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Abstract

Spectral indicators for the monitoring of rotating machinery assume continuously and steadily observable
cyclic fault signature. Specific types of faulty ball bearings generate intermittent fault signature and are
improperly monitored by classical techniques. A model of intermittent cyclic signal is built. Based on the
intermittence function, an improved spectral indicator is proposed. A method of blind estimation of the
intermittence function is given with application to the surveillance of a damaged ball bearing of an industrial
wind turbine.

1 Introduction

The surveillance of rotating machinery is a major challenge to implement a cost-effective maintenance strat-
egy, improving safety and lowering the environmental impact of industrial activities. The presence of a fault
can modify the temperature of the machine [1], impact the lubricant [2], or the vibration generated by the
operating machine [3]. The latter is the most common technique in use and enjoys several dedicated methods
and sensors. Modern vibration-based condition monitoring of rotating machinery relies on signal processing
tools built on the framework of the cyclostationarity theory [4]. These techniques are widely used for indus-
trial applications but rely on the key assumption of stationary operating conditions. In fields such as wind
power, the efficiency of condition monitoring is undermined by the variability of speed and load conditions.
However, an appropriate hidden law may exist that restores its cyclostationarity properties. For instance,
the speed nonstationarity has been partially resolved by the new class of angle-time cyclostationarity [5]. In
this case, appropriate order tracking with the use of instantaneous frequency of a shaft restores the cyclic
properties. Yet, the application of these tools is limited to continuously and steadily observable phenomena.
In particular, signals where the fault signature is intermittent are unsuitably monitored by such techniques.
Intermittent faults are controlled by a binary external variable that affects the local expression of the fault
cyclic energy flow. Unlike speed nonstationarity, this uncontrolled variable is not locked to particular oper-
ating conditions. A practical example of intermittency would be a flaked ball rolling element in a bearing.
Due to the self-rotation of the ball within the cage, the flake is not necessarily moving in the two-dimensional
plane that contains the races.

There is a need to develop appropriate signal processing tools to deal with intermittent fault signatures.
An original approach based on the short-time properties of the signal is presented. The method aims at
finding the optimal window that silences the uninformative portions of the signal to create an appropriate
weighted spectral indicators. Short-time portions of the signal are ranked and the weighting strategy is



achieved by using the fact that the progressive addition of new informative portions should leave the Fourier
coefficients related to the cyclic signature unchanged. The method achieves a trade-off between spectral
resolution and peak emergence in the spectrum and does not degrade the monitoring capacities for signals
with non-intermittent faults. Along with numerical examples, the method is applied to industrial signals from
a damaged wind turbine bearing with defective rolling elements, proving its efficiency for complex signals.
This original approach to handle intermittent cyclic signals is likely to provide earlier detection and better
fault severity estimation by reducing the variability caused by intermittency.

2 Cyclic spectral indicators for bearing faults

2.1 From broadband to narrowband scalar indicators

The vibration received by a sensor is a complex mixture of sources distorted by transmission path, with often
a weak fault signature. The different sources distinguish from one another by their periodic statistical prop-
erties. The critical components to monitor (e.g. gears, bearings, shafts...etc.) generate forces synchronous
with the rotation of a kinematic element of the machine. Such sources have been largely described by the
cyclostationary theory [4, 6] defined by a hidden periodicity of their statistical properties. Such periodicity is
not necessarily obvious for signals described as a function of time but can be restored by an angular variable
linked to a rotation of the machine. For instance, the periodicity of gears signals is better described with
an angular variable of shaft rotation than time, with insensitivity to variations of the instantaneous rotation.
Scholars have focused on developing techniques dedicated to angular approaches such as order tracking to
numerically change the observation variable so as to restore the periodicity of the faulty source. The fault
signature might feature a periodic waveform, like gear or unbalanced shafts signals, or a periodic flow of
energy for bearing faults or combustion signals. Knowing the rotation speed and the geometric properties
of the component to monitor allows to pinpoint specific frequencies associated with possible faults. Expert
approaches with dedicated methods based on vectorial (Fourier spectrum, synchronous average) or matri-
cial (spectral correlation, angle-time framework) representations allow fine diagnostic and estimation of the
health of the machine. However, when it comes to monitoring a fleet of machines, there is a need to create
scalar fault-sensitive indicators [7]. Global indicators monitoring the broadband level of vibration (RMS)
or the sparsity of the signal (peak-to-peak, kurtosis) allow a first estimation of the condition of the machine
but rarely localise the fault or focus on a precise phenomenon. The goal for automation is to extract a scalar
indicator from the vectorial representation that would be sensitive to one type of fault only. A common way
to monitor specific components is to build spectrum amplitude-based indicators that takes the value of a peak
in a narrowband around the expected frequency of the fault. However, all these scalar indicators assume a
continuously and steadily observable cyclic signature. This assumption does not hold for specific types of
bearing fault signatures.

2.2 The specific fault signature of a flaked ball

Rolling elements bearing are described by a few geometric quantities such as pitch diameter D, rolling
element diameter d, load angle «, and the number of rolling elements Z as shown schematically in Fig. 1.
Incipient faults of rolling element bearings are characterised by a local loss of material either on the races or
on the rolling elements. When operating, a train of impulses is generated by the interaction between the spall
and a matting surface. The inter-impact duration depends on the type of damaged element and the rotating
speed of the races. Considering that the contact angle is the same for every rolling element and assuming
perfect rolling conditions, the motion of each element can be derived. From it, theoretical values of key
cyclic frequency of a faulty bearing (BPFO, BPFI, BSF, FTF) give the expected duration of fault signature,
as presented by Howard [8].

Modern monitoring of rolling elements bearing is thus based on the expected periodicity of the statistical
properties of a specific fault signature. As described by Randall and Antoni [9], the fault signature of rolling
bearing is well modeled by cyclostationarity at the second order. Hence, envelope angle spectrum or spectral
correlation are recommended quantities for diagnostic. Dedicated scalar indicators are designed to monitor



Figure 1: Schematic of a ball bearing. Two flaked balls are drawn at 9 and 12 o’clock.

narrow frequency bands of the signal expected to be fault-sensitive. A simple way to do so is to take the
maximal amplitude within a small band around the expected fault frequency in a spectrum. The efficiency
of the indicator lies in the intrinsic assumption that the peak amplitude is correlated with the gravity of the
fault.

However, using the ball spin frequency to monitor the health of the rolling elements assumes that the flake
does not leave the ball perimeter rolling between the races. When it comes to ball bearings, there is no reason
why the spin rotation of the ball would be contained in a two-dimensional plane, due to the combination of
axial and radial load, slippage and the impacts with the spall [10, 11]. As shown schematically in Fig. 1,
the ball located at 9 o’clock will generate a train of cyclic impulses complying with the BSF periodicity, but
not the 12 o’clock ball as it is not interacting with a mating surface. For a short period of observation, the
train of impulses can be either completely absent, continuously present, or intermittent. Fig. 2 presents an
experimental example of vibration signal with an intermittent signature from a rolling bearing with flaked
balls. During the 10 s of recording, the train of impulses is present during the first second and reappears
between 5 s and 7 s. Here, signal-to-noise ratio is strong enough for the cyclic signature to emerge visually
but some cases would require a short-time spectral approach to reveal the intermittency.
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Figure 2: Vibration signal recorded from a ball bearing with flaked rolling elements. The signal is part of the
data set of section 5.



3 Binary intermittence and classical indicators

3.1 Model of binary intermittence

There is a need to define a model of intermittence for these types of fault signature. Let Cy, (6) be a cyclo-
stationary phenomenon. It bears a periodicity of frequency « with respect to the angular variable 0. Let {(t)
be a binary variable controlling the cyclostationary signature appearance. The corresponding model would
be

z(t) = ((t) X Coy (0(t)) +€,¢ € {0; 1} (D

where ¢ is a noise term. As an illustrative example, Fig. 3 presents an intermittent sinusoidal signal where
the binary variable ( is represented in black dotted lines. In the proposed model, the intermittence law ¢
is chosen as a variable that does not exhibit any cyclic properties, the latter being already covered by the
cyclostationary source C,,(6(t)). Two close cases fall into this latter category of angle-driven intermit-
tence. First, cyclostationary signals can incorporate intrinsic short-time intermittency of the waveform. For
example, the train of impulses generated by a faulty bearing is an intermittent flow of energy locked to an
angular variable. Second, periodic modulations of the amplitude of the cyclic waveform will look like the
intermittency described in the model of Eq. (1), but are still locked to an angular variable. In this case, it
would lead to the creation of sidebands in the spectrum with still a clear possibility to assess the intensity
of the phenomenon.The intermittence of the proposed model drives global observability of the waveform
independently of the angular variable.

A few assumptions on the physical model are made herein. First, the controlling variable is strictly binary so
applicable to limited speed and load non-stationary conditions. Then, the binary variable acts as a switch, so
two separated clusters of impulses during an observation time are supposedly still coherent. When working
on intermittent signals generated by flaked balls on a roller bearing, there is no physical reason why the new
train of impulse would recover its exact previous phase.
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Figure 3: Intermittent sinusoidal signal (blue solid line) with intermittence function ¢ (black dotted line) .

3.2 Insufficiency of classical spectral indicators

Whether it readily comes in the raw signal or after processing steps, the intermittent cyclic signature will
eventually appear at some point in the form of a harmonic analytical signal of frequency o with added noise

such as: g
z[n] = ¢[n]An]e?*™F ) 4 e[n), ©)

where x[n] is a sampled signal acquired at the sampling frequency F and n is the sample index, ¢ the initial
phase and € a noise term supposed normally distributed. The scaled discrete Fourier transform X (f) of a



signal z[n] of N samples with a sampling frequency F is

N-1
f

anw[n] ZO wln)znle 7™ 7, 3)

where the signal is weighted by a window function w[n]. If the signal comprises a cyclic component rotating
at the frequency «, it will be the only one to demodulate to the amplitude phasor A[n| rather than zero

X(f) =

1 N-1 ;
X(on) = gy 2wl (¢lnl Al + Eln) @

with Y E ~ O(V'N). The classical Fourier analysis gives the same importance to each sample that is
wln] = 1/N. As such, the noise contribution in Eq. (4) will scale as 1/4/n . For a continuously and
steadily observable phenomenon (( = 1, Vn and A is constant) the Fourier coefficient accurately returns the
amplitude coefficient A. However, when the signature is intermittent, the average operation of the Fourier
transform will give the same weight to samples with the cyclic signature and to the non-informative part of
the signal. The amplitude of the corresponding Fourier coefficient will lead to biased estimation. However
if one correctly estimates the hidden law that drives the intermittency (, the weighting function can be tuned
accordingly so to silence the uninformative portion of the record. The optimal case would be w[n] = ([n].

Fig. 4 presents the Fourier transform of the signal presented in Fig. 3 either with uniform weight or weighted
with the intermittency function. The signal being present half of the time, an amplitude-based indicator
would be biased and return half of the amplitude of the sinusoidal. With the weighted version of the Fourier
transform, the uninformative part of the signal is ignored and the amplitude is correctly returned. The
silenced portion of the signal only acts like zero-padding.
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Figure 4: Fourier transform of the signal of Fig. 3 with a uniform weight (black line) and weighted by the
intermittence function (red line).

4 Blind estimation of the weighting function

4.1 Existing approaches and the necessity of fine selection of informative zones

There is a need to estimate the function driving the intermittence from the signal itself. The selection of
informative parts in signals has been thoroughly studied for speech recognition applications [12, 13]. These
approaches model the signal as a mixture of components with latent variables. The signal is converted into a
sequence of non-negative spectral vectors to find the intermittence law. The decomposition does not take ad-
vantage of the expected cyclic frequency of the train of impulses and does not apply for cases of continuously
observable signatures. The clustering of spectrograms has been applied to bearing monitoring applications



using different techniques such as non-negative matrix factorization [14], hierarchical clustering [15] or hid-
den Markov models [16]. These techniques work well to highlight the angle locked short-time intermittence
of the train of impulses but face difficulties for the type of intermittence described in this work. First, splitting
the signal into short segments reduces the resolution in the frequency domain. Concurrent cyclic events with
near frequencies can hinder the ability to focus on a single type of phenomenon. On the other hand, a longer
short-time segment would also lead to a too coarse time resolution for the intermittence law. Alternatively,
focusing on the instantaneous envelope of narrowband signal around the expected fault frequency would be
very prone to noise contamination and unsuitable. Concurrently to finding the intermittence law, another
approach for intermittence insensitive scalar indicators would be to retain only a fixed proportion of the sig-
nal. For example, a scalar indicator would be to select the maximum peak amplitude in a set of short-time
Fourier transform. These kinds of selection would systematically throw away portions of the signal even if
they were informative. It would also be more sensitive to bursts of broadband noise as it would retake only
the strongest energy.

The goal of the proposed method is to retain as much informative part as possible so as to achieve a trade-off
between spectral resolution and peak emergence in the spectrum. In this way, the method should not degrade
the capacities for non-intermittent signals.

4.2 Proposed method of blind estimation

The principle of blind estimation of the intermittency function is based on differentiated convergence of har-
monic and noise signals with increasing observation time in Eq. (4). By playing with the global observation
window w, more and more equivalent samples NV, not necessarily consecutive, are taken into account. As
long as added segments contain a harmonic component, the Fourier transform will demodulate to a fixed am-
plitude phasor A. If a segment with only noise is added, the corresponding spectral amplitude will decrease.
The break of slope will indicate the estimation w of the intermittence function (. The flowchart of the method
is presented in Fig. 5. First, the signal is split into segments with possible overlap and local windowing to
avoid spectral leakage. The Fourier transform of each segment is calculated and the segments are ranked
according to the peak amplitude of interest. As developed in Appendix A, the sum of zero-padded complex
spectra is equivalent to a global window applied on the signal before transformation to the spectral domain.
Since the manipulation of the global window is easier with this formulation, it will be preferred in what
follows. Then, based on the ranking, the complex spectra are progressively added, which is equivalent to an
increasing observation window. Finally, the amplitude of the expected peak is tracked for each spectrum and
studied as a function of the total number of samples taken into account. Any break on the slope would mean
that the next portions of signal added do not contain the cyclic signature. A general recommendation for
the initial short-time Fourier transform would be to choose a window long enough to cover multiple periods
of the targeted cyclic event with a fine overlap to ensure a sufficient time resolution for the intermittence
estimation.

Getting back to the signal of Fig. 3, the method would go as schematically shown in Fig. 6 assuming one has
a correct segment ranking estimation. First, segments up to 0.25 s are added, and the spectral amplitude of
the analytical signal would be correctly estimated, since all the segments contain cyclic information. Then,
the part of the signal between 0.75 s to the end is taken into account with still no effect on the amplitude of the
target peak. Eventually, all the informative portions of the signal would be incorporated and the segments
between 0.25s and 0.75s would be added. Containing no cyclic component, the Fourier coefficient will
progressively decrease to comply with the ratio of informative to noise parts. The estimation of intermittence
law is taken as the equivalent global window at the slope break.
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Figure 5: Flowchart of the method for blind evaluation of the intermittence function.




This estimation method bears many advantages. It focuses on a narrow frequency band around the expected
cyclic frequency yielding a relative insensitivity to other cyclic events. Using the progressive addition of
complex spectra allows a trade-off between spectral resolution and noise contamination. Using overlapping
segments permits a fine time resolution for the estimation of the intermittence. Since the stopping criterion
is based on a slope analysis, it does not select a fixed proportion of the signal and will retain all the signal
for continuously and steadily observable cyclic signatures. However, the method is still limited to classes of
binary intermittence and the first estimation for the ranking of the segments is crucial.
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Figure 6: Schematic example of the method based on the intermittent signal of Fig. 3. The evolution of the
amplitude-based spectral indicator is shown on the bottom with equivalent windows in the top.

5 Experimental validation on industrial application

5.1 Presentation of the system

The proposed approach is tested on the data from an industrial wind turbine of 2MW. An accelerometer is
placed in the vicinity of the bearings supporting the high-speed shaft (HSS) in the generator and records
associated vibration signals during the normal operation of the machine. All the signals are recorded during
10 s sampled at 20 kHz, and quantified with a 12 bits resolution. To limit the effect of varying loading, the
signals are recorded for similar operating conditions. The signals are not recorded with a constant inter-time
interval due to dependency to external wind conditions. One of the bearings supporting the high-speed shaft
in the generator was closely monitored for a period of three months. The model is a 6330 SKF bearing with
fault frequencies of BSF = 2.365 figs and F'TF = 0.399 fiss. At the beginning of the monitoring period,
the signals were already known to exhibit peaks in the spectrum at the ball pass frequency on the outer ring
(BPFO). However, with time, peaks localised at the ball spin frequency and higher harmonics appeared in
multiple records. During maintenance operation, the bearing was replaced and multiple spalls were found on
the outer race. Three rolling elements were also impacted with spalls of around 15 mm diameter for a ball
diameter of 50 mm. Fig. 7 presents pictures of the damaged bearing.

For each record, the signal is processed as follows to highlight the signature of the faulty bearing. The
band-pass envelope is obtained by filtering it between 5 kHz and 8 kHz. The bandwidth was chosen with a
kurtogram approach [17]. The generator produces a harmonic signature at the frequency f,; = 72 fiss whose
phase demodulated by narrow-band filtering [18] is used for computed order tracking of the envelope. The
indicator of fault severity for surveillance is based on the amplitude of the peak of BSF in the angle envelope
spectrum.
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Figure 8: Scalar indicator calculated from 10s vibration acquisition during a period of three months. The
root mean square of the signal is presented (top) along with the maximum amplitude of the spectrum within
a narrow band around the expected fault frequency (bottom).

5.2 Improved scalar indicators with blind estimation of the intermittence law

Figure 8 presents the different scalar indicators calculated during the monitoring period. The RMS of the
total signal is presented on the top and amplitude-based indicators are either calculated from the spectrum of
the complete signal or the windowed signal shown in the bottom. To monitor the amplitude with accuracy, the
local window g is chosen to be a flattop window of length 1/20 the total number of samples with an overlap
of 4/5 the length of the window. Then, the segments are ranked based on their maximum amplitude in a
narrowband around the BSF and progressively added. Along with the amplitude of the BSF, the background
noise level is evaluated as the median value of amplitude in a larger band around the expected BSF peak.

The evolution of BSF peak amplitude with increasing signal length is monitored. The data points are
smoothed to reduce small variations and the slope is calculated. The global window is taken for the slope
of the BSF amplitude being below 80% of the background noise slope. Two consecutive points complying
with this condition are required as a stop criterion. The stopping criterion was tuned with a trial-and-error
approach.

After approximately a month, both the RMS and the amplitude-based indicators rise, indicating a probable
degrading health condition. Some records with the weighted Fourier transform approach are brought out
with a strong offset compared to the classical indicators. It certainly signifies that the fault signature is
intermittent, so the original indicator is biased by the average operation of the Fourier transform. The signals
of day 75 and day 77 are more precisely described. In the signal of day 75, the BSF signature is continuously
and steadily observable during the 10 s of recording. On the contrary, the signature of the signal 77, which



was already presented in Fig. 2, is intermittent.
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Figure 9: Evolution of the peak amplitude at the BSF (blue line) compared with the noise level (black line)
as a function of the number of samples taken in account in the spectrum, normalised to maximum amplitude.
The corresponding signals on Fig. 8 are (a) day 75 and (b) day 77.

Figure 9 presents the spectral amplitude at the expected frequency and the background noise level for the
signals of day 75 (Fig. 9 (a)) and day 77 (Fig. 9 (b)). For day 75, the peak amplitude slowly decreases
and scales as —0.05. The noise amplitude scales as —0.32. The small decrease in the BSF amplitude can
be explained by the combined distribution of instantaneous amplitude and a slight loss of coherence due to
slippage. Given the small difference in slope, there is no intermittency so the whole signal is kept as the
optimal window.

The case is different for the signal of day 77 (Fig. 9 (b)). The peak amplitude is relatively constant up to
10° samples but then shares the same slope as the noise amplitude. Based on this chart, the optimal window
is found at the break of slope, indicated with the red cross. An interesting point to note is that after the red
cross, the distance between the peak and noise amplitude is the same. Taking all the signals will not degrade
the emergence of the signal from the background noise but hide the true intensity of the cyclic event.

Figures (10-11) present envelope signals of days 75 and 77 (black lines), with the equivalent windowed
envelopes given by the method (red lines). Fig. 10 shows that the train of impacts is continuously present
which is confirmed by the selection of the entire signal. Data points located at the edges are given less
weight due to the effect of the window. More interestingly, Fig. 11 shows the intermittent cyclic signature
with strong impulses emerging from the envelope. The method selected in the signal the portions so to
maximise the spectral amplitude, excluding the weaker signature between 4.5 s and 5.5 s.

Figure 12 shows the two different envelope spectra of signal 77 from either the whole signal or its intermit-
tent weighted version. The spectra are normalised to maximum amplitude at the BSF peak. Both spectra
exhibit the same peaks with different amplitude. The spectrum obtained with the entire signal exhibits a
lower background noise floor than the windowed signal. However, the spectral signature of the BSF with as-
sociated FTF peaks is more visible and extends to higher harmonics. Despite showing a noisier spectrum, the
intermittent weighted spectrum is likely to give a more accurate image of the intensity of the cyclic physical
phenomenon at stake.

Getting back to the indicators of Fig. 8, the improved spectral indicators give clearer information about the
fault gravity. First, on the early detection between days 30 and 60, some of the improved indicators occasion-
ally separate from the classical indicators. The true intensity of the intermittent fault signature previously
hidden by the average operation of Fourier transform is now better rendered in the scalar indicators. From
day 60 to 90, the improved indicators show a better separation between different classes. Points of low am-
plitude are supposedly signals without or with a weak BSF signature. On the other hand, a class of points,



like days 75 77, is now brought out and is supposed to be more representative of the gravity of the spalls.
The method takes off part of the bias of intermittence in the gravity estimation and will permit better fault
trending since the indicators are more correlated with the gravity of the fault.
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Figure 10: Envelope signal of day 75. The total signal is shown in dotted black line and the equivalent global

windowed signal in red.

T T T T

1 1 T T I ‘ ‘ —_—
S Original
= a0 Windowed
)
o)
'_g 0.5
8,
g
<
0
0 1 2 3 4 5 6 7 8 oo
Time [s]

Figure 11: Envelope signal of day 77. The total signal is shown in dotted black line and the equivalent global

windowed signal in red.
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Figure 12: Fourier transform of the envelope signal of day 77 (black line) with Fourier transform weighed
by the intermittency function (red line). The expected frequency for BSF is marked by the blue dotted lines.

6 Conclusion

A model of intermittent cyclostationary signal has been presented. This type of intermittent signal can
model the vibrations generated by the flaked ball of a bearing. Scalar indicators for condition monitoring



assume a continuously and steadily observable phenomenon. The surveillance capacities of such indicators
are degraded with a signal with intermittent signatures. An improved spectral indicator relying on the blind
estimation of the intermittence function has been presented. The method was tested on the run-to-failure
surveillance of a bearing of a wind turbine. This first approach to handling intermittent signals improved the
gravity estimation of the fault. Further work will focus on the improvement of the method, mainly on the
first ranking of segments and automatic selection.

Appendix

A Proof of proposition

The aim is to show that the sum of weighted versions of zero-padded Fourier transform of the windowed
signal can be expressed like a global window as of Eq. (3). If a local window g of length M samples is slid
along a signal x of total length NV with overlapping of O samples, the number of short-time segments along
the signal is I = (N — O)/(M — O). The relationship between index n and m the index of the window is
n = i(M — 0) +m with m € [0; M — 1] and ¢ the index of the segment. To retain the phase during the
procedure, the overall i window v;[n] applied to the signal has a value of zero on every bin except for an
on-the-shelf local window g[m]| centred on sample i(M — O) + m/2, that is

uln] = {g[m]’ if 1 € [i(M — O);i(M — 0) + M — 1] 5

0, else.

The discrete Fourier transform is calculated for each windowed version of the signal. The retained spectrum
is a weighed version of these spectra where the weight u; is given at the i*” segment.

1 U; — 9L
X(f) = : vi[n]xln)e 7T (6)
where the equivalence with Eq. (3) is given by
-1
win] u;vi[n

(7
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