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Abstract—Network Function Virtualization (NFV), which 

decouples network functions from hardware and transforms 

them into hardware-independent Virtual Network Functions 

(VNF), is a crucial technology for many emerging networking 

domains, such as 5G, edge computing and data-center network. 

Service Function Chaining (SFC) is the ordered set of VNFs. 

The VNF deployment problem is to find the optimal deployment 

strategy VNFs in SFC while guaranteeing the Service-Level 

Agreements (SLA). Existing VNF deployment researches 

mainly focus on sequences of VNFs without energy 

consideration. However, with the rapid development of user and 

application requirement, the SFCs evolve from sequence to 

dynamic graph and the service providers become more and 

more sensitive to the energy consumption in NFV. Therefore, in 

this paper, we identify the Energy-efficient Graph-structured 

SFC problem (EG-SFC) and formulate it as a Combinatorial 

Optimization Problem (COP). Benefiting from the recent 

advances in machine learning for COP, we propose an end-to-

end Graph Neural Network (GNN) based on constrained Deep 

Reinforcement Learning (DRL) method to solve EG-SFC.  Our 

method leverages the Graph Convolutional Network (GCN) to 

represent the Q-network of Double Deep Q-Network (DDQN) in 

DRL. The mask mechanism is proposed to deal with the 

resources constraints in COP. The experimental results show 

that the proposed method can deal with unseen SFC graphs and 

achieves better performances than greedy algorithm and 

traditional DDQN. 

Keywords—Network Function Virtualization, Service 

Function Chaining, Virtual Network Function, Graph Neural 

Network, Deep Reinforcement Learning 

I. INTRODUCTION 

Network Function Virtualization (NFV) is a network 
architecture proposed by European Telecommunications 
Standards Institute (ETSI)[1]. NFV decouples network 
functions from hardware and transforms them into Virtual 
Network Functions (VNF) that do not rely on dedicated 
hardware. VNF can be deployed on general-purpose hardware. 
When providing network services to users , network flows will 
pass through multiple VNFs in a specific order. An ordered 
set of VNFs that can describe the logical connection between 
each other is defined as Service Function Chaining (SFC). 
Compared to the traditional dedicated equipments, NFV 
facilitates business expansion and reduces the investment cost 
of operators. 

The deployment of VNF requires the allocation of some 
resources which should be efficiently chosen. Actually, the 
VNF deployment problem is a network resource optimization 
problem that aims to allocate limited CPU, memory, 
bandwidth, etc., for different users or task to verify the 
requirements. The VNF deployment problem can be thus 

modeled as a Combined Optimization Problem (COP) which 
is a kind of optimization problem that looks for an optimum 
solution in a discrete domain. With the continuous expansion 
of the scale of the problems in practical applications and the 
increasing requirement for real-time solution, the traditional 
operation researches optimization algorithms cannot realize 
the online solution of COP. Pointer Network [2] is the first 
neural Network that can effectively solve COP. Various 
Pointer Network based methods, showing the powerful effects 
in solving COP, were then proposed. At the same time, Deep 
Reinforcement Learning (DRL) is often used to train models 
due to the lack of labeled data for COP in most cases [3]. 

DRL has also been applied to solve the VNF deployment 
problem. These researches generally only focus on the 
traditional chained SFC, although with the development of 
network services, SFC will present complex graph structure in 
many cases. At present, there have been researches focusing 
on graph-structured SFC. Traditional Machine Learning have 
poor performance when processing graph structure data. In 
response to this problem, we propose in this paper to use 
Graph Neural Network (GNN) to solve the VNF deployment 
problem. GNN can extract  the topological information and 
complex features from the graph structure quickly. Although  
GNN has been applied to the deployment of VNF, the related 
researches usually use it to deal with the physical network 
topology, without considering the topological information of 
SFC. 

In this paper, we model the EG-SFC problem and propose 
an end-to-end GNN based on constrained DRL method. Our 
main contributions are as follows: 

(1) the EG-SFC problem is modeled as a COP with 
objective of joint energy and delay consideration; (2) Graph 
Convolutional Network (GCN) is adopted to extract the 
graph-structured data of SFC input and to represent the Q 
network in Double Deep Q-Network (DDQN); (3) the mask 
mechanism is used in GCN-based DDQN to satisfy the 
resources constraints while selecting output nodes. 

To validate our proposal, the experiments compare the 
accepted ratio, end-to-end delay and energy consumptions  of 
random SFC graph requests obtained by our method against 
traditional DDQN and greedy methods. The numerical results 
show that our GCN-based method learn better strategy than 
DNN-DDQN for SFC graphs that have never seen before. Our 
method also performs better than the greedy method. 

II. RELATED WORK 

The VNF deployment problem allocates resources such as 
CPU, memory and bandwidth, so it can be regarded as COP. 



Since the first Machine Learning model Pointer Network that 
can effectively solve COP was proposed, a large number of 
related methods have been proposed, and these methods are 
usually trained by Reinforcement Learning (RL). Bello et al.[4] 
used RL algorithm REINFORCE to train the Pointer Network, 
and introduced the Critic network as the baseline to reduce the 
training variance. Its effect exceeds the Pointer Network that 
used supervised learning. Deudon et al.[5] used the 
Transformer to improve the Pointer Network. The model still 
used REINFORCE to update, but its encoder used the Multi-
head Attention to calculate the feature vector of the node; its 
decoder linearly mapped the most recent three-step decision 
to obtain the reference vector. In the VNF deployment 
problem, Li et al.[6] modeled the VNF deployment problem 
as a mixed integer programming problem, and trained the 
model with RL algorithm Deep Q-Network (DQN) to realize 
the online deployment of the VNF. Solozabal et al[7] 
formalized the VNF deployment problem as a constrained 
COP. Considering the state of the NFV infrastructure, they 
used the Seq2Seq and DRL to generate the deployment 
strategy of SFC with the minimum total power consumption 
in the physical network. 

GNN can extract node features, and it is also used to solve 
COP. Dai et al.[8] first used GNN to solve COP. Ma et al.[9] 
used GNN to calculate graph embedding, and then used the 
Attention mechanism to construct the solution, the model 
achieved good optimization performance in Traveling 
Salesman Problem (TSP) and other problems. GNN can 
provide solutions to VNF deployment problem. Kim et al.[10] 
used the Edge-conditioned Filtered Graph Convolutional 
Neural Network to generate the state embedding of nodes. The 
state embedding was connected with the service list to 
generate the approximate optimal solution of VNF policy 
classes (add, remove, none). Habibi et al.[11] proposed a 
method for Variational Graph Autoencoder to accelerate 
virtual network embedding. The model used the adjacency 
matrix and the resources feature matrix of physical network to 
cluster physical nodes, and embedded virtual network by 
selecting servers in each cluster. Heo et al.[12] built an 
Encoder-Decoder structure combined with RL to generate the 
path connecting VNF instances. The encoder produced a 
vector representation of nodes with the Gated Graph Neural 
Network (GG-NN). Sun et al.[13] used Graph Network (GN)  
to extract the nodes and links resources of the network 
topology, and updated the model with RL to find the VNF 
deployment strategy with the lowest deployment cost. Rkhami 
et al.[14] used GCN to encode the graph structure representing 
the physical network and SFC respectively, and transformed 
the vector representation of physical network and SFC into 
state-level coding with Neural Tensor Networks (NTN). The 
model outputed the prediction corresponding to the strategy 
and value function. 

Regardless of the method adopted, most of the current 
researches are geared towards the deployment of traditional 
chained SFC, and they focus more on to network topology 
rather than SFC. For this situation, we use GNN and DRL to 
carry out research on the deployment of graph-structured SFC. 

III. EG-SFC PROBLEM FORMULATION 

A. Physical Network 

We represent the physical network as an undirected graph 
Gp=(Np, Lp), where Np represents a set of physical nodes (i.e. 
servers) and Lp represents a set of physical links. Server nNp 

has available computing resources rn
p

 and its delay for 
processing a VNF instance is dn

p
. Each server can be deployed 

with multiple VNF instances. φ
n
 is a binary variable, φ

n
=1 

means that server n is working, and φ
n
=0 means that server n 

is off. The bandwidth of the physical link nm, which connects 
adjacent servers n and m is bnm

p
. The transmission delay of 

service request on nm is dnm
p

. 

B. Service Function Chaining 

An SFC is represented by a directed graph Gv=(Nv, Lv), 
where Nv represents a set of VNF and Lv represents a set of 
virtual links. The i-th VNF on SFC is denoted as Ni

v, and its 
required computing resources is ri

v . When the i-th VNF is 
deployed to server n, the binary variable θi

n
=1, otherwise θi

n
=0. 

When the virtual link connecting VNF i and j is mapped to the 
physical link nm, the binary variable λij

nm
=1, otherwise λij

nm
=0. 

The bandwidth required by SFC sGv is bs
v
. 

C. Virtual Network Function Deployment 

When the SFC request arrives on the network, the 

required VNF modules need to be instantiated on the 

specified servers. The resources of the physical network, 

which include CPU, bandwidth, etc., are limited. When the 

amount of resources demanded by a request exceeds the 

amount of available resources on servers and links, the 

Service-Level Agreements (SAL) cannot be guaranteed. 

Therefore, the VNF deployment should meet the constraints 

of resources. The objective of VNF deployment problem is to 

find the optimal VNF deployment strategy to reduce network 

Operating Expenditure (OPEX) while guaranteeing service 

requirements. Fig. 1 is an example of the VNF deployment of 

a graph-structured SFC. The black numbers in Fig. 1 

represent the computing resources of the server or the 

bandwidth of the physical link, and the red numbers represent 

the processing delay of the server or the transmission delay 

of the physical link. When the SFC request arrives, the VNFs 

of the SFC should be deployed. Combined with resources 

constraints and service requirements, VNF1, VNF2 and 

VNF3 are mapped to Server2, VNF4 and VNF5 are mapped 

to Server5. The virtual links are also mapped. 
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Fig. 1. VNF deployment. (a) is a SFC; (b) is the result of VNF 

deployment. 



D. Optimization Problem 

The objective of this paper is to minimize the energy 
consumption and end-to-end delay of SFC request while 
guaranteeing the success of VNFs deployment. We define this 
optimization problem as EG-SFC. 

For simplicity, we assumed that the energy consumption 
of SFC is determined by the number of working servers in the 
physical network. Hence, at timestep t, we define the energy 
consumption of SFC as follows: 

 c(t)= ∑
nNp

φ
n
(t) (1) 

The end-to-end delay of SFC mainly consists of 
processing delay and transmission delay. At timestep t, the 
processing delay and transmission delay of SFC are defined 
as: 

 dp(t)= ∑
iNv

∑
nNp

θi
n
(t)dn

p
 (2) 

 dt(t)= ∑
i,jNv

∑
n,mNp

λij
mn

(t)dnm
p

 (3) 

where dn
p

 and dnm
p

 are normalized for a uniform order of 
magnitude. According to the energy consumption and end-to-
end delay of SFC, we define the optimization objective O(t) 
as: 

 O(t)=e1∙
c(t)

num(Np)
+e2∙(

dp(t)

num(Nv)
+

dt(t)

num(Lv)
) (4) 

Our objective objective consider jointly the energy 
consumption and delay. e1 and e2 are tradeoff parameters, and 
e1+e2=1. We also normalized the energy consumption. 

We take the computing resources of physical nodes and 
the bandwidth of physical links as constraints. Combined with 
the optimization objective, the optimization problem is 
defined as: 

 min O(t) (5) 

 ∑
nNp

θi
n(t)=1, ∀ iNv (6) 

 ∑
iNv

θi
n(t)ri

v≤rn
p
, ∀ nNp (7) 

 ∑
iNv

(λij
nm(t)+λij

mn(t))b
ij

v
≤bnm

p
, ∀ nmLp (8) 

∑
iNv

λij
nm(t)- ∑

iNv
λij

mn(t)=θi
n(t)-θj

m(t),∀ n, mNp,∀ nmLp(9) 

 θi
n(t)={0, 1}, ∀ iNv, ∀ nNp (10) 

 λij
nm(t)={0, 1}, ∀ i, jNv, ∀ n,mNp (11) 

 φ
n
(t)={0, 1}, ∀ nNp (12) 

Equation(6)-Equation(12) guarantee the effectiveness of 
the optimization objective. Equation(6) is used to guarantee 
that the VNF on the SFC can only select one server for 
deployment. Equation(7) is used to guarantee that the sum of 
resource required by the VNF deployed on a given sever does 
not exceed the total computing resource of that server. 
Equation(8) guarantees that the sum of bandwidth 
requirements of all virtual links mapped to a physical link does 
not exceed the total bandwidth of that physical link. 
Equation(9) indicates that when two adjacent VNFs in the 
SFC are deployed to servers n and server m, there must be a 
continuous path between the physical links nm. Equation(10)-
Equation(12) represent binary variable constraints for VNFs 

deployment, virtual links mapping and servers state 
respectively. 

IV. SYSTEM MODELLING 

EG-SFC is a COP. It is NP-hard since it aims to solve the 
NP-hard problem consisting in the VNF deployment and the 
virtual links mapping. Here, we focus on the VNF deployment. 

A. Deep Reinforcement Learning Components 

We model the VNF deployment problem as a Markov 
Decision Process (MDP). The state, action and reward of 
MDP are described below. 

1) State: The state is represented by SFC graph 

sGv=(Nv, Lv). The features of the i-th VNF 𝑁𝑖
𝑣 include: (1) 

required computing resources ri
v; (2) the flag indicating the 

deployment status of the VNF in servers, θi
n
, ∀ nNp; (3) the 

percentage of available computing resources on the server 

which the VNF is deployed,  p
i
m, ∃ mNp ; (4) bandwidth 

required for the SFC bs
v
; (5) the flag indicating whether the 

VNF has been deployed μ
i
v; (6) the flag εi

v indicating whether 

the VNF 𝑁𝑖
𝑣 is currently deployed or not. In the initial state 

s(0), θi
n
 and μ

i
v of all nodes are all intialized to 0. ε1

v = 1, and 

this flag of other VNFs are all 0. 

2) Action: The action is the index of server which deploy 

the currently processing VNF. At the timestep t, the agent 

only selects one server to instantiate the VNF. And a server 

can host multiple VNF instances. 

3) Reward: We define a binary variable ηa to indicate 

whether the current action starts a new server: 

 η
a
(t)= {

0, φ
a
(t-1)=φ

a
(t)

1,  φ
a
(t-1)≠φ

a
(t)

 (13) 

If the environment violates the constraints after the action 
is executed, the deployment of the current VNF is considered 
as failing. The environment will feedback a larger negative 
value to the agent as a penalty. Otherwise, the environment 
will generate a reward based on the changes in the number of 
working servers and delay. We define the reward function as: 

 r(t)= {
50, failed

C (e1η
a
(t)+e2(d(t)-d(t-1))) , otherwise

 (14) 

where d(t)=dp(t)+dt(t); C is a fixed constant. 

We use DDQN to train the model. DDQN uses target-Q 
network and ReplayBuffer to improve performance. TargetQ 
is calculated using the following formula: 

 amax(s', θ)= arg maxa'Q(s', a'; θ) (15) 

 TargetQ=r+γQ(s', amax(s', θ); θ-
) (16) 

where θ is the parameter of the Q network; θ
-
 is the parameter 

of the target-Q network; s', a', r are state, action and reward 
drawn from the ReplayBuffer. 

The VNF deployment and the virtual links mapping need 
to meet resources constraints. In order to accelerate the 
training, in addition to returning a penalty in the reward 
function for the action that violates the constraints, we 
introduce the mask mechanism. When the required computing 
resources of VNF being deployed is greater than the remaining 
resources of the server, we set the Q value of the server to a 
large negative value to make it impossible to be selected: 



 κ= {

0, rn
p
- ∑
iNv

θi
n(t)ri

v≥rc
v,∀ iNv

1, rn
p
- ∑
iNv

θi
n(t)ri

v<rc
v, ∀ iNv (17) 

 Q
n
(s, a)=Q

n
(s, a)-κB, ∀nNp (18) 

where Q
n
(s, a)  is the Q value of the action representing 

deploying the current VNF on server n; B is a sufficiently large 
positive number; rc

v is the computing resources required by the 
VNF currently being deployed. 

B. Graph Neural Network 

We use GCN as the Q network and the target-Q network 
in DDQN. Compared with ordinary GNN, GCN introduces 
the convolution operation. The structure of GNN is composed 
of the stacked form of the local transfer function and the local 
output function which applied to all nodes. The local transition 
function generates the state representation of the node, which 
contains the neighborhood features of the node and indicates 
the dependence of each node's state on neighbors. It is shared 
among all nodes and updates the state of the node according 
to the neighborhood. Its expression is: 

 hv =f
w

(xv, xvu
e , hu, xu) (19) 

where xv is the features of node v; xvu
e  is the features of link 

connecting node u and v; hu is the state representation of the 
neighbor nodes of node v; xu is the features of the neighbor 
nodes of node v. 

The local output function generates the final output vector 
representation of the node, which is expressed as: 

 ov=g
w

(hv, xv) (20) 

GCN introduces the convolution operation into the graph 
structure. The convolution layer formula is defined as: 

 h
(l)

=σ(D̅
-
1

2A̅D̅
-
1

2h
(l-1)

W(l-1)) (21) 

where σ(∙) is the nonlinear activation function; A̅  is the 

adjacency matrix; D̅ is the diagonal matrix of A̅; W(l-1) is the 
weight matrix of the (l-1)th layer. 

The applications of GNN mainly include node 
classification, edge classification, link prediction and graph 
classification. Instead of using node classification to represent 
the deployment of the VNF, we use the graph classification to 
generate the deployment strategy of processing VNF based on 
the topological information of current SFC graph, and the 
resources requirements and deployment situation of all VNFs. 
When GNN is used for graph classification, it is necessary to 
obtain the representation of the graph based on the features of 
each node. This operation requires aggregating as much 
information as possible in the graph and is called readout. We 
use a simple method to aggregate and readout the features of 
all nodes to obtain the representation of the graph. The 
formula is as follows: 

 hg=
1

|N|
∑

vN

hv (22) 

where hg is the representation of graph g; N is the set of nodes 

of g. 

C. Learning Process 

The learning process of the method is shown in Fig. 2. We 
use DDQN to train the model, and use GCN as Q network and 
target-Q network of DDQN. In each episode, we deploy VNFs 

of an SFC. The SFC graph that contains the resources 
requirements and deployment status is the input state of DRL. 
In GCN, each convolutional layer will calculate the graph 
convolution according to the topological information and 
nodes features. The graph convolution is passed to the next 
convolutional layer after the ReLu activation function. 
Through multiple convolution layers and the output layer, 
GCN generates the node representation. We readout the 
representations of all nodes as the Q value to generate the 
action of DRL, that is, the server that the current VNF will 
deploy. After a VNF is deployed, we use the shortest path 
algorithm to map the virtual links related to this VNF to 
physical links. The method deploy one VNF at each step. The 
episode ends when all VNFs of the SFC are deployed. 

V. EVALUATION 

We conduct three experiments to evaluate our method. 
Our method deploys one VNF at each step, and the topological 
relationship between VNFs in the graph-structured SFC is 
complicated, so we first study the impact of the deployment 
order of VNFs. On the basis of the first experiment, we study 
the effectiveness of GCN for SFC with different numbers of 
VNFs. Finally, we study the rationality and effectiveness of 
our optimization objective. 

A. Data Description 

1) Physical network: We use Internet2[10] network 

topology as the physical network topology. The topology 

consists of 12 nodes and 15 edges. The available computing 

resources of servers are randomly selected in [30, 40, 50, 60], 

and the processing delay is randomly selected in [20, 30, 40, 

50]. The bandwidth of physicals links is randomly selected in 

[50, 60, 70, 80], and the transmission delay is randomly 

selected in [10, 15, 20, 25]. 

2) Service Function Chaining: In order to adapt the 

model to various topologies, we used SFC with different 

topologies to train the model. We randomly change the 

topology of the SFC within a fixed number of VNFs. In the 

process of changing the topology, it is necessary to ensure 

that the topology is connected and directed acyclic. The 

required bandwidth of SFC and the required computing 

resources of VNFs are randomly selected in [10, 15, 20]. The 

number of VNFs in SFC is adjusted according to the 

experiment content. For different quantity ranges, we 

randomly generated 100 SFCs and randomly selected one for 

training at the beginning of each episode. We used the same 

strategy to generate another 100 SFCs as test data. 

 

 

Fig. 2. Learning process of GNN-based VNF deployment method  



B. GCN and DRL Parameters 

We set the number of GCN layers to 3, and we use ReLu 
as the activation function. For DDQN, we use the Adam 
optimizer and set the discount rate to 0.99. The capacity of the 
ReplayBuffer is 600, and the batch size is 64. We use ϵ-greedy 
sampling to explore, where ϵ decreases with the number of 
steps and is finally fixed at 0.05. we set the maximum norm 
for the gradient clipping to 0.5 to help stabilise training. We 
synchronize the parameters of Q network and target-Q 
network every 400 episodes. Each experiment is conducted 
for 10,000 episodes, and the best model is saved. 

C. Baseline model 

1) Least Delay Greedy: Least Delay Greedy (LDG) 

deploye the first VNF on the server with the least processing 

delay. When the available computing resources that server 

deployed are greater than the resources required by the 

current VNF, continue to deploy the VNF on this server, 

otherwise deploy the VNF on the server with the minimum 

sum of the processing delay and the transmission delay 

between the last server where VNF is deployed. 

2) DNN-DDQN: DNN-DDQN use Fully Connected 

Neural Network as Q network and target-Q network. The 

number of neural network layers is 3, which converts the 

connection of SFC features and adjacent information into the 

vector as input. The other parameters of DNN-DDQN are the 

same as the method we proposed. The mask mechanism is 

also introduced in DNN-DDQN. 

D. Evaluation 

1) Impact of deployment order: In this part, we show the 

impact of the deployment order of VNFs. We deploy VNFs 

in topological sort order and random order respectively. We 

set the number of VNFs in one SFC to 7-10. The tradeoff 

parameters are set to e1=0.5,e2=0.5. The results are shown in 

TABLE Ⅰ. 
In the experiment, compared with the random order, the 

number of working servers of the strategy generated by 
topological sort order was 3.67% higher, and the end-to-end 
delay was 24.78% lower. According to the results, the number 
of working servers of two strategies are similar, but the 
strategy generated according to the topological sort order has 
significantly smaller end-to-end delay. Therefore, we  deploy 
VNFs in the topological sort order in following experiments. 

2) Impact of the number of VNFs: In this part, we show 

the impact of the amount of VNFs in SFC. We set the tradeoff 

parameters to e1=0.5,e2=0.5 and deploy VNFs in topological 

sort order. We increase the number of VNFs in SFC from 5-

8 to 11-14, rising the upper and lower bounds by 2 in each 

step. The results is shown in Fig. 3. 

TABLE I.  TEST RESULTS OF VNF DEPLOYMENT ORDER 

deployment order working servers end-to-end delay 

random 3 517.78 
topological sort order 3.11 389.45 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. Test results of the number of VNFs 

The results show that the accepted ratio of the strategy 
generated by our method is the same as LDG when the number 
of VNFs in SFC is 5-8, and 1% higher than DNN-DDQN. 
When and the number of VNFs is 7-10, 9-12 and 11-14, the 
accepted ratio of our deployment strategy is 6%, 18% and 32% 
higher than LDG, and 3%, 23% and 22% higher than DNN-
DDQN. For the number of working servers, when the number 
of VNFs in SFC is 5-8, 7-10, 9-12 and 11-14, our strategy is 
4.31%, 14.56%, 13.45% and 21.39% lower than LDG, and 
14.98%, 16.84%, 7.21% and 5.34% lower than DNN-DDQN. 
For the end-to-end delay, our strategy is 8.43% higher than 
LDG and 25.56% lower than DNN-DDQN when the number 
of VNFs in SFC is 5-8. When and the number of VNFs is 7-
10, 9-12 and 11-14, the end-to-end delay of our strategy is 
11.75%, 11.14% and 4.50% lower than LDG, and 23.92%, 
14.29%, 15.17% lower than DNN-DDQN. 
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Our method is better than the baseline models in terms of 
accepted ratio, and the advantage becomes more pronounced 
as the number of VNFs increases. The results show that the 
number of working servers and end-to-end delay are 
positively correlated with the number of VNFs in the SFC. As 
the number of VNFs increases, the advantage of using our 
method tends to decrease over DNN-DDQN in the number of 
working servers and over LDG in end-to-end delay. 
Compared with these two algorithms, the deployment strategy 
derived from our method can minimize the energy 
consumption while keeping the minimal end-to-end delay, so 
our method is energy-efficient. 

Combined with the accepted ratio, the number of working 
servers and the end-to-end delay, the performance of our 
method is superior to DNN-DDQN using traditional method 
and LDG based on greedy algorithm. Experiments show that 
GCN is effective for graph-structured SFC, and it can capture 
the topological information, which is ignored by traditional 
methods. 

3) Impact of the tradeoff parameters: The tradeoff 

parameters will affect the VNF deployment strategy 

generated by our method. To make the influence of the 

tradeoff parameters more obvious, we randomly select the 

computing resources and processing delay of servers in [20, 

30, 40]. And we set the large available computing resources 

and processing delay for two of the servers. For the physical 

links, the transmission delay is randomly selected in [5, 10, 

15]. We use SFCs with 7-10 VNFs to test the impact of the 

tradeoff parameters. We set two extreme tradeoff parameters, 

e1=0.95, e2=0.05 and e1=0.05,e2=0.95. The results are shown 

in TABLE Ⅱ. 
Compared with e1=0.95 and e2=0.05, the number of 

working servers is 86.7% higher when e1=0.05 and e2=0.95, 
and the end-to-end delay is 59.03% lower. When e1> e2, the 
method will generate a strategy with lower energy 
consumption. Otherwise, the method will pay more attention 
to the end-to-end delay. When the tradeoff parameter of one 
indicator is significantly smaller than the other, the change of 
this indicator has little impact on the optimization objective, 
and the change of the other will significantly change the 
optimization objective. The results show that our selected 
optimization objective is effective. Since, our method can 
balance the energy consumption and the end-to-end delay 
according to the needs of different scenarios. 

VI. CONCLUSION 

In this paper, we define the SFC problem with objective of 
joint energy consumption and delay as a COP. We propose a 
VNF deployment method based on GNN and DRL. GCN is 
adopted to extract the information of the graph-structured SFC 
input and represent the Q network in DDQN. We introduce 
the mask mechanism to deal with the resources constraints in       
COP. The experimental results show that our proposal could 
efficiently deal with unseen SFC graphs without redesigning 
and training, and achieves better performances than greedy 
method and traditional DDQN. 

TABLE II.  TEST RESULTS OF TRADEOFF PARAMETERS 

tradeoff parameters working servers end-to-end delay 

e1=0.05, e2=0.95 4.07 319.85 
e1=0.95, e2=0.05 2.18 780.70 
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