
HAL Id: hal-04018549
https://hal.science/hal-04018549

Submitted on 7 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User Preference and Performance using Tagging and
Browsing for Image Labeling

Bruno Fruchard, Sylvain Malacria, Géry Casiez, Stéphane Huot

To cite this version:
Bruno Fruchard, Sylvain Malacria, Géry Casiez, Stéphane Huot. User Preference and Performance
using Tagging and Browsing for Image Labeling. 2023 ACM CHI Conference on Human Factors in
Computing Systems (CHI ’23), Apr 2023, Hambourg, Germany. �10.1145/3544548.3580926�. �hal-
04018549�

https://hal.science/hal-04018549
https://hal.archives-ouvertes.fr


User Preference and Performance
using Tagging and Browsing for Image Labeling

Bruno Fruchard

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Lille, France

bruno.fruchard@inria.fr

Sylvain Malacria

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Lille, France

sylvain.malacria@inria.fr

Géry Casiez
∗

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL

Lille, France

gery.casiez@univ-lille.fr

Stéphane Huot

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Lille, France

stephane.huot@inria.fr

a Labeling tasks b Task abstraction c Interaction technique and labeling strategies

x3 x3 x2

TurkeyBird Wild turkey

Meleagris gallopavo LaConner

Tagging approach Browsing approach Image

Image-oriented strategy

Select all images below
that match this one:

Labels

Label-oriented strategy

Figure 1: Image labeling tools rely on two primary approaches: a) tagging a single image with labels, or browsing all images to assign a single

label. b) We characterize the labeling task and systematically study the efficiency of these approaches by measuring the performance of

annotators when counting shapes in images (circles are distractors). c) Annotators can select possible shape counts (labels) using toggle buttons

to tag corresponding images. Through this setting we study what strategy users adopt when they have the choice and evaluate their efficiency

(outlined shapes represent the annotators’ targets).

ABSTRACT

Visual content must be labeled to facilitate navigation and retrieval,

or provide ground truth data for supervised machine learning ap-

proaches. The efficiency of labeling techniques is crucial to pro-

duce numerous qualitative labels, but existing techniques remain

sparsely evaluated. We systematically evaluate the efficiency of

tagging and browsing tasks in relation to the number of images

displayed, interaction modes, and the image visual complexity. Tag-

ging consists in focusing on a single image to assign multiple labels

(image-oriented strategy), and browsing in focusing on a single

label to assign to multiple images (label-oriented strategy). In a first

experiment, we focus on the nudges inducing participants to adopt

one of the strategies (n=18). In a second experiment, we evaluate

the efficiency of the strategies (n=24). Results suggest an image-

oriented strategy (tagging task) leads to shorter annotation times,
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especially for complex images, and participants tend to adopt it

regardless of the conditions they face.
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1 INTRODUCTION

Image labeling consists in associating images with a list of labels

describing its features or the concepts it represents. Such labels fa-

cilitate grouping relevant images together and navigating an image

set to find specific content quickly. For instance, image libraries like
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Flickr [23]
1
or Instagram [45] enable users to tag the images they

upload using free-form text or ontological keywords for organiza-

tional and personal purposes [52]. Labels can also be used as a way

to provide ground truth data that is essential to train supervised

machine learning algorithms using computer vision [57]. In this

scenario, they usually accompany graphical elements that highlight

specific areas or objects in images [22, 55] or video frames [16] to

provide more descriptive power. Assistive systems can automat-

ically assign labels to images to support annotators by reducing

labeling times [70], but the task remains tedious as annotators must

still verify and validate the generated labels. Manual labeling is so

frequently required that previous work proposed crowdsourcing

approaches to alleviate the annotator workload [13, 36, 55]. The

task remains the same, and as tedious, for a single annotator up-

loading a picture with tags on social networks, or many annotators

labeling images to build a data set.

Labeling an image is usually performed via two stereotypical

tasks: tagging consists in assigning multiple labels to a single image,

while browsing consists in focusing on a single label to assign to

multiple images [57] (Figure 1a). Selecting pre-suggested tags when

adding a photo on Flickr is an example of the former, whereas

image-based CAPTCHAs are a common example of the latter [17].

While the task characteristics might greatly influence the annotator

performance when labeling images, i.e., the time to produce the

tags and their quality, their efficiency remains sparsely evaluated.

The literature on image labeling tools does not provide a rigorous

definition of tagging and browsing tasks. The lack of a definition

makes it challenging to identify their design implications, the inter-

actions they should support, and their impact on user performance.

For instance, if an annotator faces a set of images and tags each of

them sequentially with all possible labels [49], are they performing

a tagging or a browsing task? To systematically study these tasks

and all possible variants, we rather study their underlying strategies,

i.e., tagging single images sequentially (image-oriented) and tag-

ging a single label on all images (label-oriented). Our exploration of

the literature on annotation tools revealed three factors that likely

impact the user performance, but were not investigated to date. The

first is the number of images displayed. Displaying multiple images

at once enables to rapidly scan them and identify patterns to assign

labels to groups (e.g., [49]), but may also distract annotators when

labeling images one-by-one and result in lower performance overall.

The second is the interaction mode offered by the system. Browsing

implies selecting images sequentially without changing the label to

tag [68, 71], e.g., click on the label to tag then click on all relevant

images, thus the label remains persistent until explicitly modified.

The opposite, transient labels, require annotators to (re-)specify

the label to tag for each image (e.g., [1]). While persistent labels

might seem quicker [75], they may also induce mode errors and

produce more errors overall [59]. The last factor is the image visual

complexity. Complex images are harder to parse and require longer

visual analyses to identify specific features [14, 74], which can be

detrimental when browsing images.

We study these factors through an abstract task (Figure 1b) which

replaces the features of a natural image (such as the group, species,

1
the turkey image and its labels on Figure 1 was found on Flickr (https://tinyurl.com/

y44fn3sz)

and race of an animal [13] as illustrated on Figure 1) with 9 dif-

ferent geometric shapes that users must count (Figure 1b) using

persistent or transient toggle buttons (Figure 1c). Using abstract

images avoids any kind of bias linked to expert knowledge that

users could leverage to quickly scan specific images. Our focus

is to understand whether users tend to adopt an image-oriented
strategy or a label-oriented strategy if they can choose between the

two (Figure 1c), and whether one strategy is more efficient than

the other.

We report the results of two experiments. The first experiment

investigates what factors nudge participants into using an image-

oriented or a label-oriented strategy. The second compares the

efficiency of both strategies with regard to precision and time. The

results suggest participants are more likely to adopt an image-

oriented strategy regardless of the scenario they are facing, but

they may adapt or completely switch their strategies based on

the system’s characteristics. They also exhibit evidence of shorter

annotation times while using an image-oriented strategy, especially

when analyzing images with high visual complexity. In contrast,

participants appeared to perceive the label-oriented strategy as

being efficient more often. These findings seem to indicate tagging

tasks are more efficient than browsing tasks in general. We conclude

with a list of design implications addressing the fact that systems

should prioritize tagging tasks, but not disregard browsing tasks,

when dealing with images with a high visual complexity.

2 RELATEDWORK

In this section, we characterize image labeling tasks. We first review

the type of labels used by image labeling systems and then discuss

the possible impact of interactive strategies on labeling tasks. We

continue with a list of metrics used for evaluating the efficiency

of labeling tools, and end by exposing the potential impact of the

image visual complexity on the user performance. Our literature

review considers both image and video labeling tools as the latter

consists essentially in annotating a set of frames [3, 16, 41, 61].

2.1 Image Labeling Tools

Image labeling is the action of tagging visual content with metadata.

Sager et al.’s survey on image labeling [57] shows the corresponding

data consists of free-form text [3, 55], ontological keywords [42, 67],

or graphical elements to highlight parts of images and add spatial

information to labels [16, 55, 60]. Hanbury [29] refers to the latter

as segmentation and emphasizes segmented areas are concomitant

with tags. Labeling tools such as LabelMe [55] are designed for

this sole purpose. We focus our investigations on ontological labels

because they can both tag entire images and be associated to image

segments [28, 55, 56].

Labeling tools support tagging or browsing an image set [57].

Tools supporting tagging tasks display a single image at once [16, 22,

28, 67, 69] with sometimes means to navigate the whole set [22, 56].

Annotators might need to come up with keywords from scratch [55,

67, 69] or choose from a vocabulary [1, 42]. Tools supporting brows-

ing tasks enable annotators to select a group of images and tag them

with a given label [10, 31, 71], select a persistent label to tag on

relevant images [49, 68], or drag-and-drop labels on relevant im-

ages or groups of images [62]. Image-based CAPTCHAs [17] are a

https://tinyurl.com/y44fn3sz
https://tinyurl.com/y44fn3sz
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common example of a browsing task that sets the label to tag (Fig-

ure 1a). Assistive tagging [70] provides benefits for browsing tasks

by automatically assigning labels to images that must be human-

verified [68], or by grouping images together [62]. The body of

work on image labeling tasks still lacks comprehensive evaluations

of tagging and browsing tasks to assess their outcomes with regard

to time and precision; to the best of our knowledge, only Yan et

al. [75] compared time efficiency of both tasks with three users

and presented comparable results. In our study, we propose a more

systematic comparison of these two approaches by comparing the

user performance when varying the number of images displayed,

the interaction modes, and the image visual complexity.

2.2 Interaction Modes and Strategies

Interactive systems build onmodes to either avoid performing repet-

itive actions or set a specific interactive context. Text editors such

as Microsoft Word, for instance, enable writing bold or italic text by

pressing a button in a toolbar. Similarly, vector graphics editors such

as Adobe Illustrator often propose a toolbar with toggle buttons

to switch between modes for drawing and moving shapes. Such

modes are persistent and require users to explicitly switch between

them. Systems supporting browsing tasks by fixing a label to tag

on multiple images propose a similar mechanism [49, 68]. We refer

in this case to persistent labels. On the other hand, these systems

may enable to select relevant images before assigning them the

same labels [10, 31, 71], in which case they rely on transient labels.
Despite the advantages of modes, they are error-prone. A common

caveat coined as situational awareness [18, 19, 72] encapsulates the
fact that users might not know they triggered a mode or forgot the

modes they are currently in, leading to mode errors [51, 58, 59].

We investigate the effects of persistent and transient labels on the

user performance.

Tagging and browsing tasks lack rigorous definitions to clearly

identify them in various scenarios. Besides, hybrid tasks such as

tagging multiple labels on multiple images remain unsystematically

explored (e.g., [49, 68]). To study the space of image labeling tasks,

we identify and focus on the underlying labeling strategies, namely,

an image-oriented strategy that consists in tagging all labels on

single images and a label-oriented strategy that consists in tagging

a single label on all images. Systems such as EVA [68] or ECAT [49]

enable these strategies but did not directly study their efficiency.

Adopting a specific strategy can have various effects depending

on the context. Mackay [44] showed that interaction techniques

can be more efficient in specific interactive contexts. They com-

pared floating palettes, marking menus, and a toolglass command

selection techniques in the context of Petri-net editing tasks. Their

results showed floating palettes were more efficient in a “copy” con-

text and that users preferred toolglasses and marking menus when

solving problems. Goguey et al. [26] compared variants of a tool

palette and a toolglass in the context of object manipulation. They

expected users to adopt an object-oriented (perform all commands

on an object before moving to the next) or command-oriented (per-

form the same command on all relevant objects before moving

to the next) strategy depending on the technique used. They pro-

posed two metrics to assess the type of strategy adopted based on

a sequence of interactions. Their results show that the toolglass

technique induces an object-oriented strategy whereas tool palettes

induce a command-oriented strategy. These strategies are equiva-

lent to image-oriented and label-oriented strategies in the context

of image labeling. We build on their metrics to assess the type of

strategies adopted by the participants in the first experiment.

2.3 Efficiency Metrics for Labeling Tools

Task completion time is one of the primary variables used to assess

the efficiency of an image labeling system. Volkmer et al. [68]

compared labeling times with the mouse or keyboard and showed

shorter times with the latter. Iakovidis et al. [33] compared their

system to the LabelMe system [55] and showed a benefit of assistive

tagging on labeling time. Yan et al. [75] proposed two models to

predict the annotation time of an image set using either tagging

or browsing. They evaluated their model empirically with three

users and reported good accuracy. Chang et al. [8] investigated

labeling techniques based on a 1D and 2D spatial categorization and

reported comparable task completion times. They also compared

the performance of annotators when tagging images entirely or by

splitting the task hierarchically among crowd workers [9]. They

reported faster completion times for the latter.

The label accuracy is also used to assess the efficiency of a sys-

tem. Labeled image sets such as ImageNet [13] or LabelMe [55] do

not report particular verification procedures to control the label

quality, thus consider the labels as inherently accurate. To evaluate

the quality of labels, one can compute the inter-user agreement

between annotators to evaluate whether a consensus exists for each

of them [27, 40, 68]. Once ground truth data exists, the precision of

labels can be computed in comparison. For instance, in their studies,

Chang et al. [7–9] compute the accuracy rate of annotators based

on the number of correct labels.

Labeling tools can increase their efficiency by supporting the

annotators with simpler tasks to perform, providing interactive

shortcuts, or providing sequences of related images. However, the

impact of user performance on the quality of the labels produced

remains sparsely evaluated. Our study focuses on two main perfor-

mance metrics: task completion time and accuracy rate based on

ground truth data.

2.4 Visual Complexity and Task Difficulty

The label quality depends in part on the features the annotators can

extract from an image. Some features pop-out and can be identified

preemptively (e.g., colors), but others might require careful analyses

and specific knowledge to appreciate details or simply identify

objects. Donderi [14] reviews the concept of visual complexity

and lists the main factors used throughout history to measure

visual complexity, such as the characteristics of a single visual form,

visual arrays, how information is picked up, or theories based on

algorithmic information.Wolfe and Horowitz [74] review five forms

of visual guidance and highlight two main approaches: bottom-up

in which “aspects of the scene attract more attention than others”,

and top-down in which “attention is directed to objects with known

features of desired targets”. We build on these reviews to create

a set of images with various visual complexities: images with the

lower visual complexity rely on bottom-up guidance by providing

pop-out features and images with the higher visual complexity rely
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on top-down guidance building on shapes with high redundancy

(see Fig.1 in [14]).

Visual search performance depends not only on an image com-

plexity, but also on the goal of the search, the logic of the scene

exposed, or the type of stimulus exposed beforehand. Wolfe et

al. [73] showed evidence that searching for objects in real scenes

leads to faster times than searching for items randomly. Uninten-

tional factors can also affect performance. Kristjansson’s review

of the literature on implicit visual learning [37] highlighted visual

searches can be faster when primed with features that share sim-

ilarities with the target (e.g., position or shape). Their work also

showed that not all visual features could produce priming effects,

but some, such as color, always did [38]. A label-oriented strategy

and consequently browsing tasks might benefit from the effects of

priming by looking for specific features in images and ultimately

provide shorter annotation times overall. We investigate these ben-

efits in our study by allowing (experiment 1) or forcing (experiment

2) participants to focus on a single label.

3 STUDY CHARACTERISTICS

In this section, we introduce the task used in both experiments to

simulate an image labeling task. We also describe the experimental

setup and explain how we analyze quantitative data.

3.1 Task

Controlling the visual complexity. Building a set of natural images

that provide distinct visual complexity levels and represent concepts

that any annotator can relate to is a challenging task. To fully

control these variables, we rather simulate an image labeling task

using abstract images. These images consist of circles and polygons

that represent features of a natural image, such as the type, number,

and size of objects present in a scene. We vary the image visual
complexity by manipulating the set of shapes and define three

distinct levels (Figure 2). The low level differentiates shapes by

colors, a known pop-out feature [74]. The medium level consists

of polygons with 3 to 5 sides. The high level consists of polygons

with 8 to 10 sides that lack salient features [14].

Experimental task. An image consists of 9 shapes. Each shape

belongs to one out of four distinct categories. Image labels consist

of shape counts for all categories of shapes except black circles

that represent distractors. Shapes from a category appear between

2 and 4 times in a single image, and distractors between 1 and 2

times; there exist 3 labels per shape category for a vocabulary size

of 9 (see the buttons on Figure 1c). All combinations constitute a

set of 9 images. Users tag images using toggle buttons: they must

select the correct shape counts and then click on the corresponding

image. If all labels are tagged (Figure 1c, image-oriented example),

the image vanishes and the user receives a blue or red visual feed-

back to indicate a right or wrong characterization. If the image set

still contains untagged images that are not displayed, one of them

replaces the one that just vanished. If only one or two labels are

tagged (Figure 1c, label-oriented example), the image is partially

labeled and labels appear on the left-hand side of the image. Users

can later complete the remaining labels. We instruct participants

to perform this task as quickly and precisely as possible.

highmediumlow

Figure 2: Levels of visual complexity used in the study. Black circles

represent distractors (1 or 2 per image).

3.2 Experimental Setup

We used an iMac running macOS Big Sur (v11.5.2) consisting of a

27-inch display with a resolution of 5120× 2880 pixels, and a 4GHz

Intel quad-core with 8GB random-access memory. The experiment

was implemented with web-technologies; we used a React [46]

front-end connected to a Node.js server [24] using Socket.IO [24].

The buttons consisted of rectangles with a dimension of 150× 50

pixels spaced by 10 pixels from each other, and images consisted

of squares of 200 × 200 pixels including 9 shapes of 50 × 50 pixels

(see Figure 1c).

3.3 Data Analysis

Analyzing results with null hypothesis significance testing (NHST)

is increasingly being criticized by statisticians [4, 12, 30] and HCI

researchers [5, 15, 32, 34]. Thus, our analyses rely on visual esti-

mation techniques: we report differences between samples as plots

depicting the mean of the differences and the effect sizes as 95%

confidence intervals (CIs). We base our interpretations on the width

of the CIs and their gap to the zero-line as recommended in the

literature [12, 15]: the smaller the CIs are and the larger their dis-

tance is to the zero-line, the more evidence exists of a significant

difference. While we make use of estimation techniques, a p-value

approach reading of our results can be done by comparing our CIs

spacing with common p-value spacing as shown by Krzywinski

and Altman [39].

All plots use data aggregated by participant and depict 95% boot-

strapped CIs. We compute them using the adjusted bootstrap per-

centile (BCa) from the boot [64] R package.

For both experiments, we first present a figure depicting all

effects of the independent variables on the dependent variables

studied, then only reference figures exhibiting interactions between

factors. To support transparency [34, 47], we provide the data sets

(including transcripts from the participants), and the source code

of all the plots (single and combination of independent variables)

at https://osf.io/dyj8p/?view_only=ca332f97a8ad4e79bf2abe8f9d86ae40.

4 EXPERIMENT 1: STRATEGY ADOPTION

This first experiment investigates the effects of the image visual

complexity, the number of images displayed, and the persistence of

labels on the user performance and the adoption of strategies.

The experiment follows a within-subject design involving 18

participants with three independent variables. We received a formal

approval from our national ethics board to conduct this study under

the identifying number 2022-14.

Independent variables. We investigate three main independent

variables (IVs). The visual complexity (vc) of images varies be-

tween the three levels presented on Figure 2 (low, medium, high).
We display images as a square matrix of size n and vary the matrix

https://osf.io/dyj8p/?view_only=ca332f97a8ad4e79bf2abe8f9d86ae40
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Figure 3: Effects of all IVs on the success rate and the task completion time (a,c,e), and both strategy scores (b,d,f). Non-bar plots represent means

of the differences between samples of the plots above them. The smaller the CIs are and the larger their distance is to the zero-line, the more

evidence exists of a significant difference.

size (ms). We cover three unique cases by displaying a single image

(𝑛 = 1, 1 image), a subset of the entire image set (𝑛 = 2, 4 images),

the entire image set (𝑛 = 3, 9 images). We also vary the interaction

mode by controlling the label persistence (p). We switch between

persistent and transient buttons: persistent buttons remain in the

same state upon tagging an image, while transient buttons are

toggled off.

Design. We counterbalance all independent variables and get a 3

vc × 3 ms × 2 p within-subject design. A block consists of a com-

bination of the three independent variables and includes 9 images

that participants must label. At the end of each block, we ask par-

ticipants to describe the strategy they adopted. All blocks using the

same visual complexity were performed in a row. The experiment

starts with a 3-blocks training phase consisting of the following

combinations of IVs ({vc, ms, p}): {low, 3, persistent}, {medium, 2, per-
sistent}, {high, 1, transient}. The evaluation phase of the experiment

consists of 18 blocks for a total of 162 images per participant.

Quantitative dependent variables.We consider four distinct de-

pendent variables (DVs). Two of them are dedicated to measuring

user performance: the success rate that corresponds to the percent-

age of correct tags produced, and the task completion time that

corresponds to the duration of each block. We do not consider the

time to characterize single images, as this factor heavily depends

on the strategy adopted. Two other scores, namely image-oriented
and label-oriented scores, assess the strategies used by the partic-

ipants during each block of the experiment. These scores range

between 0 and 1 and are based on Goguey et al.’s metrics [26]. The

image-oriented score relies on image tagging actions (i.e., the user

clicks on an image to tag it) and is defined by 𝑆𝑖𝑜 = 1 − 𝑃𝑖𝑚𝑔

𝑛−9 with

𝑛 the number of image tagging actions and 𝑃𝑖𝑚𝑔 defined as :

𝑃𝑖𝑚𝑔 =

𝑛∑︁
𝑖=3


1 if 𝐼𝑚𝑎𝑔𝑒 (𝑎𝑖 ) ≠ 𝐼𝑚𝑎𝑔𝑒 (𝑎𝑖−1)

and ∃ 𝑗 ∈ [1; 𝑖−2] such as 𝐼𝑚𝑎𝑔𝑒 (𝑎𝑖 ) = 𝐼𝑚𝑎𝑔𝑒 (𝑎 𝑗 )
0 otherwise

with 𝐼𝑚𝑎𝑔𝑒 (𝑎𝑖 ) representing the image tagged by the 𝑖𝑡ℎ action.

If only 9 actions were performed within a block, the strategy was

image-oriented, in which case 𝑆𝑖𝑜 = 1.

The label-oriented score is based on button actions. A button ac-

tion consists in a state change when the participant toggles a button

on or off. We code such a change on three bits: 𝑆𝑡𝑎𝑡𝑒 (𝑥) = 𝐵1𝐵2𝐵3.

Each bit represents a label type (e.g., triangle, square, and pentagon

for the medium complexity). A value of 1 indicates the label was

changed since the last state (e.g., 010 would represent a click on the

label "2 squares" on Figure 1c for both examples). We compute this

score as 𝑆𝑙𝑜 = 1 − 𝑃𝑙𝑎𝑏
𝑛−3 , with n the number of button actions and

𝑃𝑙𝑎𝑏 defined as :

𝑃𝑙𝑎𝑏 =

𝑛∑︁
𝑖=3


1 if 𝑆𝑡𝑎𝑡𝑒 (𝑎𝑖 ) ≠ 𝑆𝑡𝑎𝑡𝑒 (𝑎𝑖−1)
and ∃ 𝑗 ∈ [1; 𝑖−2] such as 𝑆𝑡𝑎𝑡𝑒 (𝑎𝑖 ) = 𝑆𝑡𝑎𝑡𝑒 (𝑎 𝑗 )

0 otherwise

If only 3 actions were performed within a block, the strategy

was label-oriented, in which case 𝑆𝑙𝑜 = 1.

We only compute the scores for a matrix size greater than 1 as

this condition forces an image-oriented strategy.

Qualitative dependent variables. We collect qualitative data from

the participant explanations after each block. This data consists in
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spoken comments transcribed into textual data that we cross with

the strategy scores for finer analyses.

Additionally, we asked 5 open-ended questions at the end of the

experiment to gather detailed feedback on the perceived effects of

the IVs on user performance: 1) Did you perceive any impact of the
number of images displayed on your performance? 2) ... strategies?, 3)
Did you perceive any impact of the persistence on your performance? 4)
... strategies?, 5) Did you perceive any impact of the visual complexity
on your strategies?

Participants.We recruited 18 able workers from our laboratory

to participate in our study (15M, 3F). We asked participants directly

to confirm they did not have visual or motor impairments.

Research questions and hypotheses. We focus on the following

research questions:

RQ1 Are the success rate and task completion time affected by the

visual complexity, the matrix size, and the persistence?

RQ2 Do the strategy scores vary based on the visual complexity,

the matrix size, and the persistence?

These questions translate to the following hypotheses:

H1 - The visual complexity impacts the labeling performance.

H2 - Persistent buttons facilitate a label-oriented strategy by min-

imizing back-and-forth movements between the buttons and the

images, and leveraging priming effects.

H3 - Annotators adapt their strategies based on the interface and

interactions they face to optimize their performance.

4.1 Results

RQ1 Are the success rate and task completion time affected by the
visual complexity, the matrix size, and the persistence?

We depict on Figure 3 (a,c,e) the effects of all independent vari-

ables on the user performance, i.e., the success rate and the task
completion time. The differences between the visual complexity

levels exhibit clear deviation from the zero-line and relatively small

confidence intervals (Figure 3a). These results present evidence of

an effect between all visual complexity levels. As hypothesized (H1),
the visual complexity strongly impacts the labeling performance.
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Figure 4: Interaction between the persistence and the visual com-

plexity (a), and the matrix size (b), on the success rate.

The matrix size did not seem to have a significant effect on the

labeling performance independently of other factors (Figure 3c).

We note some trends of an effect on the success rate that weakly
suggest a matrix size of 2 led to more errors.

We found evidence of an effect of the persistence on the success
rate indicating that persistent buttons seem to produce more errors

(Figure 3e). On the other hand, we did not detect an effect of the

persistence on the task completion times.
By plotting all possible interactions between the IVs, we ob-

served various trends and effects. First, the overall effect of the

persistence on the success rate seems to originate in part from la-

beling images with low and medium visual complexity (Figure 4a).

Additionally, we observed an interaction between the persistence

and the matrix size (Figure 4b) on the success rate. The results

indicate a detrimental effect of persistent buttons when facing a

matrix size of 2 and 3, with less evidence for the latter. One possible

explanation of these effects is that complex images required more

focus and a single image provided less visual information at once,

so the participants were able to make fewer mistakes likely due to

mode errors [59].
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Figure 5: Interaction between the matrix size and the visual com-

plexity on the success rate when using persistent buttons.

We observed only small evidence of effects in relation to all IVs.

We depict on Figure 5 the effects of the visual complexity and

the matrix size for persistent buttons. The results weakly suggest

that a matrix size of 2 produces worse labeling performance when

dealing with complex images.

RQ2 Do the strategy scores vary based on the visual complexity,
the matrix size, and the persistence?

We show on Figure 3 (b,d,f) the effects of all IVs on both the

image-oriented and the label-oriented scores. We do not detect ef-

fects of the visual complexity or the matrix size on either score.

We found evidence of an effect of the persistence on the label-
oriented score, but no effect on the image-oriented score (Figure 3f).
This seems to indicate the persistence nudged participants into

adopting a label-oriented strategy.

The results also exhibit evidence of an interaction between the

persistence and the visual complexity for the label-oriented score
(Figure 6). This suggests a label-oriented strategy was used more

often when labeling images with low and medium visual complex-

ity with persistent buttons. Again, complex images seem to be less

affected by the persistence, hence limit the use of a label-oriented

strategy.

4.2 What Triggers a Strategy Switch?

We plot the evolution of the strategy scores per participant through

time on Figure 7a. Each entry on the y axis represents a block in the

experiment (excluding blocks with a matrix size of 1). Horizontal

black lines denote a change of the visual complexity level.
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Figure 6: Interaction between the persistence and the visual com-

plexity on the label-oriented score.

We categorized the participant behaviors by crossing quanti-

tative and qualitative results. We computed the variance of the

absolute differences between consecutive blocks for both scores to

understand to what extent did participant modified their strategy

through time. We plot these measures in relation to each other

on Figure 7b and cluster them into four groups using a k-means

algorithm
2
. Using this method, the most decisive factor used for

categorizing participants seems to be the image-oriented score.

We note, however, that simply using the variance of the absolute

differences is not perfect as it does not capture nuances from the

qualitative results. 𝑃6 and 𝑃3, for instance, are likely outliers in

their categories: 𝑃6’s strategy changed more than once without

qualitative data explaining this behavior, and 𝑃3 did not seem to

change their strategy systematically compared to others in their

category.

A striking result is that half of the participants exclusively used

an image-oriented strategy (B1). One participant followed a fairly

consistent strategy that evolved through time (B2). Three partici-

pants used an image-oriented strategy but switched transiently to

the label-oriented strategy (B3). The rest of the participants adapted

their strategies based on the task at hand and the opportunities the

system offered (B4).

4.2.1 Single strategy (B1). 𝑃1 commented after finishing a block

with a matrix size of 1 "I like to have a single image, you analyze
one by one [...] you don’t have parasites"⊤3

and at the end of the

experiment that "I did very barely use annotations overall. I did not
feel the need to do so"⊤.

𝑃2 remarked their strategy sometimes did not match the label

persistence, which created some frustration "I think it’s more an-
noying to have persistent buttons. But the strategy was the same".

𝑃4 made a similar comment "the consistency of these buttons
[is] really not helpful. It’s rather confusing for me, I guess", but felt
otherwise later "The buttons were persistent so, like suppose if the
blue and green are same as earlier I don’t need to click them. [...] It’s
easier. It saves time.".

𝑃5 explained they adopted an image-oriented strategy based on

their experience in the training phase "if I find three triangles then I
select all the images that have three triangles. [...] The other method is
as follows: I just see one image and select the number of triangles, the
number of squares, and the number of pentagons per image". They
later underlined benefits of using a single image "I like the image
2
we used the kmeans function from the stats R package [65]

3
to support transparency [47], we provide all transcripts of participants with citations

highlighted at https://osf.io/dyj8p/?view_only=ca332f97a8ad4e79bf2abe8f9d86ae40.

Citations translated to English are marked with a ⊤

on top of the other, [...] it’s easier to compare [...] to the image that
was before", and compared it to matrix larger than one image using

complex images "This was difficult because it was too many images,
it kinda make me feel like, dizzy. It’s like the same image too many
times, so it is more difficult than just having one image on top of the
other".

𝑃7 highlighted the benefits of matrices with more than one image.

They remarked it enabled them to look for salient patterns in other

images when looking for their next target "When I had 4 images, I
was trying to find for instance a [pattern of] 4 [shapes] to free space
to have others [images]"⊤ and added "when there were several images,
I tried to skim to see what was the most interesting to address"⊤.

𝑃10 explicitly stated using an image-oriented strategy "Here I
focused first on one of the images, and tried to finish that quick, then
moved to the other ones". They added later "I did not look at the other
squares [images] if there were some things similar, I just concentrated
on one and finish one" which indicates they did not perceive an

impact of the matrix size on their performance. Their answer to

the related question at the end confirmed that "even if the buttons
were persistent, I just focused on one image, and I did not look the
whole picture".

𝑃14 focused on a single image at once "I have the impression I
don’t use the fact there are 4 [images] or not"⊤ and mentioned facing

multiple images might hinder them "I am under the impression
that for me it’s easier when there is only one [image]"⊤. They also

remarked not leveraging the button persistence "I think I don’t really
use persistence. [...] I did not try to know whether some images had
similar stuff to the one I already put"⊤.

Similarly to others, 𝑃18 remarked the matrix size was better

capped to one "it was easier indeed when there was only one [image]
because there was only one spot to look at, it changed automatically,
and it implied less visual back-and-forth"⊤.

We noted mixed remarks on the matrix size: some participants

felt disturbances from facing multiple images at once, while others

took advantage of this to quickly scan images to find salient patterns

to prioritize. We observed a similar heterogeneity for comments

referring to the label persistence. Participants described it as being

useless (𝑃5 "For me it was like useless"), disturbing (𝑃14 "in the case
of difficult shapes I think it rather disturbed me"⊤), or helpful in some

contexts (𝑃17 "sometimes I just had to click, change a 2 to a 3 and
send the image"⊤, 𝑃4 "it saves times").

4.2.2 Evolutionary (B2). 𝑃8 did not seem to settle on a single strat-

egy throughout the experiment. They explained at the end of the

first block "I did by shape, which is easier for the eye [...] it’s more
challenging to count by [image] and to change each time"⊤. When

facing complex images they tended to use an image-oriented strat-

egy "I started with the 9 [sided shapes], because they have a bar at
the bottom, so they are easier to identify. Then, [...] I counted either
the 10 or 8, and I completed with the number of circles"⊤.

This participant started clearly using a label-oriented strategy

for the first visual complexity, which slowly faded as they seemed

to use a more hybrid approach in the following blocks.

4.2.3 Strategy switch (B3). 𝑃13 switched their strategy when facing

the highest visual complexity. They explained their strategy was

to "take the less complex shape, counted it in each image first, then
do the same thing, and subtract circles"⊤. It is unclear whether the

https://osf.io/dyj8p/?view_only=ca332f97a8ad4e79bf2abe8f9d86ae40
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Figure 7: Evolution of the scores through time per participant (a). Each entry on the y axis represents a block. We categorized participant

behaviors by crossing qualitative and quantitative results: we plot the variance of the absolute differences between consecutive blocks for both

scores in relation to each other, and identify 4 clusters using a k-means algorithm (b).

participant would have switched their strategy back if they had to

analyze shapes with lower complexities once more.

The trigger for 𝑃15 also related to the visual complexity "I start
to the first one in the grid [...] For the shapes I actively counted [...] like
‘ok 3 3 and 2’ [...] I think it’s more obvious visually like it’s not that
much red compared to 1 2". In contrast with 𝑃13 they switched to an

image-oriented strategy when the visual complexity decreased,

making it "more obvious visually" to identify patterns in each image.

𝑃6 did not comment on their strategy change. The scores indicate

they used an hybrid strategy until they settled on an image-oriented

one. We do not observe a clear switch in this case, thus mark this

participant as an outlier in this category.

The two switches occurred in both cases on a change in the

visual complexity level. The participants seemed to take that

event as an opportunity to review their strategies and adopt a

more efficient one. However, they did not consistently change their

strategy when facing a more challenging task.

4.2.4 Adaptive strategies (B4). 𝑃9 faced the highest visual com-

plexity first and adopted an image-oriented strategy "I did [image]
by [image] while trying to count each element, select all buttons, and
at the end reinitialize the buttons before starting the next [image]"⊤.
They then switched to a label-oriented strategy "I tried to do first
all triangles, then all squares"⊤ and backtracked when buttons were

not persistent anymore "I did image by image because [...] with the
strategy I used before [...] I had to go back on the button each time"⊤.
They continued with a label-oriented strategy "I click the button,
like 2 reds, and I skim, and if there are 2 reds I click [on the image]"⊤
until the buttons became transient.

𝑃11 started with a label-oriented strategy by relying on persistent

buttons "I tried to select all of those which had 2 triangles, 3 triangles,
4 triangles, and so on for all shapes"⊤. They used an image-oriented

strategy when they lost this persistence "I did more or less the same
strategy as when there is a single square [image], as it is not persis-
tent"⊤. They kept switching back and forth depending on the button
persistence "I did more or less the same strategy as with persistent
3x3 [...] in the medium difficulty"⊤, and "I did in order, not all colors
on a single streak as it was not persistent"⊤. They broke this cycle

when facing the highest visual complexity and exclusively used

an image-oriented strategy: "I do image by image because I don’t
have a global perception."⊤.

𝑃12 mentioned changing their strategy for the first visual com-

plexity "I changed in the middle"⊤. They adopted a label-oriented

strategy when facing the second visual complexity "I started by
[...] looking for instance all the triangles on the four images, [...] then
all the squares, then all the pentagons. However, as the buttons were
not persistent, I found it not efficient to navigate between the two each
time"⊤, but preferred an image-oriented one in the next block "I did
it differently this time. [...] The ones that looked easier, I did them in
a single go, then I did the rest by looking whether a figure appeared 4
times"⊤. They switched again when buttons became persistent "as
buttons were persistent, [...] I tried to [...] assess the number of trian-
gles in the four images, and if two had the same, it allowed to click
only once on the button"⊤. They remarked using an image-oriented

strategy for the last visual complexity "here I did image by image
again"⊤, and changed with persistent buttons "I rather did again by
color because buttons are persistent"⊤.

𝑃16 used an image-oriented strategy for the first visual complex-

ity, and tried a different approach when facing the highest visual

complexity. They explained "the pattern is much more difficult to
analyze, I realized since I was making many errors, my strategy was
likely not so good"⊤ and that they tried to "concentrate at the end
only on [the shapes] that had a shape typology to do them in the
whole grid"⊤. They did not continue using that strategy because "I
realized buttons were not consistent, it was bothersome because I had
to click them again so I will lose time again while traveling between
the buttons"⊤, and remarked "I think I will try to do shape by shape
[...] once the pre-selections will be saved"⊤ referring to partial labels.

Indeed, they switched again when buttons were persistent "I tried
to do by elimination of shape by shape as I said previously"⊤. They
reverted to an image-oriented strategy when facing the medium

visual complexity "I picked up again the thing where I empty first
the first cell"⊤.

𝑃3 changed back their strategy to the ones they used in the

training phase on the last block "I came back to do all... by color, all
the 2, all the 3, all the 4"⊤ and added "I recalled it was a possibility and
with colors it is easier to over-count. [...] It seemed less of a headache
to do color by color instead of number."⊤. They did not provide any

reason why they switched back to the former strategy later. This

participant did not change their strategy systematically based on the

experimental conditions, thus is likely an outlier in this category.

Participants mainly adapted their strategies according to the

persistence; persistent buttons induced a label-oriented strategy,

as quantitative results indicate (Figure 3f). The visual complexity

was also a prevailing factor in most cases, as participants either
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could not apply a label-oriented strategy when the image analysis

was too challenging, or they adopted this strategy to focus only on

specific shapes.

4.3 Discussion

We list two important findings from this experiment. Half of the

participants used an image-oriented strategy throughout the entire

experiment, a behavior which did not seem to be affected by the

experimental factors. This suggests that following a tagging task
was preferred overall. Our results also hint that persistent buttons

nudge participants into adopting a label-oriented strategy.

Half of the participants exclusively adopted an image-oriented

strategy, regardless of the various experimental conditions, which

does not support H3. Their remarks indicate they did not find bene-

fits in dealing with a matrix of images and that the label persistence

was mostly a hindrance. We provide two interpretations. The par-

ticipants quickly found the most efficient strategy or the one they

preferred, and were satisfied with their labeling performance using

it. Another non-exclusive interpretation is that the system provided

a “facilitate” nudge [6] that builds on the status-quo bias [54, 66].

This bias means that participants adopted a comfortable strategy

that would require some effort to change, so they kept using the

same throughout the experiment.

Quantitative and qualitative results both suggest the label persis-

tence has an impact on the user performance and the adoption of a

label-oriented strategy (supporting H2). This effect is particularly
salient for the participants consistently adapting their strategies

(B4); they explicitly noted that persistence played a role in switching

strategies and the strategy scores bounced between extremes de-

pending on the experimental conditions (Figure 7a). This echoes re-

sults from the literature that interaction techniques can be more ef-

ficient or more appreciated in specific scenarios [2, 26, 44], and that

a system can nudge its users into specific behaviors [6, 66]. Strategy

switches also happened when the visual complexity changed. This

experiment is the first, to the best of our knowledge, to expose

clear effects of the visual complexity on labeling tasks (supporting
H1). Our experimental design does not allow us, however, to know

whether these switches would be consistent in the case participants

faced the same visual complexity multiple times.

The results also showed evidence of more errors when persistent

buttons were used compared to transient buttons. When buttons

are persistent, the user enters an interaction mode every time a

button is activated and stays in the same mode until toggling on or

off any button. Users must then stay aware of the mode they are in

and can easily forget that a specific button was on [51, 58, 59]. This

type of mode errors can find solutions through design [20]. They

could likely be mitigated, for instance, by leveraging quasi-modes

such as only toggle on labels when pressing keyboard keys.

5 EXPERIMENT 2: STRATEGY EFFICIENCY

The first experiment investigated triggers to adopt a strategy. This

second experiment compares how the two strategies may impact

user performance. In this regard, we fix the strategy and force

participants to use one or the other. For the image-oriented strategy

participants must select all types of labels to tag an image. For the

label-oriented strategy, we enable a single type of label (e.g., triangle

for the medium visual complexity) until all images are partially

tagged with it. We then disable this type and enable another if

images are not already completely labeled.

The experiment follows a within-subject design involving 24

participants with three independent variables. We used the same

ethical approval as before.

Independent variables.We consider three variables: the strategy

(s) used, the visual complexity (vc) of images, and the persis-

tence (p). We fixed the matrix size to 3 to allow for a label-oriented

strategy.

Structure.We counterbalance the three IVs and get a 2 s × 3 vc

× 2 p within-subject design. Blocks still consist of 9 images each.

Participants perform the task with one strategy, then use the other.

Overall, the experiment consists of 12 blocks, thus a total of 108

images to tag per participant.

Quantitative dependent variables. Similarly to the first experi-

ment, we measure the participant performance through their suc-
cess rate and task completion time. To evaluate the perceived per-

formance of participants, we hand them a questionnaire to fill out

after finishing all the blocks using the same visual complexity,

so 3 in total. The questionnaire includes five-levels continuous re-

sponse scales that consist of statements the participants must agree

or disagree with ("strongly disagree" ↔ "strongly agree"): (S1) I
preferred using the image-oriented strategy over the label-oriented
strategy, (S2) The image-oriented strategy led to a high performance,
(S3) The label-oriented strategy led to a high performance, (S4)When
following an image-oriented strategy, using persistent buttons had a
positive effect, (S5)When following a label-oriented strategy, using
persistent buttons had a positive effect.

Participants.We recruited 24 able workers from our laboratory

who did not participate in the previous study (23M, 1F). We asked

participants directly to confirm they did not have visual or motor

impairments.

Research questions and hypotheses. For this second study, we fo-

cus on the following research questions:

RQ1 Does one labeling strategy produce better success rates and
task completion times?
RQ2 Do the visual complexity and the persistence have an im-

pact on the success rate and the task completion time?
RQ3 Is one strategy preferred or perceived as more efficient?

These questions combined with the previous experiment results

lead to the following hypotheses:

H1 - A label-oriented strategy produces shorter labeling times by

leveraging priming effects [37, 38].

H2 - Persistent buttons produce mode errors and lead to worse

performances.

H3 - Annotators prefer an image-oriented strategy overall.

5.1 Results

RQ1 Does one labeling strategy produce better success rates and
task completion times?

We depict on Figure 8 the effects of all IVs on the success rate
and the task completion time. The results do not exhibit evidence

of a difference between the two types of strategy on the success
rate, but they do indicate small evidence of a difference on the

task completion time (Figure 8c). This suggests adopting an image-

oriented strategy produces shorter labeling times overall.
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Figure 8: Effects of all IVs on the success rate and the task completion time.

We detected an interaction between the strategy and the vi-

sual complexity on the task completion time (Figure 9). The results
exhibit evidence of an effect of the strategy for images with a

high visual complexity. Overall, the effect of the strategy on the

task completion time seems to be particularly present when labeling

images with higher visual complexity.
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Figure 9: Interaction between the strategy and the visual com-

plexity on the task completion time.

RQ2 Do the visual complexity and the persistence have an impact
on the success rate and task completion time?

The results again provide strong evidence of an effect of the

visual complexity on both the success rate and the task completion
time (Figure 8b). This reinforces the fact that the visual complexity
is an important factor when studying image labeling tasks and

should be considered more often.

The persistence, however, did not seem to have an effect on the

user performance in this experiment. We also did not detect any

interaction between this IV and the others. This result tones down

the results obtained in the first experiment and tend to indicate

persistent buttons are not intrinsically error-prone.
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Figure 10: Aggregation of the questionnaire responses (a) and their

distributions in relation to the "neutral" answer (b).

RQ3 Is one strategy preferred or perceived as more efficient?
We aggregated the questionnaire responses for all statements

on Figure 10a.We display on Figure 10b the response distributions in

relation to the "neutral" response. The participants did not seem to

prefer one strategy over the other consistently. To assess the effect

of the visual complexity on the preference, we depict on Figure 11a

the distribution of the responses for all the visual complexity

levels. The results do not indicate an effect of this factor on the

participant preferences.
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Figure 11: Distributions of questionnaire responses in relation to

the "neutral" answer (a). Differences of responses between S2-S3 and

S4-S5 (b).

The response distributions on Figure 10b seem to indicate the

participants perceived the label-oriented strategy as being efficient,

and that the persistence provided benefitswhen using this strategy,

but did not feel similarly about the image-oriented strategy. We

compared responses from S2-S3 and S4-S5 to understand whether

the participants’ judgment was systematic (Figure 11b). The results

exhibit strong evidence of a difference for both comparisons. This

indicates the participants perceived the label-oriented strategy as

being efficient more often than the image-oriented strategy, and

persistent buttons being only beneficial for a label-oriented strategy.

5.2 Discussion

The major finding of this second experiment is that an image-

oriented strategy seems to produce shorter labeling times overall,

particularly when labeling images with a high visual complexity.

Experimental results indicate that completing a block of 9 images

using an image-oriented strategy took in average 21.99s [2.03, 42.97]

less than using a label-oriented strategy (Figure 8c), which can have
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a great impact on the long-term for large image sets. H1 is therefore
not supported. Combined with results from the first experiment,

this suggests tagging tasks provide advantages over browsing tasks
in specific contexts. We also found mixed results on the effects

of the label persistence: results from the first experiment showed

evidence of more errors with persistent buttons that results from

the second did not confirm (H2 is not supported).
We explain the advantages of the image-oriented strategy by

the fact that focusing on a single image enabled the participants

to rely on their working memory and scan part of the images only

once. Müller and Krummenacher’s review on visual search and

selective attention [48] highlights the role of memory in such a

scenario and discuss an effect coined as "inhibition of return" [35,

53, 63]. This effect consists in marking analyzed areas to favor

not-yet-scanned locations. While we expected beneficial effects of

priming [37, 38] (H1), i.e., advantages of focusing on a single shape

to find it faster in a set of images (label-oriented strategy), the

results did not yield such an effect. This finding implies that based

on the visual complexity of the image set, an interactive system

should prioritize tagging tasks to allow for shorter labeling times.

The results of this second experiment did not exhibit evidence of

a participant preference for either strategies (H3 is not supported).
However, we found evidence that participants perceived the label-

oriented strategy as leading to high performances more often than

the image-oriented strategy. They also evaluated the label persis-

tence as more beneficial when using the label-oriented strategy, an

effect that quantitative results did not support. While the literature

provides evidence that user preference does not always correlate to

their performance [25, 50], participants seemed to feel more con-

fident using the label-oriented strategy. This raises an interesting

design challenge for labeling tools: should they maximize the label-

ing performance and ultimately the quantity of labels produced, or

rather the positive perception annotators have of their work? The

latter is likely significant to alleviate the tediousness of labeling

tasks and should not be disregarded.

6 DESIGN IMPLICATIONS AND LIMITATIONS

In this section we summarize results from the study and propose a

list of design recommendations for labeling tools.

The results of the first experiment suggest that an image-oriented

strategy is more likely to be adopted by default, and the results of

the second experiment showed evidence of shorter labeling times

using this strategy compared to a label-oriented strategy. We also

found evidence that the label persistence nudge annotators into

using a label-oriented strategy, and that overall they tended to find

this strategy as being efficient more often than the image-oriented

strategy. These findings underline two pieces of information: tag-
ging tasks seem to provide advantages over browsing tasks overall,
and they highlight a trade-off in the efficiency of browsing tasks

and the perception annotators have of them.

From these findings, we formulate the following design recom-

mendations:

DR1 Prioritize tagging tasks to maximize the annotator

labeling performance

The study findings hint that displaying a single image to label at a

time induces consistently shorter labeling times, particularly for

images with a high visual complexity. Qualitative results from the

first experiment suggest that displaying multiple images can be

disturbing when using an image-oriented strategy. Therefore, tools

supporting tagging tasks [1, 16, 22] are likely to produce more la-

bels faster.

DR2 Consider the image visual complexity when designing

a labeling tool

Browsing tasks are not always less efficient than tagging tasks: our

analysis did not detect a difference between the two tasks for images

with lower visual complexities. Besides, the results from the second

experiment provided evidence that participants felt more confident

in their performance when using a label-oriented strategy. There-

fore, we recommend considering the complexity of images when

designing labeling tools to support tagging tasks only if necessary

and allow annotators to choose otherwise. A labeling tool could

ideally adapt its interface and interaction means by assessing the

image complexity with computational methods such as [11, 21, 43].

DR3 Mind mode errors

Some labeling tools use persistent labels to support browsing tasks

[49, 68]. The study results exposed mixed findings on the effects

of these persistent modes: persistent labels produced more errors

in the first experiment, but we did not detect a similar effect in the

second. This indicates using persistent labels has a chance to lead

to errors, a result supported by the literature on mode errors [51,

58, 59]. To completely avoid possible problems, we recommend

leveraging transient interactions that do not seem to impact the

precision while providing comparable labeling times.

6.1 Limitations

This study is the first, to the best of our knowledge, to comprehen-

sively investigate user preference and performance using tagging

or browsing in the context of image labeling. We had to make com-

promises that might limit its outreach. We used abstract images

to precisely control a set of visual features and produce 3 levels of

visual complexity. One advantage of using abstract images was to

limit biases linked to user knowledge of specific visual content (e.g.,

dog breeds). The visual complexity levels simulate the time and

precision one requires to analyze natural images, ranging from easy

to difficult. Annotators, regardless of their expertise, face simple

and complex images to analyze that produce comparable anno-

tation performances than the ones observed in the experiments,

for which the conclusions drawn should apply. Nevertheless, fur-

ther research is required on natural images to ascertain this claim.

We also only focused on a fixed vocabulary of labels and did not

vary its size. Future work should investigate whether the current

findings remain true based on the number of labels and their type.

Additionally, our experimental design does not allow for assessing

the inter-participant bias for choosing specific strategies; findings

concerning the adoption of strategies might be impacted by specific

user archetypes that we did not control.
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7 CONCLUSION

We reported a study investigating the performance of annotators

when labeling an image set. Our goal was to compare the efficiency

of two conventional tasks supported by labeling tools: tagging

and browsing. We characterized the labeling task and identified

two underlying labeling strategies, namely image-oriented and

label-oriented. In a first experiment, we investigated the triggers to

adopt one or the other strategy and found evidence that the image-

oriented strategy is more likely to be adopted, and that factors such

as the label persistence could nudge participants into adopting a

label-oriented strategy. In a second experiment, we evaluated the

efficiency of both strategies and found evidence that the image-

oriented strategy produces shorter labeling times, especially for

images with a high visual complexity. We also observed that partic-

ipants felt more confident using the label-oriented strategy. Overall,

the study results indicate that tagging tasks are likely more efficient

than browsing tasks, but that the latter might be better perceived

by annotators despite they did not seem to provide advantages in

terms of performance. Findings from this work enabled us to list

three design recommendations for labeling tools.
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