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ABSTRACT

Deep learning methods for image restoration have pro-
duced impressive results over recent years. Neverthe-
less, they generalize poorly and need large learning image
datasets to be collected for each new acquisition modality.
In order to avoid the building of such datasets, it has been
recently proposed to develop synthetic image datasets for
training image restoration methods, using scale invariant
dead leaves models. While the geometry of such models
can be successfully encoded with only a few parameters,
the color content cannot be straightforwardly encoded. In
this paper, we leverage the concept of color lines prior to
build a light parametric color model relying on a chro-
maticity/luminance factorization. Further, we show that the
corresponding synthetic dataset can be used to train neural
networks for the denoising of RAW images from different
camera-phones, without using any image from these devices.
This shows the potential of our approach to increase the gen-
eralization capacity of learning-based denoising approaches
in real case scenarios.

Index Terms— image denoising, color modeling, syn-
thetic learning

1. INTRODUCTION

Image denoising is a crucial image restoration task. It aims
at retrieving a noiseless estimate x̃ from a noisy observation
y = x+n where x is the original scene and n is a realisation
of some noise, usually signal dependent. Before the advent of
learning-based methods, most approaches were prior-based
and often relied on some regularity assumption on images,
either through variational or Bayesian methods. In the last
decade, these methods were surpassed by deep learning ap-
proaches which directly aim at minimizing the reconstruc-
tion error over a large set of natural images by iteratively fit-
ting the weights of a neural network. Such methods regularly
improve performances over specific datasets but suffers from
two main limitations : they need massive amounts of data
to be trained efficiently and they generalize poorly to new
datasets, for instance when the image acquisition modality
are changed. In particular, these limitations imply heavy
data collection campaigns each time a new acquisition de-
vice is considered. To circumvent this limitation, it was first

proposed in [1] to build synthetic learning sets to train de-
noising networks, using a scale-invariant dead leaves image
model. This approach led to very good restoration perfor-
mances for complex restoration tasks such as RAW image de-
noising [2]. While these works showed that the geometrical
content of natural images can be well approximated by sim-
ple models that only depend on a few parameters, the color
content was encoded with heavy non-parametric representa-
tions (object are colored by directly sampling an image from
a given dataset). As shown in [1], such heavy encodings of
the color content cannot be replaced by simple models such
as a uniform distribution over a given color space, which sig-
nificantly impair the restoration performances.

In this paper, we propose a model for encoding the color
content of natural images by leveraging the concept of color
line prior, introduced in [3]. This approach enables the cre-
ation of realistic color histograms with a decoupled chro-
maticity/luminance representation. From this concept, we
derive a color sampling algorithm that enables to build a
fully parametric synthetic model to train denoising neural
networks. Further, we show that by using a simple normal-
ization procedure, a single model can successfully train net-
works for the RAW image denoising of different models of
camera phones, without having ever seen any image origi-
nating from these phones. This shows the potential of our
approach to increase the generalization capacity of learning-
based denoising approaches in real case scenarios.

2. RELATEDWORKS

Image restoration. The most classical approaches to im-
age restoration tasks are based on a priori hypotheses about
the nature of images and in particular about their mathe-
matical regularity. These can be formulated as a regular-
ity constraint in the minimization of an energy for varia-
tional methods (such as the total variation [4]) or in sparse-
decomposition methods [5]. Non-local methods also rely on
a structural a priori, the self-similarity hypothesis [6]. While
these methods are reliable and have mathematical guaran-
tees, they were often surpassed by deep learning approaches
in the last decade. Advances in the design of neural net-
works’architectures , such as residual connections [7], or U-
Net architectures [8], translated in better image denoising
results.



Synthetic learning. While these learning based approaches
produce impressive results, they require large amounts of
data to be trained efficiently. Building such datasets is needed
for each new image acquisition modality and can be chal-
lenging and time consuming. To tackle this limitation, a nat-
ural solution amounts in generating synthetic data for the
training. Some recent works focus on synthesizing realis-
tic noise with physically based models [9] or learned models
[10]. Going a step further, [1] propose to synthesize both
noisy and ground truth images, based on the dead leaves im-
age model [11]. These images, which exhibit interesting sta-
tistical properties, were also shown to be efficient to learn
a variety of tasks such as classification pre-training [12] or
disparity map estimation [13].
Natural color distribution. Relatively few works have in-
vestigated the distribution of colors of natural images. Early
works [14] have shown that a principal component analysis
on natural images yields opponent-like color spaces, a hy-
pothesis that was later theoretically investigated in [15]. Still
dealing with first order statistics, empirical histograms of rel-
atively large databases have been collected in [16]. Spatial
dependency between colors have been investigated by [17]
and the corresponding oscillatory patterns of opponent col-
ors have been theoretically justified in [18]. Several color
statistics have been investigated in [19] in view of a better
understanding of the color constancy ability of the human
visual system. In 2004, [3] introduced the color line prior,
an attempt to model the distribution of colors from a single
monochromatic object, which we will present in detail in the
following section.

3. A PARAMETRIC COLOR IMAGE MODEL

Recall that our goal is to develop a fully synthetic model for
the training of denoising network. For this, we rely on the
geometry provided by scaling dead leaves model as in [2, 1]
and propose a new coloring scheme completely bypassing
the need of real photographs.

3.1. Background

Fig. 1: Examples of dead leaves images colored with the proposed sam-
pling scheme

Dead Leaves Model. As mentioned above, simple dead
leaves images can exhibit statistical properties close to those
of natural images, including the shape of the power spectrum
and the distribution of the gradient [20, 21]. These images are

the result of a superimposition of shapes with random color
and sizes. In order to reproduce natural images statistics, it
is enough to consider disks whose radii follow a power law
density f(r) = C.1(rmin ≤ r ≤ rmax).r

−α with two cut-
off parameters rmin, rmax, the case α = 3 corresponding
to scale invariance. Fig. 1 displays a few example of these
images.
Color Line Prior. In [3], Omer et al. show that the col-
ors of a single Lambertian object (i.e. an object which sur-
face diffuses light rays uniformly in all directions) are dis-
tributed along a straight line starting at (0, 0, 0) in a RAW-
RGB cube, defined as the cube where each point coordinates
corresponds to the associated RGB values in the RAW im-
age. The sensor of a camera has indeed a linear response to
the number of photons. For RGB developped images, this
straight lines are transformed into curves, due to the non-
linearity of RAW-to-RGB transforms and tone mappings. In
this work, we will consider the task of RAW images denois-
ing and therefore adopt the color line model to generate re-
alistic color distributions. This means that we also neglect
non-lambertian objects and specularities in our model.

3.2. Color sampling algorithm

In order to sample colors to create efficient synthetic train-
ing datasets, we leverage the Color Line Prior presented in
the previous section and propose to generate line clusters
in the RAW domain, each one corresponding to an artificial
monochromatic Lambertian object. In order to set the direc-
tion of each cluster realistically, we first study the distribu-
tion of chromaticities in natural images.

(a) Triangle of the
possible directions

(b) Log-histogram
of P in the 2D plan

(c) Log-density of
the GMM fitted on
P

Fig. 2: Distribution of natural colors in the 2D representation

Estimation of the distribution of chromaticity. For this
task, we use the RAISE database [22], made of RAW images
from different cameras. Since the color sensitivity functions
vary from one camera to another, we can not directly es-
timate the distribution of colors on this database. We first
map the colors to a common color space, by multiplying each
channel by the daylight white-balance multipliers which are
estimated by camera manufacturers to fit a scene with the
standard D65 illuminant. Since RAW images are organized
in a Bayer frame, we consider that every (2,2) square corre-
spond to a single R-G-G-B color. We then average the two
green components to get a single value. After these oper-



ations we aggregate the RGB colors of all the pixels in the
database in a large tensor D. We then project each triplet
(r, g, b) ∈ D on the plane u + v + w = 1 by applying the
following normalization r̃, g̃, b̃ = 1

r+g+b (r, g, b). to get the
chromaticity values. We can visualize in Fig. 2a the space of
chromaticities and in Fig. 2b the log-histogram of the colors’
chromaticity for the RAISE database. In order to further re-
duce the dimensionality of our model, we approximate the
histogram with a simple 2D Gaussian Mixture Model(GMM)
of 40 components. Above 40 components, the likelihood of
the model only improves marginally. Fig. 2c, illustrate this
approximation. Given this parametric model, we can now
sample realistic chromaticity, that define the directions of
line color clusters. Next, we study the distribution of the lu-
minance conditioned on the chromaticity to be able to sam-
ple within each color line.
Conditional luminance distribution. Here, our strategy
is to analyze the distribution of the grey levels in patches of
the dataset whose chromaticity is homogeneous. The under-
lying assumption is that patches with a homogeneous chro-
maticity belong to a single object. Therefore, we first ex-
tract all the disjoint (50,50) patches in the RAISE set. For
each patch, we compute its average grey level z̄, its aver-
age chromaticity (x̄, ȳ), and the chromaticity’s covariance
Σx,y , and get rid of the patches for which det(Σx,y) ≥ η,
where η is a chosen threshold. We noticed that the grey
level mean in each bin has a heavy-tailed distribution, which
we model with a Gamma distribution. We report in Fig. 3,
some examples of the distribution of the grey level mean de-
pending on the (x̄, ȳ) position. In the given examples, we

Fig. 3: Distribution of the average grey level knowing the position (x, y)
in the 2D color representation.

see that the parameters of the Gamma distribution depend
on (x̄, ȳ). As a simple approximation, we consider that the
distribution of the average grey level can be expressed as :
z|(x, y) ∼ λ(x, y)Γ(θgrey), where θgrey are the Gamma dis-
tribution’s parameters found for the central bin of the trian-
gle, which corresponds to grey colors. The value λ(x, y) cor-
responds to the maximal grey level attainable for the chro-
maticity (x, y). Given (x, y), we can easily retrieve a color
triplet (r, g, b)x,y in the plane defined by u + v + w = 1.
Further, the value λ(x, y) is then empirically defined by the
following formula : λ(x, y) = (3.max((r, g, b)x,y))−1.

Sampling algorithm. We can now easily derive a point

cloud generation algorithm for a single object, thanks to
the models for p(x, y) and p(z̄|x, y). We begin by sampling
an average chromaticity µ = (x̄, ȳ) using the 2D GMM.
However, we observed that using a single chromaticity is
not enough to model variations within an object. There-
fore, we sample each point’s chromaticity following a 2D-
Gaussian distribution centered on µ. This sampling yields
a set C =

{
(xi, yi) ∼ N (µ, σ2.I)

}
i∈[1,...,N ]

, where N is
the desired number of points. The standard deviation σ
follows a uniform distribution σ ∼ U([5.e−5, 5.e−4]), to
increase diversity. We can now sample the luminance aver-
age z̄ conditioned on µ, with the Gamma law defined above.
Many parametric grey-level distribution models are possible
given z̄. For simplicity, we propose to simply model it by a
Gaussian distribution N (z̄, β2), where β ∼ U([0.05, 0.3]).

Fig. 4: 3 different color points cloud for dead leaves image generation

The described algorithm allows us to sample colors for
a single monochromatic object by following the Color Line
Prior. Now, realistic images contain several objects. In or-
der to include realistic objects transition within the gener-
ated synthetic dataset, we create point clouds from two dif-
ferent color clusters. In Fig. 4, we give examples of the ob-
tained point clouds. In order to also mimic monochromatic
textures, we chose to synthesize another set of dead leaves
images with only one color cluster. The idea here is that this
simple color sampling method is sufficient to model the in-
teractions between objects and monochromatic textures.

4. RAW IMAGE DENOISING EXPERIMENTS

In this section, we report results of RAW image denoising
based on the SIDD dataset [23], which contains noisy RAW
images from 5 different cameraphones. It is worth mention-
ing that images captured by these cameras were never used
during training nor to estimate the distribution of color.
Pre-processing. As explained before, we wish to model the
color distribution of digital photographs from a universal
color representation space. Nevertheless, each specific cam-
era has its own color specifications and we need to invert
the daylight white balance step with camera-specific param-
eters. Since these parameters are not available in the SIDD
database, we use random values sampled around realistic
average estimates, based on the white balance parameters
available in the dataset. This would be problematic to de-
velop real photographs, but enables us to generate training



Table 1: Numerical evaluation of the denoising of smartphone RAW images from the SIDD database [23]. For each training database we report the PSNR
per camera (IP:Iphone 7, GP: Google Pixel, S6: Samsung S6, N6:Nexus 6, G4: LG G4) in the RAW and sRGB domain, as well as on the whole test set.

Training database PSNR RAW PSNR RGB
IP GP S6 N6 G4 Global IP GP S6 N6 G4 Global

SIDD-DL 54.82 48.33 44.92 48.09 50.30 49.94 40.33 37.70 35.43 36.13 37.34 37.84
2DM-DL 54.60 48.18 44.18 47.95 50.09 49.63 39.66 37.51 34.43 35.63 36.76 37.32
3DM-DL 53.91 47.94 43.99 47.78 50.24 49.31 39.54 37.27 34.34 35.51 36.68 37.14

RAISE (not norm.) 53.74 48.00 44.18 47.63 49.84 49.26 38.83 36.86 34.36 35.01 36.10 36.65
(RAISE-DL) (54.59) (48.24) (44.21) (47.95) (50.40) (49.68) (40.28) (37.64) (34.67) (35.54) (37.26) (37.56)

sets with a wide enough variety of realistic colors. Specifi-
cally, we chose to model the red and blue gain with uniform
distributions, gr ∼ U([1.9, 2.4]) and gb ∼ U([1.5, 1.9]), and
to reverse the white balance operation as it is done by Brooks
et al. [24].
Synthetic datasets. To evaluate our approach, we gener-
ate different synthetic sets. First, we follow the method pre-
sented in [2] and sample the colors directly from the SIDD
training set (SIDD-DL). This dataset has its geometry given
by the deal leaves model and its colors sampled from images
acquired with the same cameras as those used for the im-
ages that we will denoise (SIDD test set). As relatively simple
baseline for a synthetic dataset not using the SIDD color dis-
tribution, we approximate the color distribution in the RGB
cube with a 3D-GMM estimated on the RAISE dataset (3DM-
DL). Eventually, we generate a set with our approach (2DM-
DL), with the parametric color distribution described in the
previous section and estimated on the RAISE dataset. In or-
der to assess the limitation caused by the discrepancy be-
tween the color distributions of the RAISE and SIDD dataset,
we also generate dead leaves images with the colors sam-
pled directly from RAISE images (RAISE-DL) and processed
as explained above.
Network and Training. Each dataset is composed of 50k
(256,256) RAW patches. We model RAW noise as a Poisson-
Gaussian noise, which parameters were estimated in [2] on
the SIDD dataset. We train a UNet network to denoise RAW
images in a residual manner, inspired by [7]. We minimize
the L1 loss for 500 epochs with a simple learning rate decay
starting from 1e−4 to 1e−6, with a fixed batch size of 64.
Denoising Results. As reported in Table 1, we see that
our approach (2DM-DL) performs close to SIDD-DL, with-
out ever having access to the original set. We also note that
our methods is surprisingly close to the RAISE-DL approach
which stands as an upper bound of our performances (less
than 0.1 dB difference). This indicates that the color line
model is a sound model to approximate histograms of nat-
ural images, and that the performance gap is mainly caused
by the discrepancy between the color distribution of the two
datasets. Visually, we observe in Fig. 5 that the denoising per-
formances of 2DM-DL is almost as good as good as SIDD-DL
and retrieves much better the details than 3DM-DL, confirm-
ing the intuition that an over-simplistic color model leads to
poor performances. Finally, we also show that directly train-

ing with RAW images from the RAISE set without any color
processing leads to poor performances, even though the ge-
ometry is more accurate than with dead leaves images.

Fig. 5: Comparison of the different denoising models. From left to
right : ground truth image, noisy image, 3DM-DL denoising,2DM-DL
denoising,Nat-DL denoising.

5. CONCLUSION

In the present paper we introduced a novel parametric color
sampling algorithm that relies on a relatively small number
of parameters. This algorithm allows one to generate realis-
tic color point clouds, which, when combined with the ge-
ometry of dead leaves model, can in turn be used to train a
RAW image denoiser efficiently. In particular, this synthetic
training set is obtained without using any information from
the training set of the considered SIDD dataset. The obtained
performances are very close to the ones obtained by directly
sampling colors in the training set. In future works, we hope
to reduce this gap by investigating the transition from one
RAW image dataset to another, as it seems to be the main
cause for the slight loss of performances.
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