are uni-
formly chosen in [0,20]. The VN request arrival process is
Poisson with arrival rate A € (2...6) requests per 100 time
units. The life time of each VN follows an exponential dis-
tribution with an average of 1000 time units. Each simulation
lasts for 20000 time units.

B. Compared methods

We compare the following 3 methods :

(i) lu—ciplm: Link utilization coordinated intra and peering
link mapping. This is our first method.

(ii) r—ciplm: Reinforced coordinated intra and peering link
mapping. This is our second method.

(iii) shen [13]: This approach computes separately intra and
peering links. The latter is determined according to
Dijkstra’s algorithm.

We used the following metrics for comparison:

e VN request acceptance ratio: the ratio of the accepted
VN request over the total arrived VN requests;

o Average link utilization: the link utilization is the total
allocated link resource over the total substrate resource.
The allocated resource % is given by:

U= Y bw(lY)

veLViseLS

—g— r— ciplm
—6— lu — ciplm

A

shen

(=2}
o
T

VN request acceptance ratio %
-3
ot
T

t
ot
T
|

arrival rate A

Fig. 6: Acceptance ratio

0.3

0.25 |- y

Average link utilization %

10,2 | —F— r —ciplm | |
—o— lu — ciplm
—A— shen

0 I ! I I
2 3 4 5 6 7

arrival rate \

Fig. 7: Average link utilization

where bw(l*,1") denotes the bandwidth committed on the
substrate link [° to embed the virtual link [".

o Total revenue: The revenue of a VN as the weighted sum
of bandwidth and CPU:

Z=p Z bw(l”) + « Z cpu(n’)

lveLV nveNV

where « (resp.) is the unit revenue for cpu (resp.
bandwidth). .

C. Result analysis

The simulation results are shown in figure 6, 7 and 8. The
VN request acceptance ratio is shown in figure 6. The link
utilization and revenue are shown in figure 7 and figure 8§,
respectively. We got the following observations:

e 7 — cilpm is the best, followed by lu — ciplm, and then
shen over all the three metrics.

o The difference between lu — ciplm and shen is always
significant.

104

8
7 - .
Q 6 B
=1
=
5}
5
~ 51 i
4+ —5— r — ciplm ||
g —o— lu — ciplm
—A— shen
3 ! ! ! I
2 3 4 5 6 7

arrival rate \

Fig. 8: Total revenue

o The difference between r — ciplm and [u — ciplm is not
always significant.

To summarize:

o Our approaches are better than that of shen. Indeed,
mapping jointly intra and peering links increases the
efficiency. Our methods improves the performance. In
these cases, traffic is splitted and sent to less loaded links,
achieving in this way a better utilisation of the overall
residual bandwidth.

o The out-performance of r — ciplm is small compare to
lu—ciplm. r—ciplm ensures a cost-efficient mapping so-
lution for every VN. The peering links are mapped jointly
with the right domain, which leads to a better resource
allocation. However, the peering links in lu— cimplm are
sometimes not perfectly mapped because link utilization
does not always give the best mapping sequence.

VII. CONCLUSION

Regarded as a solution to the virtualization layer of cloud
computing, network virtualization attracts more and more
attention in cloud computing architecture, since it allows the
(dynamic) building of a network suited to end-users need,
without modifying the underlay infrastructures. Part of them
will be built over several infrastructures run by different
operators.

The virtual network embedding, which aims at establishing
the optimal virtual networks on substrate networks, is a key
issue in network virtualization. The fact of partial information
makes the multi-domain VNE quite different from the single-
domain VNE and this problem remains a challenge. Some
multi-domain VNE solutions have been proposed in literature.
Most of them focus more on VN decomposition into sub VN
requests for each domain, so that the single-domain VNE can
be applied subsequently. Few attention has been paid on the
mapping of peering (inter-domain) links.

In this paper, we propose a novel multi-domain VNE
algorithm which aims to optimize the peering link mapping.

For this, we introduce a coordinator (VNP, VN Provider).
The latter has the privilege to get a comprehensive vision of
all of the domains as well as the peering links. It performs
VN decomposition, then coordinates the optimized mapping
of both intra and peering links, domain after domain, in
an iterative (and converging) manner. The optimization is
achieved by applying the MCF algorithm on an augmented
graph related to each domain. Simulation shows that our
approach optimizes the substrate resource utilization compared
to existing method. Besides, our method is easy to deploy in
current Internet architecture.

REFERENCES

[1] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A
survey on resiliency techniques in cloud computing infrastructures and
applications,” IEEE Communications Surveys Tutorials, vol. PP, no. 99,
p. 1, 2016.

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, no. 4, pp. 34-41,
2005.

[3] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy,
“Network virtualization architecture: proposal and initial prototype,” in
Proceedings of the 1st ACM workshop on Virtualized infrastructure
systems and architectures, pp. 63-72, ACM, 2009.

[4] A. Belbekkouche, M. Hasan, and A. Karmouch, “Resource discovery
and allocation in network virtualization,” Communications Surveys &
Tutorials, IEEE, vol. 14, no. 4, pp. 1114-1128, 2012.

[5] A. Fischer, J. E. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888-1906, 2013.

[6] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in INFOCOM, vol. 1200,
pp- 1-12, 2006.

[71 M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17—
29, 2008.

[8] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM,
pp- 783-791, IEEE, 2009.

[9] J. Lischka and H. Karl, “A virtual network mapping algorithm based on

subgraph isomorphism detection,” in Proceedings of the 1st ACM work-

shop on Virtualized infrastructure systems and architectures, pp. 81-88,

ACM, 2009.

X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,

“Virtual network embedding through topology-aware node ranking,”

ACM SIGCOMM Computer Communication Review, vol. 41, no. 2,

pp. 38-47, 2011.

G. Sun, H. Yu, V. Anand, and L. Li, “A cost efficient framework and

algorithm for embedding dynamic virtual network requests,” Future

Generation Computer Systems, vol. 29, no. 5, pp. 1265-1277, 2013.

D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-domain virtual

network embedding with limited information disclosure,” in IFIP Net-

working Conference, 2013, pp. 1-9, IEEE, 2013.

M. Shen, K. Xu, K. Yang, and H.-H. Chen, “Towards efficient virtual

network embedding across multiple network domains,” in Quality of

Service (IWQoS), 2014 IEEE 22nd International Symposium of, pp. 61—

70, IEEE, 2014.

M. Chowdhury, F. Samuel, and R. Boutaba, “Polyvine: policy-based

virtual network embedding across multiple domains,” in Proceedings

of the second ACM SIGCOMM workshop on Virtualized infrastructure

systems and architectures, pp. 49-56, ACM, 2010.

1. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network

provisioning across multiple substrate networks,” Computer Networks,

vol. 55, no. 4, pp. 1011-1023, 2011.

K. Guo, Y. Wang, X. Qiu, W. Li, and A. Xiao, “Particle swarm opti-

mization based multi-domain virtual network embedding,” in Integrated

Network Management (IM), 2015 IFIP/IEEE International Symposium

on, pp. 798-801, IEEE, 2015.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17] C. Wang, S. Shanbhag, and T. Wolf, “Virtual network mapping with
traffic matrices,” in Communications (ICC), 2012 IEEE International
Conference on, pp. 2717-2722, 1EEE, 2012.

[18] GT-ITM http://www.cc.gatech.edu/projects/gtitm/.

