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We introduce different mass scales corresponding to the Universe, fermion stars, mini boson stars,
Planck black holes, the electron, the neutrino, and the cosmon. These mass scales are obtained
by combining the maximum mass of fermion stars, boson stars and soliton stars set by general
relativity with the Eddington relation connecting the mass me of the electron to the cosmological
constant Λ. In this manner, we can express the mass of these objects in terms of the fundamental
constants of physics G, c, ~ and Λ. By normalizing the mass Ma of these objects by the Planck
mass MP , we find that Ma/MP ∼ χa/6, where χ ∼ ρP /ρΛ ∼ 10120 is the “largest large number” in
Nature (the ratio of the Planck density on the cosmological density) and a = 3, 2, 1, 0,−1,−2,−3
for the Universe, fermion stars, mini boson stars, Planck black holes, the electron, the neutrino, and
the cosmon respectively. This formula suggests an interesting symmetrical mass scale law connect-
ing cosmophysics (Universe, fermion stars, mini boson stars) to microphysics (electron, neutrino,
cosmon). A generalization of this law including the earth mass and another neutrino mass scale

is proposed. We also highlight an accurate form of Eddington relation me ' α(Λ~4/G2)1/6 or
Λ ' G2m6

e/α
6~4 = α−6(me/MP )6l−2

P , where α = e2/~c ' 1/137 is the fine structure constant,
given in a previous paper [P.H. Chavanis, Phys. Dark Univ. 24, 100271 (2019)] and provide differ-
ent heuristic derivations of this relation. We suggest that the dark energy particle (cosmon) of mass

mΛ = ~
√

Λ/c could be a quantum of mass and entropy and that Λ = (mΛ/MP )2l−2
P . Finally, we

give hints how to possibly solve the cosmological constant problem, the cosmic coincidence problem,
and the large number coincidence problem.

PACS numbers: 95.30.Sf, 95.35.+d, 95.36.+x, 98.62.Gq, 98.80.-k

I. INTRODUCTION

Physics has revealed that Nature follows a kind of or-
ganization which can be expressed in terms of simple
mathematical laws. Several physicists have attempted
to determine the mass of celestial bodies and elementary
particles in terms of the fundamental constants of physics
(the gravitational constant G = 6.67 × 10−14 m3g−1s−2,
the speed of light c = 3.00 × 108 m s−1, the Planck con-
stant ~ = 1.05×10−31 m2 g s−1 and the cosmological con-
stant Λ = 1.11×10−52 m−2). This ambitious project was
pioneered by Eddington [1] who tried to deduce the value
of all the constants of physics (e.g. the fine structure con-
stant, the electron mass, the proton mass...) from theo-
retical considerations. This project included as a crucial
assumption that atomic and cosmic constants are related.
In that respect, introducing together with Weyl [2] and
Dirac [3, 4] the notion of large dimensionless numbers,
Eddington [5–7] tried to link the properties of the small-
est particles to those of the whole universe. He obtained
an intriguing formula,

Λ =
(me

α~

)4
(

2Gmp

π

)2

, (1)

relating the cosmological constant Λ to the mass of the
electron me, the mass of the proton mp and the fine-
structure constant α = e2/~c ' 1/137. This relation
expresses a link between cosmological and atomic con-
stants, i.e., between the parameters of macro and micro-
physics that at first sight seem unconnected. The quali-
tative approach of Eddington relying sometimes on very
obscure arguments was very much criticized by contem-

porary physicists such as Pauli and Born but it is fair
to say that Eddington unraveled remarkable connections
between particle physics and cosmology that remain mys-
terious at this day and possibly point towards a future
theory of quantum gravity.1 The present paper pursues
his initial goal with, however, a less ambitious objective.

We introduce different mass scales corresponding to
the Universe, fermion stars, mini boson stars, Planck
black holes, the electron, the neutrino, and the cosmon.
These mass scales are obtained from simple arguments
(close to dimensional analysis) by combining the maxi-
mum mass of fermion stars, boson stars and soliton stars
set by general relativity with the Eddington relation. In
this manner, we can express the mass of these objects
in terms of the fundamental constants of physics G, c, ~
and Λ. By normalizing the mass Ma of these objects by
the Planck mass MP = (~c/G)1/2, we find that

Ma

MP
∼ χa/6, (2)

where

χ =
ρP
ρΛ

=
c3

G~Λ
∼ 10120 (3)

is the “largest large number” in Nature (the fundamental
ratio between the Planck density ρP = c5/G2~ = 5.16×

1 As noted by Jordan [8] “It is an outstanding merit of Eddington
that he emphasized that we should never believe in meaningless
coincidences”.
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1099 g m−3 and the cosmological density ρΛ = Λc2/G =
1.50× 10−22 g m−3) and a = 3, 2, 1, 0,−1,−2,−3 for the
Universe, fermion stars, mini boson stars, Planck black
holes, the electron, the neutrino, and the cosmon respec-
tively. This formula suggests an interesting mass scale
law connecting cosmophysics (Universe, fermion stars,
mini boson stars) to microphysics (electron, neutrino,
cosmon). The Planck mass (a = 0) makes a clear sepa-
ration between these two groups of objects (macroscopic
and microscopic). Furthermore, this separation is sym-
metrical: Celestial bodies correspond to a > 0 (namely
a = 1, 2, 3) and elementary particles correspond to a < 0
(namely a = −1,−2,−3). We note, however, that our
mass scale law presents an anomaly. General arguments
predict a neutrino mass scale corresponding to a = −3/2
instead of −2. This suggests that there exist several neu-
trino mass scales. By using a reciprocity property, we
introduce a cosmic body corresponding to a = 3/2. Its
mass scale turns out to be of the order of the earth mass.
These considerations provide a generalization of our orig-
inal mass scale law.

The object of this contribution is to highlight this mass
scale law. We also explain in Appendix A how we came to
these considerations by studying the connection between
the universal surface density of dark matter halos and the
surface density of the electron (this connection may be
related to the holographic principle) [9–12]. More details
and references (retracing in particular the rich history of
the Eddington relation) will be given in a forthcoming
paper [13].

II. THE EDDINGTON RELATION

At the beginning of the 20th century, several eminent
scientists noticed the occurrence of large dimensionless
numbers in Nature and were intrigued by certain coin-
cidences and some mysterious relations between atomic
and cosmic constants.

Weyl [2] observed that the ratio of the electric force
e2/r2 to the gravitational force Gmpme/r

2 between the
proton and the electron is equal to

F =
e2

Gmemp
∼ 1040. (4)

We will call it the Weyl number. This large number
shows that gravitational forces are remarkably weak by
the standards of atomic and nuclear physics.2

2 In our qualitative discussion, we will consider the fine-structure
constant α = e2/~c ' 1/137 and the ratio of the mass of the
proton to that of the electron µ = mp/me ' 1836 to be of order
unity. As a result, the Weyl number (force ratio) can be written
as F ∼ e2/Gm2

e ∼ ~c/Gm2
e ∼ 1/αg where αg = Gm2

e/~c =
(me/MP )2 ∼ 10−40 is the gravitational coupling constant. The
force ratio is of order unity (F ∼ 1) when Gm2 ∼ e2 ∼ ~c, i.e.,

Eddington [14–16] noticed that the number of protons

in the Einstein universe of mass ME = πc2/(2G
√

Λ) [17]
is of order

Np =
ME

mp
∼ 1080. (5)

This is called the Eddington number. Eddington [15]
argued that the two large numbers (4) and (5) are fun-
damentally related by

F ∼
√
Np. (6)

In Eddington’s approach, this relation explains why F
is large as it is related to the number of protons in the
universe which is obviously large. By combining Eqs.
(4)-(6) and taking mp ∼ me and e2 ∼ ~c (see footnote
2), one obtains a formula,

Λ ∼ G2m6
e

~4
, (7)

relating the cosmological constant Λ to the mass of the
electron me. This is the so-called Eddington relation.
This relation expresses a link between cosmological and
atomic constants, i.e., between the parameters of macro-
physics and microphysics. It links the properties of the
smallest particles to those of the whole universe. In
Refs. [5–7], Eddington tried to motivate this relation
from more physical (albeit obscure) considerations based
on the Dirac and the Einstein equations.3

Dirac [3, 4] developed a cosmological theory based on
a large number hypothesis. He had the idea to measure

the age of the universe t0 ∼ t
(0)
H = 1/H0 (Hubble time)

in terms of a unit of time ta = e2/(mec
3) provided by

the atomic constants,4 and he obtained the large dimen-
sionless number

t0
ta

=
t
(0)
H

e2/(mec3)
∼ 1040. (9)

This number characterizes the present epoch in a nat-
ural way, independent of man-made standards. Dirac

when m ∼ MP . At the Planck scale we have the connection of
gravity, electromagnetism and quantum mechanics.

3 The Eddington relation (7) was re-derived later by Zel’dovich
[18] in the context of quantum field theory. He wrote the vacuum
energy density ρΛc

2 = Λc4/G under the form

ρΛc
2 ∼

Gm2
e

λe
×

1

λ3
e

, (8)

where λe = ~/(mec) is the Compton wavelength of an elemen-
tary particle (∼ electron). This expression assumes that the
vacuum contains virtual pairs of particles with effective density
ne ∼ 1/λ3

e and that these pairs have a gravitational energy of
interaction Gm2

e/λe. One can check that Eq. (8) is equivalent
to the Eddington relation (7).

4 Taking e2 ∼ ~c, this timescale is also of the order of ~/mec2 as
provided by the Heisenberg uncertainty principle ta×mec2 ∼ ~.
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proposed that all the very large dimensionless numbers
which can be constructed from the important natural
constants of cosmology and atomic theory are connected
by simple mathematical relations involving coefficients of
the order of magnitude unity. Dirac’s large number hy-
pothesis is motivated by certain scaling laws that relate
the parameters of macro and microphysics. Comparing
Eqs. (5) and (9) we see that

Np ∼
(
t0
ta

)2

. (10)

Comparing Eqs. (4) and (9) we see that

e2

Gmemp
∼ t0
ta
. (11)

These relations depend on the age t0 of the universe.
Therefore, in Dirac’s theory, these dimensionless parame-
ters are large simply because the universe is old. Further-
more, these relations seem to be valid only at the present
epoch t0 (“now”). In order to solve this large number
coincidence problem, Dirac argued that the physical con-
stants (like the gravitational constant G or the number
of protons Np) vary with time so that relations (10) and
(11) are always valid. Therefore, the number of protons
in the universe must be increasing proportionally to t2

(implying a continuous creation of matter) and the grav-
itational ‘constant’ must decrease with time proportion-
ally to t−1. However, the variation G ∼ t−1 predicted
by Dirac was found to be in strong conflict with obser-
vations [19] and precise measurements [20], so his theory
was abandoned.

In his famous monograph Gravitation and Cosmology,
Weinberg [21] reported an empirical relation of the form

me ∼
(
H0~2

Gc

)1/3

, (12)

where H0 = 2.195× 10−18 s−1 is the present value of the
Hubble parameter, whose inverse gives the typical age
of the universe. This relation expresses the mass of the
electron as a function of the Hubble constant. Weinberg
considered this relation as “so far unexplained” and hav-
ing “a real though mysterious significance”. This relation
is clearly related to the Eddington relation (7) which can
be rewritten as

me ∼
(

Λ~4

G2

)1/6

. (13)

However, the two relations (12) and (13) are not exactly
the same because the Eddington relation (13) involves
Λ while the Weinberg relation (12) involves H0. The
Weinberg relation is disturbing because it involves the
present value of the Hubble parameter H0 which deter-
mines the age of the universe. Since the Hubble param-
eter H(t) changes with time (it decreases as t−1 in the
matter era) this suggests that the Weinberg relation is

valid only “now”. This seems to give to our present epoch
a special place in the history of the universe.

One way to solve this coincidence problem is to invoke
Dirac’s theory according to which Newton’s gravitational
constant G changes with time as G ∼ 1/t. Since H ∼ 1/t
(in the matter era), the Weinberg relation would be valid
at any time, not just now. However, no observation has
evidenced the slightest variation of G and Dirac’s theory
of variation of fundamental constants is well known to
lead to many problems. Alternatively, Dicke [22] argued
that our epoch is particular and that the relation (12) is
valid only at the present time. Written under the form

t0 ∼
1

H0
∼ ~2

Gm3
ec
, (14)

it determines the present Hubble constant, hence the age
of the universe t0 ∼ 1/H0, as a function of the electron
mass me and the fundamental constants of physics ~,
G and c.5 Dicke then developed an anthropic argument
based on stellar physics explaining why the age of the uni-
verse should have this order of magnitude. Therefore, the
anthropic principle may qualitatively explain the Wein-
berg relation (12). No hypothesis of varying constants is
necessary to explain it. In this sense, the relation (12)
is not as mysterious as Weinberg thought. However, the
Eddington and the Weinberg relations may have a differ-
ent status. In Appendix D and in our companion paper
[13] we discuss their interrelation in connection to the cos-
mic coincidence problem of modern cosmology (ΛCDM
model).

III. PLANCK DENSITY AND COSMOLOGICAL
DENSITY

In cosmology, there are two important density scales
that can be constructed in terms of the fundamental con-
stants of physics G, c, ~ and Λ. These are the Planck
density

ρP =
c5

G2~
= 5.16× 1099 g m−3, (15)

and the cosmological density6

ρΛ =
Λc2

G
= 1.50× 10−22 g m−3. (16)

The Planck density is very large. It is expected to be im-
portant in the early universe during the phase of inflation.

5 Note that the Weinberg relation (12) is implicitly contained in
the Dirac relations (9)-(11). This is why Dicke [22] came to
discuss these problems in relation to Dirac’s theory [3, 4] before
Weinberg [21] explicitly wrote the relation (12).

6 The cosmological density is usually defined as ρΛ = Λc2/(8πG) =
5.96 × 10−24 g m−3. Here, we define it without the 8π in order
to avoid the presence of numerical factors in the expressions of
the fundamental scales.



4

The cosmological density is very small. It is expected to
be important in the late universe. It may represent a
form of dark energy explaining the accelerated expan-
sion of the universe that we observe today. The ratio
between the Planck density and the cosmological density
is huge

χ =
ρP
ρΛ

=
c3

G~Λ
∼ 10120. (17)

They differ by about 120 orders of magnitude.7 The fact
that the observed value of the cosmological density ρΛ is
120 orders of magnitude smaller than the Planck density
ρP leads to the so-called “cosmological constant prob-
lem” [23, 24]. This problem occurs when the cosmological
constant is interpreted as the vacuum energy. However,
if we interpret Λ as a fundamental constant of physics,
there may not be any problem. Indeed, it is quite natu-
ral that ρP and ρΛ differ by 120 orders of magnitude if
the Planck density represents the density of the universe
in the far past and if the cosmological density represents
the density of the universe in the far future. This is,
for example, the outcome of a simple cosmological model
based on a quadratic equation of state [25–28] describing
the evolution of the Universe from an early de Sitter era
characterized by the Planck density ρP to a late de Sitter
era characterized by the cosmological density ρΛ (see in
particular Fig 16 of [27]). This universe has no begining
and no end, i.e., it exists eternally in the past and in
the future and does not display any singularity (aioniotic
universe). This model leads furthermore to an extremely
symmetric evolution, the cosmological constant Λ in the
late universe playing the role of the Planck constant ~ in
the early universe. In Appendix B and in our compan-
ion paper [13], we motivate from entropic considerations
(based on the holographic principle) the fact that 10120

is probably the largest dimensionless number in Nature
from which we can deduce all the other “large numbers”
found by previous investigators.

A long time ago, motivated by Dirac’s paper [3], Chan-
drasekhar [29] discussed some coincidences that he had
observed based on dimensional arguments. With the
Planck mass MP and the proton mass mp, he formed
the following combination

Ma =
Ma+1
P

ma
p

, (18)

which has the dimension of a mass, where a is an arbi-
trary numerical constant (we have used a slightly differ-
ent notation). He then considered particular values of
a in relation to the size of the Sun (Ma = 1.82M� for
a = 2), the mass of the galaxies (Ma = 6.68 × 109M�
for a = 5/2), and the mass of the Universe (Ma =

7 The relation (17) can also be written Λ = 1/(χl2P ) ∼ 10−120l−2
P ,

where lP = (G~/c3)1/2 is the Planck length.

2.41×1019M� for a = 3). We shall take up his approach
in a slightly different angle and generalize it. Since we are
interested by orders of magnitude, we shall disregard the
difference of mass between the electron and the proton
(a factor ∼ 1000) and replace mp by me in the foregoing
formula.8 Then, using the Eddington relation (13), we
can express Ma in terms of the fundamental constants of
physics as

Ma =
~(3−a)/6c(a+1)/2

Λa/6G(3+a)/6
. (19)

Normalizing the mass Ma by the Planck mass MP we
obtain the ratio

Ma

MP
= χa/6 ∼ (1020)a, (20)

where χ is the “largest large number” in Nature defined
by Eq. (17).

Remark: The gravitational (Schwarzschild) radius
RS = 2GM/c2 and the Compton radius λC = ~/Mc
of an object of mass M normalized by the Planck length
lP can be expressed in terms of M/MP as

RS
lP

=
2M

MP
,

λC
lP

=
MP

M
. (21)

We have the general relations

λC
RS

=
M2
P

2M2
, RSλC = 2l2P . (22)

Knowing M/MP in terms of χ, we can easily get RS/lP
and λC/lP in terms of χ. In particular, using Eqs. (19)
and (20), we get

RS,a
2

=
~(3−a)/6G(3−a)/6

Λa/6c(3−a)/2
,

RS,a
2lP

= χa/6, (23)

λC,a =
Λa/6~(3+a)/6G(3+a)/6

c(3+a)/2
,

λC,a
lP

= χ−a/6. (24)

IV. FUNDAMENTAL MASS SCALES OF
MICRO AND MACRO OBJECTS

In this section, we introduce fundamental mass scales
of micro and macro objects encountered in our previous
investigations [11, 30] and show that they correspond to
a simple series of mass Ma where a is an integer ranging
from −3 to +3.

8 The dimensionless large numbers that we manipulate are so enor-
mously large that these distinctions are of little consequence.
Only orders of magnitude are significant.
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A. The Planck mass (a = 0)

In 1899, Planck [31] introduced a fundamental con-
stant of physics ~ which governs the laws of quantum
mechanics. He also constructed units of mass, length and
time based on G (gravity), c (electromagnetism) and ~
(quantum mechanics). These are the Planck scales. The
Planck density is ρP = c5/(G2~) = 5.16×1099 g m−3, the
Planck time is tP = 1/(GρP )1/2 = (~G/c5)1/2 = 5.39 ×
10−44 s, the Planck length is lP = ctP = (G~/c3)1/2 =
1.62 × 10−35 m, and the Planck mass is MP = ρP l

3
P =

(~c/G)1/2 = 2.18× 10−5 g. It is expected that quantum
mechanics plays a fundamental role in the early universe
where the scale factor is small and the density is high.
Therefore, the Planck scales are expected to be impor-
tant in the primordial universe. In particular, the Planck
time gives the typical duration of the inflation and the
Planck length is the size at which quantum effects become
important for understanding the physics of the early uni-
verse. At that scale, general relativity breaks down and
we need to develop a theory of quantum gravity. We
note that the Planck density is extremely large while the
Planck length and the Planck time are very small. By
contrast, the Planck mass

MP =

(
~c
G

)1/2

= 2.18× 10−5 g, (25)

i.e., MP = 1.22 × 1019 GeV/c2 is neither very large nor
very small. It is at an intermediate scale which is com-
mensurate with human scales. It separates macrophysics
from microphysics (see below).

The Planck mass is equal to the mass of an object
whose Compton wavelength λC = ~/mc is equal to its
semi gravitational (or semi Schwarzschild) radius RS/2 =
Gm/c2. These in turn are equal to the Planck length:

λC =
~

MP c
=
RS
2

=
GMP

c2
= lP = 1.62×10−35 m. (26)

Therefore, the Planck scales satisfy the relation lP =
GMP /c

2, similar to the Schwarzschild radius. The
Planck mass MP may correspond to the mass of the pri-
mordial universe, when it had a size ∼ lP . It also char-
acterizes a Planck black hole of radius 2lP . In principle,
this black hole should evaporate by Hawking radiation
[32] on a timescale of the order of the Planck time tP .
However, it is conceivable that a Planck black hole of
mass MP and radius 2lP represents the ground state of a
pure quantum black hole (see Appendix B). As a result,
it is fully stable and does not evaporate. It is natural
(and conventional) to take the Planck mass as a mass of
reference. This is why we have normalized the mass Ma

by MP in Eq. (20).
Remark: Equilibrium states of nonrelativistic bosons

stars with an attractive |ϕ|4 self-interaction (axions) exist
only below a maximum mass [33–35]

MNR
max = 5.07

MP√
|λ|
. (27)

This is the maximum mass of dilute axion stars [36].
Above that mass, the star collapses towards a dense axion
star [37] or a black hole [38], or explodes in a bosenova
by emiting relativistic axions [39]. For |λ| ∼ 1, the max-
imum mass from Eq. (27) is of the order of the Planck
mass (25). This may represent an elementary particle
of mass MP (“planckion”) or the mass of inflaton stars
[40]. However, in the case of axions, |λ| can be as small
as 10−100 (!) leading to much larger objects [41]. For the
QCD axion with λ ∼ −7.39 × 10−49, we obtain a mass
MNR

max = 6.46 × 10−14M� of the other of the mass of
asteroids. QCD axion stars are thus called “axteroids”.
For ultralight axions with λ = −1.18×10−96, we obtain a
mass MNR

max = 5.10× 1010M� of the order of the mass of
the galaxies. The corresponding axion “stars” may rep-
resent ultracompact dwarf spheroidals or the quantum
core (soliton) of DM halos.

B. The mass of the universe (a = 3)

In 1917, Einstein [17] introduced a cosmological con-
stant Λ in his equations of general relativity in order to
have a static universe. After the discovery of the ex-
pansion of the universe, he considered the cosmological
constant as his “biggest blunder” [42] and banished it.9

However, the importance of the cosmological constant
was revived with the discovery of the present accelerat-
ing expansion of the universe [43–46]. The cosmological
constant could be the source of the dark energy fueling
this acceleration. Therefore, it may play a fundamental
role in the late universe where the scale factor is large
and the density is low. We shall regard the cosmologi-
cal constant Λ as a fundamental constant of physics that
describes the late universe (cosmophysics) in the same
manner that the Planck constant ~ describes the early
universe (microphysics). From the cosmological constant
Λ, the speed of light c, and the constant of gravity G, we
can construct a mass scale

MΛ =
c2

G
√

Λ
= 1.28× 1056 g, (28)

i.e., MΛ = 6.43 × 1022M�. It corresponds to the Ein-

stein mass ME = πc2/(2G
√

Λ) in his static model of
universe [17]. In the standard ΛCDM model, MΛ repre-
sents the typical mass of the present universe. Indeed, by
using general arguments based on physical considerations
and dimensional analysis, we can introduce cosmological
scales. The cosmological density ρΛ = Λc2/G = 1.50 ×
10−22 g m−3 is of the order of the density of the universe,
the cosmological time tΛ = 1/(GρΛ)1/2 = 1/(c

√
Λ) =

3.16×1017 s is of the order of the age of the universe, the

9 In contrast, other authors such as Lemâıtre and Eddington were
more cautious and considered the cosmological constant as a fun-
damental ingredient of general relativity and cosmology [25].
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cosmological length RΛ = ctΛ = 1/
√

Λ = 9.49×1025 m is
of the order of the size of the visible universe (the distance
travelled by a photon on a timescale tΛ), and the cosmo-

logical mass MΛ = ρΛR
3
Λ = c2/(G

√
Λ) = 1.28 × 1056 g

is of the order of the mass of the universe.10 In as-
tronomical units, tΛ = 10.0 Gyrs, RΛ = 3.07 Gpc and
MΛ = 6.42 × 1022M�. As indicated above, we consider
that Λ is a fundamental constant of physics like ~. There-
fore, the cosmological scales ρΛ, tΛ, lΛ, MΛ are funda-
mental scales determined by Λ in the same sense that the
Planck scales ρP , tP , lP , MP are fundamental scales de-
termined by ~ (and the other constants of physics G and
c). We note that the cosmological scales satisfy the rela-
tion RΛ = GMΛ/c

2, similar to the Schwarzschild radius.
This suggests that the Universe may be a huge black hole
inside which we live (this idea is further developed in
[13]). The evaporation time of a black hole due to Hawk-
ing radiation is tevap ∼ G2M3/~c4 [32]. The evaporation
time of the Universe viewed as a huge black hole is tΛevap ∼
c2/(G~Λ3) ∼ 10217 s. The relation RΛ ∼ GMΛ/c

2 can
also be written as MΛc

2 ∼ GM2
Λ/RΛ implying that the

total energy of the universe EΛ = MΛc
2−GM2

Λ/RΛ (rest
mass + gravitational) is equal to zero.11

Lee [47] has introduced the notion of soliton stars and
showed that general relativity determines a maximum
mass above which a soliton star collapses towards a black
hole. This maximum mass is of order

MS
max ∼

(
~c
G

)2
1

m3
∼ M4

P

m3
. (29)

We will call it the Lee mass. If we replace m by me and
use the Eddington relation (13), we obtain the mass of
the universe MΛ [see Eq. (28)]:

MΛ =
M4
P

m3
e

=
c2

G
√

Λ
= 1.28× 1056 g. (30)

In this sense, the Universe can be viewed as a huge soli-
ton star made of particles of mass ∼ me. Of course, this
interpretation is too naive and oversimplified but it al-
lows us to construct fundamental mass scales of physical
interest. We will use similar qualitative arguments below
to construct other fundamental mass scales.

10 These results can be derived from the Friedmann equations [13]
by using the fact that the present density of the universe is of
the order of the cosmological density on account of the cosmic
coincidence (see Appendix D).

11 It is possible that the relation M = Rc2/2G is valid at each time
t, so the universe has always been a black hole [13]. Since the
radius of the visible universe is R = ct, the mass of the universe
increases with time as M = c3t/2G in agreement with Milne’s
model [48]. It was of the order MP at the Planck time tP and is
of the order MΛ now at t ∼ tΛ. The mass of the universe is not
conserved but the total energy Mc2 −GM2/R = 0 is conserved
(it vanishes). This is a form of virial theorem v2 ∼ GM/R with
v ∼ c. This is also connected to the Mach principle [13].

The semi gravitational radius of the universe is

RΛ =
GMΛ

c2
=

1√
Λ

= 9.49× 1025 m. (31)

It is of the order of its size. The Compton wavelength of
the universe is

λΛ =
~

MΛc
=
G~
√

Λ

c3
= 2.75× 10−96 m. (32)

If we normalize the mass of the Universe by the Planck
mass we obtain the large dimensionless number

MΛ

MP
= χ1/2 ∼ 1060, (33)

which corresponds to Eq. (20) with a = 3. On the other
hand, the ratio of the Compton wavelength of the uni-
verse on its semi gravitational radius scales as

λΛ

RΛ
=
M2
P

M2
Λ

∼ χ−1 ∼ 10−120. (34)

Remark: If we define the gravitational Bohr radius by

a′B =
~2

Gm3
, (35)

take m = me, and use the Eddington relation (13), we

find that a′B ∼ 1/
√

Λ ∼ RΛ. Therefore, the gravitational
Bohr radius associated with a particle of massme is of the
same order of magnitude as the radius of the universe.
This is because the typical radius R∗ ∼ GMS

max/c
2 of

a soliton star is equal to the gravitational Bohr radius:
R∗ ∼ a′B .12 Conversely, if we suppose RΛ ∼ a′B , we
obtain the Eddington relation (13).

C. The mass of the electron (a = −1)

According to the Eddington relation (13), we can ex-
press the mass of the electron in terms of the cosmological
constant as13

me ∼
(

Λ~4

G2

)1/6

∼ 1.21× 10−25 g, (36)

i.e., me ∼ 6.77 × 107 eV/c2. As we showed previously,
this mass scale can also be obtained by identifying the
Lee mass (29) with the mass of the Universe (28) yielding

me ∼
(
M4
P

MΛ

)1/3

∼
(

Λ~4

G2

)1/6

∼ 1.21× 10−25 g. (37)

12 To our knowledge, this remark was not made by Lee [47].
13 The Eddington relation (13) is not very accurate. It gives the

mass of the electron up to a factor ∼ 100. Therefore, all the
numerical values given in this section are approximate. Eq. (36)
should be regarded as “defining” a mass scale me which is of the
order of the electron mass. We refer to Appendix A for more
accurate results.
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If we normalize the electron mass by the Planck mass we
obtain the small dimensionless number

me

MP
∼ χ−1/6 ∼ 10−20, (38)

which corresponds to Eq. (20) with a = −1.
The Compton wavelength of the electron is

λe ∼
~
mec

∼
(
G2~2

Λc6

)1/6

= 2.92× 10−15 m (39)

and its semi gravitational (or semi Schwarzschild) radius
is

rg ∼
Gme

c2
∼
(

Λ~4G4

c12

)1/6

∼ 8.96× 10−56 m. (40)

Their ratio scales as

λe
rg

=
M2
P

m2
e

∼ χ1/3 ∼ 1040. (41)

The numerical density of electrons in the universe (of
typical density ρΛ) is

ne ∼
ρΛ

me
∼
(

Λ5c12

G4~4

)1/6

. (42)

The total number of electrons is therefore

Ne ∼ neR3
Λ ∼

MΛ

me
∼ χ2/3 ∼ 1080. (43)

The average distance between the electrons is

de ∼ n−1/3
e ∼

(
G4~4

Λ5c12

)1/18

∼ 0.0931 m. (44)

It is of the order of 1 m, the unit of length in the Inter-
national System of Units.

Remark: We note that, according to the Eddington
relation (13), the mass of the electron is given by [30]

me ∼ (mΛM
2
P )1/3, (45)

where mΛ is the cosmon mass (see Sec. IV F) and MP

is the Planck mass (see Sec. IV A). Accordingly, the
gravitational energy of the electron is of the order of the
rest mass energy of the cosmon:

Ee ∼
Gm2

e

λe
∼ Gm3

ec

~
∼ mΛc

2. (46)

This equation can be written under the form of an
Heisenberg relation: Ee × tΛ ∼ ~. Using the Edding-
ton relation (13) we also find that

e2

Gm2
e

∼ RΛ

aB
, (47)

where F ∼ e2/Gm2
e is the Weyl number, RΛ is the cos-

mological radius and aB = ~2/(e2me) is the Bohr radius.
Conversely, the relations (46) and (47) imply the Edding-
ton relation (13).

D. The mass of fermion stars (a = 2)

General relativity determines a maximum mass above
which a fermion star at T = 0 becomes unstable. This
maximum mass is of order

MF
max ∼

(
~c
G

)3/2
1

m2
∼ M3

P

m2
. (48)

The exact expression involves the prefactor 0.384. This
maximum mass was obtained by Oppenheimer and
Volkoff (OV) [49] in the context of neutron stars.
The corresponding radius is R∗ ∼ GMF

max/c
2 ∼

(~3/Gm4c)1/2. The exact expression involves the pref-
actors 8.73 and 3.35. The scaling of the Oppenheimer-
Volkoff mass is the same as the scaling of the Chan-
drasekhar mass for special relativistic white dwarf stars
[50]. In a relativistic fermion star the interparticle dis-
tance d ∼ n−1/3 ∼ (R3/N)1/3 is of the order of the
Compton wavelength λC = ~/mc of the fermions which
is a measure of their “size”. In this sense, the fermions
are closely packed in a fermion star at T = 0. Below the
mass MF

max, the fermion star is stabilized by the Pauli ex-
clusion principle. Above that mass it collapses towards
a black hole.

If we replace m by me and use the Eddington relation
(13), we obtain14

M2 =
M3
P

m2
e

=

(
~c9

G5Λ2

)1/6

= 7.08× 1035 g, (49)

i.e., M2 = 356M�. This gives a mass scale of the order
of the solar mass (recall that our orders of magnitudes
are valid up to a factor ∼ 100). This is the typical mass
of white dwarfs and neutron stars. The evaporation time
of a stellar mass black hole (resulting from the collapse
of a fermion star) is tevap ∼ G2M3

2 /~c4 ∼ (c/~GΛ2)1/2 ∼
1.86 × 1078 s, which is much larger than the age of the
universe tΛ.

The semi gravitational radius associated with the mass
M2 is

R2 =
GM2

c2
=

(
G~

Λ2c3

)1/6

= 5.26× 105 m. (50)

It is of the order of the km. The Compton wavelength of
a fermion star is

λ2 =
~

M2c
=

(
Λ2~5G5

c15

)1/6

= 4.96× 10−76 m. (51)

14 The Oppenheimer-Volkoff mass involves the neutron mass mn

and the Chandrasekhar mass involves the proton mass mp (mul-
tiplied by the molecular weight µ). As mentioned previously, in
our qualitative approach, we do not make a distinction between
me and mp or mn.
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If we normalize the mass of fermion stars by the Planck
mass we obtain the large dimensionless number

M2

MP
= χ1/3 ∼ 1040, (52)

which corresponds to Eq. (20) with a = 2. On the other
hand, the ratio of the Compton wavelength of a fermion
star on its semi gravitational radius scales as

λ2

R2
=
M2
P

M2
2

∼ χ−2/3 ∼ 10−80. (53)

We can consider that a fermion star is at T = 0
(i.e. the fermions are completely degenerate) if its ac-
tual temperature T is much smaller than the Fermi tem-
perature TF ∼ ρ2/3~2/m5/3. Using ρ ∼ M/R3 and
R ∼ GM/c2, we get ρ ∼ c6/(G3M2) hence kBTF ∼
~2c4/(G2m5/3M4/3). Combined with Eq. (49) we ob-
tain ρ ∼ m4

ec
3/~3 ∼ me/λ

3
e ∼ 4.92 × 1018 g m−3 and

kBTF ∼ mec
2 ∼ 7.88 × 1011 K. This degeneracy tem-

perature can be written kBTF ∼
(
Λ~4/G2

)1/6
c2 or

TF /TP ∼ χ−1/6 ∼ 10−20. In general T � TF so the
T = 0 limit is a good approximation.

E. The mass of mini-boson stars (a = 1)

General relativity determines a maximum mass above
which a boson star at T = 0 becomes unstable. This
maximum mass is of order

MB
max ∼

~c
Gm

∼ M2
P

m
. (54)

It is called the Kaup mass [51, 52]. The exact expression
involves the prefactor 0.633. The corresponding radius
is R′∗ ∼ GMB

max/c
2 ∼ ~/mc. The exact expression in-

volves the prefactors 9.53 and 6.03. The size R′∗ of a
noninteracting boson star is of the order of the Compton
wavelength λC = ~/mc of the bosons. Below the mass
MB

max, the boson star is stabilized by the Heisenberg un-
certainty principle. Above that mass it collapses towards
a black hole.

If we replace m by me and use the Eddington relation
(13), we obtain the mass scale15

M1 =
M2
P

me
=

(
~2c6

G4Λ

)1/6

= 3.93× 1015 g, (55)

15 Of course, we are not claiming that boson stars are made of elec-
trons (which are fermions). We are considering the case where
they are made of bosons whose mass is of the order of me. As
mentioned previously, in our qualitative approach, we do not
make a distinction between me and mp or mn. For example, we
could consider the case where fermions of mass me ∼ mp ∼ mn

form Cooper pairs and behave as bosons. In that case, we could
have boson stars (or BEC stars) made of pseudo bosons of mass
me ∼ mp ∼ mn [53].

i.e., M1 = 1.97×10−18M�. This is the typical mass of a
mini-boson star.16 We can easily see that M1 is the mass
of a black hole (resulting from the collapse of a boson
star) whose evaporation time is of the order of the age

of the universe tΛ (i.e. tevap ∼ G2M3
1 /~c4 ∼ 1/(c

√
Λ) ∼

tΛ). Conversely, if we require that tevap ∼ tΛ we obtain
the Eddington relation (13).

The semi gravitational radius associated with the mass
M1 is

R1 =
GM1

c2
=

(
G2~2

Λc6

)1/6

= 2.92× 10−15 m. (56)

It coincides with the Compton wavelength (39) of the
electron. The Compton wavelength of a mini boson star
is

λ1 =
~

M1c
=

(
Λ~4G4

c12

)1/6

= 8.96× 10−56 m. (57)

It coincides with the semi gravitational radius (40) of the
electron. If we normalize the mass of mini-boson stars
by the Planck mass we obtain the large dimensionless
number

M1

MP
= χ1/6 ∼ 1020, (58)

which corresponds to Eq. (20) with a = 1. On the other
hand, the ratio of the Compton wavelength of a mini
boson star on its semi gravitational radius scales as

λ1

R1
=
M2
P

M2
1

∼ χ−1/3 ∼ 10−40. (59)

We can consider that a boson star is at T = 0 (i.e.
the bosons are completely condensed) if its actual tem-
perature T is much smaller than the condensation tem-
perature Tc ∼ ρ2/3~2/m5/3. Using ρ ∼ M/R3 and
R ∼ GM/c2, we get ρ ∼ c6/(G3M2) hence kBTc ∼
~2c4/(G2m5/3M4/3). Combined with Eq. (55) we ob-
tain ρ ∼ m2

ec
4/(G~2) ∼ 1.59 × 1059 g m−3 and kBTc ∼

~2/3c8/3/(G2/3m
1/3
e ) ∼ 8.00× 1038 K. This condensation

temperature can be written kBTc ∼
(
~8c12/ΛG10

)1/18
c2

or Tc/TP ∼ χ1/18 ∼ 1020/3. It is much larger than the
Planck temperature. Therefore, we clearly have T � Tc
in all situations of physical interest so the T = 0 limit is
an excellent approximation.

Remark: Equilibrium states of general relativistic
bosons stars with a repulsive |ϕ|4 self-interaction in the

16 The maximum mass of fermion stars scales as M3
P /m

2 [see Eq.
(48)] while the maximum mass of mini boson stars scales as
M2

P /m [see Eq. (54)]. For the same particle mass m, the mass of
fermion stars is much bigger than the mass of mini boson stars
by a factor MP /m� 1. This is because fermion stars are stabi-
lized by the Pauli exclusion principle while mini boson stars are
stabilized by the Heisenberg uncertainty principle.
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Thomas-Fermi limit exist only below the maximum mass
[53, 54]

MTF
max = 0.0612

√
λ
M3
P

m2
. (60)

This is the maximum mass of massive boson stars. Above
that mass, the star collapses towards a black hole. For
λ ∼ 1, the maximum mass from Eq. (60) is of the or-
der of the Oppenheimer-Volkoff or Chandrasekhar mass
(48) like in the case of relativistic fermion stars. There-
fore, a repulsive self-interaction between bosons allows
us to build up bigger objects. This is because it plays a
role similar to the Pauli exclusion principle for fermions.
Massive boson stars could describe dark matter stars or
even the superfluid core of neutron stars where neutrons
form Cooper pairs and behave as bosons of mass 2mn

[53]. This may explain the large mass ∼ 2 − 2.4M� of
recently observed neutron stars. The TF approximation
is valid when MTF

max � MB
max, i.e., when λ � (m/MP )2

[40]. In general, the gravitational coupling constant
αg = Gm2/~c = (m/MP )2 is extremely small, e.g.,
αg ∼ 10−100 for a boson of mass m ∼ 10−22 eV/c2, so
the TF approximation is valid even when λ is of order
10−100 (!) The same remarks apply to bosons stars with
an attractive self-interaction (see the end of Sec. IV A).
In that case, the nonrelativistic expression of the maxi-
mum mass (27) is valid when MNR

max � MB
max, i.e., when

|λ| � (m/MP )2 [40].

F. The mass of the cosmon (a = −3)

The maximum mass of a mini boson star is given by
Eq. (54). If we identify the Kaup mass (54) with the
mass of the universe (28), we obtain a particle mass

mΛ =
M2
P

MΛ
=

~
√

Λ

c
= 3.71× 10−66 g, (61)

i.e., mΛ = 2.08 × 10−33 eV/c2. This mass if often inter-
preted as the smallest mass of the bosons predicted by
string theory [55, 56]. It fixes their fundamental mass
scale. The mass mΛ also represents the quantum of
mass in theories of extended supergravity [55, 57]. It
could be the mass of the elementary particle of dark en-
ergy called the cosmon [11, 58].17 The cosmon mass can
be obtained by writing that the Compton wavelength
λC = ~/mc of the particle is equal to the cosmological

length RΛ ∼ 1/
√

Λ (the typical size of the visible uni-
verse).18 This means that the cosmon is completely delo-

17 Alternatively, some authors [59, 60] interpret the mass from Eq.
(61) as the upper bound on the mass of the photon or on the
mass of the graviton.

18 It can also be obtained from the Heisenberg uncertainty principle
mΛc

2× tΛ ∼ ~, equivalent to mΛc
2 ∼ ~c/RΛ, or by equating the

smallest Schwarzschild radius and the smallest Compton wave-
length: GmΛ/c

2 ∼ ~/MΛc.

calized. In Appendix F we obtain the cosmon mass from
a scalar field theory which is equivalent to the ΛCDM
model interpreted as a unified dark matter and dark en-
ergy (UDME) model. If we normalize the cosmon mass
by the Planck mass we obtain the small dimensionless
number

mΛ

MP
= χ−1/2 ∼ 10−60, (62)

which corresponds to Eq. (20) with a = −3.
The Compton wavelength of the cosmon is

λ′Λ =
~

mΛc
= RΛ =

1√
Λ

= 9.49× 1025 m. (63)

It coincides with the semi gravitational radius (31) of the
universe. The semi gravitational (or semi Schwarzschild)
radius of the cosmon is

rΛ =
GmΛ

c2
=
G~
√

Λ

c3
= 2.75× 10−96 m. (64)

It coincides with the Compton wavelength (32) of the
universe. The ratio of the Compton wavelength of the
cosmon on its semi gravitational radius scales as

λ′Λ
rΛ

=
M2
P

m2
Λ

=
MΛ

mΛ
∼ χ ∼ 10120. (65)

The numerical density of cosmons (bosons) in the uni-
verse (of typical density ρΛ) is

nΛ =
ρΛ

mΛ
=
c3
√

Λ

G~
. (66)

The total number of cosmons is therefore

NB ∼ nΛR
3
Λ ∼

MΛ

mΛ
∼ χ ∼ 10120. (67)

It is equal to the fundamental number χ ∼ 10120. The
average distance between the cosmons is19

dΛ ∼ n−1/3
Λ ∼

(
G2~2

c6Λ

)1/6

∼ 2.92× 10−15 m. (68)

It is of the order of the classical radius of the electron
re = e2/mec

2 = 2.82 × 10−15 m (see Appendix A). This
is a consequence of the accurate Eddington relation (A9).
Conversely, if we identify these two lengths (dΛ ∼ re) we
obtain the accurate Eddington relation (A9).

Remark: We encountered the mass scale (61) in Ref.
[30] by trying to determine from a Jeans stability analy-
sis the mass of the bosonic particle that may compose
dark matter halos. We found that the typical mass
m ∼ 10−22 eV/c2 of the bosonic dark matter particle
is equal to mΛ multiplied by a huge prefactor of order
1011.

19 This is also the radius of a particle of mass mΛ and density ρΛ.
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G. The mass of the neutrino (a = −3/2)

The maximum mass of a fermion star is given by Eq.
(48). If we identify the Oppenheimer-Volkoff mass (48)
with the mass of the universe (28) we obtain a particle
mass

m∗Λ =

(
M3
P

MΛ

)1/2

=

(
Λ~3

Gc

)1/4

= 8.98× 10−36 g, (69)

i.e., m∗Λ = 5.04 × 10−3 eV/c2. This mass may be inter-
preted as the smallest mass of the fermions. It fixes their
fundamental mass scale. It could be connected to the
mass of the neutrino. If we normalize this “neutrino”
mass by the Planck mass we obtain the small dimension-
less number

m∗Λ
MP

= χ−1/4 ∼ 10−30, (70)

which corresponds to Eq. (20) with a = −3/2.
The Compton wavelength of the neutrino is

λ∗Λ =
~

m∗Λc
=

(
G~
Λc3

)1/4

= 3.91× 10−5 m (71)

and its semi gravitational (or semi Schwarzschild) radius
is

r∗Λ =
Gm∗Λ
c2

=

(
Λ~3G3

c9

)1/4

= 6.67× 10−66 m. (72)

Their ratio scales as

λ∗Λ
r∗Λ

=
M2
P

(m∗Λ)2
= χ1/2 ∼ 1060. (73)

The numerical density of neutrinos (fermions) in the uni-
verse (of typical density ρΛ) is

n∗Λ =
ρΛ

m∗Λ
=

(
Λc3

G~

)3/4

. (74)

The total number of neutrinos is therefore

NF ∼ n∗ΛR3
Λ ∼

MΛ

m∗Λ
∼ χ3/4 ∼ 1090. (75)

The average distance between the neutrinos is

d∗Λ ∼ (n∗Λ)−1/3 ∼
(
G~
Λc3

)1/4

∼ 3.91× 10−5 m. (76)

It is of the order of their Compton wavelength (71) which
is a measure of their “size”. In this sense, the neutrinos
are densely packed in the universe.20 Conversely, if we

20 Of course, this statement should not be taken literally. This is
just an order of magnitude in the case where the universe would
be made only of neutrinos of mass m∗Λ uniformly distributed over
space. This picture is of course oversimplified.

require that the universe is made of particles whose in-
terparticle distance is equal to their Compton wavelength
(d∗Λ ∼ λ∗Λ) we find that m ∼ m∗Λ.

Remark: We encountered the mass scale (69) in Ref.
[30] by trying to determine from a Jeans stability analysis
the mass of the fermionic particle that may compose dark
matter halos.21 We found that the typical mass m ∼
1 keV/c2 of the fermionic dark matter particle is equal to
m∗Λ multiplied by a large prefactor of order 106. We also
obtained the relation

m∗Λ =
√
mΛMP , (77)

showing that the fundamental fermion mass (neutrino)
is the geometric mean of the cosmon (boson) mass and
the Planck mass [30]. This kind of general arguments
explains the huge difference of scales between the mass
of the fermion particle and the mass of the boson particle
that may compose dark matter. Indeed from Eqs. (62)
and (70) we get

m∗Λ
mΛ
∼ χ1/4 ∼ 1030, (78)

in qualitative agreement with the ratio between the val-
ues m ∼ 10−22 eV/c2 (for bosons) and m ∼ 1 keV/c2 (for
fermions) usually reported in the literature [30].

H. Mass scale law and an anomaly: Another
neutrino mass scale (a = −2)

Interestingly, when we regroup the foregoing results
and compare them with Eq. (19), we find that the mass
Ma of the universe corresponds to a = 3, the mass of
fermion stars corresponds to a = 2, the mass of mini
boson stars corresponds to a = 1, the Planck mass corre-
sponds to a = 0, the mass of the electron corresponds
to a = −1, the mass of the neutrino corresponds to
a = −3/2 (close to −2), and the mass of the cosmon cor-
responds to a = −3. Therefore, the parameter a takes
integer values between +3 and −3. These two extreme
values have a simple interpretation. For a = 3 (universe)
the mass scale defined by Eq. (19) is independent of ~
and for a = −3 (cosmon) it is independent of G. We
also note that Ma is independent of Λ for a = 0 (Planck
mass) and independent of c for a = −1 (electron).

When the mass Ma is normalized by the Planck mass,
using Eq. (20), we find that MΛ/MP ∼ 1060 for the uni-
verse (a = 3), M2/MP ∼ 1040 for fermion stars (a = 2),
M1/MP ∼ 1020 for mini boson stars (a = 1), me/MP ∼
10−20 for the electron (a = −1), m∗Λ/MP ∼ 10−30 for
the neutrino (a = −3/2), and mΛ/MP ∼ 10−60 for the
cosmon (a = −3). It is relevant to normalize the mass

21 Recently, Resca [60] obtained a similar result based on different
arguments.
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Ma by the Planck mass MP because: (i) it is the con-
ventional reference mass scale in physics; (ii) it depends
on the fundamental constants G, c and ~ but not on Λ
whose status as a fundamental constant of physics is still
controversial; (iii) it makes a clear separation between
micro and macro scales.22 Furthermore, this separation
is symmetrical: micro-objects (cosmon, neutrino, elec-
tron) correspond to a < 0 and macro-objects (mini bo-
son stars, fermion stars, Universe) correspond to a > 0.
These mass scales were introduced in our previous pa-
pers [11, 30] before realizing that they follow a simple
law. The mass scale law from Eq. (20) was realized a
posteriori.

Actually, this mass scale law presents an anomaly.
General considerations lead to a fermionic mass scale m∗Λ
corresponding to the half-integer value a = −3/2 instead
of the integer value a = −2. We have suggested that
the fundamental mass scale m∗Λ may be connected to the
mass of the neutrino but this suggestion remains of course
highly speculative. If we take a = −2 in order to respect
the integer nature of the mass scale law, we obtain the
mass

m2 =

(
Λ2~5

Gc3

)1/6

= 6.69× 10−46 g, (79)

i.e., m2 = 3.75 × 10−13 eV/c2 which may be associated
to another type of neurino. If we normalize this mass by
the Planck mass we obtain

m2

MP
∼ χ−1/3 ∼ 10−40. (80)

The Compton wavelength of the neutrino is

λ′2 =
~
m2c

=

(
G~

Λ2c3

)1/6

= 5.26× 105 m. (81)

It coincides with the semi gravitational radius (50) of
fermion stars. On the other hand, the semi gravitational
(or semi Schwarzschild) radius of the neutrino is

r2 =
Gm2

c2
=

(
Λ2~5G5

c15

)1/6

= 4.96× 10−76 m. (82)

It coincides with the Compton wavelength (51) of fermion
stars. The ratio of the Compton wavelength of the neu-
trino on its semi gravitational radius scales as

λ′2
r2

=
M2
P

m2
2

= χ2/3 ∼ 1080. (83)

The numerical density of neutrinos (fermions) in the uni-
verse (of typical density ρΛ) is

n2 =
ρΛ

m2
=

(
Λ4c15

G5~5

)1/6

. (84)

22 Roughly speaking, microphysics corresponds to particle physics
and macrophysics corresponds to astrophysics and cosmology.

The total number of neutrinos is therefore

N2 ∼ n2R
3
Λ ∼

MΛ

m2
∼ χ5/6 ∼ 10100. (85)

The average distance between the neutrinos is

d2 ∼ n−1/3
2 ∼

(
G5~5

Λ4c15

)1/18

∼ 1.65× 10−8 m. (86)

Remark: For convenience, the fermion of mass m∗Λ
(a = −3/2) will be called “neutrino A” and the fermion
of mass m2 (a = −2) will be called “neutrino B”. The
two mass scales m∗Λ and m2 differ by a factor m∗Λ/m2 ∼
χ1/12 ∼ 1010 (we have the same ratio me/m

∗
Λ ∼ χ1/12 ∼

1010 between the mass of the electron and the mass of
the neutrino A). The anomaly in our mass scale law and
the existence of (at least) two mass scales for fermions
(+ one if we include the electron) may be related to the
fact that there exist different (three) types of neutrinos:
electron neutrinos, muon neutrinos and tau neutrinos.

I. The earth mass (a = 3/2)

By the reciprocity property of Appendix B 3 it is nat-
ural to introduce a macro object of index a = 3/2 asso-
ciated with the neutrino of index a = −3/2. According
to Eq. (19) this object has a mass

M3/2 =

(
~c5

ΛG3

)1/4

= 5.27× 1025 g, (87)

i.e., M3/2 = 2.65×10−8M�. Interestingly, this argument
gives a mass scale of the order of the earth mass: M3/2 =

8.83×10−3M⊕ (recall that our orders of magnitudes are
valid up to a factor ∼ 100). The evaporation time of
a terrestrial mass black hole is tevap ∼ G2M3

3/2/~c
4 ∼

(1/~GcΛ3)1/4 ∼ 7.67× 1047 s, which is much larger than
the age of the universe tΛ.

The semi gravitational radius associated with the mass
M3/2 is

R3/2 =
GM3/2

c2
=

(
G~
Λc3

)1/4

= 3.91× 10−5 m. (88)

It is equal to the Compton wavelength (71) of the neu-
trino A. The Compton wavelength associated with the
mass M3/2 is

λ3/2 =
~

M3/2c
=

(
Λ~3G3

c9

)1/4

= 6.67× 10−66 m. (89)

It coincides with the semi gravitational radius (72) of the
neutrino A. If we normalize the mass (87) by the Planck
mass we obtain the large dimensionless number

M3/2

MP
= χ1/4 ∼ 1030, (90)
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which corresponds to Eq. (20) with a = 3/2. On the
other hand, the ratio of the Compton wavelength of
an object of mass M3/2 on its semi gravitational radius
scales as

λ3/2

R3/2
=

M2
P

M2
3/2

∼ χ−1/2 ∼ 10−60. (91)

Remark: By analogy with the results of Secs. IV B,
IV D and IV E, we may conjecture that the mass M3/2

corresponds to the general relativistic maximum mass of
a new type of “stars” made of particles of mass ∼ me.
Specifically, we conjecture the existence of a new type of
stars, that we call “solid stars”, with a general relativistic
maximum mass

Mmax ∼
(
~c
G

)5/4
1

m3/2
∼
M

5/2
P

m3/2
. (92)

The corresponding radius is R∗ ∼ GMmax/c
2 ∼

(~5/Gm6c3)1/4. If we replace m by me and use the Ed-
dington relation (13), we obtain the mass scale of terres-
trial objects [see Eq. (87)]:

M3/2 =
M

5/2
P

m
3/2
e

=

(
~c5

ΛG3

)1/4

= 5.27× 1025 g. (93)

Alternatively, if we identify the mass of a solid star (92)
with the mass of the universe (28), we obtain a particle
mass

m2 =
M

5/3
P

M
2/3
Λ

=

(
Λ2~5

Gc3

)1/6

= 6.69× 10−46 g, (94)

corresponding to the neutrino B.

V. FINAL REMARKS

In this section, we reformulate the previous results in
a slightly different manner by calculating the fundamen-
tal general relativistic mass scales (Chandrasekhar, Kaup
and Lee) with the characteristic masses of elementary
particles (electron, neutrino, cosmon) and provide gen-
eral rules.

A. Combinations of fundamental scales

The maximum mass of boson stars (Kaup mass) is
given by23

MB
max

MP
∼ MP

m
. (95)

23 In this section all the masses are normalized by the Planck mass.

For the cosmon of mass mΛ/MP ∼ χ−1/2 (a = −3) we
get the mass of the universe MΛ/MP ∼ χ1/2 (a = 3), for
the neutrino B of mass m2/MP ∼ χ−1/3 (a = −2) we get
the mass of a fermion star M2/MP ∼ χ1/3 (a = 2), for
the neutrino A of mass m∗Λ/MP ∼ χ−1/4 (a = −3/2) we

get the earth mass M3/2/MP ∼ χ1/4 (a = 3/2), and for

the electron of mass me/MP ∼ χ−1/6 (a = −1) we get
the mass of mini boson stars M1/MP ∼ χ1/6 (a = 1).
These correspondances are a direct consequence of the
reciprocity property (see Appendix B 3).

The maximum mass of solid stars is given by

Mmax

MP
∼
M

3/2
P

m3/2
. (96)

For the neutrino B of mass m2/MP ∼ χ−1/3 (a = −2)
we get the mass of the universe MΛ/MP ∼ χ1/2 (a = 3),
for the neutrino A of mass m∗Λ/MP ∼ χ−1/4 (a = −3/2)

we get a new mass scale M/MP ∼ χ3/8 (a = 9/4) which
is of the order of the galactic mass,24 and for the electron
of mass me/MP ∼ χ−1/6 (a = −1) we get the mass of
solid stars (earth’s mass) M3/2/MP ∼ χ1/4 (a = 3/2). In
the case of the cosmon, the mass (96) is larger than the
mass of the universe.

The maximum mass of fermion stars (Chandrasekhar’s
mass) is given by

MF
max

MP
∼ M2

P

m2
. (97)

For the neutrino A of mass m∗Λ/MP ∼ χ−1/4 (a = −3/2)

we get the mass of the universe MΛ/MP ∼ χ1/2 (a = 3),
for the electron of mass me/MP ∼ χ−1/6 (a = −1) we get
the mass of fermion stars M2/MP ∼ χ1/3 (a = 2). In the
other cases (cosmon and neutrino B) the Chandrasekhar
mass is larger than the mass of the universe.

The maximum mass of soliton stars (Lee’s mass) is
given by

MS
max

MP
∼ M3

P

m3
. (98)

For the electron of mass me/MP ∼ χ−1/6 (a = −1) we
get the mass of the universe MΛ/MP ∼ χ1/2 (a = 3). In
the other cases (cosmon and neutrinos) the Lee mass is
larger than the mass of the universe.

Remark: In the above examples, the obvious condition
Mmax > m implies m < MP . This is why we have only
considered the mass m of micro objects.

B. Rule based on the mass of universe

The mass of the universe MΛ corresponds to:

24 We find M9/4 = (~c13/Λ3G7)1/8 = 4.13 × 107M�. Interest-
ingly, the index a = 9/4 is close to the index 5/2 considered by
Chandrasekhar [29] for the galaxies (see Sec. III).
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(i) the maximum mass of boson stars (Kaup mass)
calculated with the cosmon mass mΛ(= m3);

(ii) the maximum mass of solid stars calculated with
the mass m2 of the neutrino B;

(iii) the maximum mass of fermion stars
(Oppenheimer-Volkoff mass) calculated with the
mass m∗Λ(= m3/2) of the neutrino A;

(iv) the maximum mass of soliton stars (Lee mass)
calculated with the electron mass me(= m1).

This is how we have introduced our fundamental micro
objects: the cosmon (a = −3), the neutrinos B (a = −2)
and A (a = −3/2) and the electron (a = −1).

C. Rule based on the electron mass

Taking as a reference the mass me of the electron:
(i) the maximum mass of soliton stars (Lee mass) cor-

responds to the mass of the universe MΛ;
(ii) the maximum mass of fermion stars (Oppenheimer-

Volkoff mass) corresponds to the solar mass M2;
(iii) the maximum mass of solid stars corresponds to

the mass of the earth M3/2;
(iv) the maximum mass of boson stars (Kaup mass)

corresponds to the mass of mini boson stars M1.
This is how we have introduced our fundamental macro

objects: the universe (a = 3), the fermion stars (sun)
(a = 2), the solid stars (earth) (a = 3/2) and the mini
boson stars (a = 1).

VI. CONCLUSION

In this paper, by combining the maximum mass of
fermion stars (Chandrasekhar), boson stars (Kaup) and
soliton stars (Lee) with the Eddington relation, and mak-
ing a sort of “cosmic numerology” [13], we have shown
that the typical mass of the macro and micro objects
in the Universe can be expressed in terms of the funda-
mental constants of physics including the cosmological
constant. When normalized by the Planck mass, these
mass scales can be expressed as some powers of the fun-
damental dimensionless number

χ =
ρP
ρΛ

=
c3

G~Λ
∼ 10120. (99)

Specifically, the mass of the Universe, fermion stars, mini
boson stars, Planck black holes, the electron, the neutrino
and the cosmon follow a simple law

Ma

MP
∼ χa/6 ∼ (1020)a (100)

with a = 3, 2, 1, 0,−1,−2,−3 (see Table I).25 This mass
scale law makes a bridge between “infinitely” large scales

25 Of course, from the general expression (19) of the mass in terms
of the fundamental constants of physics, we can contruct an in-

and “infinitely” small scales.26 Actually, those scales do
not extend ad infinitum because of the large but finite
value of χ. There exists a maximum mass MΛ corre-
sponding to the mass of the Universe and a minimum
mass mΛ corresponding to the particle of dark energy
(cosmon). The Planck mass MP can be seen as an inter-
mediate (or “middle”) mass separating the macro-world
(stars and galaxies) from the micro-world (elementary
particles).

The dimensionless number χ is extremely important
because it involves all the fundamental constants of
physics G (gravity), c (electromagnetism and relativity),
~ (quantum mechanics) and Λ (cosmology). Further-
more, this number χ ∼ 10120 is gigantic. We conjec-
tured that it is the “largest large number” occurring in
Nature. This claim is supported by the holographic prin-
ciple when applied to the Universe as a whole (see Ap-
pendix B). The number χ ∼ 10120 corresponds to the
entropy SΛ/kB of the universe which is equal to the num-
ber NB = MΛ/mΛ of cosmons (quanta of dark energy).
The greatness of χ can be understood by the fact that
the number of degrees of freedom in the universe is huge,
i.e., the universe contains a huge number of cosmons. It
can also be understood by the fact that χ is equal to the
ratio between the Planck density ρP which is the largest
density of the universe (it represents the density of the
early universe) and the cosmological density ρΛ which
is the smallest density of the universe (it represents the
density of the late universe).

By using the Eddington relation, all the large num-
bers identified in the past literature can be expressed in
terms of powers of χ. For example, the typical age of
the universe measured in units of the atomic time (Dirac
number) is given by tΛ/ta ∼ χ1/3 ∼ 1040, the force ratio
(Weyl’s number) is given by F ∼ e2/Gmpme ∼ χ1/3 ∼
1040, the number of protons (or electrons) in the uni-
verse (Eddington’s number) is given by Np ∼MΛ/mp ∼
χ2/3 ∼ 1080, the number of bosons (cosmons) in the uni-
verse is given by NB ∼ MΛ/mΛ ∼ χ ∼ 10120, and the
number of fermions (neutrinos) in the universe is given

by NF ∼ MΛ/m
∗
Λ ∼ χ3/4 ∼ 1090 (NF ∼ N

3/4
B ). Simi-

larly, the typical number of bosons in a mini boson star

finity of mass scales by adopting arbitrary values of a. In our
approach, instead of trying to fit the values of a to some char-
acteristic masses observed in Nature, we introduced some rele-
vant mass scales from general considerations based on the fun-
damental mass limits of fermion, boson and soliton stars and
we deduced the corresponding values of a. These considerations
showed that Nature follows a certain organization by selecting
particular values of a = 3, 2, 1, 0,−1,−2,−3 that are more rele-
vant than others.

26 The wonders of the micro and macro cosmos, and their connec-
tions, have often amazed scientists, philosophers and poets. In
this connection, we would like to mention the beautiful text of
Blaise Pascal on The two infinities [61] which is one of the monu-
ments of the French literature. The quadricentenary of his birth
is commemorated this year.
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is NB ∼ MB
max/me ∼ M2

P /m
2
e ∼ χ1/3 ∼ 1040 and the

typical number of fermions in a fermion star is NF ∼
MF

max/me ∼ M3
P /m

3
e ∼ χ1/2 ∼ 1060 (NF ∼ N 3/2

B ).
These numbers are large because they are equal to some
powers of χ = ρP /ρΛ which is large.27 We suggest that
the fundamental origin of the large (and small) num-
bers in Nature is related to the large value of χ, i.e., the
fact that the Planck density and the cosmological density
differ by 120 orders of magnitude. On the other hand,
the fine structure constant α = e2/~c ' 1/137 and the
mass ratio of proton and electron µ = mp/me ' 1836
are of order unity (i.e. χ0) or, possibly scale as (pow-
ers of) lnχ. The following scalings have been suggested:
1/α ∼ (1/2) lnχ or 1/α ∝ (lnχ)1/2 and µ ∝ 1/α or
µ ∝ 1/α2 or even µ ∝ 1/α2/3 (see [11, 13] and Appendix
A).

By eliminating χ between the different large (and
small) numbers we can explain the numerous mysteri-
ous coincidences observed by previous authors and find
new ones. Indeed, the large numbers are related to each
other by simple power laws. For example, we have the
relations

χ ∼
(
tΛ
ta

)3

∼ F 3 ∼ N3/2
p ∼ NB ∼ N4/3

F ∼ N 2
F ∼ N 3

B

∼
(
MΛ

MP

)2

∼
(
M2

MP

)3

∼
(
M3/2

MP

)4

∼
(
M1

MP

)6

∼
(
MP

me

)6

∼
(
MP

m∗Λ

)4

∼
(
MP

m2

)3

∼
(
MP

mΛ

)2

∼
(
tΛ
tP

)2

∼ ρP
ρΛ
∼
(
RΛ

re

)3

∼
(
RΛ

lP

)2

∼
(
m∗Λ
mΛ

)4

(101)

and many others. These numerical coincidences are dif-
ferent manifestations of a unique fundamental relation
between atomic and cosmic structural constants, the Ed-
dington relation (13), which remains highly enigmatic.
The Eddington relation is a relation between the ele-
mentary mass of the electron me and the cosmological
constant Λ. In a previous paper [11] we have introduced
the refined formula

me ' α
(

Λ~4

G2

)1/6

or Λ ' G2m6
e

α6~4
, (102)

which is relatively accurate [see Eq. (37) in [11] and Eq.
(A9) of Appendix A] and we have given several heuris-
tic justifications of this relation. We view the accurate
Eddington relation (102) as a fundamental relation that
connects atomic physics (microphysics) and cosmology

27 Of course, by the same argument, very small numbers like the
mass of elementary particles normalized by the Planck mass are
small because they are equal to some inverse powers of χ =
ρP /ρΛ.

(macrophysics). This is one of the most intriguing equa-
tions of physics because it is numerically obvious but
completely mysterious.28 Since it involves G, ~ and Λ it
is intimately connected to quantum mechanics and gen-
eral relativity. It may be explained by a future theory of
quantum gravity which remains to be constructed. Sur-
prisingly, the Eddington relation is not very well-known
among physicists and one motivation of the present con-
tribution was to publicize it (see also our companion pa-
per [13]). The Eddington relation and the mass scale
law that we deduced from it forms a bridge between
the “macroscopic” and the “microscopic” properties of
the universe or between cosmology and particle physics.
These connections still remain to be fully understood.

Finally, our study gives some hints how to solve long
standing problems in cosmology such as the cosmological
constant problem [23, 24], the cosmic coincidence prob-
lem [62, 63], and the large number coincidence problem
[3, 4]. It is usually argued in particle physics that the cos-
mological constant should be of the order of the Planck
scale (i.e. ρΛ ∼ ρP or Λ ∼ l−2

P ). The fact that the
measured cosmological density ρΛ differs from the Planck
density ρP by about 120 orders of magnitude leads to the
so-called cosmological constant problem. However, the
Eddington relation (102) suggests that Λ is connected
to the mass of the electron instead of the Planck mass,
yielding ρΛ/ρP ∼ 10−120 � 1 in agreement with the ob-
servations. Indeed, the Eddington relation (102) may be
rewritten as

Λ ' 1

α6l2P

(
me

MP

)6

, (103)

showing that the small value of the cosmological con-
stant comes from the attenuation factor (me/MP )6 ∼
χ−1 ∼ 10−120. On the other hand, if we combine the
Eddington relation (13) with the Weinberg relation (12),
which can be explained by Dicke’s anthropic principle
leading to Eq. (14), we find that H0 ∼ c

√
Λ meaning

that the age of the universe t0 ∼ 1/H0 is of the order

of the cosmological time tΛ ∼ 1/(c
√

Λ). This implies
that the proportions of DM and DE are comparable in
the present universe (i.e. we live at the transition be-
tween the Einstein-de Sitter era and the de Sitter era).
It could even be that Ωde,0/Ωdm,0 ' e = 2.71828... [12].
These considerations may solve the cosmic coincidence
problem (see Appendix D). Finally, the large number co-
incidences essentially result from the Eddington relation
(102) and the Friedmann equations of cosmology imply-
ing the relation RΛ = GMΛ/c

2 between the size and the
mass of the universe. Depending on the interpretation,
the large dimensionless numbers are (enormously) large
because (i) the universe contains a large number of pro-
tons Np ∼ 1080 [15], (ii) the universe is old t0/ta ∼ 1040

28 Weinberg [21] emphasized the fundamental importance of this
type of relations and the fact that they are largely unexplained.
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Object a Ma Ma/MP

Universe (soliton star) 3 MΛ = c2

G
√

Λ
χ1/2 ∼ 1060

fermion star (sun) 2 M2 =
(

~c9
G5Λ2

)1/6

χ1/3 ∼ 1040

solid star (earth) 3/2 M3/2 =
(

~c5
G3Λ

)1/4

χ1/4 ∼ 1030

mini-boson star 1 M1 =
(

~2c6
G4Λ

)1/6

χ1/6 ∼ 1020

Planck black hole 0 MP =
( ~c

G

)1/2
χ0 ∼ 1

electron (fermion) −1 me ∼
(

Λ~4
G2

)1/6

χ−1/6 ∼ 10−20

neutrino A (fermion) −3/2 m∗Λ =
(

Λ~3
Gc

)1/4

χ−1/4 ∼ 10−30

neutrino B (fermion) −2 m2 =
(

Λ2~5
Gc3

)1/6

χ−1/3 ∼ 10−40

cosmon (boson) −3 mΛ = ~
√

Λ
c

χ−1/2 ∼ 10−60

TABLE I: Mass scale law Ma/MP ∼ χa/6 ∼ (1020)a connecting macro objects (universe, fermion stars, mini-boson stars) and

micro objects (electron, neutrino, cosmon). The mass of these objects is normalized by the Planck mass MP = (~c/G)1/2 =
2.18× 10−5 g.

[3, 4], (iii) its entropy is large, i.e., the universe con-
tains a large number of cosmons (quanta of dark energy):
SΛ/kB ∼ MΛ/mΛ ∼ NB ∼ χ ∼ 10120 (see Appendix B).
This may be related to a form of H-theorem.

Appendix A: Universal surface density of dark
matter halos and the surface density of the electron

It is an observational evidence that the surface density
of dark matter halos has a universal value [64]

Σobs ≡ ρ0rh ' 295+173
−107 g m−2 ' 141+83

−52M� pc−2, (A1)

even if their sizes and masses vary by several orders
of magnitude (the mass of dark matter halos typically
ranges from 108M� and 1014M�). Here, ρ0 is the cen-
tral density of a DM halo and rh is the halo radius at
which the central density has been divided by 4. There-
fore, the mass of DM halos scales with their radius as
Mh ∼ Σr2

h. We shall call this mass-radius relation the
M -R2 relation.

In Refs. [9–12], we have developed a cosmological
model based on a logotropic equation of state leading
to a prediction of the universal surface density of DM
halos without free parameter.29 We derived the formula

Σth = 0.01955
c2
√

Λ

G
= 278 g m−2 = 133M� pc−2, (A2)

29 The density of the logotropic sphere decreases as ρ ∼ r−1 yield-
ing a constant surface density Σ ∼ ρR ∼ 1 and a mass-radius
relation M ∼ R2. In comparison, the density of the isothermal
sphere decreases as ρ ∼ r−2 yielding a constant M/R ratio and
a mass-radius relation M ∼ R like for black holes (see [65] for
the analogy between isothermal spheres and black holes). In a
sense, the logotropic equation of state can be interpreted as a
sort of isothermal equation of state in the context of generalized
thermodynamics [9–12].

which turns out to be in good agreement with the obser-
vational (empirical) value from Eq. (A1). We stress that
the prefactor in Eq. (A2) is determined by the theory30

so there is no adjustable parameter in our model. This
relation expresses the universal surface density of DM ha-
los in terms of the fundamental constants of physics G,
c and Λ.

We also predicted that the present ratio of dark en-
ergy (DE) and dark matter (DM) is equal to the Euler
number:

Ωth
de,0

Ωth
dm,0

= e = 2.71828... (A3)

This prediction is in good agreement with the observa-
tional value Ωobs

de,0/Ω
obs
dm,0 = 2.669± 0.08 within the error

bars. This result is disturbing because the ratio of DE
and DM changes with time so it is only at the present
epoch (“now”) that it is equal (or close) to e. This sug-
gests that our epoch plays a particular role in the history
of the universe (see Fig. 3 in [12]). This is a form of
“strong cosmic coincidence” (see Appendix D). In the
absence of an explanation, we called this intriguing re-
sult “dark magic” [12].31

It is not clear if our logotropic theory is correct or
if the two predictions (A2) and (A3) are pure coinci-
dences. Anyway, the relation from Eq. (A2), which can
be checked by a direct numerical application, is interest-
ing in itself. It shows that the order of magnitude of the
surface density of DM halos can be expressed in terms of

30 It is given by (B/32)1/2ξh/π where B = 1/ ln(ρP /ρΛ) = 3.53×
10−3 and ξh = 5.85 is the normalized radius of a polytrope of
index n = −1 (logotrope) derived from the Lane-Emden equation
[9–12]. Note that B = 1/ lnχ.

31 More generally, the expression “dark magic” could refer to all
the mysteries of dark matter and dark energy.
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the fundamental constants of physics as32

ΣΛ =
c2
√

Λ

G
= 1.42× 104 g m−2 = 6800M�/pc2. (A4)

This quantity is of the order of the surface density of the
universe ΣΛ = MΛ/R

2
Λ = c2

√
Λ/G (see Sec. IV B).

We then remarked that the surface density of DM halos
(or the surface density of the Universe) is of the same
order of magnitude as the surface density of the electron.
The classical radius of the electron re can be obtained
qualitatively by writing that the electrostatic energy of
the electron, e2/re, is equal to its rest-mass energy mec

2

i.e.33

mec
2 =

e2

re
. (A5)

This relation was originally obtained in connection to the
Abraham-Lorentz [66, 67] model of the extended elec-
tron, in which the mass has an electromagnetic origin,
and in the Born-Infeld [68, 69] theory of nonlinear elec-
trodynamics (see a short history of these old models in
Appendix F of [40]). Recalling the value of the charge
of the electron e = 4.80 × 10−13 g1/2 m3/2 s−1 and its
mass me = 9.11 × 10−28 g, we obtain re = e2/mec

2 =
2.82× 10−15 m.34 As a result, the typical surface density
of the electron is

Σe =
me

r2
e

=
m3
ec

4

e4
= 115 g m−2 = 54.9M� pc−2. (A6)

As we can see, the surface density of the electron is of the
same order of magnitude as the surface density of dark
matter halos from Eq. (A2) or as the surface density
of the universe from Eq. (A4). They differ by a factor
2− 100 which can be regarded as being of order unity in
our qualitative approach. Therefore

Σe ∼ Σ ∼ ΣΛ. (A7)

32 We note that pure dimensional analysis or heuristic consider-
ations leading to Eq. (A4) are not sufficient to explain the
observational result from Eq. (A1). We need the value of
the prefactor 0.01955 in Eq. (A2) which is predicted by our
model. However, if we use the Einstein gravitational con-
stant 8πG (or κ = 8πG/c4) instead of the Newton constant
G, we obtain Σth = 0.491 c2

√
Λ/(8πG) where the prefactor is

of order unity (actually close to 1/2). Therefore, the formula
Σ′Λ = c2

√
Λ/(8πG) =

√
Λ/(κc2) provides a relatively accurate

order of magnitude of the surface density of DM halos.
33 Similarly, the condition mc2 ∼ Gm2/r gives the (semi)

Schwarzschild radius r = Gm/c2.
34 We note that the classical radius of the electron can be written

as re = α~/mec = αλe where λe = ~/mec = 3.86 × 10−13 m is
the Compton wavelength of the electron and α = e2/~c ' 1/137
is the fine-structure constant. Therefore, the classical electron
radius is smaller than the scale at which quantum effects come
into play. We also note that the semi gravitational radius of the
electron is rg = Gme/c2 = 6.76× 10−58 m.

This coincidence is amazing in view of the different scales
(atomic versus cosmological) involved.35 This provides
a curious connection between microphysics and cosmo-
physics.

Equating Eqs. (A4) and (A6), and using e2 ∼ ~c, we
obtain

me ∼
(

Λ~4

G2

)1/6

. (A8)

This equation relates the mass of the electron to the cos-
mological constant (or the converse) and the other fun-
damental constants of physics. It corresponds to the re-
lation (13) that Eddington obtained in a different man-
ner.36 The fact that the Eddington relation (A8) ex-
presses the commensurability of the surface density of
the Universe and the surface density of the electron [see
Eq. (A7)] may help elucidating its physical meaning.
Other derivations of this relation are given in Appendix
C based on entropic arguments and the holographic prin-
ciple. The Eddington relation (A8) is not very accurate:
the left and side and the right hand side differ by a factor
∼ 100. However, the refined relation [11, 13]

me ' α
(

Λ~4

G2

)1/6

, (A9)

where α = e2/~c ' 1/137 is the Sommerfeld fine-
structure constant, gives a relatively accurate determi-
nation of the mass of the electron, or conversely, of
the cosmological constant (the value of the right hand
side of Eq. (A9) is 8.80 × 10−28 g which is close to
me = 9.11 × 10−28 g). This close agreement suggests
that relation (A9) may have a fundamental significance
[11, 13]. Furthermore, the form of this equation suggests
an expansion in powers of α� 1. Eq. (A9) could be the
leading term of this expansion and subsequent (pertur-
bative) terms may further improve the agreement with
the mass of the electron. Using the accurate Eddington
relation (A9), the cosmological density can be written as

ρΛ =
Λc2

8πG
' Gm6

ec
2

8πα6~4
' Gm6

ec
8~2

8πe12
(A10)

35 By comparison, the volume density of the electron ρe ∼ me/r3
e =

4.07×1016 g m−3 differs from the volume density of the universe
ρΛ = 5.96 × 10−24 g m−3 by 40 orders of magnitude (by using
the results of the main text, we can easily establish that ρe/ρΛ ∼
χ1/3 ∼ 1040).

36 We arrived at this relation by ourselves in Ref. [11] by devel-
oping the logotropic model along the lines described previously.
We then remembered having seen a similar relation in the book
of Weinberg [21]. He mentioned that this kind of relation was
established by several scientists before him but did not give ref-
erences. We made an exhaustive bibliographic work to retrace
the history of this relation that finds its origin in the work of
Eddington [5]. A detailed history of the Eddington relation will
be presented in a forthcoming paper [13].
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and the electron radius as

re = αλe '
(
G2~2

Λc6

)1/6

. (A11)

We have the relation

r3
e ' l2PRΛ. (A12)

Finally, if we account for the B = 1/ lnχ factor in Eq.
(A2) (see footnote 30) and repeat the above arguments,
we get [11]

α ∝ B1/2 ∝ (lnχ)−1/2, (A13)

suggesting that the fine-structure constant is related to
the logarithm of the cosmological constant.

The accurate Eddington relation (A9) is equivalent to
the expression

r2
e

RΛrg
' 1

α
, (A14)

where re = e2/mec
2 is the classical radius of the elec-

tron, rg = Gme/c
2 is the semi gravitational radius of the

electron and RΛ = 1/
√

Λ is the radius of the universe. It
is also equivalent to

R2
Λ ' αNer2

e , (A15)

where Ne = MΛ/me is the number of electrons in the
universe. Equation (A15) can be rewritten as

me

r2
e

' αMΛ

R2
Λ

. (A16)

This formula shows that the surface density of the elec-
tron is equal to the surface density of the universe up to
a factor α (i.e. Σe ' αΣΛ).

Instead of working with the surface density of the elec-
tron, we could consider working with the surface den-
sity of the proton of mass mp = 1.67 × 10−24 g. The
proton radius is of the order of its Compton wavelength
λp = ~/mpc = 2.10 × 10−16 m. Therefore, its surface
density is

Σp =
mp

λ2
p

=
m3
pc

2

~2
. (A17)

The surface density of the electron can be written as

Σe =
me

r2
e

=
m3
ec

4

e4
=
m3
ec

2

α2~2
. (A18)

Using mp = µme, we get

mp

λ2
p

= µ3α2me

r2
e

. (A19)

The prefactor is µ3α2 = 3.30 × 105. Combining this
relation with Eq. (A16) we get

mp

λ2
p

' µ3α3MΛ

R2
Λ

. (A20)

The prefactor is µ3α3 = 2.40 × 103. If we require that
the prefactor is independent of α we find that

µ =
mp

me
=
k

α
(A21)

with k ' 13.4 (empirical). This suggests that µ ∝ 1/α.37

We find the same scaling if we compare the accurate
Eddington relation (A9) with the original Eddington re-
lation (1). The accurate Eddington relation (A9) can
therefore be written as

mp

λ2
p

= k3MΛ

R2
Λ

(A22)

or, equivalently, as

R2
Λ = k3Npλ

2
p, (A23)

where Np = MΛ/mp is the number of protons in the
universe. Finally, combining the relation re = e2/mec

2 =
α~µ/mpc = αµλp with Eq. (A21), we find that

re = kλp. (A24)

Therefore, the electron radius is of the order of the Comp-
ton wavelength of the proton re ∼ λp (up to a factor
k ' 13.4).

Remark: The universality of the surface density of DM
halos is equivalent to the universality of their surface
gravity (or gravitational acceleration)

a =
GMh

r2
h

∼ GΣ. (A25)

Using Eq. (A4), we get

ath ∼ aΛ ∼ GΣΛ ∼ c2
√

Λ ∼ c2/RΛ ∼ H0c. (A26)

The surface gravity of DM halos a is of the order of
the surface gravity of the universe aΛ = GMΛ/R

2
Λ =

RΛ/t
2
Λ = c/tΛ. To obtain the last equality in Eq. (A26)

we have used the relation H0 ∼ c
√

Λ coming from the
cosmic coincidence (see Appendix D). A more careful
analysis [11, 12] based on Eq. (A2) gives ath ' H0c/4 =
1.65×10−10 m/s2 for the universal surface gravity of DM
halos, which is close to the value of the fundamental ac-
celeration appearing in the MOND theory [70]. We note
that a universal surface density Σ ∼Mh/r

2
h (or a univer-

sal surface gravity a ∼ GMh/r
2
h) combined with the virial

relation v2
c ∼ GMh/rh, where vc is the circular velocity,

leads to the Tully-Fisher relation v4
c ∼ ΣG2Mh ∼ aGMh

(see [11, 12] for a more precise discussion). We also note

37 The value of k is close to 1/(10α) so we also have µ ' 1/(10α2)
which suggests µ ∝ 1/α2. It is not easy to distinguish between
the two scalings µ ∝ 1/α and µ ∝ 1/α2 [13]. We could also
require that the prefactor in Eq. (A19) is independent of α. In
that case, we find that µ = k′/α2/3 with k′ ' 69.1 (empirical).
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that the surface gravity a = GM/R2 of a Schwarzschild
black hole with radius R = 2GM/c2 is

a =
c4

4GM
. (A27)

If we apply this relation to the Universe as a whole (in-
terpreted as a huge black hole) of mass M ∼ MΛ ∼
c2/G

√
Λ, we recover Eq. (A26). This is because

the Universe satisfies both the M -R2 relation and the
Schwarzschild relation (see Appendix B). Finally, Eq.
(A7) implies that

ae ∼ a ∼ aΛ. (A28)

The surface gravity of the electron ae = Gme/r
2
e is of the

order of the surface gravity of DM halos a = GMh/r
2
h and

of the surface gravity of the Universe aΛ = GMΛ/R
2
Λ.

This is equivalent to the Eddington relation (A8).

Appendix B: Holographic principle and reciprocity
property

1. Holographic principle

The holographic principle [71–73] states that the en-
tropy S of a physical system subject to gravity is bounded
from above by a quarter of its boundary area A = 4πR2

in Planck units:

S ≤ kB
A

4l2P
. (B1)

As a result, the physical degrees of freedom are not pro-
portional to the volume in the presence of the gravita-
tional field, but reside on the bounding surface like a
hologram. This form of entropy was initially introduced
in the context of black hole physics by Bekenstein [74]
and Hawking [32] where A is the area of the horizon.
In the following, we shall only work with orders of mag-
nitude and assume that the entropy of an object scales
as

S ∼ kB
(
R

lP

)2

. (B2)

The associated temperature T ∼ E/S ∼Mc2/S reads

kBT ∼
GM~
R2c

∼ GΣ~
c
∼ ~a

c
, (B3)

where we have introduced the surface density Σ ∼M/R2

and the surface gravity (acceleration) a ∼ GM/R2 ∼ GΣ
of the object. This is the so-called Unruh temperature
[75].

For a Schwarzschild black hole, using the relation

R =
2GM

c2
(B4)

between its mass and its radius, we obtain the
Bekenstein-Hawking entropy38

SBH ∼ kB
(
M

MP

)2

. (B5)

It is proportional to the square of the mass of the
black hole. The Bekenstein-Hawking temperature TBH ∼
E/SBH ∼Mc2/SBH reads

kBTBH ∼
M2
P c

2

M
∼ ~c3

GM
∼ ~c
R
, (B6)

or, in Planck units,

TBH

TP
∼ MP

M
∼ lP
R
. (B7)

These expressions can also be obtained from the Unruh
temperature (B3) by using Eq. (A27) valid for a black
hole. Since E = Mc2 ∼ ~c5/(GkBT ) the black holes
have a negative specific heat

C =
dE

dT
∼ − ~c5

GkBT 2
< 0. (B8)

By loosing heat, they grow hotter. This strange property
is not limited to black holes. Self-gravitating systems
[76–78] and, more generally, systems with long-range in-
teractions [79] may also have negative specific heats in
the microcanonical ensemble (the statistical ensembles
are inequivalent for non additive systems).

On the other hand, we have seen that certain objects
such as the electron, the DM halos and the universe sat-
isfy the mass-radius relation

M ∼ ΣΛR
2 (B9)

with

ΣΛ =
c2
√

Λ

G
. (B10)

We called this law the M -R2 relation. Combining Eqs.
(B2) and (B9), and noting that mΛ = ΣΛl

2
P , we find that

the entropy of the objects satisfying the M -R2 relation
scales as

S̃ ∼ kB
M

mΛ
∼ kBN. (B11)

Interestingly, their entropy turns out to be proportional
to the number N = M/mΛ of cosmons that they contain

38 Coincidentally, the initials stand either for “black hole” or
“Bekenstein-Hawking”.
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(in a real or in an effective sense).39 The corresponding

temperature T̃ ∼ E/S̃ ∼Mc2/S̃ reads

kBT̃ ∼ ~c
√

Λ ∼ mΛc
2, (B14)

or, in Planck units,

T̃

TP
∼ mΛ

MP
∼ χ−1/2 ∼ 10−60. (B15)

These expressions can also be obtained from the Unruh
temperature (B3) by using Eq. (A26) valid for objects
that satisfy theM -R2 relation. These results apply to the
Universe, the DM halos, and the electron (and possibly
others systems). These objects have a universal tempera-

ture T̃ equal to the rest mass energy of the cosmon. This
is the temperature of the vacuum. It can be regarded as
the smallest temperature in the universe. Numerically,
T̃ ∼ 2.41× 10−29 K.

2. Examples

Let us specifically discuss different examples:
(i) The Universe (which can be interpreted as a huge

black hole) satisfies both the Schwarzschild relation (B4)
and the M -R2 relation (B9). Using either the entropy
(B5) or the entropy (B11) with M = MΛ, we obtain

SΛ/kB ∼
(
MΛ

MP

)2

∼ MΛ

mΛ
∼ χ ∼ 10120. (B16)

This is the largest value of the entropy that we can ob-
tain. This result suggests that 10120 may be interpreted

39 Writing M = NmΛ, we can interpret the cosmon as the quantum
of mass. Indeed, for N = 1 (ground state), we have Mground =
mΛ. This is consistent with the quantization of mass proposed
by Wesson [55]. Comparing Eqs. (B2) and (B11) we also have
R ∼

√
N lP . This suggests that the minimum length scale in

nature (N = 1) is the Planck length lP . We therefore propose
the quantization of mass, length and entropy as

M ∼ N mΛ, R ∼
√
N lP , S̃ ∼ N kB , (B12)

where N is an integer. This is valid for objects that respect the
M − R2 relation (this is not valid for black holes except for the
universe as a whole). The ground state (N = 1) is the cosmon
with mass mΛ, size lP and entropy S̃c ∼ kB (one bit). These
results can be compared with the quantization of black holes
proposed by He and Ma [80] leading to

R ∼
√
n lP , M ∼

√
nMP , SBH ∼ nkB , (B13)

where n is an integer. The ground state (n = 1) is the Planck
black hole with mass MP , size lP and entropy SP ∼ kB (one
bit). This is the smallest stable black hole. There should not
be black holes with a mass smaller than the Planck mass. This
conjecture supports the existence of primordial black holes. They
range from mini black holes of the Planck scale produced at
tP ∼ 5.39× 10−44 s to very big ones with large n.

as the “largest large number” in Nature.40 Using Eq.
(B6) with M = MΛ or Eq. (B14), the temperature of
the universe is

kBTΛ ∼ ~c
√

Λ ∼ mΛc
2, (B17)

i.e., TΛ ∼ 2.41 × 10−29 K. It is equal to the rest mass
energy of the cosmon.41 In Planck units, we have

TΛ

TP
∼ MP

MΛ
∼ lP
RΛ
∼ χ−1/2 ∼ 10−60. (B18)

(ii) For a black hole resulting from the collapse of a
fermion star, using Eq. (B5) with M = M2, we obtain

S2/kB ∼
(
M2

MP

)2

∼ χ2/3 ∼ 1080. (B19)

Using Eq. (B6), its temperature is

kBT2 ∼
(

Λ2~5

Gc3

)1/6

c2 ∼ m2c
2, (B20)

i.e., T2 ∼ 4.35 × 10−9 K. It is equal to the rest mass
energy of the neutrino B. In Planck units, we have

T2

TP
∼ MP

M2
∼ lP
R2
∼ χ−1/3 ∼ 10−40. (B21)

For a dark energy star of mass M2 and radius R̃2 ∼
(~G/c3Λ5)1/12 ∼ χ5/12 lP ∼ 7.07 × 1015 m satisfying the
M −R2 relation we get

S̃2/kB ∼
M2

mΛ
∼ χ5/6 ∼ 10100. (B22)

(iii) For a black hole resulting from the collapse of a
solid star, using Eq. (B5) with M = M3/2, we obtain

S3/2/kB ∼
(
M3/2

MP

)2

∼ χ1/2 ∼ 1060. (B23)

40 Since the radius of the visible universe increases as R = ct the
mass of the universe increases as M ∼ c2R/G ∼ c3t/G for
t ≤ tΛ [13]. It goes from the Planck mass MP at tP (pri-
mordial universe) to the cosmological mass MΛ at tΛ (now).
As a result, the entropy of the universe SBH/kB ∼ (R/lP )2 ∼
(M/MP )2 increases as SBH ∼ t2 (the corresponding temper-
ature TBH/TP ∼ lP /R ∼ MP /M decreases as TBH ∼ 1/t).
This forms an H-theorem and explains the large value of the
entropy SΛ/kB ∼ (RΛ/lP )2 ∼ (MΛ/MP )2 ∼ 10120 of the uni-
verse at the present epoch (it was of order SP /kB ∼ (lP /lP )2 ∼
(MP /MP )2 ∼ 1 at the Planck time). By contrast, the usual en-
tropy is conserved by the Friedmann equations and has the value
S/kB ∼ (tΛ/tP )3/2 ∼ χ3/4 ∼ 1090 [25].

41 Using the relation H0 ∼ c
√

Λ resulting from the cosmic coinci-
dence (see Appendix D) we can rewrite Eq. (B17) as kBTH ∼
~H0. This is the so-called Gibbons-Hawking [81] temperature.
It can be obtained from the Heisenberg uncertainty principle
E × t0 ∼ ~ by taking E ∼ kBT and t0 ∼ 1/H0.
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Using Eq. (B6), its temperature is

kBT3/2 ∼
(

Λ~3

Gc

)1/4

c2 ∼ m∗Λc2, (B24)

i.e., T3/2 ∼ 58.4 K.42 It is equal to the rest mass energy
of the neutrino A. In Planck units, we have

T3/2

TP
∼ MP

M3/2
∼ lP
R3/2

∼ χ−1/4 ∼ 10−30. (B25)

For a dark energy star of mass M3/2 and radius R̃3/2 ∼
(~G/c3Λ3)1/8 ∼ χ3/8 lP ∼ 6.10 × 1010 m satisfying the
M −R2 relation we get

S̃3/2/kB ∼
M3/2

mΛ
∼ χ3/4 ∼ 1090. (B26)

(iv) For a black hole resulting from the collapse of a
mini boson star, using Eq. (B5) with M = M1, we obtain

S1/kB ∼
(
M1

MP

)2

∼ χ1/3 ∼ 1040. (B27)

Using Eq. (B6), its temperature is

kBT1 ∼
(

Λ~4

G2

)1/6

c2 ∼ mec
2, (B28)

i.e., T1 ∼ 7.88×1011 K. It is equal to the rest mass energy
of the electron. In Planck units, we have

T1

TP
∼ MP

M1
∼ lP
R1
∼ χ−1/6 ∼ 10−20. (B29)

For a dark energy star of mass M1 and radius R̃1 ∼
(~G/c3Λ2)1/6 ∼ χ1/3 lP ∼ 5.26 × 105 m satisfying the
M −R2 relation we get

S̃1/kB ∼
M1

mΛ
∼ χ2/3 ∼ 1080. (B30)

(v) For a Planck black hole, using Eq. (B5) with M =
MP , we obtain

SP /kB ∼ 1, (B31)

corresponding to one bit (see footnote 39). Using Eq.
(B6) the temperature of a Planck black hole is the Planck
temperature

kBTP ∼MP c
2, (B32)

i.e., TP ∼ 1.42 × 1032 K. It is equal to its rest mass
energy. For a dark energy star of mass MP and radius

42 Interestingly, it is of the order of the earth temperature within a
factor 100.

R̃P ∼ (~G/c3Λ)1/4 ∼ χ1/4 lP ∼ 3.92× 10−5 m satisfying
the M −R2 relation we get

S̃P /kB ∼
MP

mΛ
∼ χ1/2 ∼ 1060. (B33)

(vi) For a black hole with the mass me of the electron
and a radius rg, using Eq. (B5) with M = me, we obtain

Se/kB ∼
(
me

MP

)2

∼ χ−1/3 ∼ 10−40. (B34)

Using Eq. (B6), its temperature is

kBTe ∼
(
~4c6

G4Λ

)1/6

c2 ∼M1c
2, (B35)

i.e., Te ∼ 2.56×1052 K. It is equal to the rest mass energy
of a mini boson star. In Planck units, we have

Te
TP
∼ MP

me
∼ lP
rg
∼ χ1/6 ∼ 1020. (B36)

We also know that the electron of mass me and radius
re satisfies the M −R2 relation (see Appendix A). This
suggests that the electron is made of quanta of DE (cos-
mons). Using Eq. (B11) with M = me, we get

S̃e/kB ∼
me

mΛ
∼ χ1/3 ∼ 1040. (B37)

(vii) For a black hole with the mass m∗Λ of the neutrino
A and a radius r∗Λ, using Eq. (B5) with M = m∗Λ, we
obtain

S′3/2/kB ∼
(
m∗Λ
MP

)2

∼ χ−1/2 ∼ 10−60. (B38)

Using Eq. (B6), its temperature is

kBT
′
3/2 ∼

(
~c5

G3Λ

)1/4

c2 ∼M3/2c
2, (B39)

i.e., T ′3/2 ∼ 3.43 × 1062 K. It is equal to the rest mass

energy of a solid star. In Planck units, we have

T ′3/2

TP
∼ MP

m∗Λ
∼ lP
r∗Λ
∼ χ1/4 ∼ 1030. (B40)

If we consider that the neutrino A of mass m∗Λ is made
of quanta of DE (cosmons) and that it satisfies the

M −R2 relation it would have an effective radius R̃′3/2 ∼
(~3G3/c9Λ)1/8 ∼ χ1/8 lP ∼ 2.52 × 10−20 m and an en-
tropy

S̃′3/2/kB ∼
m∗Λ
mΛ
∼ χ1/4 ∼ 1030. (B41)

(viii) For a black hole with the mass m2 of the neutrino
B and a radius r2, using Eq. (B5) with M = m2, we
obtain

S′2/kB ∼
(
m2

MP

)2

∼ χ−2/3 ∼ 10−80. (B42)
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Using Eq. (B6), its temperature is

kBT
′
2 ∼

(
~c9

G5Λ2

)1/6

c2 ∼M2c
2, (B43)

i.e., T ′2 ∼ 4.61×1072 K. It is equal to the rest mass energy
of a fermion star. In Planck units, we have

T ′2
TP
∼ MP

m2
∼ lP
r2
∼ χ1/3 ∼ 1040. (B44)

If we consider that the neutrino B of mass m2 is made
of quanta of DE (cosmons) and that it satisfies the

M − R2 relation it would have an effective radius R̃′2 ∼
(~5G5/c15Λ)1/12 ∼ χ1/12 lP ∼ 2.17× 10−25 m and an en-
tropy

S̃′2/kB ∼
m2

mΛ
∼ χ1/6 ∼ 1020. (B45)

(ix) For a black hole with the mass mΛ of the cosmon
and a radius rΛ, using Eq. (B5) with M = mΛ, we obtain

Sc/kB ∼
(
mΛ

MP

)2

∼ χ−1 ∼ 10−120. (B46)

This is the “smallest small number” of Nature. It is equal
to the inverse of the entropy of the universe: Sc = 1/SΛ.
Using Eq. (B6), the temperature of a black hole with the
mass of the cosmon is

kBTc ∼
c4

G
√

Λ
∼MΛc

2, (B47)

i.e., Tc ∼ 8.33×1092 K. It is equal to the rest mass energy
of the universe. In Planck units, we have

Tc
TP
∼ MP

mΛ
∼ lP
rΛ
∼ χ1/2 ∼ 1060. (B48)

We may also hypothesize that the cosmon of mass mΛ

satisfies the M -R2 relation (B9). In that case, since
mΛ = ΣΛl

2
P , its effective radius is of the order of the

Planck length

rc ∼ lP (B49)

and its entropy is

S̃c/kB ∼ 1, (B50)

corresponding to one bit. This is consistent with the fact
that the cosmon is the quantum of mass (see footnote
39).

Remark: For the sake of completeness (and curiosity),
we have considered the possibility that elementary par-
ticles of mass m < MP could be black holes. However,
it is usually believed that the Planck black hole is the
smallest stable black hole (see footnote 39). Indeed, the
condition that the gravitational radius RS = 2GM/c2

be larger than the Compton wavelength λC = ~/Mc re-
quires that M ≥ MP . On the other hand, an entropy
smaller than 1 bit is unlikely or even impossible. Fi-
nally, the Hawking evaporation time of black holes with
a mass m < MP would be smaller than the Planck time
so they would have too short lifetimes (for the cosmon
interpreted as a black hole one finds tevap ∼ 10−226 s).
Therefore, the particles of mass m < MP are proba-
bly not black holes. For example, it is more likely that
the cosmon satisfies the M -R2 relation (B9) rather than
the black hole relation (B4). In that case, it would be
described by the entropy (B11) giving 1 bit while the
Bekenstein-Hawking entropy (B5) gives the unphysical
number 10−120 bit. This is consistent with the fact that
the cosmon is the quantum of mass. Similarly, we sug-
gest that other elementary particles and other macro-
scopic objects (DE stars) could be made of quanta of
DE and satisfy the M − R2 relation (B9).43 This re-
lation is valid at least for the electron, the DM halos
and the Universe (see Appendix A). The condition that
the radius R ∼ (M/ΣΛ)1/2 be larger than the Comp-
ton wavelength λC = ~/(Mc) requires that M ≥ me.
However, for lighter particles like the cosmon, the radius
R ∼ (M/ΣΛ)1/2 may still be relevant as an “effective”
radius. The fact that the Compton wavelength of the
cosmon is of the order of the size of the universe means
that it cannot be localized, but the cosmon could still
be characterized by an effective radius rc ∼ (mΛ/ΣΛ)1/2.
Interestingly, this radius turns out to be of the order
of the Planck length lP . Our approach is clearly very
speculative (and perfectible) but it points out the possi-
ble fundamental importance of the M −R2 relation (B9)
and (B10). In a sense, the relation R ∼ (G2M2/Λc4)1/4

for objects made of DE quanta is the counterpart of the
Schwarzschild relation R = 2GM/c2 for black holes. It
involves the cosmological constant Λ in addition to the
gravitational constant G and the speed of light c.

3. Reciprocity property

The above results and the mass scale law (20) suggest
a reciprocity property between micro and macro objects.
Indeed, according to Eq. (20) we have

M−a
MP

∼ MP

Ma
. (B52)

43 In that case, using Eqs. (19) and (20), their radius R̃a ∼
(Ma/ΣΛ)1/2 ∼ (GMa/c2

√
Λ)1/2 would be given by

R̃a ∼
~(3−a)/12G(3−a)/12

c(3−a)/4Λ(3+a)/12
, R̃a/lP ∼ χ(3+a)/12. (B51)

This relation highlights the particular indices a = 3 (Universe)
where R̃ = RΛ and a = −3 (cosmon) where R̃ = lP . We also
have Ma/MP ∼ (R̃a/λ∗Λ)2.
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Using Eqs. (B5) and (B7) this implies

S−a/kB ∼
1

Sa/kB
(B53)

and T−a/TP ∼Ma/MP , i.e.,

kBT−a ∼Mac
2. (B54)

Therefore, the mass of a micro (macro) object normal-
ized by the Planck mass is equal to the inverse of the
mass of the corresponding macro (micro) object normal-
ized by the Planck mass.44 As a result, the entropy of
a black hole with the mass of a micro (macro) object is
equal to the inverse of the entropy of the black hole with
the mass of the corresponding macro (micro) object and
its temperature is equal to the rest mass energy of the
corresponding macro (micro) object. Specifically:

(i) The entropy of a black hole with the cosmon mass
(a = −3) is equal to the inverse of the entropy of the
universe (a = 3) and its temperature is equal to the rest-
mass energy of the universe. Inversely, the temperature
of the universe is equal to the rest-mass energy of the
cosmon. We have Sc ∼ 1/SΛ (taking kB = 1), kBTc ∼
MΛc

2 and kBTΛ ∼ mΛc
2.

(ii) The entropy of a black hole with the neutrino B
mass (a = −2) is equal to the inverse of the entropy of
a black hole resulting from the collapse of a fermion star
(a = 2) and its temperature is equal to the rest-mass
energy of a fermion star. Inversely, the temperature of a
black hole resulting from the collapse of a fermion star
is equal to the rest-mass energy of the neutrino B. We
have S′2 ∼ 1/S2 (taking kB = 1), kBT

′
2 ∼ M2c

2 and
kBT2 ∼ m2c

2.
(iii) The entropy of a black hole with the neutrino A

mass (a = −3/2) is equal to the inverse of the entropy
of a black hole resulting from the collapse of a solid star
(a = 3/2) and its temperature is equal to the rest-mass
energy of a solid star. Inversely, the temperature of a
black hole resulting from the collapse of a solid star is
equal to the rest-mass energy of the neutrino A. We have
S′3/2 ∼ 1/S3/2 (taking kB = 1), kBT

′
3/2 ∼ M3/2c

2 and

kBT3/2 ∼ m∗Λc2.
(iv) The entropy of a black hole with the electron mass

(a = −1) is equal to the inverse of the entropy of a black
hole resulting from the collapse of a mini boson star (a =
1) and its temperature is equal to the rest-mass energy
of a mini boson star. Inversely, the temperature of a
black hole resulting from the collapse of a mini boson

44 By definition, a macro object of index a is associated with a
micro object of index −a (and conversely). The Universe (a = 3)
is associated with the cosmon (a = −3): MΛ/MP ∼MP /mΛ. A
fermion star (a = 2) is associated with the neutrino B (a = −2):
M2/MP ∼ MP /m2. A solid star (a = 3/2) is associated with
the neutrino A (a = −3/2): M3/2/MP ∼ MP /m

∗
Λ. A mini

boson star (a = 1) is associated with the electron (a = −1):
M1/MP ∼MP /me.

star is equal to the rest-mass energy of the electron. We
have Se ∼ 1/S1 (taking kB = 1), kBTe ∼ M1c

2 and
kBT1 ∼ mec

2.

Remark: There is another consequence of the reci-
procity property. From Eq. (B52) we easily establish
that

(λC)−a =
1

2
(RS)a, (B55)

namely the Compton wavelength λC = ~/mc of a micro
(macro) object is equal to the semi gravitational radius
RS/2 = GM/c2 of the corresponding macro (micro) ob-
ject. This is a sort of duality. Indeed, we have indicated
in the main text that the Compton radius of the cosmon
is equal to the semi gravitational radius of the Universe,
the Compton radius of the neutrino B is equal to the
semi gravitational radius of a fermion star, the Compton
radius of the neutrino A is equal to the semi gravitational
radius of the earth, and the Compton radius of the elec-
tron is equal to the semi gravitational radius of a mini
boson star (and conversely). In this respect, the Planck
black hole is a sort of “fixed point” (−a = a = 0) be-
tween micro and macro objects. For the Planck black
hole, λC = RS/2 = lP , SP = kB and kBTP = MP c

2.

4. Entropic origin of the large numbers

By using the holographic principle (B2) and theM−R2

relation (B9), we have introduced a new form of entropy
[see [11] and Eq. (B11)]

S̃ ∼ kB
M

mΛ
∼ kBN. (B56)

The number N = M/mΛ may be interpreted as the num-
ber of quanta of DE (cosmons) in the object of mass M .
It represents the number of physical degrees of freedom.
The ground state (cosmon) corresponds to N = 1, hence

S̃ = kB (1 bit). The entropy of the universe, which is
proportional to the total number Nmax = MΛ/mΛ of
cosmons (dark energy particle), is equal to

SΛ/kB ∼
MΛ

mΛ
∼ NB ∼ χ ∼ 10120. (B57)

This is the “largest large number” in Nature from which
other large numbers can be deduced [see Sec. VI and the
mass scale law from Eq. (100)]. From this point of view,
the origin of the large numbers in Nature is due to the fact
that the number of physical degrees of freedom Nmax =
MΛ/mΛ is large, i.e., there is a large number of cosmons
(quanta of dark energy) in the Universe. Equivalently,
it is due to the fact that the entropy of the Universe is
large. This is consistent with a form of H-theorem (see
footnote 40).
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Appendix C: Heuristic derivation of the Eddington
relation based on simple entropic considerations

In this Appendix we present three simple arguments
based on the holographic principle leading to the Ed-
dington relation. Other justifications of the Eddington
relation from the holographic principle are given in Refs.
[11, 13].

1. First argument

Let us assume that the universe is made of Ne particles
of mass me.

45 The total mass and the total entropy of
the Universe are equal to the sum of the masses and
entropies of its constituents. Therefore, MΛ ∼ Neme and
SΛ ∼ NeSe. Using a form of holographic principle (see
Appendix B), we assume that the entropy of the Universe
and the entropy of the electron are proportional to their
area: SΛ ∼ R2

Λ and Se ∼ r2
e . We then obtain R2

Λ ∼ Ner2
e .

Using Ne ∼ MΛ/me this relation can be rewritten as
MΛ/R

2
Λ ∼ me/r

2
e which expresses the equality of the

surface density of the Universe and the surface density
of the electron: ΣΛ ∼ Σe (or, equivalently, the equality
between their surface gravity GMΛ/R

2
Λ ∼ Gme/r

2
r). As

shown in Appendix A, this equality is equivalent to the
Eddington relation (A8). As a result, the holographic
principle [73], which conjectures by analogy with black
hole thermodynamics [32, 74] that the maximum entropy
of an object is proportional to its area (instead of its
volume), may provide a justification of the Eddington
relation.

2. Second argument

Following [11, 13] we postulate that the entropy of an
object of mass M is46

S̃ ∼ NkB ∼
M

mΛ
kB . (C1)

In other words S̃/kB is equal to the number of “cosmons”
(quanta of entropy and mass) in the body. On the other
hand, according to the holographic principle, we have

S ∼ kB
(
R

lP

)2

, (C2)

45 To be specific, we assume that these particles are electrons but
we should of course account for other kinds of particles. Since
we are only interested in orders of magnitude, our assumption is
sufficient to give the main idea.

46 As discussed below, this relation not valid for all types of objects.
It may be limited to objects related, in one way or another,
to dark energy. The conditions of applicability of this relation
should be given further consideration in future works.

where R is the radius of the object. Equating these two
entropies in order of magnitude and noting that mΛ/l

2
P =

ΣΛ, we find that

M

R2
∼ ΣΛ ∼

c2
√

Λ

G
. (C3)

This argument suggests that the surface density of the
objects is constant and has a universal value ΣΛ equal
(in order of magnitude) to the surface density of the uni-
verse. We have seen that this is indeed the case for DM
halos and for the electron. However, this is not true for
all the objects in the universe. For example, the mass-
radius relation of black holes, namely M = Rc2/2G,
is linear47 while Eq. (C3) implies a quadratic relation
M ∼ ΣΛR

2. Therefore, black holes do not generally sat-
isfy Eq. (C1). The only exception is the universe as
a whole which satisfies both the black hole mass-radius
relation M ∼ Rc2/2G and the quadratic relation (C3).
Indeed, these relations are simultaneously satisfied when
R ∼ 1/

√
Λ ∼ RΛ. If we now apply Eq. (C3) to the

electron we get Σe ∼ ΣΛ which leads to the Eddington
relation (A8) as we have seen in Appendix A. Therefore,
the Eddington relation results from Eq. (C1) and from
the holographic principle (C2) applied to the electron.

3. Third argument

Bekenstein [82] obtained an upper bound for the ratio
of the entropy S to the energy E = Mc2 of any bounded
system with effective size R:

S/E ≤ 2πkBR/~c. (C4)

This inequality is valid for all objects, not only for black
holes. In order of magnitude, the Bekenstein entropy
reads

SB ∼ kB
ER

~c
∼ kB

MRc

~
. (C5)

If we apply it to black holes with the mass-radius relation
from Eq. (B4), we recover the Bekenstein-Hawking en-
tropy (B2) and (B5). In that case, it saturates the bound
from Eq. (C4). Alternatively, if we apply it to objects
which satisfy the M − R2 relation from Eqs. (B9) and
(B10) we obtain

SB ∼ kB
c3
√

Λ

G~
R3 ∼ kB

(
R

re

)3

, (C6)

where re is the classical electron radius given by Eq.
(A11). We note that this entropy scales with the volume

47 In this respect, we recall that isothermal spheres described by
a linear equation of state in Newtonian gravity and general rel-
ativity also have a linear mass-radius relation (see [65] for the
analogy between isothermal spheres and black holes).
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(as for usual systems) instead of the surface (as for black
holes). There is no contradiction with the holographic
principle since Eq. (C4) represents only an upper bound
for the entropy. The number

N ∼
(
R

re

)3

(C7)

may be interpreted as the number of physical degrees of
freedom in a spatial region of volume V . Therefore, we
could introduce the entropy

S ∼ kBN ∼ kB
(
R

re

)3

(C8)

without reference to the previous arguments. We thus
have three forms of entropy given by Eqs. (B2), (B11)
and (C8). If we apply them to the universe as a whole
(representing an upper bound for the entropy) and equate
them we obtain(

RΛ

lP

)2

∼ MΛ

mΛ
∼
(
RΛ

re

)3

. (C9)

This leads to the relation r3
e ' l2PRΛ which is equivalent

to the accurate Eddington relation (A9) [see Eq. (A12) in
Sec. A]. Therefore, this argument provides a justification
of the accurate Eddington relation (A9).

Appendix D: About the connection between the
Eddington and Weinberg relations: A clue to the

cosmic coincidence problem?

Let us recall for clarity the Weinberg relation [see Eq.
(12)]

me ∼
(
H0~2

Gc

)1/3

(D1)

and the accurate form of the Eddington relation [see Eq.
(A9)]

me ' α
(

Λ~4

G2

)1/6

. (D2)

The Eddington relation involves a true constant – the
cosmological constant Λ – while the Weinberg relation
involves the present value H0 of the Hubble parameter
(recall thatH(t) changes with time except in the de Sitter
era). We can have two different points of view concerning
the connection between the Eddington relation and the
Weinberg relation.

According to cosmological observations, and their in-
terpretation in terms of the ΛCDM model, we live at
a period in the history of the universe where DM and
DE (assumed to correspond to the cosmological constant
Λ) have a comparable proportion (differing by a factor
∼ 2.7). The fact that DE is dominant accounts for the

present acceleration of the universe. The reason why DM
and DE have a comparable proportion at present is not
obvious because the density of DM decreases with the
scale factor as a−3 while the density of DE is constant.
Therefore, it is only at a very particular epoch that the
two densities are comparable. Why do we live precisely
at this epoch? This intriguing observation is known as
the cosmic coincidence problem [62, 63].48 Using the
Friedmann equation H2 = 8πGε/3c2 and the expression
ρΛ = Λc2/8πG of the cosmological density, the empirical
relation ε0 ∼ ρΛc

2 (which is a consequence of the cosmic
coincidence εdm,0 ∼ εde,0) implies that the present value
of the Hubble parameter is related to the cosmological
constant by

H0 ∼
√
GρΛ ∼ c

√
Λ. (D3)

This relation, which can be written as

t0 ∼ tΛ, (D4)

expresses the fact that we live precisely at the transition
between the DM era and the DE era.49 In other words,
the age of the universe t0 = 1/H0 (present Hubble time)

is of the order of the cosmological time tΛ = 1/(c
√

Λ).
If we use Eq. (D3), we see that Eqs. (D1) and (D2)
have the same order of magnitude. In this point of view,
the Eddington and the Weinberg relations are essentially
equivalent.50 However, this equivalence relies on the cos-
mic coincidence (D3) which remains mysterious.

We can have a different point of view in which the Ed-
dington relation and the Weinberg relation have a differ-
ent status. We can view the Eddington relation (D2) as
an accurate fundamental (yet unexplained) relation be-
tween the mass of the electron and the cosmological con-
stant and, using Dicke’s anthropic principle (see Sec. II),
interpret the Weinberg relation (D1) as an approximate
formula just giving an order of magnitude of the age of
the universe t0 ∼ 1/H0 [see Eq. (14)]. Then, if we com-

pare these two relations, we conclude that H0 ∼ c
√

Λ,
i.e., ε0 ∼ ρΛc

2. Therefore, we find that the present den-
sity of the Universe is of the order of the cosmological
density.51 This may explain why the Universe is acceler-
ating at present. This may also alleviate the cosmic co-
incidence problem. Indeed, it appears to result from the

48 In this sense, the relation (A3) which suggests that the present
ratio of DE and DM is equal (or close) to the Euler number e
leads to a form of “strong cosmic coincidence” problem [12].

49 The relation H ∼ c
√

Λ was not true in the past (in the matter
era where ε � ρΛc

2 and H ∼ 2/3t) but it is marginally valid
now and it will be more and more true in the future (in the de
Sitter era where ε = ρΛc

2 and H2 = Λc2/3 exactly).
50 For that reason, one sometimes talk about the “Eddington-

Weinberg” relation.
51 This basically comes from the fact that the age of the Universe,

hence the present value of the Hubble constant, can be expressed
in terms of me according to Dicke’s anthropic principle [see Eq.
(14)] and that me can be expressed in terms of Λ according to
the Eddington relation [see Eq. (13)].
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anthropic principle and the Eddington relation. However,
in this interpretation, we have to justify the accurate Ed-
dington relation (D2). This justification may come from
the holographic principle or from a theory of quantum
gravity which remains to be constructed.

Appendix E: The chronon

The characteristic (dynamical) time associated with
the electron is

te =
re
c

=
e2

mec3
'
(
G2~2

Λc12

)1/6

∼ χ1/6tP ∼ 9.40×10−24 s.

(E1)
It is sometimes interpreted as a quantum of time [83]
called the “chronon” (see Appendix F of [40]). A black
hole whose Hawking (evaporation) time is of the order of
te has a mass

M ∼
(
~8c12

ΛG10

)1/18

∼ χ1/18MP ∼ 123 g (E2)

and a radius

R ∼
(
~8G8

Λc24

)1/18

∼ χ1/18lP ∼ 9.13× 10−29 m. (E3)

The mass scale (E2) appears in the condensation tem-
perature evaluated in Sec. IV E. This type of black holes
may be produced in the early universe at te ∼ 10−24 s
after the formation of Planck black holes.

Appendix F: The cosmon mass from a scalar field
theory

The Friedmann equations determining the evolution of
the homogeneous Universe read

dε

dt
+ 3H(ε+ P ) = 0 (F1)

and

H2 =
8πG

3c2
ε− kc2

a2
+

Λc2

3
, (F2)

where H = ȧ/a is the Hubble parameter, Λ is the cosmo-
logical constant and k determines the curvature of space.
In the following we shall take k = 0 in agreement with
the inflation paradigm [84] and the observations of the
cosmic microwave background [85, 86].

The ΛCDM model assumes that the Universe is made
of pressureless DM (Pm = 0) and that DE is associated
with a nonzero cosmological constant Λ or with a fluid
characterized by an equation of state Pde = −εde. Ac-
cording to the energy conservation equation (F1), the
energy density of DM decreases as εm = εm,0/a

3 (where
εm,0 is the present energy density of DM) while the DE

density is constant: εde = ρΛc
2 with ρΛ = Λc2/8πG. The

total energy density ε = εm + εde is given by52

ε =
εm,0
a3

+ εΛ. (F3)

Introducing the present value of the energy density ε0 and
the present proportions of DM and DE denoted Ωm,0 and
ΩΛ,0 = 1− Ωm,0, we can rewrite Eq. (F3) as

ε

ε0
=

Ωm,0

a3
+ 1− Ωm,0, (F4)

where Ωm,0 = 0.309. The equality between DM and DE
in the ΛCDM model is achieved for a value of the scale
factor

at =

(
Ωm,0

1− Ωm,0

)1/3

= 0.765. (F5)

We now take Λ = 0 in Eq. (F2) and assume that the
Universe is filled with a single dark fluid (DF) character-
ized by a constant equation of state

P = −εΛ, (F6)

where εΛ = ρΛc
2 is identified with the cosmological den-

sity. Since the pressure is constant, the squared speed of
sound c2s = P ′(ε)c2 vanishes. Integrating the energy con-
servation equation (F1) with the equation of state (F6),
we obtain an equation equivalent to Eq. (F3) where εm,0
appears as a constant of integration. Remarkably, we ob-
tain the same equation as in the ΛCDM model. The sin-
gle DF model, based on the equation of state (F6), pro-
vides the simplest unification of DM and DE that one can
imagine and it coincides with the usual ΛCDM model.53

In this connection, the first term in Eq. (F3) plays the
role of DM and the second term plays the role of DE.
As shown in [9] at a general level, the effective DM term
corresponds to the rest-mass energy ρmc

2 ∝ a−3 of the
DF and the effective DE term corresponds to its inter-
nal energy u = ρm

∫ ρm [P (ρ′)/ρ′2] dρ′ determined by the
equation of state P (ρm). In other words: ε = ρmc

2 + u.
This decomposition provides a simple and nice interpre-
tation of DM and DE in terms of the rest-mass energy
and internal energy of a single DF and elucidates their
mysterious nature [9, 10]. In the present case, the inter-
nal energy is constant: u = ρΛc

2.
The relation (F3) between the energy density and the

scale factor can be rewritten as

ε = ρΛc
2

[(at
a

)3

+ 1

]
, (F7)

52 We can treat baryonic matter as an additional species or include
it in DM if it is pressureless. We adopt this second approach for
convenience and simplicity.

53 It can be shown that the two descriptions are equivalent not
only for the evolution of the background but to all orders in
perturbation theory, even in the nonlinear clustering regime.
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where at is the transition scale factor defined by Eq. (F5).
Solving the Friedmann equation (F2) with k = Λ = 0
and the energy density from Eq. (F7), we find that the
temporal evolution of the scale factor is given by

a

at
= sinh2/3

(√
6πGρΛt

)
. (F8)

Let us now assume that the DF corresponds to a spa-
tially homogeneous real SF evolving according to the KG
equation

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 (F9)

coupled to the Friedmann equation (F2). Here, the time
variable stands for ct. The SF tends to run down the po-
tential V (ϕ) towards lower energies. It is also submitted
to an Hubble friction. The density and the pressure of
the SF are given by

ε =
1

2
ϕ̇2 + V (ϕ), (F10)

P =
1

2
ϕ̇2 − V (ϕ). (F11)

We can easily check that these equations imply the en-
ergy conservation equation (F1) [87]. For a general equa-
tion of state P (ε), using standard techniques (see [26] and
references therein), we can obtain the SF potential as fol-
lows. From Eqs. (F10) and (F11), we get

ϕ̇2 = (w + 1)ε, (F12)

where we have introduced the equation of state parame-
ter w = P/ε. Using ϕ̇ = (dϕ/da)Ha and the Friedmann
equation (F2) with k = Λ = 0, we find that the relation
between the SF and the scale factor is given by54

dϕ

da
=

(
3c4

8πG

)1/2 √
1 + w

a
. (F13)

On the other hand, according to Eqs. (F10) and (F11),
the potential of the SF is given by

V =
1

2
(1− w)ε. (F14)

Therefore, the potential of the SF is determined in para-
metric form by the equations

ϕ(a) =

(
3c4

8πG

)1/2 ∫ √
1 + w(a)

da

a
, (F15)

V (a) =
1

2
[1− w(a)] ε(a). (F16)

54 We assume w > −1, i.e., a non-phantom scalar field.

For the constant equation of state (F6) corresponding
to the ΛCDM model in its UDME interpretation, the
equation of state parameter reads

w(a) =
P

ε
=

−εΛ
εm,0

a3 + εΛ
. (F17)

Eqs. (F15) and (F16) with Eq. (F17) are readily inte-
grated leading to the hyperbolic potential

V (ψ) =
1

2
ρΛc

2(cosh2 ψ + 1), (F18)

where

ψ = −
(

8πG

3c4

)1/2
3

2
ϕ. (F19)

The SF is related to the scale factor by

(a/at)
−3/2 = sinhψ, (F20)

where at is the transition scale factor defined by Eq. (F5)
and ψ ≥ 0.55

Expanding Eq. (F18) for ϕ→ 0, we find that

V (ϕ) = ρΛc
2 +

9Λ

8
ϕ2 + ... (F22)

If we compare this expression with the normal form of a
SF potential

V (ϕ) = V0 +
m2c2

2~2
ϕ2 + ... (F23)

we see that the minimum of the potential is equal to the
cosmological density

V0 = ρΛc
2 (F24)

and that the mass of the SF is given by

m =

√
3

2
mΛ, (F25)

where mΛ is the cosmon mass from Eq. (61). Our ap-
proach provides therefore a physical interpretation of the
cosmon mass as being the mass (up to a factor

√
3/2

of order unity) of the SF responsible for the DE in the
late universe. This SF model, which is associated with
the constant equation of state (F6), is equivalent to the
ΛCDM model in its UDME interpretation. If we admit
the existence of a particle (SF) with the fundamental
mass mΛ we can write the cosmological constant as

Λ = (
mΛ

MP
)2l−2

P . (F26)

This formula can be compared with Eq. (103) [see also
footnote 7 and Eq. (101)].

55 We can also associate to the ΛCDM model a tachyonic SF with
a potential (see [26] for details)

V (ψ) =
ρΛc

2

cosψ
, (F21)

where ψ = −
√

6πGρΛ/c2ϕ. The SF is related to the scale factor

by (a/at)−3/2 = tanψ with 0 ≤ ψ ≤ π/2.
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