
HAL Id: hal-04018739
https://hal.science/hal-04018739v1

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A Knapsack-based Optimization Algorithm for VNF
Placement and Chaining Problem

Abdeldjalil Ikhelef, Mohand Yazid Saidi, Shuopeng Li, Ken Chen

To cite this version:
Abdeldjalil Ikhelef, Mohand Yazid Saidi, Shuopeng Li, Ken Chen. A Knapsack-based Optimization
Algorithm for VNF Placement and Chaining Problem. 2022 IEEE 47th Conference on Local Computer
Networks (LCN), Sep 2022, Edmonton, France. pp.430-437, �10.1109/LCN53696.2022.9843566�. �hal-
04018739�

https://hal.science/hal-04018739v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A Knapsack-based Optimization Algorithm
for VNF Placement and Chaining Problem

Issam Abdeldjalil IKHELEF1, Mohand Yazid SAIDI1, Shuopeng LI2 and Ken CHEN1

1 L2TI - Institut Galilée, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
2 Faculty of Information Technology, Beijing University of Technology, Beijing, China

issam.ikhelef@edu.univ-paris13.fr, saidi@univ-paris13.fr, lishuopeng@bjut.edu.cn, ken.chen@univ-paris13.fr
© LCN

Abstract—During the last decade, we are witnessing the
emergence of NFV and SDN to reduce CAPEX and OPEX.
Under the SDN paradigm and thanks to NFV, a service can
be swiftly deployed by the chaining of several VNFs forming an
SFC running on a virtualized infrastructure. Nowadays, there
are still quite a number of issues related to SFCs, among them,
the optimal placement of SFC components. In this paper, we
focused on the variant of the resource allocation cost optimization
problem of VNF placement and chaining for limited resources on
the servers. After proving that the problem of VNF placement is
NP-Hard and equivalent to the multiple knapsack problem, we
proposed a genetic algorithm-based meta-heuristic to solve large
instance of our VNF placement and chaining problem variant.
Simulation results show that our genetic algorithms are efficient
since they reduce the SFC mean cost and improve the accepted
requests ratio.

Index Terms—Virtual Network Function, Network Function
Virtualization, Service Function Chain, Optimization, Multiple
Knapsack Problem, Genetic Algorithm, Meta-heuristic.

I. INTRODUCTION

NFV (Network Function Virtualization) is part of a rad-
ical change in the way hardware and software equipment
are operated and interacted on the network. Together with
SDN (Sofware-Defined Networking) paradigm, NFV creates
a networking environment which is rich in programmable
capabilities and automation. NFV replaces expensive dedicated
hardware devices, such as routers, firewalls and load bal-
ancers, by their software equivalent, termed as virtual network
functions (VNFs), that run as virtual devices on standards
servers [1].

With NFV, service providers can run virtual network func-
tions (VNFs) on different servers or move them as needed
when demand changes. This flexibility allows them to acceler-
ate the distribution of services and applications. For example,
if a customer requests a new network function, the service
provider can install it on an adequate place and later, it is no
longer needed, remove it [2].

A network service is composed of different VNF forming an
SFC (Service Function Chain). The latter is to be placed across
the network using software provisioning [3]. Typical exam-
ples of network functions are: firewall, SSL (Secure Sockets
Layer), load balancer, NAT (Network Address Translation),
etc. Each SFC (see the bottom of Figure 1 for an example)
specifies an ordered sequence of VNFs from an source till a
target. With NFV, these functions (VNFs) can be placed at

any adequate node in the network with respect to sequence
order and resource requirements.

To provide an SFC, the related VNFs should be placed on
VNF server nodes and chained through a route capable of
accommodating the traffic from the source to the target of
the SFC. Determining the optimal placement and chaining of
VNFs, which consists of providing and accommodating SFCs,
corresponds to the well-known problem of VNF placement and
chaining (VNFPC) that is a NP-hard problem.

The objective of this paper is to determine the VNF
placement and chaining that optimize the resources allocation
cost when network resources are limited on the nodes and
sufficiently abundant on the links. We obtain thus a partic-
ular version of the VNFPC problem with relaxation of link
constraints, we term this problem as RVNFPC. The relax-
ation of the link constraints (by assuming enough resources
on links) makes sense for networks/slices where links have
large bandwidth capacities. Furthermore, we also can use this
approach in a dynamic programming perspective by solving
the VNFPC problem in two steps: (1st) determine a set of
plausible VNF placement candidates without considering link
constraints, then (2nd) determine a valid candidate from the
results of the first step by finding a route satisfying the link
constraints.

Contrary to most of the approaches proposed in the litera-
ture, we propose here to solve RVNFPC directly in its domain
of definition without going through ILP. After proving that
RVNFPC can be solved with a variant of the multiple knapsack
problem, we will propose knapsack problem-based efficient
heuristics to solve large instances of the RVNFPC problem.

The rest of this paper is organized as follows: in Section II,
we review research contributions that tackle the VNFPC
problem. In Section III, we describe the VNFPC problem in its
general form and present an Integer Linear Programming (ILP)
model that permits to obtain exact solutions. Then, we consider
a relaxation of the problem (RVNFPC) and solved it with the
genetic algorithms described in Section IV. Section V presents
the simulation results and finally, conclusions are given in
Section VI.

II. RELATED WORK

In recent years, the problem of VNF placement and chaining
has received considerable attention from researchers.

Studies can be classified into two categories: the first one
aims to optimize the resources or energy consumption and the
second one focuses only on the optimization of overall costs.

A. Resources consumption optimization

Under this first category, authors in [4] formalized the form
of SFC in NFV and Edge Computing (EC) enabled networks,
and then formulated the VNF placement problem as an ILP
model aiming to minimize the total resource consumption.
They came up with a priority-based greedy solution which
consists of a priority-based SFC mapping algorithm and VNF
merge algorithm that gives priority to the SFC clusters with
larger resource consumption. As indicated by the authors
themselves, their method suffers from a scalability problem
when the number of SFCs is big.

The work in [5] supports the idea of a centralized ap-
proaches for VNF placement in SDN-enabled networks. The
authors do not consider resources costs in the optimization
and focused only on the network congestion and reducing
resources usage. To solve the Mixed Integer Linear Program-
ming (MILP) model that they proposed, the authors used
a Divide-and-conquer solution with a modified version of
Dijkstra’s algorithm. At each step of the divide-and-conquer
algorithm, a VNF allocation is made and a new instance of
the problem is spawned corresponding to the allocation.

The work in [6] tackles the VNFPC problem from the
perspective of minimizing the consumption of network re-
sources which only include bandwidth. They modelled the
problem as an ILP with an objective function that calculates
the total bandwidth consumed by all the requested flows.
Furthermore, they studied the network resources consumption
of various service-chaining strategies, the network itself may
have a varying number of NFV-capable nodes and proprietary
hardware solution. The ILP model in [6] suffers also from
scalability.

To minimize the energy consumption, [7] proposed an ILP
and two heuristics for online and batch calculations. Online
heuristic selects a limited number of candidate hosts in the
infrastructure to control complexity. It handles SFC requests
sequentially. The batch heuristic works on a set of SFC
requests. The weakness of the online algorithm is that VNF
requests that cannot be placed are immediately rejected while
stored with the batch algorithm until some resources are freed.

B. Overall cost optimization

In [8], the VNFPC problem was formulated as an ILP
model to minimize the latency, Service-Level Objective (SLO)
violation cost, hardware utilization, and VNF readjustment
cost. To solve the model, the authors used k-medoids clustering
approach that proactively partitions the substrate network into
a set of disjoint clusters and appropriately eliminates some cost
functions of the optimization problem to increase its feasibility
in large-scale networks.

In [9], the VNFPC problem is studied from the perspective
of minimizing both of allocation host resources and bandwidth
costs. Authors of [9] proposed a MILP solved that they solved

with a heuristic that provinging near-optimal solution in a
reasonable time. Their heuristic uses an adjustment param-
eter which controls the trade-off between the speed and the
precision of the solution.

The VNFPC problem has been addressed in [10] using
an ILP based scheme to minimize the overall cost. The
authors used an approach that consists of two heuristics called
SFC-Reactive scheme and SFC-Proactive scheme. The SFC-
Reactive scheme aims at fulfilling the scalable SFC requests
without changing the Service Function Path (SFP) while the
SFC-Proactive scheme is intended to optimize the SFP for
better serving the subsequent arriving SFC requests and thus
achieving better network performance.

Authors in [11] formulated the VNFPC problem as a
decision tree to reduce significantly the complexity of SFC
in clouds and increase provider revenue. Each node in the
decision tree corresponds to a virtual resource embedding and
each tree branch to the mapping of a client request in some
physical candidate. They derived a new algorithm based on
the Monte Carlo Tree Search (MCTS) to incrementally build
and then search within the decision tree.

In [12], authors address the placement of SFC by finding the
best hosts for the VNFs while respecting user requirements and
maximizing provider revenue. [12] proposes a novel Eigen-
decomposition-based approach for the placement of VNFs and
PNFs (Physical Network Functions) chains in networks and
cloud environments. It also presents a heuristic based on a
custom greedy algorithm to compare performance and assess
the capability of the Eigen-decomposition approach.

Because networks can be divided into several entities be-
longing to different service providers which are reluctant to
reveal their internal topologies, the authors in [13] formalized
an ILP model and proposed a heuristic that allows the NFV
orchestrator to place the network function chains based only on
an abstract view of the infrastructure network. They leveraged
this approach to address the complexity of the problem in large
mono- or multi-service providers networks.

The aim of [14] is to provide high performance and
scalable algorithms capable of finding optimal solutions for
the VNFPC. First, an exact algorithm based on Perfect 2-
Matching theory is proposed to solve, in polynomial time, the
case of SFC composed of up to 3 VNF based chains. Then,
authors proposed an approach based on matrix analysis that
combines matrix products with a simple linear program to find
an optimal control of traffic flows on each placed VNF. Finally,
they proposed a multistage graph-based approach that is built
as a new extended multistage graph representing the servers
available to host the required VNFs and their interconnections.

Most of the approaches described here derive their solutions
from ILP which is only effective for small sizes of the
problem. Instead of looking for heuristics that solve ILP, it
would be wise to try to solve VNFPC problem directly in
its definition domain, as we propose it in this paper. The
advantage of such approach is its ability in terms of scalability.

Fig. 1: An example of NFV-I and SFC topology.

III. PROBLEM DESCRIPTION

In this section, we first present more in details the VNFPC
problem. After explaining the context, we define and explain
the impact and variables we used to formulate the problem
as an ILP optimisation problem. Then, by relaxing the link
constraints in the precedent problem we obtain a new problem
(RVNFPC) that we transformed into a multiple knapsack
problem. For the ease of understand, let us give an example.

The upper part of Figure 1 represents a NFV-Infrastructure
(NFV-I) composed of 5 node servers (A, B, C, D and E) and
two switches (Switch1 and Switch2) representing symbolically
the source and target of the SFC flow. Each node is illustrated
with a different color and has a certain amount of capacity to
host VNFs and its own pricing policy for VNFs hosting.

The nodes or servers are interconnected by substrate links
with given costs and high resource capacities. The substrate
links correspond to virtual links embedded on substrate paths
that interconnect the extremity nodes supporting the servers.

The bottom of Figure 1 shows an SFC with 3 VNFs to be
deployed in the NFV-I. Each VNF requires a number of CPUs.
We assume that VNF1 requires 16 CPUs, 30 CPUs for VNF2
and 25 CPUs for VNF3.

The optimal placement and chaining of the SFC in Figure 1
is highlighted by the dashed red lines in Figure 2: VNF1 and
VNF2 are placed on server A whereas VNF3 is placed on server
D. The total cost of the solution is therefore equal to 257 units
(20×2 + 2×16 + 0×1 + 2×30 + 10×1 + 3×25 + 20×2).

A. Mathematical Modelling of VNFPC problem

The substrate network NFV-I is modeled by an undirected
weighted graph, noted Gs = (Vs, Es) where Vs is the set of
nodes (vertices) corresponding to NVF-I servers and switches,
and Es is the set of virtual links (edges).

Each node is associated with a list of its resources : CPU,
memory, storage, etc. Each type of resources is identified by
its index number r ∈ R = {0, 1, 2, ...}.

For a given resource r of a node u, its costs and capacity
(initial allocation) are denoted by respectively αr

u and Cr
u.

Fig. 2: Mapping of SFC in NFV-I.

Similarly, for each virtual link ls = (las , l
b
s), its capacity is

denoted by CBls , and its cost by βls .
Each SFC is also modeled as a graph interconnecting a

source (represented by us, the switch on its side), k VNFs and
a target (represented by ut, the switch on its side), as shown
in Figure 1. A SFC is represented by a graph Gf (us, ut) =
(Vf , Ef), where Ef is the set of virtual links which connect
the VNFs and Vf includes all the VNFs of the service chain
plus Bs and Bt which represent symbolically on Vf the two
switches us and ut, respectively.

Each VNF V ∈ Vf , is characterized by a demand for
resource r ∈ R denoted Dr

V . Each virtual link lV ∈ Ef is
characterized by a demand for bandwidth denoted DBlV .

The traffic flow coming from us (the source) is processed
through the SFC (chain of the virtual nodes (VNFs)) before
being delivered to ut (the target).

For each virtual link lV ∈ Ef , its end nodes are designated
by laV and lbV .

We propose hereafter the ILP formulation of the VNFPC
problem:

1) Decision variables:
• xV

u This variable is worth 1 if the VNF V ∈ Vf is
assigned to the node u ∈ Vs, 0 otherwise. It indicates
whether the VNF V is deployed on the node u or not.

• ylVls is a binary variable which is worth 1 if the virtual
link lV ∈ Ef is embedded on the substrate link ls ∈ Es.

2) Objective function:
The objective function considers minimizing the overall cost

of allocating VNFs (A) and bandwidth resources (B):

Z = Min A+B (1)

where
• A is the overall cost of the placement of VNF instances:

A =
∑
r∈R

∑
V ∈Vf

∑
u∈Vs

xV
u ×Dr

V × αr
u (2)

• B denotes the cost of allocating bandwidth resources:

B =
∑

lV ∈Ef

∑
ls∈Es

ylVls ×DBlV × βls (3)

with αr
u (resp. βls) denoting the unitary cost of resource r

(resp. bandwidth).

3) Constraints:∑
V ∈Vf

xV
u ×Dr

V ≤ Cr
u ∀u ∈ Vs ∀r ∈ R (4)

∑
lV ∈Ef

ylVls ×DBlV ≤ CBls ∀ ls ∈ Es (5)

∑
u∈Vs

xV
u = 1 ∀ V ∈ Vf (6)

∑
ls∈Es

ylVls ≤ 1 ∀ lV ∈ Ef (7)

xBs
us

= 1 xBt
ut

= 1 (8)

x
laV
las

+ x
lbV
lbs

− ylVls ≤ 1 ∀lV ∈ Ef ∀ls ∈ Es (9)

x
lbV
las

+ x
laV
lbs

− ylVls ≤ 1 ∀lV ∈ Ef ∀ls ∈ Es (10)

Constraint (4) guarantees that the demand Dr
V for resources

r is equal to or less than the capacity Cr
u of the substrate

node u. Constraint (5) ensures that the total bandwidth al-
located for any substrate link ls ∈ Es must not exceed its
physical link capacity CBls . Constraint (6) ensures that a VNF
V ∈ Vf is placed in a single physical node. Constraint (7)
guarantees that a virtual link lV ∈ Ef is placed with the use
of at most one substrate link ls ∈ Es. Constraint (8) tells that
the virtual node Bs ∈ Vf (resp. Bt ∈ Vf) is the image of the
physical source (resp. target) node us (rep. ut), respectively.
Equations (9) and (10) ensure that ylVls is set to 1 when the
end nodes of lV are mapped on two different substrate nodes
las and lbs (or lbs and las). When the extremity nodes of lV are
mapped on the same substrate nodes, ylVls is set to 0 for all ls
to minimize the objective function.

B. Relaxed version of VNF placement and chaining problem

Here we address the relaxed version of the VNFPC problem
(RVNFPC), we assume enough bandwidth on links while the
resources of nodes are limited. For simplicity and without loss
of generality, we will only focus on the CPU resource so we
remove the r ∈ R from the variables Dr

V and αr
u of the general

model.
For the ease of understanding, we first solve RVNFPC for

negligible bandwidth costs (i.e. bandwidth is superabundant
and therefore cheap), then generalize our results by consider-
ing non-negligible bandwidth costs.

For NFV-I with negligible link cost, the objective function
of ILP I (Equation 1) is reduced to the A term (overall cost
of the placement of VNF instances) only:

Z = Min A = Min
∑
u∈Vs

∑
V ∈Vf

xV
u ×DV × αu (11)

where αu is the unitary CPU cost on node u ∈ Vs. The
following constraints stand:∑

V ∈Vf

xV
u ×DV ≤ Cu ∀u ∈ Vs (12)

∑
u∈Vs

xV
u = 1 ∀V ∈ Vf (13)

Constraint (12) ensures that the demand for CPU resource
DV is equal to or less than the residual capacity Cu of each
node on NFV-I. Constraint (13) guarantees that each VNF
V ∈ Vf is placed in a single node of NFV-I.

We show next that the solution to the problem described
here corresponds to a variant of the Multiple Knapsack
Problem (MKP) where all the objects should be put in the
knapsacks. This can be proved by deriving from ILP I a new
ILP II which is the same one that solves the multiple knapsack
problem. This can be done by transforming the objective
function (11) as follows:

Max C(x) = Max
∑
u∈Vs

∑
V ∈Vf

xV
u (η −DV × αu) (14)

Where η is a high constant verifying:

η >>
∑
u∈Vs

∑
V ∈Vf

DV × αu

We note that the objective functions (11) and (14) are equiv-
alent since:∑

V ∈Vf

∑
u∈Vs

η × xV
u = η ×

∑
V ∈Vf

(
∑
u∈Vs

xV
u)

= η ×
∑
V ∈Vf

(1) = η × |Vf |
(15)

Thus, minimizing objective function (14) consists to maximize
non constant part of this objective (equivalent to objective
function (11)), i.e,

Max−
∑
u∈Vs

∑
V ∈Vf

xV
u ×DV × αu (16)

Note that ILP II can be transformed to the multiple back-
packs problem in its generic version by relaxing the con-
straint 13 (i.e.

∑
u∈Vs

xV
u ≤ 1, ∀V ∈ Vf). In this case, ILP

I is solvable if and only if the solution of ILP II satisfies
constraint 13.

For interpretation, we say that the problem RVNFPC can be
transformed to an instance of the multiple knapsack problem
where the VNFs correspond to the objects and the servers
correspond the knapsack. More precisely:

• The set of nodes of NFV-I is modeled by the set of
knapsacks, denoted by M = {1, ...,m}.

• The SFC composed of several VNFs is modeled by the
set of objects, denoted N = {1, ..., n}.

• Each VNF Vi ∈ Vf has a demand of CPU resource
denoted DV and that is equivalent to the weight Wi of
the corresponding object i in MKP.

• Placing VNF Vi ∈ Vf on a node uj ∈ Vs costs (η −
DV ×αu). This is equivalent to the profit P j

i of placing
object i in knapsack j.

• Each node uj ∈ Vs has a maximum CPU resource
capacity denoted Cuj and this is equivalent to the constant
capacity of knapsack j denoted Cj in MKP.

• We naturally seek to minimize the total allocation cost
of VNFs that is equivalent to maximizing the profit or
negative costs of the placed objects.

For the case where the costs of links are not negligible, the
objective function should be modified to include these link
costs as defined by equation (3). In this way, we obtain a new
variant of the MKP where the cost of any object i depends
on the knapsacks selected to bring the object i, its precedent
object i− 1 and its next object i+ 1.

When the costs of the paths interconnecting the VNF servers
are equal to or much higher than the CPU costs, the optimal
placement and chaining of an SFC with equal bandwidth
demands is obtained by solving the NP-hard bin backing
problem if all the CPU costs are identical.

IV. GENETIC ALGORITHMS BASED META-HEURISTIC

To solve the RVNFPC problem which is NP-hard, we
propose to use genetic algorithms (GA) which are efficient
in solving almost all variants of the knapsack problem. GA
allows us to find the near optimal solution among a set of
feasible solutions thanks to a fitness function. The GA works
as follows.

1) Initial population: as start with an initial population that
is used to diversify and generate new solutions by applying
crossover and mutation operations. The selection of an initial
population with individuals of different and varied genes is
crucial to explore a maximum of promising regions in the
solutions space while the inclusion of individuals with higher
quality genes in the initial population generally leads to rapid
convergence towards the best solutions. In our proposal, the
initial population is generated according to the following
processes:

• Random Generation: for each SFC of n VNFs, a list of
n servers randomly selected is generated and evaluated
according to the fitness function.

• Constrained Shortest Paths: For an SFC composed of n
VNFs, a shortest path of n links connecting the SFC’s
source to a neighbor of the SFC’s destination is deter-
mined. The constraints are checked at the path calculation
stage so that only paths satisfying the constraints are
determined and added to the initial population. Zero-
cost reflexive links with unlimited capacities are added to
NFV-I to allow deployment of multiple successive VNFs
on a same server. In order to get enough individuals in
the initial population, random solutions generated with
the precedent process are added to the initial population.

2) Coding: Coding is a function that transforms real data
of the problem to data used by the GAs. In our approach, we
used a coding with natural numbers representing the indices
of servers. We genetically code a VNF placement operation

Fig. 3: Chromosome coding example

Fig. 4: Crossover example

as follows: each VNF placement solution corresponds to
an individual that is coded by an array where the indices
correspond to the VNF identifiers and the cell contents to the
servers on which the VNFs are deployed. For an SFC with 10
VNFs and a NFV-I with 10 servers, an example of solution
coding is shown in Figure 3 where VNF1 and VNF10 are
placed on Server 3 whereas VNF3 is placed on Server 9.

3) Fitness function: fitness measures the quality of indi-
viduals and controls the process of breeding: the higher the
fitness of an individual, the greater the likelihood of using that
individual for breeding. In our GAs, fitness is determined as
follows:

• For feasible solutions:

fitness = cost−(1+ index
nb generations)

where index corresponds to the number of times the
current population is regenerated (i.e. index varies from
1 to nb generations), nb generations corresponds to
the total number the population is regenerated and cost =
A+B is determined according to equations (2) and (3).
In this way, the probability that an individual’s genes are
derived from the best individuals (i.e., individuals with
smallest costs) increases over time.

• For non-feasible solutions: in order to prevent the al-
gorithm from stopping quickly without exploring the
promising regions in the solution space (specifically when
the initial population does not contain any feasible solu-
tion), we associate very small fastnesses to non-feasible
solutions. For breeding, non-feasible solutions that violate
fewer constraints should be preferred. In our proposal,
we chose to run through the individual’s genes in the
same order and count the number of times (nb violate)
constraints are violated:

fitness =
ϵ

nb violate

where ϵ is a very small constants.
4) Genetic operators: Population reproduction is the pro-

cess of generating a new population i + 1 from a previous
population i. This process is constituted by the use of the
selection, crossover and mutation operations:

• Selection: this process helps to determine which indi-
viduals are more inclined to obtain the best results.
For our algorithms, we used two selection processes:
(1) tournament selection where parents and children are

(a) Ratio of acceptation (b) SFC cost

Fig. 5: Comparison results for various arrival rates and small NFV-I and SFC sizes

randomly matched before the best individuals in pairs are
selected, and (2) selection of the best individuals where
the next population is composed of individuals with the
highest fitness.

• Crossover: crossover is a reproduction operation which
allows the exchange of genetic information between in-
dividuals. It uses two parents to produce one or two chil-
dren. In our proposal, the parents are selected according
to the Roulette Wheel Selection where the probability of
choosing an individual for breeding of the next generation
is proportional to its fitness.
For children generation, we used the 2-points crossover
where the points are randomly selected among the genes.
In the example of Figure 4, the genes between the two
cross point indices (4, 8) in individuals P1 and P2 are
colored in light gray and blue respectively while the other
genes are colored in blue and light gray respectively. By
swapping the genes of P1 and P2 located between the
crossing indices, we obtain two new children C1 and C2
as shown in Figure 4.

• Mutation: The role of this process is to randomly modify,
with a certain probability, the value of a component of the
individual. In our solution, we randomly choose a gene
then we randomly replace the identifier of the server S
with another server identifier S′ drawn randomly from
the list of servers.

V. PERFORMANCE EVALUATION

In this section, we first present the compared algorithms
and describe the simulation environment, then, we define
the performance metrics to evaluate our proposal and finally
present the simulation results.

A. Compared algorithms

The compared algorithms in our simulation are:
• GA-RB: is a genetic algorithm with Random generation

of the initial population and selection of the next gen-

eration by choosing the Best individuals among children
and parents.

• GA-RT: is a genetic algorithm with Random genera-
tion of the initial population and selection of the next
generation by making a 2 to 2 Tournament between
an individual belonging to the different parents and an
individual belonging to the children. The parents are
paired with the children in a completely random way.

• GA-CB: identical to GA-RB but the initial population
consists of Shortest Constrained Paths to the destinations’
neighbors. These paths will be complemented by other
randomly generated mapping solutions to gather a popu-
lation containing a sufficient number of individuals.

• GA-CT: identical to GA-RT but the initial population
consists of Shortest Constrained Paths to the destinations’
neighbors.

• CSP: Constrained Shortest Paths between the sources and
destinations in terms of cost. The constraints are checked
throughout the calculation to ensure that the determined
paths satisfy them. A constraint vector is associated with
each node and a modified version of the Ford-Bellman
algorithm is run to determine the best paths verifying the
constraints.

• ES: Exhaustive Search to determine the solution that
minimizes the cost.

The population size is set to 100 individuals and the
mutation probability is 0.01. Simulation time is 105 units.

B. Simulation Environment
SFC requests arrive according to a Poisson process with λ

requests/time unit and the lifetime of each request follows an
uniform distribution U(10, 20).

We evaluated our algorithms on two NFV-Infrastructures,
the first one is composed of 30 nodes and the second one
is composed of 100 nodes. The available CPU capacity per
physical node is randomly drawn within the range of 20 to
120 units and the available bandwidth capacity per link is

(a) Ratio of acceptation (b) SFC cost

Fig. 6: Comparison results for different network loads and medium NFV-I size

1000 units. The requested CPU capacity of each VNF is drawn
randomly in (10, 20) with random requested bandwidths in
the (2, 5) interval. The resources costs α and β are randomly
generated in the range of (5, 20).

C. Performance Metrics

In this subsection, we define the simulation metrics used for
the performance evaluation and comparison purposes.

1) Mean SFC Cost (MSC): this metric MSC determines
the average cost of SFCs that are successfully placed. It
corresponds to the ratio between the total cost of CPU and
bandwidth resources allocated for SFCs and the total number
of accepted SFCs.

2) Ratio of Accepted requests (RA): we define RA as the
ratio between the number of accepted SFC requests and the
total number of received SFC requests.

D. Simulation Results

In our simulation, we first compared our proposals to ES
and CSP for small sizes of SFCs and NFV-I, then compare
our variants of GAs with CSP for medium and high sizes of
SFCs and NFV-I.

In our first experiment, we compared our 4 variants of GAs
with ES and CSP for SFCs of n VNFs (n ∈ (2, 6)) and
an NFV-I with 30 nodes. The results depicted in Figure 5
clearly shows that the various compared algorithms have
very close performance. Indeed, although RA of CSP seems
slightly lower than those of GAs and ES for SFCs with 6
or 5 VNFs (see Figure 5a), the differences are negligible and
indistinguishable for the other scenarios.

Whereas ES guarantees the determination of existing opti-
mal solutions, the probability of CSP to determine solutions
decreases with the increase of SFC sizes. In fact, the more
the sizes of the SFCs increase, the more the lengths of paths
increase. Since CSP only maintains one path per node during
the computations, the probability of determining the best

solutions decreases with increasing SFC sizes (as the number
of paths of x + 1 links is greater than the number of paths
of x links). For example, for SFCs of 2 VNFs, CSP returns
optimal solutions.

To complete our first comparative study, we submitted the
compared algorithms to various network loads. In our second
experiment, we used an NFV-I of 30 nodes and generate
randomly SFCs of 6 VNFs.

The results depicted in Figure 6 show that our variants of
GAs have performance very close to ES that is slightly better
than that of CSP for RA. Figure 6a shows that more the
network load increases, less the ratio of accepted request is
higher. At higher loads, CSP has lower but close performance
than those of ES and GAs. This can be explained by the
operation of CSP which does not explore all the promising
regions in the solution space since it does only maintain one
best path per node. Besides, CSP tends to prefer reusing the
same path segments (since it explores nodes in the same
order), which could lead to the overloading of some parts of
the network and, thus reduces the probability of determining
solutions for the future requests.

Concerning MSC, Figure 6b shows that the various com-
pared algorithms are very close although the determined so-
lutions are sometimes different. Like CSP that only maintains
one best path segment per node to built the best solution, GAs
often construct their solutions by combining the path segments
of the best solutions. Thus, both these algorithms determine
nearly optimal solutions although CSP is not able to explore
some promising parts of the solution space.

Our two first experiments with small SFCs and NFV-I sizes
clearly show that GAs and ES have similar performance which
are slightly better than those of CSP, especially for RA. For
a more complete comparison study and in order to better
understand the behavior of our variants of genetic algorithms,
we extended the problem size by increasing the size of SFCs

(a) Ratio of acceptation (b) SFC cost

Fig. 7: Comparison results for different network loads and large NFV-I size

(size in (10, 20)) and NFV-I (100 nodes).
Figure 7 shows the results where we see that GA variants

GACB and GACT outperforms the other algorithms CSP,
GARB and GART.

With regard to RA (Figure 7a), all the GA variants are better
than CSP. This means that diversification and increase of the
number of path segments used for the computation can slightly
improve RA.

Concerning MSC, Figure 7b shows that the GA variants
(GACB and GACT), which include random and constrained
shortest paths in the initial population, allow to decrease the
mean SFC cost compared to the other algorithms.

With the variants starting with random paths, the SFC costs
are slightly larger than those of CSP. This can be explained by
the small population size and the low running time we devoted
to the computations on the one hand, and to the rejection of
the largest SFCs with CSP in the other hand (recall that RA
of CSP is lower that those of GAs).

If the choice of the initial population seems crucial to
improve the performance of GAs, Figure 7 show that the
selection process of the next population has negligible impact
on the global performance. Besides, the choice of adding
constrained shortest paths to the starting population could
accelerate the convergence and improve the performance.

VI. CONCLUSION

This paper addresses the VNF placement and chaining
problem for NFV environment. After formulating the problem
with ILP, we relaxed the link constraints and transformed the
problem to the well known knapsack problem. In this way, we
proposed efficient genetic algorithms based meta-heuristic to
solve large instances of the problem.

Our proposal is evaluated through extensive simulations.
Performance comparisons with relevant algorithms demon-
strate the effectiveness of our algorithm in optimizing allo-
cation costs and increasing the ratio of accepted requests.

REFERENCES

[1] Kaur, K.; Mangat, V. and Kumar, K. A comprehensive survey of service
function chain provisioning approaches in SDN and NFV architecture
Computer Science Review, 2020, 38, 100298

[2] Kim, S. I. and Kim, H. S. A VNF Placement Method based
on VNF Characteristics, 2021 International Conference on
Information Networking (ICOIN), 2021, pp. 864-869, doi:
10.1109/ICOIN50884.2021.9334022.

[3] Yi, B.; Wang, X.; Li, K.; k. Das, S. and Huang, M. A comprehensive
survey of Network Function Virtualization Computer Networks, 2018,
133, 212 - 262

[4] Li, D.; Hong, P.; Xue, K. and Pei, J. Virtual network function placement
and resource optimization in NFV and edge computing enabled networks
Computer Networks, 2019, 152, 12 - 24

[5] Gadre, A.; Anbiah, A. and Sivalingam, K. M. Centralized approaches for
virtual network function placement in SDN-enabled networks EURASIP
Journal on Wireless Communications and Networking, 2018, 2018, 197.

[6] Gupta, A.; Farhan Habib, M.; Mandal, U.; Chowdhury, P.; Tornatore, M.
and Mukherjee, B. On service-chaining strategies using Virtual Network
Functions in operator networks Computer Networks, 2018, 133, 1 - 16

[7] Soualah, O.; Mechtri, M.; Ghribi, C. and Zeghlache, D. Online and batch
algorithms for VNFs placement and chaining Computer Networks, 2019,
158, 98 - 113.

[8] Wahab, O. A.; Kara, N.; Edstrom, C. and Lemieux, Y. MAPLE: A
Machine Learning Approach for Efficient Placement and Adjustment
of Virtual Network Functions Journal of Network and Computer Appli-
cations, 2019, 142, 37 - 50.

[9] Ghaznavi, M.; Shahriar, N.; Ahmed, R. and Boutaba, R. Service Func-
tion Chaining Simplified CoRR, 2016, abs/1601.00751.

[10] Yi, B.; Wang, X. and Huang, M. Design and evaluation of schemes for
provisioning service function chain with function scalability Journal of
Network and Computer Applications, 2017, 93, 197 - 214.

[11] Soualah, O.; Mechtri, M.; Ghribi, C. and Zeghlache, D. An efficient
algorithm for virtual network function placement and chaining 2017,
647-652

[12] Mechtri, M.; Ghribi, C. and Zeghlache, D. A Scalable Algorithm for the
Placement of Service Function Chains IEEE Transactions on Network
and Service Management, 2016, 13, 1-1

[13] Morin, C.; Texier, G.; Caillouet, C.; Desmangles, G. and Phan, C.-T.
VNF placement algorithms to address the mono- and multi-tenant issues
in edge and core networks CLOUDNET 2019 : 8th IEEE International
Conference on Cloud Networking, 2019

[14] Khebbache, S.; Hadji, M. and Zeghlache, D. Virtualized network func-
tions chaining and routing algorithms Computer Networks, 2017, 114,
95 - 110.

