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Abstract

A Sharing value for transferable utility games distributes the Harsanyi dividend of each coalition
among the players in the coalition’s support. Such distribution is done according to a certain
sharing system that determines the Sharing value. In this paper, we extend Sharing values to
multi-choice games. Multi-choice games are a generalization of transferable utility games in which
players have several activity levels. Unlike in transferable utility games, there is no straightforward
way to interpret the support of a coalition in a multi-choice game. This makes it more tedious
to distribute the Harsanyi dividend of a multi-choice coalition. We consider three possible inter-
pretations of the support of a multi-choice coalition. Based on these interpretations, we derive
three families of Sharing values for multi-choice games. To conduct this study, we discuss novel
and classical axioms for multi-choice games. This allows us to provide an axiomatic foundation for
each of these families of values.

Keywords: Multi-choice games, Sharing values, Harsanyi set
JEL code: C71

1. Introduction

In cooperative games with transferable utilities, or TU-games for short, players form coalitions
to generate some worth. Each coalition’s worth is measured by a characteristic function. In
addition, each coalition’s net surplus can be measured by its Harsanyi dividend (see Harsanyi
(1959)). Such dividends can be defined inductively: the dividend of the empty coalition (the
coalition in which no one cooperates) is null and the dividend of any other coalition is equal to
its worth minus the sum of all dividends of proper subsets of that coalition. A payoff vector for
TU-games assigns a payoff to each player. A single-valued solution on a class of TU-games assigns
a unique payoff vector to each game in this class, while a set-valued solution assigns a set (possibly
empty) of payoff vectors. The Shapley value (see Shapley (1953)) is probably the most prominent
single-valued solution for TU-games. It distributes the Harsanyi dividend of each coalition equally
among the members of that coalition, i.e., the support of that coalition.

A Sharing value for TU-games is a single-valued solution that distributes the Harsanyi dividend
of each coalition among the players in that coalition’s support. This distribution is based on a
sharing system that determines the Sharing value. A sharing system assigns, to each coalition,
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unit-normalized weights defined over the player set. If a player is in the coalition’s support, he
is assigned a positive weight, otherwise, his weight is null. The Shapley value can be viewed as
a specific Sharing value whose sharing system associates, to each coalition, uniform weights to
the players in the coalition’s support. Derks et al. (2000) show that, given a TU-game, the set
of all the Sharing values of that game coincides with its Harsanyi set (also known as Selectope),
which is a set-valued solution originally introduced by Hammer et al. (1977) and, independently,
by Vasil’ev (1978) and Vasil’ev (1981). Axiomatic approaches are proposed by Derks et al. (2000),
Vasil’ev and van der Laan (2001), Derks et al. (2006), Besner (2020a), and Besner (2020b) to study
Sharing values. In particular, Derks et al. (2000) show that the family of Sharing values can be
characterized by using four axioms: Efficiency, Additivity, Null player, and Positivity. Efficiency
ensures that the worth of the grand coalition is fully distributed among the players. Additivity
allows us to decompose the original game without affecting the outcome. Null player stands for the
idea that players with null marginal contributions to the game should receive no payoff. Positivity
indicates that the payoffs of the players should be positive as long as all the Harsanyi dividends of
the game are positive.

In this paper, we generalize the family of Sharing values from TU-games to multi-choice games.
Multi-choice games, or MC-games for short, introduced by Hsiao and Raghavan (1992) and van den
Nouweland (1993), are a natural extension of TU-games. In TU-games, each player in N has two
choices. It can either cooperate by joining a coalition or not cooperate. Such binary choice can
be represented by {0, 1}. In MC-games, each player i ∈ N has access to a finite set of activity
levels {0, 1, . . . ,mi} to cooperate within a coalition. For convenience, a player i and any of its
(strictly positive) activity level j ∈ {1, . . . ,mi} may be denoted by a player-activity level pair
(i, j). Recently, MC-games have been successfully applied to economic theory and operations
research. For instance, Techer (2021) addresses the social cost problem, originally introduced by
Coase (1960), by using MC-games. The author studies situations in which one polluter, which
has several levels of pollution, interacts with several potential victims, and aims at negotiating a
stable agreement regarding the level of pollution; and Branzei et al. (2021) introduce the model
of multi-choice two-sided market games related to two-sided market situations. The authors study
situations in which sellers and buyers trade goods. Each seller may have multiple units of the good
and each buyer may need multiple units of the good. The trading of goods generates a certain
utility surplus. The authors investigate how to allocate this surplus among the sellers and the
buyers.

Consider a finite and fixed set of players N . In an MC-game, a (multi-choice) coalition s
is a vector describing each player i activity level si ∈ {0, 1, . . . ,mi} within this coalition. A
characteristic function v for MC-games measures the worth v(s) of each coalition s. An MC-game
is denoted by a couple (m, v), where m = (m1, . . . ,m|N |) plays the role of the grand coalition. The
net surplus generated by a coalition s can be measured by its (multi-choice) Harsanyi dividend
∆v(s) (see Hsiao and Raghavan (1992)). Such dividends can be defined inductively: the dividend
of the empty coalition (the coalition in which all players are inactive) is null and the dividend
of any other coalition is equal to its worth minus the sum of all dividends of smaller coalitions
(in the Euclidean sense). A (multi-choice) payoff vector x associates a payoff xij to each (strictly
positive) activity level j ∈ {1, . . . ,mi} of each player i, i.e., to each pair (i, j). In other words,
a payoff vector describes how much each player’s total payoff varies according to their activity
level. By convention, a player receives no payoff for his activity level 0. A single-valued solution,
or a value for short, on a class of MC-games, assigns a unique payoff vector to each game in this
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class, while a set-valued solution assigns a set (possibly empty) of payoff vectors. We introduce
a running example to illustrate concepts related to MC-games. Let N = {a, b, c} be a team of
consultants collaborating on a common project. The project generates an income that depends
on the involvement of the consultants in the collaboration. Each consultant i ∈ N has a finite set
of activity levels, which can be interpreted as the maximal number of workdays they are willing
to invest in the project. Let us pick ma = 4,mb = 3 and mc = 4. In this context, a coalition s
represents a situation in which each consultant i ∈ N invests exactly si workdays into the project.
A characteristic function v describes the hypothetical income v(s) that can be generated by each
s. The Harsanyi dividend ∆v(s) can be interpreted as the net surplus in the income generated by
s. A payoff vector x associates a daily payoff xij to each workday j of each consultant i.

In TU-games, the support of a coalition is simple to interpret: it is the set of players cooperating
in that coalition. In MC-games, however, there is no straightforward interpretation of the support
of a (multi-choice) coalition. Three possible interpretations have been proposed by Klijn et al.
(1999), Peters and Zank (2005) and Lowing and Techer (2022a) to define values for MC-games.1

Each of these interpretations assigns to each coalition a certain set of player-activity level pairs.
Klijn et al. (1999) interpret the support of a coalition s as the set of activity levels necessary

to form s, which we denote by B(s). Formally, the set B(s) contains all the pairs (i, j) such that
i ∈ N and 0 < j ≤ si. The authors proposed a value for MC-games that distributes the dividend
∆v(s) of each coalition s equally on B(s). For instance, in the context of the running example, the
coalition (3, 2, 4) represents a situation in which consultant a works for three days, b works for two
days, and c works for four days. The set B(3, 2, 4) contains all the workdays that a has invested in
(3, 2, 4), i.e., his first, second, and third workdays. It also contains all the workdays that b and c
have invested in (3, 2, 4). An illustration of B(3, 2, 4) is given by Figure 1. The workdays contained
in B(3, 2, 4) are highlighted in blue. According to the value of Klijn et al. (1999), each workday of
each consultant contained in B(3, 2, 4) should receive an equal share of ∆v(3, 2, 4).

Peters and Zank (2005) interpret the support of a coalition s as the set of activity levels at
which the players are active in s, which we denote by C(s). Formally, the set C(s) contains all the
pairs (i, j) such that i ∈ N and j = si, si > 0. The authors proposed a value for MC-games that
distributes the dividend ∆v(s) of each coalition s equally on C(s). For instance, in the context of
the running example, consider again the coalition (3, 2, 4). The set C(3, 2, 4) contains the workday
at which a is currently working in (3, 2, 4), i.e., his third workday. It also contains the second
and fourth workdays of b and c, respectively. An illustration of C(3, 2, 4) is given by Figure 1.
According to the value of Peters and Zank (2005), each workday of each consultant contained in
C(3, 2, 4) should receive an equal share of ∆v(3, 2, 4).

Lowing and Techer (2022a) assume that the players are always competing in coalitions. Only
the highest activity level within a coalition s can be part of its support, which we denote by T (s).
Formally, the set T (s) contains all the pairs (i, j) such that i ∈ N and j = si, si = maxk∈N sk.
The authors proposed a value for MC-games that distributes the dividend ∆v(s) of each coalition
s equally on T (s). For instance, in the context of the running example, consider again the coalition
(3, 2, 4). In this coalition, c has invested more workdays than the other consultants. Therefore,
the set T (3, 2, 4) only contains the fourth workday of c. An illustration of T (3, 2, 4) is given by
Figure 1. The value of Lowing and Techer (2022a) requires that the fourth workday of c receives
∆v(3, 2, 4).

1The value defined by Klijn et al. (1999) was originally introduced in a more general context by Derks and Peters
(1993).
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Figure 1: Interpretations of coalition (3, 2, 4) support

Each of the above-mentioned values has its own interpretation of coalition support. Such
interpretation has a direct impact on how the coalitions’ dividends are distributed. Based on these
interpretations, we propose three generalizations of Sharing values from TU-games to MC-games:
B-Sharing values, C-Sharing values, and T -Sharing values.

A B-Sharing value for MC-games distributes the Harsanyi dividend of each coalition s among
the player-activity level pairs in the support B(s). Such distribution is determined by a sharing
system. This sharing system assigns, to each coalition s, unit-normalized weights defined on the
whole set of player-activity level pairs. If a pair is in the support B(s), it is assigned a positive
weight, otherwise, its weight is null. The value proposed by Klijn et al. (1999) is a specific B-
Sharing value whose sharing system associates, to each coalition, uniform weights to the pairs in
B(s). The set of all B-Sharing values forms the B-Harsanyi set, which generalizes the Harsanyi set
from TU-games to MC-games. Similarly, we define C-Sharing values and T -Sharing values based
on the two other interpretations of coalition support. The value proposed by Peters and Zank
(2005) is a specific C-Sharing value, whereas the value proposed by Lowing and Techer (2022a)
is a specific T -Sharing value. The set of all C-Sharing values forms the C-Harsanyi set, and the
set of all T -Sharing values forms the T -Harsanyi set. Both sets generalize the Harsanyi set from
TU-games to MC-games. Moreover, the T -Harsanyi set is included in the C-Harsanyi set, which
itself is included in the B-Harsanyi set (see Figure 3).

We axiomatically characterize B-Sharing values, C-Sharing values, and T -Sharing values on
the full class of MC-games. In this class, the player set is fixed, but the grand coalition and the
characteristic function may vary. Each of these axiomatic characterizations relies on four axioms for
solutions of MC-games: Efficiency, Additivity, Null pair out, and Positivity. Efficiency, Additivity,
and Positivity are straightforward adaptations of their counterparts for TU-games. Null pair out
ensures that if a player i has null contributions for his maximal activity level mi, then it can just
stop cooperating at this level without affecting the payoffs of the other players and his own payoffs
for his remaining activity levels. These four axioms characterize B-Sharing values on the full class
of MC-games (see Theorem 2). We discuss two other axioms to characterize C-Sharing values and
T -Sharing values. The first axiom is Independence of the maximal activity level and was originally
introduced by Hwang and Liao (2009) and Béal et al. (2012). This axiom ensures that the reduction
of a player’s maximal activity level should have no impact on the payoff of his remaining activity
levels. The second axiom is Independence of higher activity levels and was originally introduced
by Lowing and Techer (2022a). This axiom requires that if the maximal activity levels of all
players reduce to a certain level, then the payoff of each player for this activity level remains
unchanged. Adding Independence of the maximal activity level to Efficiency, Additivity, Null pair
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out and Positivity allows us to characterize C-Sharing values on the full class of MC-games (see
Theorem 3). Adding Independence of higher activity levels to Efficiency, Additivity, Null pair
out and Positivity allows us to characterize T -Sharing values on the full class of MC-games (see
Theorem 4). In addition to the above-mentioned axioms for MC-games, we introduce other axioms
and discuss their relationships with each other. This allows us to provide additional axiomatic
characterizations of B-Sharing values, C-Sharing values, and T -Sharing values on any sub-class of
MC-games with a fixed grand coalition (see the Corollaries 1, 2 and 3).

The rest of the paper is organized as follows. After dealing with preliminaries on TU-games and
MC-games in Section 2, we introduce B-Sharing values, C-Sharing values, and T -Sharing values in
Section 3. Section 4 contains the axiomatic study. In particular, Subsection 4.1 discusses standard
axioms for solutions of MC-games. Subsection 4.2 provides two axiomatic characterizations of
B-Sharing values: one on the full class of MC-games and one on any sub-class of MC-games with
a fixed grand coalition. Similar results are provided for C-Sharing values and T -Sharing values in
the Subsections 4.3 and 4.4, respectively. Section 5 contains additional remarks. Finally, Section 6
concludes the paper. Section 7 is an appendix containing the proofs of the results and the logical
independence of the axioms invoked in the characterization results.

2. Preliminaries

This section contains some preliminaries on TU-games and MC-games. First, we present the
axiomatic characterization of Sharing values for TU-games proposed by Derks et al. (2000). Then,
we present three solutions for MC-games and discuss different interpretations of coalition support
in MC-games.

We denote by |A| the number of elements in a finite set A ⊂ N. For each non-empty B ⊆ A, we
denote by eB ∈ R|A| the vector such that (eB)i = 1 if i ∈ B and (eB)i = 0 otherwise. The power
set of A is denoted by 2A. Pick any s ∈ R|A|. The vector (s−i, j) ∈ R|A| is defined as (s−i, j)i = j
and (s−i, j)i′ = si′ for each i′ ̸= i.

2.1. TU-games

LetN = {1, . . . , n} be a fixed set of players. Each E ∈ 2N is called a coalition of cooperating
players. The grand coalition N represents a situation in which all players cooperate. The empty
coalition ∅ represents a situation in which no player cooperates. A TU-game is a couple (N, v)
where v : 2N → R, v(∅) = 0, is a characteristic function. The real number v(E) can be interpreted
as the worth the players in E generate when they cooperate. The class of TU-games on N is
denoted by G. A player i ∈ N is a null player in (N, v) ∈ G if v(E ∪ {i}) = v(E) for each
E ∈ 2N\{i}.

Pick any (N, v) ∈ G. It is known that v can be expressed as a linear combination of 2|N | − 1
linearly independent games, since v(∅) = 0. For any E ∈ 2N \ {∅}, the unanimity game (N, uE)
with ruling coalition E is defined as

∀T ∈ 2N , uE(T ) =

{
1 if E ⊆ T,
0 otherwise.

(1)

There exists a unique decomposition of v in terms of unanimity games given by

v =
∑

E∈2N\{∅}

∆v(E)uE . (2)
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The coordinate ∆v(E) is called the Harsanyi dividend (see Harsanyi (1959)) of coalition E ∈ 2N .
This dividend reflects the net surplus generated by E. It can be defined inductively: the dividend
of the empty coalition is null and the dividend of any other coalition is equal to its worth minus
the sum of all dividends of proper subsets of that coalition. 2 Formally,

∀E ∈ 2N \ {∅}, ∆v(E) = v(E)−
∑
T⊂E

∆v(T ) (3)

∆v(∅) = 0.

In TU-games, a payoff vector x ∈ R|N | assigns a payoff xi ∈ R to each player i ∈ N . A single-
valued solution, or a value for short, on G is a map f that assigns a unique payoff vector f(N, v)
to each (N, v) ∈ G, whereas a set-valued solution is a map F that assigns a set (possibly empty)
of payoff vectors F (N, v) to each (N, v) ∈ G.

The Shapley value (see Shapley (1953)) is probably the most prominent single-valued solution
for TU-games. It distributes the dividend of each coalition equally among the members of that
coalition, i.e., on the support of that coalition.

Definition 1 (Shapley value). Pick any (N, v) ∈ G. The Shapley value is defined as

∀i ∈ N, Shi(N, v) =
∑
E∈2N
E∋i

∆v(E)

|E|
.

Next, we define the family of Sharing values (see Derks et al. (2000)). Each Sharing value is
determined by a sharing system. A sharing system is a collection q = (q(E))E∈2N such that for
each E ∈ 2N \ ∅, q(E) ∈ RN verifies the following conditions

1. qi(E) = 0 if i /∈ E;

2. qi(E) ≥ 0 if i ∈ E;

3. and
∑

i∈N qi(E) = 1.

We use the convention q(∅) = (0, . . . , 0).3 Let QN denote the set of all possible sharing systems on
N . A Sharing value distributes the dividend of each coalition E ∈ 2N on its support according to
a certain sharing system in QN .

Definition 2 (Sharing values). To each sharing system q ∈ QN , one can associate a Sharing
value φq on G defined, for each (N, v) ∈ G, as

∀i ∈ N, φq
i (N, v) =

∑
E∈2N

qi(E)∆v(E).

The Shapley value is the only Sharing value that verifies qi(E) = 1/|E| for each E ∈ 2N \ ∅ and
each i ∈ E. The Harsanyi set is a set-valued solution introduced by Hammer et al. (1977), Vasil’ev
(1978) and Vasil’ev (1981). Derks et al. (2000) show that the Sharing values of a given TU-game
fill the Harsanyi set of that game.

2The Harsanyi dividends (∆v(E))E∈2N associated with a TU-game (N, v) correspond to the Möbius transform of
v : 2N → R.

3Each q(E) can be viewed as a probability distribution over E ∈ 2N .
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Definition 3 (Harsanyi set). Pick any (N, v) ∈ G. The Harsanyi set is defined as

H(N, v) = {φq(N, v) : q ∈ QN}.

Next, we present an axiomatic characterization of Sharing values on G by Derks et al. (2000). To
that end, we introduce four axioms that define properties for a solution f on G:

1. Efficiency (ETU). For each (N, v) ∈ G,
∑

i∈N fi(N, v) = v(N);

2. Additivity (ATU). For each (N, v), (N,w) ∈ G, f(N, v + w) = f(N, v) + f(N,w);

3. Null player (NTU). For each (N, v) ∈ G, if i ∈ N is a null player, then fi(N, v) = 0;

4. Positivity (PTU). For each (N, v) ∈ G, where ∆v(E) ≥ 0 for each E ∈ 2N , f(N, v) ∈ RN
+ .

Theorem 1 (Derks et al. (2000)). A solution f on G is a Sharing value if and only if it satisfies
(ETU ), (ATU ), (NTU ) and (P TU ).

2.2. MC-games

Let N = {1, . . . , n} be a fixed set of players. Each player i ∈ N has a finite set of pairwise
distinct and linearly ordered activity levels {0, . . . ,mi}, where mi is the maximal activity level
of i. For the rest of the paper, we fix K ∈ N an upper bound for maximal activity levels, i.e.,
mi ≤ K for each i ∈ N . Let M be the Cartesian product

∏
i∈N{0, . . . ,mi}. Each vector s ∈ M

is called a (multi-choice) coalition. The vector m = (m1, . . . ,mn) plays the role of the grand
coalition, whereas 0 = (0, . . . , 0) plays the role of the empty coalition. The set M endowed with
the usual binary relation ≤ on Rn induces a (complete) lattice with greatest element m and least
element 0. For any two coalitions a, b ∈ M, a∨b and a∧b denote their least upper bound and their
greatest lower bound over M, respectively. Assume that all players agree on forming a coalition
in which everyone plays the same activity level, let us say j. Players unable to cooperate at such a
level play at their maximal activity level. We call such coalition a j-synchronized coalition and
we denote it by (j ∧mi)i∈N .

Let K be the fixed Cartesian product
∏

i∈N{0, . . . ,K}. The set K can be viewed as the set
of all thinkable coalitions in our framework, whereas the set M ⊆ K only contains the coalition
induced by a grand coalition m. An MC-game on N and K is a couple (m, v) where m ∈ K and
v : M −→ R is a characteristic function, v(0) = 0, that specifies a worth v(s) to each coalition
s ∈ M. Pick any m ∈ K. The class of MC-games with grand coalition m is denoted by Gm.
Denote by G = ∪m∈KGm the class of all MC-games on N and K. Observe that G, the class of
TU-games on N , can be viewed as the class of MC-games G(1,...,1) with grand coalition (1, . . . , 1).
The sub-game (t, vt) of (m, v) ∈ G induced by t ∈ M is the MC-game such that vt is the restriction
of v to the subset of coalitions {y ∈ M | y ≤ t}. When no confusion arises, we simply denote
the sub-game (t, vt) by (t, v). For any two MC-games (m, v), (m,w) ∈ G and for any c ∈ R, the
MC-game (m, v + cw) is such that, for each s ∈ M, (v + cw)(s) = v(s) + cw(s). An MC-game
(m, v) ∈ G is a null game if v(s) = 0 for each s ∈ M.

Pick any (m, v) ∈ G. A player-activity level pair (i, j) represents a player i ∈ N and one
of his (strictly positive) activity levels 0 < j ≤ mi. We use M+ =

⋃
i∈N ({i} × {1, . . . ,mi}) to

denote the set of all player-activity level pairs induced by m. Similarly, we use K+ =
⋃

i∈N ({i} ×
{1, . . . ,K}) to denote the set of all thinkable player-activity level pairs.
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A pair (i, j) ∈ M+ is unproductive in (m, v) if v(s + ei) − v(s) = 0 for each s ∈ M such
that si = j − 1. In the context of the running example from the Introduction, an unproductive
pair (i, j) may represent a specific workday j on which the consultant i produces nothing. A pair
(i, j) ∈ M+ is null in (m, v) if each pair (i, j′), such that j ≤ j′ ≤ mi, is an unproductive pair.
In the context of the running example, a null pair (i, j) may represent a specific workday j from
which the consultant i produces nothing. Obviously, if a pair is null in a game (m, v) ∈ G, then it
is unproductive in (m, v). The converse is not true.

An analogue of (1) in the multi-choice setting is the concept of (multi-choice) unanimity
games. Pick any m ∈ K. For any t ≤ m, the unanimity game (m,ut) with ruling coalition t is
defined as

∀s ∈ M, ut(s) =

{
1 if s ≥ t,

0 otherwise.
(4)

In a unanimity game (m,ut), each player i ∈ N is required to be active at least at his level ti to
allow a coalition to generate a non-null worth. For each MC-game (m, v) ∈ G, the characteristic
function v admits a unique linear decomposition in terms of unanimity games (see Hsiao and
Raghavan (1992)) given by

v =
∑
t∈M

∆v(t)ut, (5)

where ∆v(t) is called the (multi-choice) Harsanyi dividend of t. 4 Harsanyi dividends are defined
recursively as

∀t ∈ M, ∆v(t) = v(t)−
∑
s<t

∆v(s),

and ∆v(0, . . . , 0) = 0. (6)

In an MC-game (m, v) ∈ G, a payoff vector x ∈ R|M+| assigns a payoff xij ∈ R to each (positive)
activity level j of each player i, or equivalently, to each pair (i, j) ∈ M+. The payoff xij can be
interpreted as the increment in player i’s total payoff when he increases his activity level from j−1
to j. A single-valued solution, or a value for short, on any sub-class G ⊆ G is a map f that assigns
a unique payoff vector f(m, v) to each (m, v) ∈ G. A set-valued solution F on G ⊆ G assigns a set
(possibly empty) of payoff vectors F (m, v) to each (m, v) ∈ G.

Next, we present three values for MC-games. Each of these values can be viewed as an ex-
tension of the Shapley value from TU-games to MC-games. To define these values, we introduce
three interpretations of the support of a (multi-choice) coalition. For each value, we provide an
expression in terms of Harsanyi dividends.

First, let us define the KSZ value proposed by Klijn et al. (1999) (introduced in a more general
context in Derks and Peters (1993)). To that end, let us define the map B : K → 2K

+
as

∀s ∈ K, B(s) = {(i, j) ∈ K+ : j ≤ si}.

The subset B(s) ⊆ K+ can be interpreted as the support of coalition s. It gathers all the pairs
whose activity level can be considered necessary to form s. The KSZ value distributes the dividend
∆v(s) of each coalition s equally among the pairs contained in the support B(s).

4The Harsanyi dividends (∆v(t))t≤m associated with an MC-game (m, v) correspond to the Möbius transform of
v : M → R.
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Definition 4 (KSZ value). For each (m, v) ∈ G, the KSZ value is defined as

∀(i, j) ∈ M+, KSZij(m, v) =
∑
s∈M

(i,j)∈B(s)

∆v(s)

|B(s)|
.

Second, let us define the PZ value introduced by Peters and Zank (2005). To that end, let us
define the map C : K → 2K

+
as

∀s ∈ K, C(s) = {(i, j) ∈ B(s) : j = si}.

The subset C(s) ⊆ K+ is another possible interpretation of the support of coalition s. It gathers all
the pairs featuring the activity levels at which the players are active in s. Observe that C(s) ⊆ B(s).
The PZ value distributes the dividend ∆v(s) of each coalition s equally among the pairs contained
in the support C(s).

Definition 5 (PZ value). For each (m, v) ∈ G, the PZ value is defined as

∀(i, j) ∈ M+, PZij(m, v) =
∑
s∈M

(i,j)∈C(s)

∆v(s)

|C(s)|
.

Finally, let us define the LT value introduced by Lowing and Techer (2022a). To that end, let
us define the map T : K → 2K

+
as

∀s ∈ K, T (s) =
{
(i, j) ∈ C(s) : j ≥ sk, ∀k ∈ N

}
. (7)

The subset T (s) ⊆ K+ is another possible interpretation of the support of coalition s. It contains
all the pairs featuring the players with the highest activity level in s. Observe that T (s) ⊆ C(s).
The LT value distributes the dividend ∆v(s) of each coalition s equally among the pairs contained
in the support T (s).

Definition 6 (LT value). For each (m, v) ∈ G, the LT value is defined as

∀(i, j) ∈ M+, LTij(m, v) =
∑
s∈M

(i,j)∈T (s)

∆v(s)

|T (s)|
.

The three values KSZ,PZ and LT all boil down to the Shapley value on the class of TU-games
G(1,...,1) (see Klijn et al. (1999), Peters and Zank (2005) and Lowing and Techer (2022a)). Observe
that the three values only differ in their interpretation of the support of a coalition, which affects
the way the dividends are distributed among the player-activity level pairs. These interpretations
of the support of the coalitions are central to this study. We provide an example to better illustrate
their differences.
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Example 1. Consider the running example from the Introduction. Recall that N = {a, b, c} and
m = (4, 3, 4). Assume that the three consultants struggle to collaborate and generate income.
However, if a is willing to work for at least 3 days, b for at least 2 days and c for at least 4 days,
then an income of 9 can be generated. Otherwise, their collaboration does not produce anything.
This situation can be represented by the characteristic function v defined as

∀t ∈ M, v(t) = 9× us(t) =

{
9 if t ≥ s,

0 otherwise,

where s = (3, 2, 4). In that case, ∆v(s) = 9 and ∆v(t) = 0 for each t ̸= s. The different
interpretations of the support of (3, 2, 4) are

B(s) = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (c, 3), (c, 4)},
C(s) = {(a, 3), (b, 2), (c, 4)},

and T (s) = {(c, 4)}.

See also Figure 1 for an illustration of the different interpretations of the support of (3, 2, 4). Since
there is only one non-null Harsanyi dividend in the MC-game (m, v), the computation of the values
is direct. The KSZ value distributes ∆v(s) among all the pairs in B(s). Hence, each pair in B(s)
shall receive 9/9 = 1. The PZ value distributes ∆v(s) among all the pairs in C(s). Hence, each
pair in C(s) shall receive 9/3 = 3. The LT value distributes 9 among all the pairs in T (s). Hence,
the pair (c, 4) shall receive 9. The daily payoffs obtained by applying the KSZ, PZ, and LT values
are given in Figure 2.

(a,1) (a,2) (a,3) (a,4) (b,1) (b,2) (b,3) (c,1) (c,2) (c,3) (c,4)

KSZ(m.v) 1 1 1 0 1 1 0 1 1 1 1
PZ(m.v) 0 0 3 0 0 3 0 0 0 0 3
LT (m.v) 0 0 0 0 0 0 0 0 0 0 9

Figure 2: Example of daily payoffs

3. Sharing values and Harsanyi sets for MC-games

In this section, we define the families of B-Sharing values, C-Sharing values, and T -Sharing
values. These are defined using the three interpretations of the support of a coalition introduced in
the previous section. Each of these families extends Sharing values from TU-games to MC-games.
To properly define our Sharing values for MC-games, we need to define sharing systems on K+.
First, let us define B-sharing systems and B-Sharing values.

Definition 7. A B-sharing system is a collection q = (q(s))s∈K such that for each s ∈ K \ {0},
q(s) ∈ R|K+| verifies the following conditions

(a) qij(s) = 0 if (i, j) /∈ B(s);

(b) qij(s) ≥ 0 if (i, j) ∈ B(s);

(c) and
∑

(i,j)∈K+ qij(s) = 1.
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We use the convention qij(0) = 0 for each (i, j) ∈ K+.

Let QB denote the set of all B-sharing systems.

Definition 8 (B-Sharing values). Pick any q ∈ QB. For each (m, v) ∈ G, the B-Sharing value
φq is defined as

∀(i, j) ∈ M+, φq
ij(m, v) =

∑
s∈M

qij(s)∆v(s).

A B-Sharing value distributes the dividend ∆v(s) of each coalition s among the pairs contained in
the support B(s). This distribution is done according to the positive weights given by q(s). Observe
that each q(s), s ∈ M, is independent from the grand coalition m and from the characteristic
function v. The KSZ value is a specific B-Sharing value that verifies qij(s) = 1/|B(s)| for each
s ∈ K \ {0} and each (i, j) ∈ B(s). The B-Harsanyi set HB is defined as the set of all B-Sharing
values, i.e.,

∀(m, v) ∈ G, HB(m, v) = {φq(m, v) : q ∈ QB}.

Observe that HB boils down to the Harsanyi set of TU-games on the sub-class of TU-games. Next,
let us define C-sharing systems and C-Sharing values.

Definition 9. A C-sharing system q = (q(s))s∈K is a B-sharing system such that for each s ∈
K \ {0}, q(s) ∈ R|K+| verifies the following condition

(d) qij(s) = 0 if (i, j) /∈ C(s).

Let QC denote the set of all C-sharing systems. Observe that (d) implies (a). Consequently,
QC ⊆ QB.

Definition 10 (C-Sharing values). A C-Sharing value φq is a B-Sharing value associated with
a C-sharing system.

A C-Sharing value distributes the dividend ∆v(s) of each coalition s among the pairs contained
in the support C(s). The PZ value is a specific C-Sharing value that verifies qij(s) = 1/|C(s)|
for each s ∈ K \ {0}, and each (i, j) ∈ C(s). The C-Harsanyi set HC is defined as the set of all
C-Sharing values, i.e.,

∀(m, v) ∈ G, HC(m, v) = {φq(m, v) : q ∈ QC}.

Observe that HC boils down to the Harsanyi set of TU-games on the sub-class of TU-games.
Finally, let us define T -sharing systems and T -Sharing values.

Definition 11. A T -sharing system q = (q(s))s∈K is a C-sharing system such that for each s ∈
K \ {0}, q(s) ∈ R|K+| verifies the following condition

(e) qij(s) = 0 if (i, j) /∈ T (s).

Let QT denote the set of all T -sharing systems. Observe that (e) implies (d). Consequently,
QT ⊆ QC .

11



Definition 12 (T-Sharing values). A T -Sharing value φq is a C-Sharing value associated with
a T -sharing system.

A T -Sharing value distributes the dividend ∆v(s) of each coalition s among the pairs contained
in the support T (s). The LT value is a specific T -Sharing value, which verifies qij(s) = 1/|T (s)|
for each s ∈ K \ {0}, and each (i, j) ∈ T (s). The T -Harsanyi set HT is defined as the set of all
T -Sharing values, i.e.,

∀(m, v) ∈ G, HT (m, v) = {φq(m, v) : q ∈ QT }.

Observe that HT boils down to the Harsanyi set of TU-games on the sub-class of TU-games. Since
QT ⊆ QC ⊆ QB, the T -Harsanyi set is included in the C-Harsanyi set, which itself is included in
the B-Harsanyi set (see Figure 3). Observe that the B-sharing system of the KSZ value fails to
satisfy condition (d). Therefore, the KSZ value is not a C-Sharing value. Similarly, the PZ value
is not a T -Sharing value.

Proposition 1. For each (m, v) ∈ G,

HT (m, v) ⊆ HC(m, v) ⊆ HB(m, v).

Proof. The proof is direct and will be omitted. □

HB(m, v)

HC(m, v)

HT (m, v)

• KSZ(m, v)

• PZ(m, v)

• LT (m, v)

Figure 3: Inclusions of the Harsanyi sets

4. Axiomatic study and characterizations

In this section, we discuss new and classical axioms for MC-games. Several propositions high-
light the relationships between the axioms. We also provide axiomatic characterizations of each
family of values introduced in Section 3.

4.1. Standard axioms

Let f be a value on G. First, we introduce two classical axioms for MC-games.

Efficiency (E). For each (m, v) ∈ G,
∑

(i,j)∈M+ fij(m, v) = v(m).

Additivity (A). For each (m, v), (m,w) ∈ G, f(m, v + w) = f(m, v) + f(m,w).
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Obviously, (E) and (A) reduce to (ETU ) and (ATU ) on TU-games, respectively. The next axiom,
originally introduced by Klijn et al. (1999), requires that any null pair receives a null payoff. In the
context of Example 1, this axiom guarantees that if a consultant is unproductive as of a certain
workday, he shall receive a null payoff for that workday. For instance, consultant b shall receive
nothing for his third and fourth workdays.

Null pair (N). For each (m, v) ∈ G, if (i, j) ∈ M+ is a null pair, then fij(m, v) = 0.

Observe that (N) reduces to (NTU ) on TU-games. The next axiom indicates that the payoff of
each pair should be null in a null game. In the context of Example 1, this axiom indicates that if
no income is generated by the consultants’ cooperation, then each of the consultant’s daily payoffs
should be null.

Null game (NG). If (m, v) ∈ G is a null game, then fij(m, v) = 0 for each (i, j) ∈ M+.

In a null game, all pairs are null pairs. It follows that if a solution satisfies (N), then it also satisfies
(NG).

Proposition 2. If a solution f on G satisfies (N), then it satisfies (NG).

Proof. The proof is direct and will be omitted. □

Remark 1. The converse of Proposition 2 is not true. To see this, consider the value f1 defined,
for each (m, v) ∈ G, as

∀(i, j) ∈ M+ f1
ij(m, v) =

v(m)

|M+|
. (8)

Clearly, f1 satisfies (NG) since any null game (m, v) satisfies v(m) = 0. However, f1 fails to satisfy
(N) since a null pair in game (m, v) ∈ G may receive a non null payoff as long as v(m) ̸= 0. □

The next axiom indicates that if the Harsanyi dividend of each coalition is positive in a game, then
the payoff of each pair should also be positive. In the context of Example 1, this axiom guarantees
that if the consultants’ project generates positive surpluses, then each of the consultant’s daily
payoffs should be positive, which is the case in this example.

Positivity (P). For each (m, v) ∈ G, where ∆v(s) ≥ 0 for each s ∈ M, f(m, v) ∈ R|M+|
+ .

Observe that (P) reduces to (P TU ) on TU-games. In a null game, the worth of the grand coalition
is null. Moreover, in a null game, the Harsanyi dividend of each coalition is null and therefore is
positive. It follows that (E) and (P) imply (NG).

Proposition 3. If a solution f on G satisfies (E) and (P), then it satisfies (NG).

Proof. The proof is direct and will be omitted. □

Remark 2. The converse of Proposition 3 is not true. To see this, consider the value f2 defined,
for each (m, v) ∈ G, as

∀(i, j) ∈ M+, f2
ij(m, v) =

{
0 if v(m) = 0

−1 otherwise.

This value satisfies (NG), but fails to satisfy both (E) and (P). □
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The next axiom deals with null pairs differently from (N). Pick any (m, v) ∈ G. The axiom
requires that if (i,mi) is a null pair in (m, v), then player i can reduce his maximal activity level
by one unit without affecting the payoffs of the remaining pairs. In the context of Example 1, this
axiom ensures that if a consultant is unproductive on his last workday, then he can take this day
off without affecting the payoffs of the other consultants as well as his own payoffs for his remaining
workdays. For instance, consultant a can take his fourth workday off.

Null pair out (NO). For each (m, v) ∈ G, if (i,mi) ∈ M+ is a null pair, then

∀(k, l) ∈ M+ \ {(i,mi)}, fkl(m− ei, v) = fkl(m, v).

Lowing and Techer (2022b) show that combining this last axiom with (E) implies (N).

Proposition 4. If a solution f on G satisfies (E) and (NO), then it satisfies (N).

From Proposition 2 and Proposition 4, it directly follows that if a solution satisfies (E) and (NO),
then it satisfies (NG).

Remark 3. The converse of Proposition 4 is not true. In particular, (N) does not imply (NO).
To see this, consider the solution f3 defined, for any (m, v) ∈ G, as

∀(i, j) ∈ M+, f3
ij(m, v) =

∑
s∈M

(i,j)∈T (s)

mi∑
(k,l)∈T (s)mk

∆v(s). (9)

This solution distributes the dividend of each coalition s among the pairs in T (s) according to
some weights given by the grand coalition m. These weights will vary if m varies. In that respect,
the solution f3 is not a B-Sharing value since a B-Sharing value must be defined according to a
sharing system independent from the grand coalition. Clearly, f3 satisfies (E) and (N). However,
f3 fails to satisfy (NO). Indeed, reducing the maximal activity level of a player will inevitably
affect the distribution of the dividends since such distribution depends on the maximal activity
levels of the players.

Additionally, to see that (N) does not imply (E), consider the value f4 defined, for any (m, v) ∈
G, as

∀(i, j) ∈ M+, f4
ij(m, v) = 0. (10)

The value f4 is called the null value. It satisfies (N) and (NO) but fails to satisfy (E). □

4.2. Characterizations of B-Sharing values

We have the material to characterize B-Sharing values on the full class of MC-games. This
characterization relies on (E), (A), (NO) and (P). In this respect, it is conceptually close to Theorem
1.

Theorem 2. A solution f on G is a B-Sharing value if and only if it satisfies (E), (A), (NO) and
(P).

Proof. See Appendix 7.2. □
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It is possible to replace (NO) by (N) in the statement of Theorem 2 to obtain a characterization
of B-Sharing values on any sub-class of MC-games with a fixed grand coalition.

Corollary 1. Pick any m ∈ K. A solution f on Gm is a B-Sharing value if and only if it satisfies
(E), (A), (N) and (P).

Proof. See Appendix 7.3 □

Observe that Corollary 1 coincides with Theorem 1 on the sub-class of TU-games, i.e., on G(1,...,1).

Remark 4. Observe that the axioms invoked in Corollary 1 do not characterize B-Sharing values
on G. To see this, it suffices to consider f3 given by (9). This solution satisfies (E), (A), (N) and
(P) on G, but it cannot be viewed as a B-Sharing value on G. However, f3 can be viewed as a
B-Sharing value on Gm, m ∈ K, since the grand coalition is fixed. □

4.3. Characterizations of C-Sharing values

Next, we propose an axiomatic characterization of C-Sharing values on the full class of MC-
games. To that end, we need an additional axiom: Independence of the maximal activity level.
This axiom indicates that the variation of a player’s maximal activity level should have no impact
on the payoff of his remaining activity levels. The axiom was first introduced by Hwang and Liao
(2009) and Béal et al. (2012). In the context of Example 1, the axiom ensures that a consultant
can reduce his total number of workdays (by taking a day off for instance) and keep his original
payoffs for his remaining workdays.

Independence of the maximal activity level (IM). For each (m, v) ∈ G, each i ∈ N and
each j < mi, fij(m, v) = fij(m− ei, v).

Any B-Sharing value that is not a C-Sharing value fails to satisfy (IM). Adding (IM) to the set
of axioms invoked in Theorem 2 leads to a characterization of C-Sharing values on the full class of
MC-games.

Theorem 3. A solution f on G is a C-Sharing value, if and only if it satisfies (E), (A), (NO),
(P) and (IM).

Proof. See Appendix 7.4. □

Next, we propose an alternative characterization of C-Sharing values on any sub-class of MC-
games with a fixed grand coalition. To that end, we consider an additional axiom: Unproductive
pair. This axiom was originally introduced by Peters and Zank (2005) to characterize the PZ
value. It states that any unproductive pair should receive a null payoff. In the context of Example
1, this axiom guarantees that if a consultant is unproductive on a certain workday, then it shall
receive no payoff for that workday.

Unproductive pair (U). Pick any (m, v) ∈ G. If (i, j) ∈ M+ is an unproductive pair in (m, v),
then fij(m, v) = 0.

Observe that (U) reduces to (NTU ) on TU-games. It is clear that (U) implies (N). But the converse
is not true. Indeed, the KSZ value satisfies (N) but fails to satisfy (U). The next proposition shows
that (N) coupled with (IM) implies (U).
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Proposition 5. If a solution f on G satisfies (N) and (IM), then it satisfies (U).

Proof. See Appendix 7.5. □

Remark 5. The converse of Proposition 5 is not true. To see this, it suffices to consider the
alternative solution f3 defined by (9). This solution satisfies (U), but fails to satisfy (IM). □

From Proposition 4 and Proposition 5, it is clear that any solution satisfying (E), (NO) and (IM)
satisfies (U). One can replace (NO) and (IM) by (U) in the statement of Theorem 3 to obtain a
characterization of C-Sharing values on any sub-class of MC-games with a fixed grand coalition.

Corollary 2. Pick any m ∈ K. A solution f on Gm is a C-Sharing value if and only if it satisfies
(E), (A), (U) and (P).

Proof. See Appendix 7.6 □

Observe that Corollary 2 coincides with Theorem 1 on the sub-class of TU-games.

Remark 6. Similarly to Remark 4, the axioms invoked in Corollary 2 do not characterize C-
Sharing values on the full class of MC-games G. Remark 5 corroborates this statement. □

4.4. Characterizations of T-Sharing values

Next, we propose an axiomatic characterization of T -Sharing values on the full class of MC-
games. To that end, we need an additional axiom: Independence of higher activity levels. This
axiom requires that if the maximal activity level of all players reduces to a certain level, then
the payoff of each player for this activity level remains unchanged. This axiom was originally
introduced in Lowing and Techer (2022a) to characterize the LT value. In the context of Example
1, the axiom ensures that the income received by a consultant on a given workday does not depend
on future workdays.

Independence of higher activity levels (IH). For each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = fij((j ∧mk)k∈N , v).

Proposition 6. If a solution f on G satisfies (IH), then it satisfies (IM).

Proof. See Appendix 7.7. □

The converse of Proposition 6 is not true. For instance, the PZ value satisfies (IM), but fails to
satisfy (IH). Adding (IH) to the set of axioms invoked in Theorem 2 leads to a characterization of
T -Sharing values on the full class of MC-games.

Theorem 4. A solution f on G is a T -Sharing value, if and only if it satisfies (E), (A), (NO),
(P) and (IH).

Proof. See Appendix 7.8. □
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Finally, we propose an alternative characterization of T -Sharing values on any sub-class of MC-
games with a fixed grand coalition. To that end, we consider a new axiom: Null and synchronized
coalition. Unlike (N), (NO), and (U), which focus on the productivity of player-activity level pairs,
Null and synchronized coalition is an axiom that focuses on the productivity of coalitions. Consider
an MC-game in which there exists a synchronized coalition s whose worth is null. The Null and
synchronized coalition axiom requires that the sum of the payoffs of all the pairs in B(s) should be
null. For instance, in the context of Example 1, if all consultants agree on collaborating together
for one day but still fail to generate any income, then the sum of their payoffs should be null.

Null and synchronized coalition (NS). Pick any (m, v) ∈ G. If there exists a j ≤ maxi∈N mi

such that v((j ∧mi)i∈N ) = 0, then ∑
(i′,j′)∈B((j∧mi)i∈N )

fij(m, v) = 0.

Proposition 7. If a solution f on G satisfies (E) and (IH), then it satisfies (NS).

Proof. See Appendix 7.9. □

Remark 7. The converse of Proposition 7 is not true. In particular, (NS) does not imply (E).
To see this, observe that the null value f4 defined by (10) satisfies (NS) but fails to satisfy (E).
Moreover, (NS) does not imply (IH). To see this, consider the value f8 defined for each (m, v) ∈ G
as

∀(i, j) ∈ M+, f8
ij(m, v) =


v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

|T (m)|
if (i,mi) ∈ T (m),

0 otherwise.

The value f8 satisfies (NS), but fails to satisfy (IH). □

Adding (NS) to the axioms invoked in Corollary 1, we obtain a characterization of T -Sharing values
on any sub-class of MC-games with a fixed grand coalition.

Corollary 3. Pick any m ∈ K. A solution f on Gm is a T -Sharing value if and only if it satisfies
(E), (A), (N), (NS) and (P).

Proof. See Appendix 7.10. □

Observe that (E) implies (NS) on the sub-class of TU-games. Consequently, Corollary 3 coincides
with Theorem 1 on the sub-class of TU-games.

Remark 8. Similarly to Remark 4, the axioms invoked in Corollary 3 do not characterize T -
Sharing values on the full class of MC-games G. Remark 7 corroborates this statement. □
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To conclude this section, we summarize all the relationships between the axioms in Figure 4.

(N)+(IM)

(U)

Prop.5

(E)+(NO)

(N)

Prop.4

(E)+(P)

(NG)

Prop.3

(IH)

(IM)

Prop.6

(E)+(IH)

(NS)

Prop.7

Prop.2

Figure 4: Relationships between the axioms

5. Additional remarks

In this section, we compare our results with existing axiomatic characterizations of the KSZ,
PZ and LT values. To be specific, in Corollary 1, (P) can be replaced by an alternative axiom to
obtain a characterization of the KSZ value (see Theorem 4.2 in Klijn et al. (1999)). Similarly, in
Corollary 2, (P) can be replaced by two alternative axioms to obtain a characterization of the PZ
value (see Theorem 3.1 in Peters and Zank (2005)). Finally, in Theorem 4, by replacing (P) by an
alternative axiom, by weakening (NO), and by strengthening (A) we obtain a characterization of
the LT value (see Theorem 1 in Lowing and Techer (2022a)).

Klijn et al. (1999) provide a characterization of the KSZ value on G that relies on four axioms,
three of which are already introduced in this paper: (E), (A) and (N). The fourth axiom focuses
on the so-called veto pairs. A pair (i, j) is veto in (m, v) ∈ G if v(s) = 0 for each s ∈ M such that
si < j. In other words, a veto pair represents an activity level at which a player must participate
for a coalition to have a non-null worth. The axiom, originally introduced by van den Nouweland
(1993), states that veto pairs are all equally necessary and should receive the same payoff.

Veto pair (V). For each (m, v) ∈ G, if (i, j), (i′, j′) ∈ M+ are two distinct veto pairs, then
fij(m, v) = fi′j′(m, v).

In the context of Example 1, (V) advocates that all the necessary workdays (which correspond to
the pairs in B(3, 2, 4)) should receive the same payoff. This seems reasonable considering that no
income can be generated without these workdays. By substituting (P) by (V) in the statement
of Corollary 1, one obtains the characterization of the KSZ value on G proposed by Klijn et al.
(1999). Observe that this characterization holds on the full class of MC-games and not only on
sub-classes of MC-games with a fixed grand coalition as Corollary 1 does.

Peters and Zank (2005) provide a characterization of the PZ value that relies on (E), (A),
(U), and two other axioms that we detail below. The first axiom generalizes the well-known
Anonymity axiom from TU-games to MC-games. It is defined using permutations on the player
set N . However, in the MC-game framework, a permutation on N would only make sense if the
players all have the same maximal activity level (which is assumed by Peters and Zank (2005)).
Denote by G ⊆ G the subset of MC-games in which all players have the same maximal activity
level.

Anonymity (AN) Pick any (m, v) ∈ G. For each t ∈ M and each permutation σ on N , define σt
as σtσ(i) = ti for each i ∈ N , and σv as σv(σt) = v(t). Then, it holds that fij(m, v) = fσ(i)j(m,σv).
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In the context of Example 1, (AN) ensures that even if consultants a and c exchange their names,
this should not affect their payoffs. This means that there can be no discrimination in payoff
between two consultants who work equally hard. The second axiom focuses on the so-called
intra-equal pairs. Two distinct pairs (i, j), (i, j′) ∈ M+ are intra-equal in a game (m, v) ∈ G
if they contain the same player and if v(s−i, j)− v(s−i, j − 1) = v(s−i, j

′)− v(s−i, j
′ − 1) for each

s ∈ M. In other words, two intra-equal pairs represent two activity levels at which a given player
is contributing equally. The axiom indicates that such two pairs should obtain the same payoff.

Symmetry for intra-equal pairs (SI). For each (m, v) ∈ G and two distinct intra-equal pairs
(i, j), (i, j′) ∈ M+, fij(m, v) = fij′(m, v).

In the context of Example 1, (SI) guarantees that a consultant who is equally productive on two
separate days (e.g. a on his first two workdays) will receive the same payoff for those workdays. By
substituting (P) by (AN) and (SI) in the statement of Corollary 2, one obtains the characterization
of the PZ value on G proposed by Peters and Zank (2005).

Finally, Lowing and Techer (2022a) provide a characterization of the LT value on G that relies
on (E), (IH), (N) and two other axioms that we detail below. The first axiom is the classical
Linearity axiom for solutions of MC-games.

Linearity (L). For each (m, v), (m,w) ∈ G and each λ ∈ R, f(m, v + λw) = f(m, v) + λf(m,w).

Obviously, this axiom strengthens (A). The second axiom is based on the concept of equal pairs.
Two distinct pairs (i, j), (i′, j) ∈ M+ are equal in (m, v) ∈ G if they contain the same activity
level and if v(s + ei) = v(s + ei′) for each s ∈ M such that si = si′ = j − 1. The axiom states
that two equal pairs should receive a payoff of the same sign. To properly present the axiom we
define the sign function as sign : R → {−1, 0, 1}, where sign(x) = 1 for each x > 0, sign(0) = 0,
and sign(x) = −1 for each x < 0. In the context of Example 1, two equal pairs may represent two
consultants that are equally productive on a given workday (e.g. a and c on their second workday).
These consultants should receive a payoff of the same sign on that particular workday.

Sign symmetry for equal pairs (SSE). For each (m, v) ∈ G and two distinct equal pairs
(i, j), (i′, j) ∈ M+, sign(fij(m, v)) = sign(fi′j(m, v)).

By substituting (P) by (SSE), by weakening (NO) into (N) and by strengthening (A) into (L) in
the statement of Theorem 4, one obtains the characterization of the LT value on G proposed by
Lowing and Techer (2022a). Observe that the characterization still holds even if we keep (N) and
(A) instead of (NO) and (L).
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6. Conclusion

In this paper, we proposed three extensions of Sharing values from TU-games to MC-games:
B-Sharing values, C-Sharing values, and T -Sharing values. The main difference between these
extensions is the interpretation of coalition support. We have introduced several axioms and
made some propositions to highlight the relationships between them. Invoking these axioms, we
characterized B-Sharing values, C-Sharing values, and T -Sharing values on the full class of MC-
games and on any sub-class of MC-games with a fixed grand coalition. Our characterization results
are summarized in the following table. Symbol ”·” means that the value satisfies the axiom, but
such an axiom is not used to characterize it. Symbol ”−” means that the value does not satisfy
the axiom. Symbol ”×” indicates that the axiom is used for the two characterizations of the value.
Symbol ”⊗” indicates that the axiom is only used for the characterization on the full class of MC-
games. Symbol ”⊠” indicates that the axiom is only used for the characterization on any sub-class
of MC-games with a fixed grand coalition.

Values\Axioms (E) (A) (N) (NG) (P) (NO) (IM) (IH) (U) (NS)

B-sharing × × ⊠ · × ⊗ - - - -
C-sharing × × · · × ⊗ ⊗ - ⊠ -
T -sharing × × ⊠ · × ⊗ · ⊗ · ⊠

Some questions remain of interest for future research. First, in the context of TU-games, a
consistent sharing system is such that the ratio of the weights of two players is the same for all
coalitions containing them (see Derks et al. (2000)). A Sharing value associated with a consistent
sharing system can be viewed as a Weighted Shapley value (see Kalai and Samet (1987) and
Monderer et al. (1992)). It can be interesting to extend the notion of consistency from TU-games
to MC-games, and investigate if this leads to new extensions of Weighted Shapley values from TU-
games to MC-games. If this investigation is successful, it may be interesting to enrich or modify
the axiomatic characterizations proposed in this paper to characterize these new extensions of
Weighted Shapley values.

Second, this paper adopts a value-theoretic point of view to study Sharing values for MC-games.
Instead, it can be interesting to adopt a set-theoretic point of view to study Harsanyi sets for MC-
games. For instance, Grabisch and Xie (2007) extend the Weber set and the Core from TU-games
to MC-games. Recently, Lowing and Techer (2022a) show that the LT value is the centroid of the
Weber set of MC-games and belongs to the Core of super-modular MC-games (a super-modular
MC-game can be viewed as a game in which the incentives for being active in a coalition increase
as the coalition grows). Since the LT value belongs to the T -Harsanyi set, it can be interesting
to investigate how the T -Harsanyi set relates to the Weber set and the Core. In TU-games, it is
known that the Weber set, which always contains the Core (see Weber (1988) and Derks (1992)), is
included in the Harsanyi set (see Derks et al. (2000)). One could investigate if an analogous result
holds in the context of MC-games, i.e., if the Weber set of MC-games is included in the T -Harsanyi
set.
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7. Appendix

This section contains all the proofs of our results. In order to perform these proofs, we introduce
some preliminary results.

7.1. Preliminary results

Remark 9. Pick any (m, v) ∈ G. From the definition of Harsanyi dividends (see (6)), the following
hold.

1. If (i, j) ∈ M+ is a null pair, then ∆v(s) = 0 whenever si ≥ j.

2. For each sub-game (t, vt), t ≤ m, each Harsanyi dividend ∆vt(s), s ≤ t, in (t, vt) coincides
with the Harsanyi dividend ∆v(s) in (m, v).

3.
∑

t∈M∆v(t) = v(m).

4. For each (m,w) ∈ G and each t ≤ m, ∆v(t) + ∆w(t) = ∆v+w(t).

Pick any (m,us) ∈ G. From the definition of unanimity games (see (4)), the following properties
hold:

1. Each pair (i, j) /∈ B(s) is a null pair in (m,us);

2. Each pair (i, j) ∈ B(s) \ C(s) is an unproductive pair in (m,us). □

Next, we show that any value satisfying (A), (N) and (P) satisfies a linearity requirement.

Proposition 8. Pick any (m, v) ∈ G. Any value f satisfying (A), (NG) and (P) verifies

f(m, v) =
∑
s∈M

∆v(s)f(m,us).

Proof. Pick any (m, v) ∈ G. Consider a value f satisfying (A), (NG) and (P). Recall that the
characteristic function of an MC-game can be decomposed the following way:

v =
∑
s∈M

∆v(s)us.

By (A),

f(m, v) =
∑
s∈M

f(m,∆v(s)us). (11)

Pick any s ∈ M. Let us show that for any α ∈ R, f(m,αus) = αf(m,us) holds. Pick any α ∈ R. If
α ∈ N, then by (A), f(m,αus) = αf(m,us). If α = 0, then by (NG), f(m,αus) = 0 = αf(m,us).
For any α ∈ R, observe that

f((α− α)us) = f(αus) + f(−αus)

= 0.
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Therefore,

f(−αus) = −f(αus).

If α ∈ Q, then there exists β, γ ∈ N such that α = β/γ. By (A), we obtain γf(m,β/γus) =
βf(m,us), so that f(m,αus) = αf(m,us) follows after dividing by γ. Now, if α ∈ R, let us consider
ζ, υ ∈ Q with ζ < α < υ. By (P), it holds that f(m, (α− ζ)us) ≥ 0 and f(m, (υ−α)us) ≥ 0, hence

ζf(m,us) = f(m, ζus) ≤ f(m,αus) ≤ f(m,υus) = υf(m,us).

By letting ζ and υ tend to α, we obtain the desired result: f(m,αus) = αf(m,us). From this, (11)
becomes

f(m, v) =
∑
s∈M

∆v(s)f(m,us),

which shows the desired result. The proof of Proposition 8 is completed. □

7.2. Proof of Theorem 2

To prove Theorem 2, we proceed in two steps. First, let us show that any B-Sharing value
satisfies (E), (A), (NO) and (P). Pick any q ∈ QB and consider the B-Sharing value φq defined for
each (m, v) ∈ G as

∀(i, j) ∈ M+, φq
ij(m, v) =

∑
s∈M

qij(s)∆v(s).

Let us show that φq satisfies each axiom.

(E): Pick any (m, v) ∈ G. By definition of a B-sharing system,
∑

(i,j)∈M+ qij(s) = 1 for each

s ∈ M. By Remark 9,
∑

s∈M∆v(s) = 1. It follows that∑
(i,j)∈M+

φq
ij(m, v) =

∑
(i,j)∈M+

∑
s∈M

qij(s)∆v(s)

=
∑
s∈M

∆v(s)
∑

(i,j)∈M+

qij(s)

= v(m),

which shows that φq satisfies (E).

(A): Pick any two (m, v), (m,w) ∈ G. By Remark 9, ∆v+w(s) = ∆v(s)+∆w(s) for each s ∈ M. It
follows that

∀(i, j) ∈ M+, φq
ij(m, v) + φq

ij(m,w) =
∑
s∈M

qij(s)∆v(s) +
∑
s∈M

qij(s)∆w(s)

=
∑
s∈M

qij(s)
(
∆v(s) + ∆w(s)

)
=

∑
s∈M

qij(s)∆v+w(s)

= φq
ij(m, v + w),
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which shows that φq satisfies (A).

(NO): Pick any (m, v) ∈ G. Assume that (i,mi) ∈ M+ is a null pair. By Remark 9, ∆v(s) = 0 for
each s ∈ M such that si = mi. It follows that

∀(k, l) ∈ M+ \ {(i,mi)}, φq
kl(m− ei, v) =

∑
s∈M
si<mi

qkl(s)∆v(s)

=
∑
s∈M

qkl(s)∆v(s)−
∑
s∈M
si=mi

qkl(s)∆v(s)

=
∑
s∈M

qkl(s)∆v(s)−
∑
s∈M
si=mi

0

= φq
kl(m, v),

which shows that φq satisfies (NO).

(P): It is direct to show that φq satisfies (P) since qij ≥ 0 for each (i, j) ∈ M+.

We have shown that any B-Sharing value satisfies (E), (A), (NO) and (P) on G. Next, pick
any value f on G satisfying (E), (A), (NO) and (P). Let us show that f is a B-Sharing value. By
Proposition 4, f satisfies (N). By Proposition 8, f verifies

∀(m, v) ∈ G, f(m, v) =
∑
s∈M

∆v(s)f(m,us). (12)

Pick any game (m, v) ∈ G such that m = (K, . . . ,K). For such a game, f verifies

f(m, v) =
∑
s∈K

∆v(s)f(m,us).

We show that there exists a B-sharing system qB ∈ QB such that f(m,us) = qB(s) for each s ∈ K.
To that end, we show that each element of the collection (f(m,us))s∈K\{0} satisfies the conditions
(a), (b) and (c) that define a B-sharing system. Pick any s ∈ K and any (i, j) ∈ K+.

(a) By Remark 9, any pair (i, j) /∈ B(s) is a null pair in (m,us). By (N), fij(m,us) = 0.

(b) If (i, j) ∈ B(s), then by (P), fij(m,us) ≥ 0.

(c) Finally, by (E),
∑

(i,j)∈K+ fij(m,us) = 1.

This shows that each element of the collection (f(m,us))s∈K\{0} satisfies the conditions (a), (b)
and (c). Since ∆v(0) = 0, we can set fij(m,u0) = 0 for each (i, j) ∈ K+.

By successive applications of (NO), we obtain f(m,us) = f(s, us) for each s ∈ K. This shows
that f(m,us) = f(s, us) is independent from the grand coalition m, and depends on s only. It
follows that there exists a B-sharing system qB ∈ QB such that qB(s) = f(s, us), for each s ∈ K.
Hence, by applying this result to (12), we obtain

∀(m, v) ∈ G, f(m, v) =
∑
s∈M

∆v(s)q
B(s).
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Therefore, f is a B-Sharing value. This concludes the proof of Theorem 2. □

The axioms invoked in Theorem 2 are logically independent, as shown by the following alter-
native solutions:

- The null value f4 defined in (10) satisfies all the axioms except (E).

- The value f5 defined, for each (m, v) ∈ G, as

∀(i, j) ∈ M+, f5
ij(m, v) =

∑
s∈M

(i,j)∈T (s)

(v((j − 1 ∧mh)h∈N ) + ei)
2 + 1∑

(k,sk)∈T (s) v((j − 1 ∧mh)h∈N ) + ek)2) + 1
∆v(s),

satisfies all the axioms except (A).

- The value f6 defined, for each (m, v) ∈ G, as

∀(i, j) ∈ M+, f6
ij(m, v) =

1

|Q(j)|

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N ))

]
, (13)

where Q(j) = {i ∈ N : mi ≥ j}, satisfies all the axioms except (NO).5

- Fix the n-dimensional vector w = (−1, 2, . . . , 2). The value f7 defined, for each (m, v) ∈ G,
as

∀(i, j) ∈ M+, f7
ij(m, v) =

∑
s∈M

(i,j)∈T (s)

wi∑
(k,j)∈T (s)wk

∆v(s),

satisfies all the axioms except (P).

7.3. Proof of Corollary 1

Pick any m ∈ K and consider the sub-class of games Gm. From Theorem 2, it is direct to infer
that any B-Sharing value on Gm satisfies (E), (A), (NO) and (P). By Proposition 4, any B-sharing
value on Gm value satisfies (N).

We have shown that any B-Sharing value on Gm satisfies (E), (A), (N) and (P). Next, pick
any value f on Gm satisfying (E), (A), (N) and (P). Let us show that f is a B-Sharing value. By
Proposition 3, f satisfies (NG). By Proposition 8, f verifies

∀(m, v) ∈ Gm, f(m, v) =
∑
s∈M

∆v(s)f(m,us).

Similarly to the proof of Theorem 1, each element of the collection (f(m,us))s∈M\{0} satisfies
the conditions (a), (b) and (c). Since the grand coalition is fixed, there is no need to show that
(f(m,us))s∈M\{0} is independent from m. It follows that there exists a B-sharing system qB ∈ QB

such that qB(s) = f(m,us), for each s ∈ M. Therefore, f is a B-Sharing value. This concludes
the proof of Corollary 1. □

The solutions employed in the logical independence of Theorem 2 can be used to show the
logical independence of the axioms invoked in Corollary 1.

5This value was originally introduced by Lowing and Techer (2022a) under the name of multi-choice Equal division
value.
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7.4. Proof of Theorem 3

To prove Theorem 3, we proceed in two steps. First, let us show that any C-Sharing value
satisfies (E), (A), (NO), (P) and (IM). Since HC(m, v) ⊆ HB(m, v) for each (m, v) ∈ G, it is clear
that any C-Sharing value satisfies (E), (A), (NO) and (P). It remains to show that any C-Sharing
value satisfies (IM).

(IM): Pick any q ∈ QC and consider its associated C-Sharing value φq. For each (m, v) ∈ G, each
i ∈ N and each j < mi,

φq
ij(m− ei, v) =

∑
s≤m−ei

qij(s)∆v(s)

=
∑
s≤m

qij(s)∆v(s)−
∑
s≤m
si=mi

qij(s)∆v(s)

=
∑
s∈M

qij(s)∆v(s)−
∑
s≤m
si=mi

0∆v(s)

= φq
ij(m, v).

The third equality follows from condition (d) satisfied by any C-sharing systems. This shows that
φq satisfies (IM).

We have shown that any C-Sharing value satisfies (E), (A), (NO), (P) and (IM). Next, pick
any value f satisfying (E), (A), (NO), (P) and (IM). Let us show that f is a C-Sharing value. By
Proposition 2, f satisfies (NG). By Theorem 2, any value f satisfying (E), (A), (NO) and (P) is a
B-Sharing value. Therefore, f verifies, for any (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) =
∑
s∈M

qij(s)∆v(s), (14)

where q is a B-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) /∈ B(s). Let us show that q is
actually a C-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) ∈ B(s) \ C(s). Pick any s ∈ K.
Consider the unanimity game (m,us) ∈ G. Observe that ∆us(s) = 1 and ∆us(t) = 0 for each t ̸= s.
By (14),

fij(m,us) = qij(s).

Pick any pair (i, j) ∈ B(s) \ C(s). Let us show that qij(s) = 0. To that end, let us show that
fij(m,us) = 0. Since (i, j) ∈ B(s) \C(s), it holds that j < si. By (IM), fij(m,us) = fij(s− ei, us).
Observe that (s− ei, us) is a null game. By (NG), fij(s− ei, us) = 0, and thus fij(m,us) = 0. This
directly leads to the desired result: result: qij(s) = 0. This concludes the proof of Theorem 3. □

The axioms invoked in Theorem 3 are logically independent. To see this, observe that the
solutions employed to show the logical independence of the axioms invoked in Theorem 2 all satisfy
(IM). Thus, they can be used to show the logical independence of the axioms invoked in Theorem
3 aside from (IM). Observe that the KSZ value satisfies all the axioms invoked in Theorem 3 aside
from (IM). Thus, the axioms invoked in Theorem 3 are logically independent.
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7.5. Proof of Proposition 5

Pick any (m, v) ∈ G and any unproductive pair (i, j) ∈ M+ in (m, v). If j = mi, then by
(N), fij(m, v) = 0. If j < mi, then by successive applications of (IM), fij(m, v) = fij((m−i, j), v).
Observe that (i, j) is a null pair in ((m−i, j), v). By (N), fij((m−i, j), v) = 0, and so fij(m, v) = 0.
This concludes the proof of Proposition 5. □

7.6. Proof of Corollary 2

Pick any m ∈ K and consider the sub-class of games Gm. To prove Corollary 2, we proceed in
two steps. Pick any C-Sharing value f . First, let us show that f satisfies (E), (A), (U) and (P) on
Gm. By Theorem 3, we know that any C-Sharing value satisfies (E), (A), (NO), (P) and (IM) on
Gm ⊆ G. By Proposition 4, f satisfies (N). By Proposition 5, f satisfies (U).

We have shown that any C-Sharing value satisfies (E), (A), (U) and (P) on Gm. Next, pick any
value f on Gm satisfying (E), (A), (U) and (P). Let us show that f is a C-Sharing value. Recall
that if f satisfies (U), then it satisfies (N). By Corollary 1, any value f on Gm satisfying (E), (A),
(N) and (P) is a B-Sharing value. Therefore, f verifies, for any (m, v) ∈ Gm,

∀(i, j) ∈ M+, fij(m, v) =
∑
s∈M

qij(s)∆v(s), (15)

where q is a B-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) /∈ B(s). Let us show that q is
actually a C-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) ∈ B(s) \ C(s). Pick any s ∈ K.
Consider the unanimity game (m,us) ∈ Gm. Observe that ∆us(s) = 1 and ∆us(t) = 0 for each
t ̸= s. By (15),

fij(m,us) = qij(s).

Pick any pair (i, j) ∈ B(s) \ C(s). Let us show that qij(s) = 0. To that end, let us show that
fij(m,us) = 0. By Remark 9, any (i, j) ∈ B(s) \ C(s) is an unproductive pair in (m,us). By (U),
fij(m,us) = 0. This directly leads to the desired result: qij(s) = 0. This concludes the proof of
Corollary 2. □

The same solutions employed to show the logical independence of the axioms invoked in The-
orem 3 can be used to show the logical independence of the axioms invoked in Corollary 2.

7.7. Proof of Proposition 6

Let f be a value satisfying (IH). Pick any game (m, v) ∈ G and any pair (i, j) ∈ M+. Consider
the two sub-games ((m−i, j), v) and ((j ∧mk)k∈N , v) of (m, v). By (IH),

fij(m, v) = fij((j ∧mk)k∈N , v). (16)

Similarly, by (IH),
fij((m−i, j), v) = ((j ∧mk)k∈N , v). (17)

Combining (16) with (17), one obtains

fij(m, v) = fij((m−i, j), v),

which shows that f satisfies (IM). □
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7.8. Proof of Theorem 4

To prove Theorem 4, we proceed in two steps. First, let us show that any T -Sharing value
satisfies (E), (A), (NO), (P) and (IH). Since HT (m, v) ⊆ HC(m, v) for each (m, v) ∈ G, it is clear
that any T -Sharing value satisfies (E), (A), (NO) and (P). It remains to show that any T -Sharing
value satisfies (IH).

(IH): Pick any q ∈ QT and consider its associated T -Sharing value. For each (m, v) ∈ G and each
(i, j) ∈ M+,

φq
ij((j ∧mk)k∈N , v) =

∑
s≤(j∧mk)k∈N

qij(s)∆v(s)

=
∑
s≤m

qij(s)∆v(s)−
∑
s≤m

s ̸≤(j∧mk)k∈N

qij(s)∆v(s)

=
∑
s∈M

qij(s)∆v(s)−
∑
s≤m

s ̸≤(j∧mk)k∈N

0∆v(s)

= φq
ij(m, v).

The third equality follows from condition (e) satisfied by any T -sharing systems. This shows that
φq satisfies (IH).

We have shown that any T -Sharing value satisfies (E), (A), (NO), (P) and (IH). Next, pick
any value f satisfying (E), (A), (NO), (P) and (IH). Let us show that f is a T -Sharing value. By
Proposition 2, f satisfies (NG). By Theorem 2, any value f satisfying (E), (A), (NO) and (P) is a
B-Sharing value. Therefore, f verifies, for any (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) =
∑
s∈M

qij(s)∆v(s), (18)

where q is a B-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) /∈ B(s). Let us show that q is
actually a T -sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) ∈ B(s) \ T (s). Pick any s ∈ K.
Consider the unanimity game (m,us) ∈ G. Observe that ∆us(s) = 1 and ∆us(t) = 0 for each t ̸= s.
By (18),

fij(m,us) = qij(s).

Pick any pair (i, j) ∈ B(s) \ T (s). Let us show that qij(s) = 0. To that end, let us show that
fij(m,us) = 0. Since (i, j) ∈ B(s)\T (s), it holds that j < maxi∈N si. By (IH), fij(m,us) = fij((j∧
mk)k∈N , us). Observe that ((j ∧mk)k∈N , us) is a null game. By (NG), fij((j ∧mk)k∈N , us) = 0,
and thus fij(m,us) = 0. We directly obtain the desired result: qij(s) = 0. This concludes the
proof of Theorem 4. □

The axioms invoked in Theorem 4 are logically independent. To see this, observe that all the
alternative solutions used to show the logical independence of the axioms invoked in Theorem 2
satisfy (IH), and thus can be used to show the independence of the axioms invoked in Theorem
4. Moreover, observe that the PZ value satisfies all the axioms invoked in Theorem 4 aside from
(IH). Thus, the axioms invoked in Theorem 4 are logically independent.
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7.9. Proof of Proposition 7

Pick any (m, v) ∈ G. Assume there exists an activity level j ≤ maxi∈N mi such that

v((j ∧mi)i∈N ) = 0. (19)

Pick any solution f on G that satisfies (E) and (IH). According to Proposition 2 in Lowing and
Techer (2022a), ∑

(i′,j′)∈B((j∧mi)i∈N )

fi′j′(m, v) = v((j ∧mi)i∈N ). (20)

The desired result follows from (19) and (20). This concludes the proof of Proposition 7. □

7.10. Proof of Corollary 3

Pick any m ∈ K and consider the sub-class of games Gm. To prove Corollary 3, we proceed in
two steps. Pick any T -Sharing value f . First, let us show that f satisfies (E), (A), (N), (NS) and
(P) on Gm. By Theorem 4, we know that f satisfies (E), (A), (NO), (IH) and (P) on Gm ⊆ G. By
Proposition 4, f satisfies (N) on Gm ⊆ G. By Proposition 7, f satisfies (NS) on Gm ⊆ G.

We have shown that any T -Sharing value satisfies (E), (A), (N), (NS) and (P) on Gm. Next,
pick any value f on Gm satisfying (E), (A), (N), (NS) and (P). Let us show that f is a T -Sharing
value.

By Corollary 1, any value f on Gm satisfying (E), (A), (N) and (P) is a B-Sharing value.
Therefore, f verifies, for any (m, v) ∈ Gm,

∀(i, j) ∈ M+, fij(m, v) =
∑
s∈M

qij(s)∆v(s), (21)

where q is a B-sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) /∈ B(s). Let us show that q is
actually a T -sharing system, i.e., for any s ∈ K, qij(s) = 0 if (i, j) ∈ B(s) \ T (s). Pick any s ∈ K.
Consider the unanimity game (m,us) ∈ Gm. Observe that ∆us(s) = 1 and ∆us(t) = 0 for each
t ̸= s. By (21),

fij(m,us) = qij(s).

Pick any pair (i, j) ∈ B(s) \ T (s). Let us show that qij(s) = 0. To that end, let us show that
fij(m,us) = 0. Observe that us((j ∧mi)i∈N ) = 0. By (NS),∑

(i′,j′)∈B((j∧mi)i∈N )

fi′j′(m,us) = 0.

The Harsanyi dividends of the MC-game (m,us) are all positive. Hence, by (P), fi′j′(m,us) ≥ 0
for each (i′, j′) ∈ B((j ∧mi)i∈N ). Therefore, fi′j′(m,us) = 0 for each (i′, j′) ∈ B((j ∧mi)i∈N ). In
particular, fij(m,us) = 0. We have shown that fij(m,us) = 0 for each (i, j) ∈ B(s) \ T (s). This
directly leads to the desired result: qij(s) = 0. This concludes the proof of Corollary 3. □
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