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ABSTRACT

Sampling from Gibbs distributions p(x) ∝ exp(−V (x)/ε) and computing their log-partition function
are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient
algorithms are known for convex potentials V , the situation is much more difficult in the non-convex
case, where algorithms necessarily suffer from the curse of dimensionality in the worst case. For
optimization, which can be seen as a low-temperature limit of sampling, it is known that smooth
functions V allow faster convergence rates. Specifically, for m-times differentiable functions in d
dimensions, the optimal rate for algorithms with n function evaluations is known to be O(n−m/d),
where the constant can potentially depend on m, d and the function to be optimized. Hence, the
curse of dimensionality can be alleviated for smooth functions at least in terms of the convergence
rate. Recently, it has been shown that similarly fast rates can also be achieved with polynomial
runtime O(n3.5), where the exponent 3.5 is independent of m or d. Hence, it is natural to ask
whether similar rates for sampling and log-partition computation are possible, and whether they can
be realized in polynomial time with an exponent independent of m and d. We show that the optimal
rates for sampling and log-partition computation are sometimes equal and sometimes faster than for
optimization. We then analyze various polynomial-time sampling algorithms, including an extension
of a recent promising optimization approach, and find that they sometimes exhibit interesting behavior
but no near-optimal rates. Our results also give further insights on the relation between sampling,
log-partition, and optimization problems.

1 Introduction

The tasks of sampling from a Gibbs distribution with density p(x) ∝ exp(−V (x)/ε) and computing the corresponding
normalization constant are important problems in many computational fields such as machine learning, (Bayesian)
statistics and statistical physics. Specifically, we are interested in the following setting:
Definition 1 (Sampling and log-partition problems). Let d ≥ 1, let X = [0, 1]d and let f : X → R be bounded and
measurable.2 The sampling problem is to draw samples from the distribution Pf on X with density

pf (x) :=
exp(f(x))

Zf
,

where Zf :=
∫
X exp(f(x)) dx is the normalization constant or partition function. The log-partition problem is to

compute the log-partition function

Lf := logZf = log

(∫
X
exp(f(x)) dx

)
. ◀

∗Work done partially while visiting INRIA. E-mail: david (dot) holzmueller (at) mathematik.uni-stuttgart.de
2We choose X as the unit cube for convenience: It is compact, has unit volume, does not have too sharp corners, there are

well-studied approximation results, and it allows to investigate algorithms for periodic functions. However, many of our results could
be generalized to other domains.
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Distributions of the form Pf are known as Gibbs distributions, Gibbs measures, or Boltzmann distributions. They arise
for example in statistical physics with f(x) = −V (x)/ε, where V (x) denotes the (potential) energy of state x, and
ε is (proportional to) the temperature of the system.3 Instead of the temperature, sometimes the inverse temperature
(or coldness / thermodynamic beta) β = 1/ε is used. The log-partition problem is also related to the computation of
the free energy −εL−V/ε. In energy-based models in ML, f could be learned. In a Bayesian statistical or ML model
with parameters θ and data D, we could set f(θ) := log p(D|θ) + log p(θ) to sample from the posterior distribution
pf (θ) = p(θ|D) or compute the log-evidence Lf = log p(D) = log

(∫
X p(D|θ)p(θ) dθ

)
. In some contexts, Lf is also

called the log-marginal likelihood, which is useful for model selection (Robert, 2007).

While exact sampling and log-partition computation are possible for some simple functions f like linear functions, we
can usually only expect algorithms to obtain approximations within a limited runtime. Therefore, we are interested
in how fast this approximation converges to the true Pf or Lf in terms of the number n of times that the algorithm is
allowed to evaluate f . To study this, we need to make some assumptions on f . While efficient sampling algorithms for
suitable classes of concave f are known, at least with access to gradients of f (Dwivedi et al., 2018; Mangoubi and
Vishnoi, 2018; Chewi et al., 2021; Altschuler and Talwar, 2022), we are interested in larger classes of non-concave
functions, which are defined in the following:
Definition 2 (Further notation). For measurable functions f : X → R, we use the notation ∥f∥∞ := ess supx∈X |f(x)|.
We define function spaces of m-times continuously differentiable functions4 whose derivatives are bounded by some
constant B ≥ 0:

Fd,m,B := {f ∈ Cm(X ), ∥f∥Cm ≤ B} , ∥f∥Cm := sup
α∈Nd

0 :|α|1≤m

∥∂αf∥∞ .

Here, we use the notation |α|1 := α1 + · · ·+ αd and ∂αf = ∂|α|1f

∂x
α1
1 ···∂xαd

d

. Moreover, if f is Lipschitz, we denote its

minimal Lipschitz constant by |f |1. If f is bounded, we denote its maximum by Mf . We define f̄ := f −Lf , such that
Lf̄ = 0 and Pf̄ = Pf . Finally, we denote the uniform distribution on X by U(X ). ◀

We study the worst-case error of algorithms over the function class Fd,m,B , which is formally defined in Section 2.
This error depends on the variables (B,n, d,m). We study the asymptotic behavior in terms of n and B while ignoring
constants depending only on m and d for simplicity. Depending on the definition of the norm, such constants are often
necessarily exponential in d and represent the part of the curse of dimensionality that cannot be overcome in this setting
(Novak and Woźniakowski, 2009). For example, typical convergence rates for function approximation are of the form
Om,d(Bn−m/d), which we sometimes also write as Om,d(∥f∥Cmn−m/d) (Novak, 1988; Wendland, 2004). As we will
see later, the dependence on B is not always linear, and tracking the dependence on B is important since the function f
appears inside an exponential. When using asymptotic notation like Om,d, we mean that the corresponding inequality
should hold for all values of n ∈ N≥1 and B > 0, not only large enough values.5

We express bounds on the error E achieved for n function evaluations, such as E = Om,d(Bn−m/d). Some authors
prefer to express rates in terms of the number of function evaluations needed to reach an error E or lower, which would
then for example be n = Om,d((B/E)d/m).

Sometimes, we explicitly include a temperature ε > 0 and formulate our theorems in terms of f/ε instead of f . It is
well-known that in the limit of low temperatures (ε ↘ 0), sampling becomes essentially equivalent to optimization.
Here, we give a quantitative version of this statement:
Lemma 3 (Optimization limit). Let f : X → R be Lipschitz-continuous with Lipschitz constant |f |1 <∞. Then, for
any temperature ε > 0, the maximum Mf = maxx∈X f(x) satisfies

|Mf − εLf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) −→ 0 for ε↘ 0 . (1)

Moreover, for any bounded and measurable f : X → R and any δ ∈ (0, 1], we have

Pf/ε({x ∈ X | f(x) < εLf/ε − ε log(1/δ)}) ≤ δ .

Lemma 3 is proven in Appendix B and can be related to our function classes by using |f |1 ≤ d1/2∥f∥C1 , cf. Lemma B.1.
Note that such a convergence result does not hold for general bounded functions, as can be seen for the characteristic

3Technically, ε = kBT , where kB is Boltzmann’s constant and T is the temperature.
4It would also be possible to replace Cm(X ) with the slightly larger Sobolev space Wm,∞(X ).
5Specifically, we use the notation g(B,n, d,m) ≤ Om,d(h(B,n, d,m)) to mean

∀d,m ∈ N≥1∃Cm,d > 0∀B > 0, n ∈ N≥1 : g(B,n, d,m) ≤ Cm,dh(B,n, d,m) ,

and we similarly write g ≥ Ωm,d(h) for h ≤ Om,d(g), as well as g = Θm,d(h) for g ≤ Om,d(h) and h ≤ Om,d(g).
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function f = 1{0}, which satisfies Mf = 1 but εLf/ε = 0 for all ε > 0. Eq. (1) is related to Corollary 1 by Ma
et al. (2019), which shows that in order to achieve an optimization error of E through sampling, it is necessary that
1/ε = Ω̃(d/E).

Hwang (1980) uses Laplace’s method to show that under certain assumptions on the Hessians at the maximizers,
Pf/ε converges weakly to a distribution on the maximizers. In contrast to optimization, where it typically does not
matter which global maximum is found, the low-temperature limit of sampling often yields a unique distribution on
the maximizers. Talwar (2019) uses this to show that optimization can be easier than sampling for very particular
classes of functions. It is known that the optimal worst-case convergence rate for optimization on Fd,m,B is the same as
for approximation, i.e., Om,d(Bn−m/d) (see Novak, 1988, and references therein). Recently, Rudi et al. (2020) and
Woodworth et al. (2022) have shown polynomial-time optimization algorithms (in n and d) achieving rates close to the
optimal rate under relatively mild additional assumptions.

In the high-temperature limit ε→∞, Pf/ε converges to a uniform distribution, and Ma et al. (2019) showed that the
Metropolis-adjusted Langevin algorithm (MALA) can achieve exponentially fast convergence rates in n, although with
exponential dependence on the Lipschitz constant of∇f . While MALA theoretically does not fit in our framework since
it uses gradient information of f , this could be emulated using numerical differentiation, and we show in Section 4.2.1
that in our setting, if B is known, a fixed-budget version of rejection sampling can also achieve similar rates (see also
Talwar, 2019).

Since we know that polynomial-time algorithms with fast convergence rates are possible for the high-temperature case
and for optimization, which is essentially the low-temperature limit, this poses the question of whether we can find such
algorithms for the general sampling and log-partition problems. Ideally, such an algorithm should have the following
properties:

• A convergence rate close to the optimal convergence rate Om,d(∥f∥Cmn−m/d) for approximation, at least up
to m ≥ Ω(d), such that the exponent in the rate does not approach zero for large d,

• Polynomial runtime O(nk) for some k independent of d and m. Especially, the runtime should be polynomial
in d and m. Moreover, the runtime should not depend on ∥f∥.

• Adaptivity: The algorithm should achieve these rates without knowing m and ∥f∥. This is not investigated
here, and for sampling and log-partition estimation, m can often be known.

Regarding the implications of achieving near-optimal rates in polynomial time, consider the following example:
Example 4. Consider a Bayesian model where the data set D = (D1, . . . , DN ) consists of N observed samples that
are assumed to be drawn in an i.i.d. fashion. Then, we can again model

f(θ) := log p(θ,D) = log p(D1 | θ) + · · ·+ log p(DN | θ) + log p(θ) ,

which is a sum of N + 1 functions. Hence, we would expect that ∥f∥Cm scales like Θ(N).

(a) Suppose that we have a log-partition method with rate Θm,d(∥f∥Cmn−m/d) and polynomial runtime
Om,d(n

k). To achieve an error of O(1) for the log-evidence Lf , this method would need n = Θm,d(N
d/m)

function evaluations and hence a runtime of Om,d(N
kd/m). If m = d, the exponent kd/m is independent of

the dimension.
(b) Now, suppose instead that the runtime is of the form Om,d(n

m) or the rates are of the form Om,d(∥f∥n−1/d)

or Om,d(∥f∥mn−m/d). In each case, to achieve an error of O(1) for the log-evidence Lf , the resulting
runtime would be polynomial in N , but the exponent would be proportional to d. ◀

1.1 Contribution

Our contributions are as follows:

(1) We analyze the information-based complexity of the sampling and log-partition problems, i.e., the worst-case
optimal rates without computational constraints, in Section 2. For algorithms that evaluate f at a deterministic
set of points, we show that the optimal rate for the log-partition problem is Θm,d(Bn−m/d), i.e., the same as
for approximation. For the bounded total variation and 1-Wasserstein metrics, the optimal rate for sampling is
Θm,d(min{1, Bn−m/d}). For algorithms that are allowed to evaluate f at a stochastic set of points, we show
that the optimal rates are the same in an optimization regime but can be faster in the high-temperature regime.

(2) We show reductions between different problems. For example, we analyze how log-partition algorithms
can be employed for sampling and vice versa, and analyze the resulting guarantees for the rates. We also
discuss how approximate sampling algorithms can be employed for optimization. Moreover, we show how
function approximation yields reductions between different runtime complexities, convergence rates, and from
stochastic to deterministic evaluation points.
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(3) We analyze bounds on the convergence rates for different algorithms. For example, we show that it is possible
to achieve the rate Om,d(Bn−m/d), but with runtime O(nm), which is polynomial but still involves the curse
of dimensionality since we need m = Θ(d) to beat the curse of dimensionality in the convergence rate.
We show that other simple and efficient algorithms also fail to achieve the optimal rates in different ways,
sometimes with multi-regime behavior. Finally, we study an approach toward the log-partition problem by
Bach (2022), whose optimization limit has been used by Woodworth et al. (2022) to obtain near-optimal
optimization rates in polynomial-time. We show that all versions of this approach necessarily fail to exceed
the rate Om,d(Bn−2/d) in an intermediate temperature regime ε ∼ n−2/d (corresponding to B ∼ n2/d).

1.2 Related Work

The analysis of sampling algorithms has received considerable attention in recent years. In the case where pf is
(strongly) log-concave, that is, if f is (strongly) concave, convergence rates of Markov chain Monte Carlo (MCMC)
sampling algorithms have been studied extensively. For example, good convergence rates in terms of the dimension d
have been established for versions of the Langevin algorithm (Chewi et al., 2021; Altschuler and Talwar, 2022) and
Hamiltonian Monte Carlo (Mangoubi and Vishnoi, 2018). Chewi et al. (2022b) establish an algorithm with optimal
convergence rate for the case d = 1, while not much is known about algorithm-independent lower bounds in other
cases.

For sampling from more general non-log-concave distributions, convergence rates have been established for versions
of the Langevin algorithm. Bou-Rabee and Hairer (2013) showed an essentially geometric convergence result in
TV distance for a class of non-log-concave Gibbs distributions, but without clear dependence of the constants on f .
Mangoubi and Vishnoi (2019) and Zou et al. (2021) prove convergence rates that are polynomial in d but additionally
depend on properties of f through the Cheeger constant. The analysis of Ma et al. (2019) and Cheng et al. (2018)
is closer to our setting, and their convergence rate is polynomial in d as well, but their rate exhibits an exponential
dependence on the Lipschitz constant of ∇f and the radius of the domain where f non-log-convex. Bou-Rabee
et al. (2020) obtain similar results for Hamiltonian Monte Carlo. Balasubramanian et al. (2022) show that even for
non-log-concave distributions, averaged Langevin Monte Carlo converges quickly to a distribution with low relative
Fisher information to the target distribution, although this does not imply that the distribution is close to the target
distribution with respect to other measures such as the total variation distance. Chewi et al. (2022a) prove corresponding
lower bounds. Woodard et al. (2009) show that the mixing time of parallel and simulated tempering for certain
distributions can scale exponentially with d, but in a setting different from ours. Achddou et al. (2019) propose and
analyze an adaptive rejection sampling algorithm using a piecewise constant approximation of the density. Their setting
is significantly different from ours as well, and they only consider functions of low (Hölder) smoothness and regimes
with large n. Marteau-Ferey et al. (2022) propose an approximation-based sampling algorithm with a rate similar to
Om,d,B(n

−m/d) but without analyzing the dependence on B.

Another related line of work studies the relation of sampling to optimization. Through their analysis of Langevin
algorithms in the non-log-concave setting, Ma et al. (2019) show that there are settings where sampling is easier than
optimization. Talwar (2019) provides a simpler argument and shows that the converse can also occur for special function
classes. The relation between sampling and optimization is also exploited in simulated annealing (Kirkpatrick et al.,
1983). A different connection between sampling and optimization stems from Jordan et al. (1998), who showed that
Langevin-type sampling can be interpreted as a gradient flow over distributions for the Wasserstein metric. For an
overview of connections between sampling and optimization, we also refer to Cheng (2020).

The log-partition problem is often addressed through sampling algorithms, for example via thermodynamic integration
(Kirkwood, 1935). For an overview of thermodynamic integration and other methods for the log-partition problem,
we refer to Gelman and Meng (1998) and Friel and Wyse (2012). Ge et al. (2020) analyze an annealing algorithm
combined with multilevel Monte Carlo sampling for the log-partition problem in the log-concave setting, and also
give an information-based lower bound on the achievable convergence rate. Another popular approach is the Laplace
approximation (Laplace, 1774), whose log-partition function however does not converge to the true log-partition function
as n → ∞. Well-tempered metadynamics (Barducci et al., 2008) is a popular approach towards the log-partition
problem in molecular dynamics simulations, although it relies on a well-chosen low-dimensional collective variable
representation. Recently, Marteau-Ferey et al. (2022) have suggested an approach that performs sampling via estimating
the log-partition function. Bach (2023) and Bach (2022) suggest further approaches toward solving the log-partition
problem.

To analyze possible convergence rates for the sampling and log-partition problem without computational constraints, we
use the framework of information-based complexity. Here, we refer to Novak (1988) and Traub (2003) for an overview
of this topic. In particular, our work is motivated by the works of Rudi et al. (2020) and Woodworth et al. (2022), who
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demonstrated that for optimization, convergence rates close to the optimal rates from information-based complexity can
be achieved in polynomial time.

The rest of our paper is organized as follows: In Section 2, we study upper and lower bounds for the information-
based complexity of different variants of the sampling and log-partition problems. In Section 3, we study relations
and reductions between different variants of the sampling, log-partition, and optimization problems. We then study
convergence rates of different algorithms in Section 4. We compare some of these algorithms experimentally in
Section 5 before concluding in Section 6. All proofs are provided in the appendix, which is structured analogously to
the main part of this paper, and whose structure is overviewed in Appendix A.

2 Information-based Complexity

In this section, we look at the log-partition and sampling problems from the viewpoint of (worst-case) information-
based complexity, where one is interested in what is possible if one is not constrained computationally but only by the
number n of function evaluations of the unknown function f . We adopt the general setting of Novak (1988), where one
is given a function space F (such as Fd,m,B) of functions f : X → R and wishes to approximate a map S : F →M,
with the approximation error onM measured by a metric D. For example, the following problems are considered by
Novak (1988):

• Approximation: Sapp(f) := f and D∞(f, g) := ∥f − g∥∞.
• Optimization: Sopt∗(f) := supx∈X f(x) and Dabs(a, b) := |a− b|.
• Integration: Sint(f) :=

∫
X f(x) dx and Dabs(a, b) = |a− b|.

We can define our sampling and log-partition problems in this context as follows:

• Log-partition: SL(f) = Lf and Dabs(a, b) = |a− b|.
• Sampling: While a sampling algorithm produces samples, we do not want to compare errors of individual

samples but the error of the distribution of the samples. Therefore, we set Ssamp(f) := Pf . For D(P,Q), we
can use different metrics or divergences on probability distributions, which will be discussed in Section 2.1.

2.1 Deterministic Evaluation Points

To consider minimax optimal convergence rates, we still need to define a space A of admissible maps S̃ : F →M.
Here, we will first consider maps that evaluate functions in a deterministic set of points, before considering stochastic
points in Section 2.2. For example, we define

An :=
{
S̃ = ϕ ◦N | N(f) = (f(x1), . . . , f(xn)) for some x1, . . . , xn ∈ X

}
,

the set of maps that only evaluate f in n deterministic and non-adaptive points. We can also allow adaptive points by
defining

Aad
n :=

{
S̃ = ϕ ◦N | N(f) = (f(x1), f(x2(f(x1))), . . . , f(xn(f(x1), . . . , f(xn−1))))

}
,

where evaluation points may be chosen depending on previous function values. We are interested in the (non-
adaptive/adaptive) minimax optimal error

en(F , S,D) := inf
S̃∈An

sup
f∈F

D(S(f), S̃(f)), eadn (F , S,D) := inf
S̃∈Aad

n

sup
f∈F

D(S(f), S̃(f)) .

The sets An and Aad
n can be interpreted as classes of “black-box algorithms” that are only constrained in the number

evaluations of f but not in terms of computational efficiency or computability. The minimax-optimal errors en and eadn
thus give lower bounds to what can be achieved by computationally efficient algorithms.

For the case of sampling, maps S̃ ∈ An (or Aad
n ) produce distributions based on n function evaluations of a function f .

They correspond to idealized sampling algorithms in the following sense: We consider an idealized sampling algorithm
to take some source of randomness ω sampled from a distribution PΩ independent of f , and then output a random
sample Xf (ω) = ϕ̃(N(f), ω). For example, ω could be a sequence of i.i.d. random variables from the uniform
distribution U([0, 1]) on the interval [0, 1]. The maps S̃ ∈ An (or Aad

n ) then correspond to the distributions produced
by such sampling algorithms, i.e.,

S̃(f) = distribution of Xf (ω) for ω ∼ PΩ.

The following theorem, which is proven in Appendix C.1, adapts known results on minimax optimal rates to our
considered function spaces.
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Theorem 5 (adapted from Novak (1988)). We have

en(Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d),

en(Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d),

en(Fd,m,B , Sint, Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sint, Dabs) = Θm,d(Bn−m/d) .

Novak (1988) gives these results in a form similar to en(Fd,m,1, Sapp, D∞) = Θm,d(n
−m/d). This implies the

rates for general B ≥ 0 in the theorem above since Sapp and D∞ are positively homogeneous, which leads to
D∞(Sapp(Bf), Bg) = BD∞(Sapp(f), g). The same holds for optimization and integration, but not for log-partition
estimation and sampling. Hence, for our considered problems, it is important to explicitly study the dependence
on B, since it is not necessarily linear. The optimal rates for approximation can be achieved, for example, using
piecewise polynomial interpolation, local polynomial reproductions, or moving least squares (Wendland, 2004), see
also Theorem 15. The optimal rates for optimization and integration can be achieved by optimizing or integrating a
corresponding approximation.

We use the following distance measures for probability distributions P,Q on X :

• The sup-log distance Dsup-log(P,Q) :=
∥∥∥log ( dP

dQ

)∥∥∥
∞

, where ∥ · ∥∞ is taken over X , and Dsup-log(P,Q) =

∞ whenever P and Q are not both absolutely continuous with respect to each other. The sup-log distance is a
symmetrized version of the max-divergence D∞(P ||Q), which is used in differential privacy (Dwork et al.,
2010) and is a special case of Rényi divergences for α =∞ (cf. Van Erven and Harremos, 2014). The sup-log
distance is particularly well-suited to our setting, thanks to its relation to uniform approximation.

• The total variation distance DTV(P,Q) := supA⊆X measurable |P (A)−Q(A)|.
• The 1-Wasserstein distance W1(P,Q) := infX∼P,Y∼Q E∥X − Y ∥2, also known as Kantorovich–Rubinstein

or earth mover distance.

The sup-log, total variation, and 1-Wasserstein distances are metrics.6 We first show that these quantities can be bounded
in terms of the approximation error:
Proposition 6 (Upper bounds via approximation). For bounded and measurable f, g : X → R, we have

(a) |Lf − Lg| ≤ ∥f − g∥∞.
(b) d−1/2W1(Pf , Pg) ≤ DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f − g∥∞.

Proposition 6 is proven in Appendix C.1. For the KL divergence, which we will not study further, we can leverage
the results of Proposition 6 by using the trivial bound DKL(P ∥ Q) ≤ Dsup-log(P,Q) as well as the inequality
DKL(P ∥ Q) ≤ Dsup-log(P,Q)(eDsup-log(P,Q) − 1) from Lemma III.2 of Dwork et al. (2010).

Theorem 5 and Proposition 6 lead to upper bounds on the minimax optimal rates. Combined with the trivial upper
bound DTV(P,Q) ≤ 1, these are optimal for the deterministic point setting:
Theorem 7 (Information-based complexity of sampling and log-partition with deterministic evaluation points). We
have

en(Fd,m,B , SL, Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , SL, Dabs) = Θm,d(Bn−m/d),

en(Fd,m,B , Ssamp, Dsup-log) = Θm,d(Bn−m/d), eadn (Fd,m,B , Ssamp, Dsup-log) = Θm,d(Bn−m/d),

en(Fd,m,B , Ssamp, DTV) = Θm,d(min{1, Bn−m/d}), eadn (Fd,m,B , Ssamp, DTV) = Θm,d(min{1, Bn−m/d}),
en(Fd,m,B , Ssamp,W1) = Θm,d(min{1, Bn−m/d}), eadn (Fd,m,B , Ssamp,W1) = Θm,d(min{1, Bn−m/d}).

Theorem 7 is proven in Appendix C.1. The minimax optimal rates for optimization can be related to those for
approximation on a very general class of function spaces (Novak, 1988). For sampling, such a general relationship does
not hold: For example, the setF := {f : X → R | ∥f∥∞ ≤ 1, {x | f(x) ̸= 0} is finite} satisfies en(F , Sapp, D∞) = 1
for all n ∈ N, but all functions f ∈ F have the same distribution and the same log-partition function. However, our
proofs for the lower bounds in Theorem 7 follow the general idea that underlies many lower bounds for Sobolev-type
functions: place bumps with small support in regions that the algorithm does not query.

2.2 Stochastic Evaluation Points

We also want to consider methods that are allowed to choose the points xi stochastically, such as Monte-Carlo type
methods (Metropolis and Ulam, 1949; Brooks et al., 2011). For the log-partition problem, we again follow Novak

6For the sup-log distance, the triangle inequality follows from log
(

dP
dR

)
= log

(
dP
dQ

)
+ log

(
dQ
dR

)
.
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(1988) and define the set ∗C(Aad
n ) of random variables S̃ : Ω→ Aad

n with given base distribution PΩ with associated
minimax optimal error7

∗σad
n (F , S,D) := inf

(S̃,PΩ)∈∗C(Aad
n )

sup
f∈F

Eω∼PΩD(S(f), S̃(ω)(f)) .

When applying this definition to sampling, a map S̃ would output a random distribution. However, the random samples
produced by a sampling algorithm typically still follow a fixed distribution, regardless of whether the function f is
evaluated in deterministically or randomly chosen points. Hence, the model in Eq. (2) is inadequate for sampling.
Instead, we consider again idealized sampling algorithms using some randomness ω ∼ Ω, but this time, we allow
the function to be evaluated in randomly and adaptively chosen points, by considering random samples of the form
Xf (ω) = ϕ̃(N(f, ω), ω). We then denote the corresponding map from f to PXf

by S̃ and define the set Aad-stoch
n of

all S̃ that can be realized in this fashion using n function evaluations. We then define
ead-stochn (F , Ssamp, D) := inf

S̃∈Aad-stoch
n

sup
f∈F

D(Ssamp(f), S̃(f)) .

Unlike the deterministic points setting, the stochastic points setting potentially requires to evaluate f at n different
points for every generated sample. This has the unintuitive consequence that for a map S̃ ∈ Aad-stoch

n , the distribution
S̃(f) typically depends on the values of f at infinitely many points, but a sample from S̃(f) can be drawn by only
evaluating f at n (stochastic) points.

Again, results for approximation, optimization, and integration are known and can be adapted to our function classes:
Theorem 8 (adapted from Novak (1988)). We have

∗σad
n (Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d),

∗σad
n (Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d),

∗σad
n (Fd,m,B , Sint, Dabs) = Θm,d(Bn−1/2−m/d) .

For a proof sketch, we refer to Appendix C.2. The faster rate for integration can be achieved by spending half of the n
points for approximating f with g and spending the other half of the points on Monte Carlo quadrature to estimate the
error (Novak, 1988) ∫

f(x) dx−
∫

g(x) dx = Ex∼U(X )[f(x)− g(x)] .

For a more practical algorithm, we refer to Chopin and Gerber (2022). For log-partition estimation, we can similarly
use an importance sampling formulation

Lf − Lg = log
(
Ex∼Pg [exp(f(x)− g(x))]

)
.

Theorem 9 (Upper bound for stochastic log-partition). There exists a constant Cm,d > 0 depending only on m and d
such that

∗σad
n (Fd,m,B , SL, Dabs) ≤ Om,d

(
min

{
Bn−m/d, exp(Cm,dBn−m/d)Bn−1/2−m/d)

})
.

The upper bound above, which is proven in Appendix C.2, exhibits a fast transition between the rates n−m/d and
n−1/2−m/d. This is necessary, as we can exploit the relation of the log-partition problem to optimization to show that
the rate n−m/d is optimal in an optimization regime:
Proposition 10 (Lower bound for stochastic log-partition). For m ≥ 1, we have

∗σad
n (Fd,m,B , SL, Dabs) ≥ Ωm,d(Bn−m/d)− d log(1 + 3B) .

Proposition 10 is proven in Appendix C.2. We leave a lower bound outside of the optimization regime as an open
problem, however, we conjecture that the rate Bn−1/2−m/d from the upper bound in Theorem 9 cannot be improved.
For a certain class of strongly concave f with Lipschitz gradient, Theorem 5.1 by Ge et al. (2020) contains a lower
bound which, in our setting, could be roughly expressed as Ωd,B(n

−1/(2−c/d)) for some constant c. A simple Taylor
expansion shows −1/(2− c/d) ≤ −1/2− (c/4)/d, hence this rate is compatible with our upper bound for m = 2 if
c ≥ 8.

To achieve better rates for sampling in the stochastic points setting, we combine approximation with a budget-limited
version of rejection sampling defined in Algorithm 1. If g is shifted appropriately such that it upper-bounds f , we obtain
the following convergence rate bound:

7Novak (1988) defines further variants, for example with L2(PΩ) instead of L1(PΩ) convergence or more limited stochastic
resources, which we will not discuss here for simplicity.
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Algorithm 1 Rejection sampling with proposal distribution Pg limited to n function evaluations.

function REJECTIONSAMPLING(f , g, number of steps n)
for i from 1 to n do

Sample x ∼ Pg and u ∼ U([0, 1])
Return x if ueg(x) ≤ ef(x)

end for
return Sample from Pg

end function

Lemma 11 (General rejection sampling bound). Suppose that f, g : X → R are bounded and measurable with
f(x) ≤ g(x) for all x ∈ X . Then, the distribution P̃f of REJECTIONSAMPLING(f, g, n) satisfies

P̃f = (1− pR)Pf + pRPg (2)

Dsup-log(Pf , P̃f ) ≤ min {Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
DTV(Pf , P̃f ) = pRDTV(Pf , Pg)

W1(Pf , P̃f ) = pRW1(Pf , Pg) ,

where pR = (1− Zf/Zg)
n ≤ exp(−nZf/Zg) is the probability of overall rejection.

The proof can be found in Appendix C.2. Due to the early stopping after n rejections, rejection sampling may signifi-
cantly oversample regions where pf is very small. Since Dsup-log is very sensitive to this behavior, the corresponding
bound is worse than for DTV and W1.

By using half of the n points to create an approximation g and then using a shifted version of g for rejection sampling
with the other half of the n points, we obtain the following upper bound on the minimax optimal error:

Theorem 12 (Upper bound for sampling with stochastic evaluation points). There exists a constant Cm,d > 0 such that

ead-stochn (Fd,m,B , Ssamp, Dsup-log) ≤
{
Om,d(Bn−m/d) , Cm,dBn−m/d > 1

Om,d((Cm,dBn−m/d)n/2+1) , Cm,dBn−m/d ≤ 1 .

Theorem 12 is proven in Appendix C.2. Combinations of approximation and rejection sampling have also been used,
for example, by Achddou et al. (2019) and Chewi et al. (2022b). For Cm,dBn−m/d ≤ 1, the upper bound above decays
faster than exponential in n. The bound is not tight, as the exponent n/2 + 1 can at least be improved close to n at the
cost of increasing the constant Cm,d. However, for the optimization regime, the bound is tight:

Theorem 13 (Lower bound for sampling with stochastic evaluation points). There exists a constant cm,d > 0 such that
for B > 0 and n ∈ N with Bn−m/d ≥ cm,d(1 + log(n)), we have

ead-stochn (Fd,m,B , Ssamp, Dsup-log) ≥ Ωm,d(Bn−m/d)

ead-stochn (Fd,m,B , Ssamp, DTV) ≥ Ωm,d(1)

ead-stochn (Fd,m,B , Ssamp,W1) ≥ Ωm,d(1) .

The proof of Theorem 13 in Appendix C.2 uses the classical approach of hiding a bump, although explicitly exploiting
the relation to optimization via Proposition 20 might also work. Proving lower bounds for sampling with stochastic
points outside of the optimization regime seems difficult. Indeed, when restricting the function class a bit further, we
can even achieve zero error:

Proposition 14. Consider the function class F := {f ∈ C(X ) | ∥f∥∞ ≤ log(3/2), Lf = 0}. Then,

ead-stochn (F , Ssamp, Dsup-log) = 0

for all n ≥ 1.

The proof idea, executed in Appendix C.2, is simple: We use REJECTIONSAMPLING(f̃ , g, 1), where f̃(x) :=
log(2 exp(f(x)) − 1) and g(x) = log(2) are constructed such that the resulting distribution is exactly Pf . The
assumption that Lf is known is necessary to exactly control the acceptance probability in the rejection sampling step.
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3 Relations Between Different Problems

In this section, we study how different problems such as sampling, log-partition estimation, and optimization are
related, especially also in terms of reductions between algorithms, their runtime complexities, and their convergence
rates. Again, certain bounds can be established via the connection to function approximation. For this, we need an
efficient approximation method achieving optimal convergence rates while producing a smooth approximation. This is
possible using the moving least squares method (Lancaster and Salkauskas, 1981), which produces an approximant
g(x) = gx(x), where gx is a local polynomial regression function fitted using a smooth local weight function w(xi, x).
The following theorem shows that the moving least squares method achieves the desired properties:

Theorem 15 (adapted from Li (2016) and Mirzaei (2015)). Let m, d ∈ N≥1. Using the moving least squares method, it
is possible to construct an approximation fn of f ∈ Cm(X ) using n deterministic non-adaptive function evaluations
such that

(a) ∥f − fn∥Ck ≤ Om,d(∥f∥Cmn−(m−k)/d) for k ∈ {0, 1, . . . ,m},
(b) the runtime of constructing fn is zero (construction takes place on-the-fly during evaluation), and
(c) the runtime of evaluating fn at a point x ∈ X is Om,d(1).

We prove Theorem 15 in Appendix D.

3.1 Runtime-Accuracy Trade-off

When investigating sampling and log-partition algorithms, we study their convergence rate and their runtime complexity
both in terms of the number n of required function evaluations. Here, we show that these two quantities can be traded
off against each other to some extent. Improving the computational complexity at the cost of worse convergence rates is
easy by increasing n without using the additional function values:

Example 16 (Trading convergence rates for better runtime complexity). Suppose we have an algorithm A for the
sampling or log-partition problems with convergence rate Θm,d(∥f∥Cmn−αm,d) and runtime Θm,d(n

βm,d). We can then
evaluate f in n points but only use N ≤ n of these points for A. If N = Θm,d(n

γ), γ ∈ (0, 1], we obtain a convergence
rate of Θm,d(∥f∥CmN−αm,d) = Θm,d(∥f∥Cmn−γαm,d) and a runtime of Θm,d(n+Nβm,d) = Θm,d(n

max{1,γβm,d}).
A similar construction could be used to move constants Cm,d ≥ 1 or potential factors ∥f∥kCm ≥ 1 from the runtime to
the convergence rate. ◀

Of course, the construction in Example 16 does not improve the runtime needed to reach a desired error level, but it
shows that some combinations of runtime complexity and convergence rates are not better than others. To trade runtime
complexity for better convergence rates, an analogous construction is not possible, since it would need to use N > n
function evaluations, which would contradict the definition of n. However, we can instead use N evaluations of an
interpolant created using n function evaluations:

Example 17 (Trading runtime complexity for better convergence rates). Suppose again that we have an algorithm A
for the sampling or log-partition problems with convergence rate Θm,d(∥f∥Cmn−αm,d) and runtime Θm,d(n

βm,d). We
consider an algorithm resulting from the following construction:

(1) Use an approximation algorithm as in Theorem 15 to create an approximation fn of f using n (deterministic)
function evaluations.

(2) Run algorithm A on N = Θm,d(n
γ) function evaluations of fn, γ ∈ (0,∞).

By Theorem 15, we have ∥fn − f∥∞ ≤ Om,d(∥f∥Cmn−m/d), and by Proposition 6, this rate also applies to the
considered distances of Lfn to Lf or Pfn to Pf . By the triangle inequality, the resulting algorithm has a convergence
rate of

Om,d(∥f∥Cmn−m/d + ∥fn∥CmN−αm,d) = Om,d(∥f∥Cmn−min{m/d,γαm,d}) ,

where we used ∥fn∥Cm ≤ Om,d(∥f∥Cm) due to Theorem 15 (a) with k = m, and runtime complexity

Om,d(n
γβm,d) . ◀

While the construction in Example 17 also does not improve the runtime complexity needed to reach a desired error level,
it can still be useful if evaluations of the approximant (or surrogate model) fn are much cheaper than evaluations of f .
This principle is used for example in computational chemistry, where expensive direct simulations f are approximated
with machine-learned interatomic potentials fn (Deringer et al., 2019).
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3.2 Relation between stochastic and deterministic evaluation points

When the construction in Example 17 is applied to a sampling algorithm with stochastic evaluation points, it yields
a sampling algorithm with deterministic evaluation points. This can be advantageous since the latter only needs n
function evaluations to draw an arbitrary number of samples, while the former may require n new function evaluations
for every drawn sample. On the other hand, this construction limits the convergence rate of the sampling algorithm to
Ωm,d(Bn−m/d), a rate which can be improved by sampling algorithms with stochastic evaluation points outside of the
optimization regime (cf. Theorem 12).

Applying the construction in Example 17 to a log-partition algorithm with stochastic evaluation points yields a
stochastic log-partition algorithm with deterministic evaluation points. We did not consider such algorithms separately
in Section 2.2. However, such an algorithm is never better than its median or expected output, which is a deterministic
log-partition method with deterministic evaluation points. Hence, it follows from Theorem 7 that the convergence
rate of the construction in Example 17 is limited to Ωm,d(Bn−m/d), and this rate can be improved by log-partition
algorithms with stochastic evaluation points outside of the optimization regime (cf. Theorem 9).

3.3 Relation Between Sampling and Log-partition Estimation

A natural question is whether efficient sampling algorithms can be used to obtain efficient log-partition estimators and
vice versa. We study both of these directions in the following. In fact, sampling algorithms are frequently employed
for log-partition estimation in computational statistical physics and other fields (Frenkel and Smit, 2001; Friel and
Wyse, 2012). One method to achieve this is thermodynamic integration (Kirkwood, 1935), of which we present a
particularly simple version here. By integrating the derivative of L(β) := Lβf , it is possible to derive the following
formula (Gelman and Meng, 1998; Friel and Wyse, 2012):

Lf =

∫ 1

0

Ex∼Pβf
[f(x)] dβ = Eβ∼U([0,1])Ex∼Pβf

f(x) .

Thermodynamic integration can be used more generally to estimate a difference Lf − Lg by integrating along a path
between f and g. In practice, the inner expectation is typically evaluated by Monte Carlo methods using sampling
algorithms to sample from Pβf , while the outer integral is typically approximated with a suitable (deterministic)
quadrature rule. For convenience of analysis, we will consider the case where both expectations are approximated using
Monte Carlo quadrature:
Theorem 18 (Convergence of thermodynamic integration). Given N ∈ N≥1 and a sampling algorithm producing
samples from approximate distributions P̃βf , consider the following algorithm:

• Sample β1, . . . , βN ∼ U([0, 1]) independently.
• Draw Xi ∼ P̃βif independently.
• Output L̃f := 1

N

∑N
i=1 f(Xi).

Then, for δ > 0, we have

|L̃f − Lf | ≤ |Lf − EL̃f |+ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ, where

|Lf − EL̃f | ≤ 2∥f∥∞ sup
β∈[0,1]

DTV(Pβf , P̃βf ),

|Lf − EL̃f | ≤ |f |1 sup
β∈[0,1]

W1(Pβf , P̃βf ).

Theorem 18 is proven in Appendix D.1. In the upper bounds above, we obtain additional factors ∥f∥∞ or |f |1,
which deteriorate the convergence rate. While it appears that these factors are in general necessary for the TV and
1-Wasserstein distances, we explain in Remark D.2 that better bounds in terms of Dsup-log seem plausible but appear
to be more difficult to prove. When considering the runtime complexity and convergence rate of the construction in
Theorem 18, it is important to set them in relation to the total number n of function evaluations used. For example, if
sampling from Pβif uses ñ function evaluations, then in general n = (ñ+ 1)N . If the employed sampling algorithm
is non-adaptive with deterministic evaluation points, we only need n = ñ+N function evaluations. Still, due to the
Monte Carlo nature of thermodynamic integration, the convergence rate is at least limited to Ωm,d,f (n

−1/2), which
is not optimal as we showed in Theorem 9. Of course, thermodynamic integration can be performed on top of an
approximation of f instead, similar to Example 17.
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Algorithm 2 Bisection sampling algorithm using a log-partition algorithm L̃.

function BISECTIONSAMPLING(Function f : X → Rd, Log-partition algorithm L̃, Number M ∈ N0 of bisection
steps per dimension)

For a hyperrectangle Z =×d

i=1
[zi, zi + hi], define fZ : X → R by fZ(x) := f(z1 + h1x1, . . . , zd + hdxd)

Z ← X
for i from 1 to M do

for j from 1 to d do
Split Z along dimension j into two equal-sized hyperrectangles Z1 and Z2

Compute p1 := σ(L̃fZ1
− L̃fZ2

), where σ(u) = (1 + exp(−u))−1 is the sigmoid function
Sample k = 1 with probability p1 and k = 2 otherwise
Z ← Zk

end for
end for
return sample from the uniform distribution U(Z)

end function

Now, we ask the converse question: Can an efficient log-partition algorithm be used for efficient sampling? To achieve
such a reduction, we note that we can apply a log-partition algorithm not only to the target function f but also for
example to multiple shifted and rescaled versions of f , which amounts to computing the log-partition function on
subsets of the cube X . This is exploited in Algorithm 2, which we refer to as bisection sampling. Bisection sampling has
been studied for example by Marteau-Ferey et al. (2022). We give an upper bound on its error in the sup-log distance:

Theorem 19 (Convergence of bisection sampling). Let m ≥ 1, B ≥ 0 and M ∈ N0. Let f ∈ Fd,m,B and let L̃ be
a log-partition estimator with worst-case error E ≥ 0 on Fd,m,B . Let f ∈ Cm(X ) and let P̃f be the distribution of
samples produced by BISECTIONSAMPLING(f, L̃,M) in Algorithm 2. Then,

Dsup-log(P̃f , Pf ) ≤ 2MdE + 2−Md∥f∥C1 .

Of course, Theorem 19, which is proven in Appendix D.1, also implies bounds on the TV and 1-Wasserstein distances
using Proposition 6. The first term in the upper bound grows with M , which stems from the possibility to make an
error of order 2E per loop iteration. However, when the resulting error decays quickly enough in the loop, it is possible
to make the first term independent of M . For example, this could arise because the log-partition algorithm achieves
smaller errors for smoother functions. It is also possible if we consider the 1-Wasserstein distance, which provides
better error bounds on smaller hyperrectangles.

In order to analyze the resulting convergence rates, suppose that the log-partition algorithm L̃ uses N evaluation points.
Ignoring rounding issues, we can set M = log2(N

m/d) and obtain the rate

Dsup-log(P̃f , Pf ) ≤ Om,d(E log(N) + ∥f∥C1N−m/d) ,

where BISECTIONSAMPLING uses up to n := 2MdN = Om,d(N log(N)) function evaluations. Hence, we typically
only lose polylogarithmic terms in the convergence rate, unlike for thermodynamic integration. Even for log-partition
algorithms with deterministic evaluation points, the resulting sampling algorithm uses stochastic evaluation points.
Again, bisection sampling can be performed on top of an approximation of f instead, similar to Example 17.

3.4 Relation to Optimization

Due to the relationship between sampling and optimization, a natural question is in which sense approximate sampling
algorithms can perform approximate optimization. Actually, we can consider two kinds of optimization problems,
similar to Novak (1988):

(OPT) The problem of outputting x ∈ X such that |Mf − f(x)| is small can be seen as the low-temperature limit of
the sampling problem.

(OPT∗) The problem of outputting an estimate M̃f such that |Mf − M̃f | is small can be seen as the low-temperature
limit of the log-partition problem.

As special cases of the reductions between sampling and log-partition estimation in Section 3.3, we can obtain reductions
between (OPT) and (OPT∗): For (OPT∗), we can simply evaluate f at the estimate x obtained from (OPT), which can
be seen as a simple special case of thermodynamic integration. On the other hand, for (OPT), we can recursively use

11
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(OPT∗) to see whether the optimum is contained in a subdomain of X , which corresponds to the low-temperature limit
of bisection sampling.

To obtain a bound for approximate (OPT∗) via approximate log-partition estimation L̃, we note that Lemma 3 directly
yields

|Mf − εL̃f/ε| ≤ |Mf − εLf/ε|+ ε|Lf/ε − L̃f/ε| ≤ εd log(1 + 3d−1/2ε|f |1) + ε|Lf/ε − L̃f/ε|
for temperatures ε > 0.

When performing approximate (OPT) via sampling from an approximate distribution Q = P̃f , the result depends on
the employed distance metric. Since the result of sampling is of course stochastic, we will upper-bound probabilities of
the form Q({x ∈ X | f(x) ≤ α}) of obtaining a function value f(x) ≤ α when drawing x from Q.
Proposition 20 (Optimization by approximate sampling). Let Q be a probability distribution on X . Then, for any
δ ∈ (0, 1] and ε > 0,

(a) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ,
(b) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)}) ≤ δ +DTV(Pf/ε, Q),
(c) Q({x ∈ X | f(x) < εLf/ε − ε log(2/δ)− 2δ−1|f |1W1(Pf/ε, Q)}) ≤ δ.

Proposition 20 is proven in Appendix D.2. If Q = Pg/ε for some bounded g : X → R, the bound in (a) recovers the
known optimization bound f(argmax g) ≥Mf − 2∥f − g∥∞ in the limit ε↘ 0 using Lemma 3 and Proposition 6.
We can deduce from (a) that a sampling algorithm achieving the optimal rate Om,d(∥f∥Cmn−m/d) in terms of Dsup-log

can be used (with sufficiently small ε) to achieve the optimal rate for (OPT) as well. On the other hand, the bounds (b)
and (c) are much weaker. For example, (a) still gives a good bound for Dsup-log(Pf/ε, Q) = 1/2, but (b) only gives
a low-probability bound for DTV(Pf/ε, Q) = 1/2 and (c) is trivial for W1(Pf/ε, Q) = 1/2. Note that an argument
analogous to (b) has been used in Corollary 1 by Ma et al. (2019) to analyze the convergence of Langevin algorithms
for approximate optimization.

4 Algorithms

In this section, we investigate the convergence rates of different algorithmic approaches toward the sampling and
log-partition problems.

4.1 Approximation-based Algorithms

First, we study approximation-based algorithms. In Section 2.1, we have seen that in principle, approximation-based
methods can achieve the optimal rates for the sampling and log-partition problems with deterministic points. However,
for most approximations g, it is unclear how to sample from Pg or compute Lg. In the following, we will consider a
few cases where this is possible:

4.1.1 Piecewise Constant Approximation

A very simple approximation method is piecewise constant approximation. Here, we study the convenient setting where
n = Nd for some N ∈ N:

• Divide X into Nd equally-sized cubes X1, . . . ,Xn by dividing [0, 1] into N intervals.
• Output the function gn that is piecewise constant on each cube and interpolates f at the center x(i) of the

cube Xi. Boundary points can be assigned to an arbitrary adjacent cube.

Given a piecewise constant function gn, we can easily compute Lgn = log
(

1
n

∑n
i=1 e

f(x(i))
)

in time Om,d(n).

Similarly, we can sample from gn in time Om,d(n) by first sampling a subcubeXi with probability pi = ef(x
(i))−Lgn and

then drawing a uniform random sample from Xi.8 However, the convergence rate is bad, as we prove in Appendix E.1.1:
Theorem 21 (Convergence rate of piecewise constant approximation). Let m ≥ 1 and n = Nd as above. If gn is a
piecewise constant interpolant as above, we have

sup
f∈Fd,m,B

|Lf − Lgn | =
{
Θm,d(Bn−1/d) , if m = 1 or Bn−1/d > 1

Θm,d(max{B,B2}n−2/d) , otherwise.

8This could be improved to Om,d(logn) by precomputing partial sums of the pi once in O(n). Then, for drawing a sample, we
can sample u ∼ U({1, . . . , n}) and use binary search to find the correct “bucket” k with

∑k−1
i=1 pi ≤ u <

∑k
i=1 pi.
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sup
f∈Fd,m,B

Dsup-log(Pf , Pgn) = Θm,d(Bn−1/d) .

The rates of piecewise constant approximation are thus optimal for m = 1, but not for m > 1. For m > 1,
using a combination with higher-order function approximation as in Example 17, it is possible to achieve the rate
Om,d(Bn−m/d) with runtime Om,d(n

m). The result above also shows that the piecewise constant log-partition method
can achieve the faster rate O(n−2/d) of midpoint quadrature only outside of the optimization regime. We leave it as an
open problem whether such faster rates are also achieved for sampling with DTV or W1. Achddou et al. (2019) analyze
a combination of piecewise constant approximation with rejection sampling, but in a setting incomparable to ours. They
also note that piecewise constant approximation achieves optimal rates for Hölder classes of functions.

Beyond piecewise constant approximations, piecewise linear approximations also allow for efficient sampling and
log-partition estimation, and they should allow to achieve convergence rates of Om,d(Bn−2/d). We leave a precise
analysis of this approach as an open problem.

4.1.2 Density-based Approximation

Another option to obtain tractable sampling and log-partition algorithms is to directly approximate the unnormalized
density p(x) = ef(x). Since probability distributions are normalized, approximating λp with λq yields the same
sampling and log-partition errors as approximating p with q, but the approximation error ∥λp − λq∥∞ depends on
λ > 0. To obtain a scale-invariant bound for the sampling and log-partition errors, we need to divide the approximation
bound by a normalization constant:

Proposition 22 (Density approximation bounds). Let p, q : R → [0,∞) be bounded and measurable such that
Ip, Iq > 0, where Ip :=

∫
X p(x) dx. Define probability distributions P,Q with densities p/Ip and q/Iq, respectively.

Then,

| log Ip − log Iq| ≤ log

(
1

1− ∥p− q∥∞/Ip

)
if ∥p− q∥∞ < Ip,

DTV(P,Q) ≤ 3∥p− q∥∞
max{Ip, Iq}

≤ 3∥p− q∥∞
Ip

.

We prove Proposition 22 in Appendix E.1.2. While ∥p∥∞ = ∥ef∥∞ can be exponential in ∥f∥∞, Proposition 22
demonstrates that we need to incorporate the normalization constant to obtain reasonable estimates for sampling and
log-partition computation. After incorporating the normalization constant, we arrive at terms of the form ∥p∥/Ip =
∥ef∥/Zf = ∥ef/Zf∥ = ∥pf∥. Hence, the norm of the (normalized) density plays an important role for convergence
rates of density-based approximation approaches. As it turns out, ∥pf∥ does not scale exponentially in ∥f∥∞, but still
badly:

Theorem 23 (Density norm). For m ≥ 1, we have

sup
f∈Fd,m,B

∥pf∥Cm = Θm,d

(
max{1, B}m+d

)
and this asymptotic rate is attained by fd,m,B(x) = Bd−1(x1 + · · ·+ xd).

Theorem 23 is proven in Appendix E.1.2. Suppose that f ∈ Cm(X ) and we can approximate p(x) = ef(x) with a
non-negative function q with optimal9 rate Om,d(∥p∥Cmn−m/d). By combining Proposition 22 and Theorem 23, the
distribution Q associated with the unnormalized density q then satisfies

DTV(Pf , Q) ≤ Om,d(max{1, ∥f∥Cm}m+dn−m/d) . (3)

Although this rate is optimal in terms of n for deterministic evaluation points, it is bad in terms of ∥f∥Cm , cf. also
Example 4.

Marteau-Ferey et al. (2022) propose a sampling algorithm based on approximating the density with a (non-negative)
sum-of-squares model. Specifically, for a Gibbs distribution, they suggest approximating

√
p with q and then using q2

as an unnormalized density. They achieve a rate of Om,d,f (n
−m/d) in polynomial time without explicitly stating the

dependence on ∥f∥, but we conjecture that the dependence on ∥f∥ is similar to Eq. (3).

9This rate is worst-case optimal if we only know ∥p∥Cm . However, it might not be optimal over the smaller class of functions of
the form ef with small ∥f∥Cm .
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4.2 Simple Stochastic Algorithms

We now analyze the convergence rates for some simple stochastic algorithms.

4.2.1 Rejection Sampling With Uniform Proposal Distribution

A simple stochastic algorithm is rejection sampling with a uniform proposal distribution. The following proposition
shows that this can achieve better rates in terms of the TV distance than the density-based approximation rates in Eq. (3)
if the maximum Mf of f is known:

Proposition 24 (Convergence of rejection sampling). Let m ≥ 1 and let f ∈ C1(X ). Then, the distribution P̃f

produced by REJECTIONSAMPLING(f , Mf , n) (see Algorithm 1) satisfies

Dsup-log(Pf , P̃f ) ≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)}
DTV(Pf , P̃f ) ≤ min{1, 2∥f∥∞} exp(−n/∥pf∥∞) ≤ Om,d(min{1, ∥f∥∞}max{1, ∥f∥C1}mn−m/d) .

A proof can be found in Appendix E.2.1. Lower bounds for the convergence of rejection sampling could be obtained
using Lemma 11, but the resulting formula would not be easy to interpret. In any case, an argument similar to the one in
Section 4.2.3 and Appendix E.2.3 can be made to show that REJECTIONSAMPLING(f , Mf , n) cannot achieve the rate
Om,d(Bn−m/d). We leave it as an open question whether similar rates to Proposition 24 can be achieved when Mf is
approximately known or when a guess for Mf is used that slowly increases with n. Note that Talwar (2019) studies a
similar setting where rejection sampling is not stopped after n rejections.

4.2.2 Monte Carlo Log-partition

Since the log-partition problem involves an integral, it is natural to approximate the integral by Monte Carlo (MC)
quadrature. The following theorem gives an upper bound on the convergence rate:
Theorem 25 (Upper bounds for MC log-partition). Let f : X → R be Lipschitz, let X1, . . . , Xn ∼ U(X ) be
independent and let

L̃n := logSn, Sn :=
1

n

n∑
i=1

exp(f(Xi)).

Then, for any δ ∈ (0, 1], the following convergence rates hold:

(a) Optimization regime: If n ≤ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ d1/2(log(1/δ))1/d|f |1n−1/d + log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)
with probability ≥ 1− δ.

(b) Quadrature regime: If n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ 4 log(2/δ)1/2(1 + 3d−1/2|f |1)d/2n−1/2

with probability ≥ 1− δ.

We prove Theorem 25 in Appendix E.2.2. Roughly speaking, the rates in the theorem above behave like |f |1n−1/d

until an error of O(1) is reached, and then they change to |f |d/21 n−1/2. Figure 1 and our experiments later in Figure 2
show that this reflects the qualitative behavior of the error on linear f in practice.

4.2.3 Monte Carlo Sampling

We can also consider a sampling version of the Monte Carlo log-partition method considered in Section 4.2.2. The
following theorem shows that it cannot achieve good rates in the optimization regime either:
Theorem 26 (Lower bound for MC sampling). Let f : X → R be bounded and measurable. Let X1, . . . , Xn ∼ U(X )
and let the random index I ∈ {1, . . . , n} be distributed as

P (I = i) =
exp(f(Xi))∑n
j=1 exp(f(Xj))

.

Consider the distribution P̃f of the random sample XI . Then, for all B > 0 and n ≥ 1 with Bn−1/d ≥ 4d log(4d),

sup
f∈Fd,m,B

DTV(Pf , P̃f ) ≥
1

2
.
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Figure 1: Median error of MC log-partition for the function f : [0, 1]→ R, x 7→ βx (with d = 1), for varying numbers
of points n and values of β = |f |1 > 0. Medians were computed out of 10001 repetitions. The dashed lines show the
corresponding upper bounds from Theorem 25 for the median (δ = 1/2).

The lower bounds in Theorem 26, proven in Appendix E.2.3, show that n ≥ Ωm,d(B
d) points are required to achieve

an error below O(1), which is significantly worse than the around Θm,d(B
d/m) points required by a method with

the optimal rate for deterministic evaluation points. The proof only uses that the density p̃f is upper-bounded by n,
and would apply analogously (using n+ 1 instead of n) to rejection sampling with uniform proposal distribution as
considered in Section 4.2.1.

4.3 Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo (MCMC) methods are a very popular class of sampling algorithms. In particular, gradient-
based MCMC algorithms such as versions of Langevin MCMC and Hamiltonian Monte Carlo (Duane et al., 1987) have
been studied intensively in recent years. While most theoretical guarantees only consider the case of concave f , there
have been a few extensions where f is allowed to be non-concave in a compact region of the domain. For example, Ma
et al. (2019) study a certain class of functions whose gradient is L-Lipschitz and that are non-concave in a region with
radius R but α-strongly convex outside of it. For the Metropolis-adjusted Langevin algorithm (MALA) to reach a TV
distance error E > 0, they obtain the mixing time bound

n ≤ O

(
e40LR2

α
(L/α)3/2d1/2(d ln(L/α) + ln(1/E))3/2

)
. (4)

We have used n here for the mixing time since it corresponds to the number of gradient evaluations, which are potentially
more informative than the function evaluations normally allowed in our setting but can be approximated using d+ 1
function evaluations. The dependence of the upper bound in Section 4.3 on L, which is related to ∥f∥C2 in our setting,
is exponential. We are not aware of a lower bound, but conjecture that a tight lower bound will also have an exponential
dependence on ∥f∥ in some fashion. This indicates that Langevin MCMC could perform worse than rejection sampling
in our setting.

Beyond Langevin MCMC, there are many other popular MCMC methods, for example, variants of Hamiltonian Monte
Carlo, parallel tempering (or replica exchange MCMC), and simulated tempering. Obtaining convergence rates for
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these methods on function classes like Fd,m,B is an interesting problem but left open in this paper. While Woodard
et al. (2009) prove torpid (slow) mixing for parallel and simulated tempering in some settings, they show an exponential
dependency on d for certain mixtures of Gaussians, which does not appear to imply suboptimal rates in our setting.

4.4 Variational Formulation for Log-Partition Estimation

In the following, we will introduce the variational approach to the log-partition problem by Bach (2022). We will first
start with the simpler optimization setting. Let P(X ) be the space of probability measures on X . We start with the
formulation

Mf = max
x∈X

f(x) = sup
P∈P(X )

∫
f(x) dP (x) , (5)

which converts a finite-dimensional non-concave optimization problem into an infinite-dimensional convex optimization
problem. To apply the approach by Bach (2022), we need to approximate the function f by a model of the form

g(x) = φ(x)∗Hφ(x),

where H is a Hermitian matrix and φ : X → CN is a suitable feature map. For example, for d = 1, if f is periodic and
we use Fourier features φ(x) = (1, eix, . . . , e(N−1)ix)⊤, then H can be determined by trigonometric interpolation, see
also Woodworth et al. (2022).

For a probability distribution P ∈ P(X ), we define the moment matrix

ΣP :=

∫
X
φ(x)φ(x)∗ dP (x) .

Because of ∫
X
g(x) dP (x) =

∫
X
tr[φ(x)∗Hφ(x)] dx =

∫
X
tr[Hφ(x)φ(x)∗] dx = tr[HΣP ] ,

we then obtain

Mg = sup
P∈P(X )

tr[HΣP ] = sup
Σ∈K

tr[HΣ] ,

where K is the (convex) set of all possible values of ΣP . This reduces the infinite-dimensional convex optimization
problem in Eq. (5) to a finite-dimensional convex optimization problem, and at least for certain feature maps, the set K
has a sufficiently nice structure for optimization.

To extend this approach to the log-partition problem, Bach (2022) uses the following variational formulation by Donsker
and Varadhan (1983) for general base distributions Q, where DKL(P ∥ Q) =

∫
log
(

dP
dQ

)
dP is the KL divergence:

Lf (Q) := log

∫
X
ef(x) dQ(x)

= sup
P∈P(X )

∫
X
f(x) dP (x)−DKL(P ∥ Q) .

Again, after approximating f by g, we can replace the integral by tr[HΣP ]. However, to obtain a finite-dimensional
optimization problem, we also need to replace the KL divergence with something that only depends on ΣP instead of
P . Since this is not possible exactly, Bach (2022) proposes multiple lower bounds, of which the tightest one (and most
difficult to compute) is

DOPT
KL (ΣP ∥ ΣQ) := inf

P̃ ,Q̃∈P(X ):ΣP=ΣP̃ ,ΣQ=ΣQ̃

DKL(P̃ ∥ Q̃) .

This yields the following upper bound on the log-partition function:

LOPT
g (Q) := sup

P∈P(X )

∫
X
g(x) dP (x)−DOPT

KL (ΣP ∥ ΣQ)

= sup
P∈P(X )

tr[HΣP ]−DOPT
KL (ΣP ∥ ΣQ) = sup

Σ∈K
tr[HΣ]−DOPT

KL (Σ ∥ ΣQ) ≥ Lg(Q) . (6)

Our investigation begins here: After inserting the definition of DOPT
KL , a simple calculation shows that due to the minus

sign, the infimum over P̃ merges with the supremum over P , and the infimum over Q̃ turns into a supremum:
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Lemma 27. For a model of the form g(x) = φ(x)∗Hφ(x) as above, we have

LOPT
g (Q) = sup

Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q̃) .

This formulation allows us to show a lower bound on the achievable convergence rate. The basic idea is as follows:
Since Q is only known through finitely many moments ΣQ, we can find a discrete distribution Q̃ with the same moments.
We then choose f such that it attains its maximum at one of the discrete points, and if g approximates f sufficiently
well, we show that the discrete distribution places too much weight on the maximum.
Theorem 28 (Lower bound for OPT relaxation). Let φ : X → CN be continuous. Let

n := dimC Vlin, Vlin := SpanC {φ(x)φ(x)∗ | x ∈ X} ⊆ CN×N .

In other words, n is the number of effective degrees-of-freedom of the model g(x) = φ(x)∗Hφ(x), and hence
corresponds to the maximum number of points where such a model can interpolate arbitrary function values. Then,
there exists a point z ∈ X depending only on φ, such that the periodic and analytic function

f : X → R, x 7→
d∑

i=1

cos(2π(xi − zi))

satisfies

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ (7)

for any model g(x) = φ(x)∗Hφ(x) and any β > 0.

What are the implications of Theorem 28, which is proven in Appendix E.3, on convergence rates? To answer
this question, we need to consider the limit n → ∞, which means that N,φ, f, g in general depend on n, and
we will denote them by Nn, φn, fn, gn, respectively. We also consider an inverse temperature βn := (e(2n +
1))2/d. Since fn is analytic, an approximation method with optimal rate should achieve the rate ∥gn − βnfn∥∞ ≤
Om,d(∥βnfn∥Cmn−m/d) = Om,d(n

−(m−2)/d) for every m ∈ N. Suppose that this is at least achieved for m = 3,
such that limn→∞ ∥gn − βnfn∥∞ = 0. Then,

|LOPT
gn (U([0, 1]))− Lβnfn(U([0, 1]))| ≥ log

(
β
d/2
n

2n+ 1

)
− ∥gn − βnfn∥∞ ≥ 1−Om,d(n

−(m−2)/d)

= Ωm,d(βnn
−2/d) for sufficiently large n.

In other words, the approximation error and the log-partition error of the OPT relaxation in Eq. (6) cannot both achieve
a rate strictly better than Om,d(∥f∥n−2/d) even for infinitely smooth functions, no matter which (continuous) feature
map φ is chosen.

5 Experiments

To further investigate the convergence behavior of some simple algorithms, we study them numerically on functions of
the form f : [0, 1]3 → R, x 7→ β(x1 + x2 + x3). While these functions are simple (and concave), they pose a challenge
to some general algorithms as they have a large range in relation to their Lipschitz constant. The dimension d = 3
has been chosen for visualization purposes, to be able to distinguish the convergence rates n−1/d and n−2/d from the
typical MC convergence rate of n−1/2. Our plots can be reproduced using the code at

github.com/dholzmueller/sampling_experiments

5.1 Log-partition Estimation

For the log-partition problem, we consider the following algorithms:

• PC: Compute the log-partition function of a piecewise constant approximation as in Section 4.1.1.
• MC: Monte carlo log-partition estimation as in Section 4.2.2.
• PC+MC: We use importance sampling, specifically MC quadrature on top of a piecewise constant approx-

imation as described in Section 2.2: We use n/2 function evaluations to compute a piecewise constant
approximation g of f and then use the other n/2 function evaluations for an MC approximation of the
right-hand side in

Lf = Lg + log
(
Ex∼Pg

[exp(f(x)− g(x))]
)
.
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Figure 2: Convergence of the (median) error |Lf − L̃f | for different values of β ∈ {0.1, 40, 10000}. For the stochastic
methods MC and PC+MC, the median is taken over 10001 independent runs.

Note that PC and MC run in linear time Om,d(n) while PC+MC can require a runtime of Om,d(n
2) or Om,d(n log n)

depending on the implementation.

Figure 2 shows the convergence of these methods for β ∈ {0.1, 40, 10000}. For β = 10000, the methods are in an
optimization regime, where PC and MC follow the rate O(n−1/3) of the corresponding upper bounds in Theorem 21
and Theorem 25. Meanwhile, PC+MC follows the rate O(n−2/3). This can be understood intuitively by noting that due
to the linear nature of f , the PC proposal distribution will mostly propose points close to the optimum, such that the
MC component can get much closer to the optimum than with a uniform proposal distribution.

For β = 30, we observe a transition between an optimization regime and a quadrature regime. In the quadrature regime,
the convergence rate of MC is the classical MC quadrature rate O(n−1/2), matching the upper bound in Theorem 25.
Meanwhile, the convergence rate of PC transitions to O(n−2/3), matching the worst-case bound in Theorem 21, whose
proof uses a linear f for the lower bound. The combination PC+MC approaches a convergence rate around O(n−5/6).
This can be understood as the MC rate O(n−1/2) combined with the approximation rate (not log-partition rate) of PC,
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which is O(n−1/3). The rate O(n−5/6) can be proven formally using arguments analogous to the proof of Theorem 9
in Appendix C.2.

For β = 0.1, we see the same quadrature regime rates as for β = 30, except that now the constant in the rate for PC
is smaller than those of MC and PC+MC. This can be explained by an observation in the proof of Theorem 21 in
Appendix E.1: Since PC performs midpoint quadrature, its error depends on the curvature of exp(f). Since f is linear,
the curvature of exp(f) is significantly smaller than the worst-case curvature when β ≪ 1. On the other hand, the
convergence rate of PC+MC depends on the approximation rate of PC, which does not exhibit this phenomenon.

5.2 Sampling

To study convergence rates for sampling, we need a way to estimate distances between probability distributions through
samples. While this can be achieved for the Wasserstein distance, and more efficiently for the related Sinkhorn distances,
an even more efficient and easy-to-compute measure is the energy distance (see e.g. Székely and Rizzo, 2013) given by

Denergy(P,Q)2 = 2Ex∼P,x′∼Q∥x− x′∥2 − Ex∼P,x′∼P ∥x− x′∥2 − Ex∼Q,x′∼Q∥x− x′∥2 .
We estimate the energy distance Denergy(Pf , P̃f ) by sampling a finite number of samples x1, . . . , xN ∼ Pf and
x̃1, . . . , x̃N ∼ P̃f ) and then computing the energy distance Denergy(Q, Q̃) of the empirical distributions

Q :=
1

N

N∑
i=1

δxi
, Q̃ :=

1

N

N∑
i=1

δx̃i
,

where δx is the Dirac distribution at x. We compare the following sampling algorithms:

• PC: Sampling from a piecewise constant approximation as in Section 4.1.1.
• MC: Monte carlo sampling as defined in Section 4.2.3.
• RS: We return REJECTIONSAMPLING(f,Mf , n) as defined in Algorithm 1 and investigated in Section 4.2.1.

Here, we know Mf explicitly due to the simple nature of f .
• PC+MC: Performing MC sampling on top of a piecewise constant proposal distribution: We compute a

piecewise constant approximant g of f with n/2 points, then draw samples X1, . . . , Xn/2 ∼ Pg and output
XI , where

P (I = i) =
exp(f(Xi)− g(Xi))∑n/2

j=1 exp(f(Xj)− g(Xj))
.

• PC+RS: We use n/2 points to compute a piecewise constant approximation g of f and then return
REJECTIONSAMPLING(f, g + Mf−g, n/2) as defined in Algorithm 1. Here, we know Mf−g explicitly
due to the simple nature of f .

Note that PC, MC, and RS run in linear time Om,d(n) while PC+MC and PC+RS can require Om,d(n
2) or Om,d(n log n)

depending on the implementation.

For the sampling algorithms in Figure 3, the behavior in terms of convergence rates is less clear than for the log-partition
algorithms. Nonetheless, it is evident that combining approximation-based and stochastic methods performs better
than either of the two in isolation. Moreover, it is noticeable that RS, our budget-limited variant of rejection sampling,
initially performs poorly while reaching fast convergence for larger values of n, when the probability of overall rejection
becomes small.

6 Conclusion

In this paper, we studied the convergence rates of sampling and log-partition estimation methods on classes of m-smooth
functions on the d-dimensional unit cube X = [0, 1]d. In Section 2, we showed that without computational constraints,
the optimal achievable convergence rates are of the form Om,d(Bn−m/d) or even better depending on the setting. We
then investigated several computational reductions between problems in Section 3, showing that several problems are
similarly hard. In Section 4, we studied convergence rates of specific algorithms, which are however far from being
optimal unless one is willing to spend a computational effort on the order of O(nm), i.e., exponential in the smoothness
m for which the optimal rate should be achieved. Our experimental study nonetheless confirms practical differences
between the convergence rates of some of the investigated efficient algorithms.

Our work poses the central question of whether near-optimal convergence rates for smooth functions can be achieved
with runtimes that are of fixed polynomial order Om,d(n

k), i.e., where k does not depend on m or d. Moreover,
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Figure 3: Convergence of different sampling methods in terms of the empirical energy distance, computed using
N = 106 samples for each distribution, to the true distribution Pf for β = 15. Here, n denotes the number of function
evaluations used for drawing a sample, where PC uses the same function evaluations for each sample while MC and RS
need new function evaluations for every drawn sample. The gray dashed line corresponds to the maximum empirical
energy distance of two sets of N = 106 samples both drawn from Pf , where the maximum is taken over three random
draws.

for many sampling algorithms, it is unclear which convergence rates they can achieve in our setting. For example,
variants of parallel tempering are often employed for non-log-concave problems, and diffusion models might prove
to be relevant if the score function can be approximated efficiently (Chen et al., 2022). An analysis of (mixtures of)
Laplace approximations might also be interesting in this context. Beyond specific algorithms, proving lower bounds
outside of the optimization regime is still an open question except for some special cases (Chewi et al., 2022b), and
other probability distance measures such as the KL divergence could be considered as well.
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A Overview

The structure of the appendix matches that of the main part of this paper. We give proofs for Section 1 in Appendix B,
for Section 2 in Appendix C, for Section 3 in Appendix D, and for Section 4 in Appendix E.

B Proofs for Introduction

Lemma 3 (Optimization limit). Let f : X → R be Lipschitz-continuous with Lipschitz constant |f |1 <∞. Then, for
any temperature ε > 0, the maximum Mf = maxx∈X f(x) satisfies

|Mf − εLf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) −→ 0 for ε↘ 0 . (1)
Moreover, for any bounded and measurable f : X → R and any δ ∈ (0, 1], we have

Pf/ε({x ∈ X | f(x) < εLf/ε − ε log(1/δ)}) ≤ δ .

Proof. For the first part of the lemma, let x∗ ∈ X be a maximizer of f . Without loss of generality, assume that f is
shifted such that f(x∗) = 0.

Step 1: Upper bound. We have

Lf = log

∫
X
ef(x) dx ≤ log

∫
X
1 dx = log 1 = 0 = Mf .

Step 2: Lower bound. To show a lower bound on Lf , define the side length R := (max{1, d−1/2|f |1})−1. Since
R ≤ 1, X contains an axis-aligned subcube X̃ of side length R containing x∗. Each point x ∈ X̃ has distance at most√
dR from x∗, and hence by Lipschitzness, we have

f(x) ≥ f(0)− |f |1
√
dR = −|f |1

√
dR .

We consider two cases:

(a) Case 1: d−1/2|f |1 ≤ 1. In this case, we have R = 1 and hence

Lf = log

∫
X
ef(x) dx ≥ log

∫
X
e−|f |1

√
d dx = −|f |1

√
d = −d(d−1/2|f |1) .

The function h(x) := log(1 + 3x)− x is concave and h(0), h(1) ≥ 0, which shows h(x) ≥ 0 for x ∈ [0, 1].
Hence,

Lf ≥ −d log(1 + 3d−1/2|f |1) .
(b) Case 2: d−1/2|f |1 > 1. In this case, we have R = (d−1/2|f |1)−1 and hence f(x) ≥ −d for x ∈ X̃ . This

yields

Lf = log

∫
X
ef(x) dx ≥ log

∫
X̃
ef(x) dx

≥ log

∫
X̃
e−d dx = −d+ d log(R) = −d− d log(d−1/2|f |1)

= −d log(ed−1/2|f |1) ≥ −d log(1 + 3d−1/2|f |1) .
Step 3: Including the temperature. By replacing f with f/ε, we obtain

|Mf − εLf/ε| = |εMf/ε − εLf/ε| = ε|Mf/ε − Lf/ε| ≤ εd log(1 + 3d−1/2|f |1/ε) .

Step 4: Probabilistic bound. We have

Pf/ε(x : f(x) ≤ εLf/ε − ε log(1/δ)) ≤
∫
{x∈X :f(x)≤εLf/ε−ε log(1/δ)}

exp(f(x)/ε− Lf/ε) dx

≤
∫
X
exp(− log(1/δ)) dx = δ .

The following lemma will be useful to deal with Lipschitz constants:
Lemma B.1. Let f ∈ Cm(X ),m ≥ 1. Then, |f |1 ≤ d1/2∥f∥Cm .

Proof. We have
|f |1 = sup

x∈X
∥∇f(x)∥2 ≤ sup

x∈X
d1/2∥∇f(x)∥∞ ≤ d1/2∥f∥C1 ≤ d1/2∥f∥Cm .
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C Proofs for Information-based Complexity

Most of our lower bounds rely on the common strategy of hiding smooth functions with small support somewhere in
the domain (see e.g. Novak, 1988). We will consider the following bump functions:
Definition C.1 (Bump functions). We define the template one-dimensional bump function

b̃ : R→ R, x 7→
{
exp(4− (1− x)−1 − (x+ 1)−1) , if x ∈ (−1, 1)
0 , otherwise

and, for given dimension d, the template multi-dimensional bump function
b : Rd → R, x 7→ b̃(x1) · · · b̃(xd) .

for z ∈ Rd and δ > 0, the shifted and scaled bump functions

bz,δ : Rd → R, x 7→ b

(
x− z

δ

)
.

Moreover, we define the open cube
B∞(x, δ) := {z ∈ Rd | ∥z − x∥∞ < δ} . ◀

The following lemma illustrates some important properties of these bump functions:
Lemma C.2 (Bump functions). The bump functions bz,δ from Definition C.1 satisfy

(a) bz,δ is zero outside of B∞(z, δ).
(b) bz,δ is infinitely often continuously differentiable and all of its derivatives are bounded,
(c) there exists a constant Cm,d > 0 independent of z and δ such that for all z ∈ Rd and δ > 0,

∥bz,δ∥Cm(Rd) ≤ Cm,d max{1, δ−m} .
(d) For x ∈ B∞(z, δ/2), we have bz,δ(x) ≥ 1.

Proof.

(a) This is easy to verify from the definition.
(b) It is well-known, see e.g. Remark 3.4 (d) in Chapter V.3 of Amann and Escher (2005), that the function

b̂ : R→ R, x 7→
{
0 , x ≤ 0

exp(−1/x) , x > 0

is C∞. Since b̃(x) = e4b̂(1− x) · b̂(x+ 1), b̃ is also C∞, and so must be b and bz,δ . Moreover, since bz,δ has
compact support, all the derivatives are bounded.

(c) Let Cm,d := ∥b∥Cm(Rd). We have

sup
x∈Rd

∣∣∣∣∂αbz,δ(x)

∂xα

∣∣∣∣ = δ−|α|1 sup
x∈Rd

∣∣∣∣∂αb(x)

∂xα

∣∣∣∣ .
Therefore, by definition of the Cm-norm, we have

∥bz,δ∥Cm(Rd) ≤ Cm,d max{1, δ−m} .
(d) It is easy to verify that b̃(x) ≥ 1 for |x| ≤ 1/2. For x ∈ B∞(z, δ/2), we have

∥(x− z)/δ∥∞ ≤ 1/2 ,

hence

bz,δ(x) = b

(
x− z

δ

)
≥ 1 · · · 1 = 1 .

The following lemma is useful to bound the number of bump functions that we can hide in a domain:
Lemma C.3. For k ∈ N≥1, a third-slice X̃ := [0, 1/3] × [0, 1]d−1 of the cube X contains at least k disjoint open
cubes B∞(z1, rk), . . . , B∞(zk, rk) with radius

rk =
k−1/d

12
.

Proof. Choose N := ⌈k1/d⌉. We can divide X̃ into N · (3N)d−1 ≥ Nd ≥ k cubes of side length (3N)−1 and radius

r =
1

6N
≥ 1

6(k1/d + 1)
≥ 1

12k1/d
=

k−1/d

12
= rk .
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C.1 Deterministic Evaluation Points

We first adapt some results from Novak (1988) to our setting.
Theorem 5 (adapted from Novak (1988)). We have

en(Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d),

en(Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d),

en(Fd,m,B , Sint, Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , Sint, Dabs) = Θm,d(Bn−m/d) .

Proof. Step 1: Upper bounds. For S ∈ {Sapp, Sopt∗ , Sint}, Novak (1988) states upper bounds of the form
Om,d(n

−m/d) for bounded classes of functions in the Sobolev space Wm,d
∞ , which contain Fd,m,Bm,d

for some
Bm,d > 0 (see Section 1.3.11 and 1.3.12 in Novak (1988)). Hence, for the corresponding metric D, we have

en(Fd,m,Bm,d
, S,D) ≤ Om,d(n

−m/d) .

For another value of B, we can then take a near-optimal S̃ ∈ An for Fd,m,Bm,d
and define

ˆ̃S(f) :=
B

Bm,d
S̃

(
Bm,d

B
f

)
,

and by positive homogeneity of S and D, this then achieves the rate Om,d(Bn−m/d).

Step 2: Lower bounds. For lower bounds, it is again sufficient to consider Fd,m,Bm,d
for a single Bm,d > 0. Novak

(1988) uses bump functions created by rescaling and shifting the template bump function

Φ(x) =

{
a
∏d

i=1(1− x2
i )

m , x ∈ [−1, 1]d
0 , otherwise

for some appropriate constant a > 0. This function is in Wm,d
∞ but not all of its weak m-th derivatives are continuous.

Hence, the constructed counterexamples do not directly apply to Fd,m,Bm,d
. However, it is possible to replace Φ by the

C∞ bump function b from Definition C.1 since the norms of the derivatives behave in the same fashion for scaled and
shifted versions of b, as shown in Lemma C.2. Hence, the same lower bounds still apply to Fd,m,Bm,d

.

We can now turn to our upper bounds through approximation:
Proposition 6 (Upper bounds via approximation). For bounded and measurable f, g : X → R, we have

(a) |Lf − Lg| ≤ ∥f − g∥∞.
(b) d−1/2W1(Pf , Pg) ≤ DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f − g∥∞.

Proof. Since Lf and Pf are not influenced by changing f on null sets, we will ignore exceptional null sets in the
essential supremum in the definition of ∥ · ∥∞ in the following.

(a) We have

Lg = log

∫
X
eg(x) dx

≤ log

∫
X
ef(x)+∥f−g∥∞ dx = log

(
e∥f−g∥∞ ·

∫
X
ef(x) dx

)
=

(
log

∫
X
ef(x) dx

)
+ ∥f − g∥∞

= Lf + ∥f − g∥∞ ,

and the other inequality follows analogously.
(b) We have pf (x) = exp(f(x)− Lf ) and pg(x) = exp(g(x)− Lg), hence

Dsup-log(Pf , Pg) =

∥∥∥∥log(pf
pg

)∥∥∥∥
∞

= ∥(f − Lf )− (g − Lg)∥∞ ≤ ∥f − g∥∞ + |Lf − Lg|
(a)
≤ 2∥f − g∥∞ .

Let f̄ := f − Lf . By a well-known property of the TV distance (see e.g. Gibbs and Su, 2002),

DTV(Pf , Pg) = DTV(Pf̄ , Pḡ) =
1

2

∫
X
|ef̄(x) − eḡ(x)|dx .
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Now, consider a fixed x ∈ X . Without loss of generality, assume f̄(x) ≤ ḡ(x). Then,

eḡ(x)−∥f̄−ḡ∥∞ ≤ ef̄(x) ≤ eḡ(x) ,

which yields

|ef̄(x) − eḡ(x)| ≤ (1− e−∥f̄−ḡ∥∞)eḡ(x) ≤ (1− e−∥f̄−ḡ∥∞)(ef̄(x) + eḡ(x)) ≤ ∥f̄ − ḡ∥∞(ef̄(x) + eḡ(x)) .

Therefore,

DTV(Pf , Pg) ≤
1

2

∫
X
∥f̄ − ḡ∥∞(ef̄(x) + eḡ(x)) dµ(x) = ∥f̄ − ḡ∥∞ = Dsup-log(Pf , Pg) .

The bound W1(Pf , Pg) ≤ diam(X )DTV(Pf , Pg) = d1/2DTV(Pf , Pg) for the 1-Wasserstein distance, where
diam(X ) is the diameter of X , is well-known (see e.g. Gibbs and Su, 2002).

The following technical lemmas will be used for the lower bound afterward.
Lemma C.4. Let a, b > 0. Then,

a

a+ b
≥ 1

2
min

{
1,

a

b

}
.

Proof. If a ≤ b, we have

a

a+ b
≥ a

2b
≥ 1

2
min

{
1,

a

b

}
.

Similarly, if a ≥ b, we have

a

a+ b
≥ a

2a
=

1

2
≥ 1

2
min

{
1,

a

b

}
.

Lemma C.5. Let c ∈ (0, 1]. Then, the function

h : [0,∞)→ R, x 7→ log(1 + c(ex − 1))

satisfies h(x) ≥ cx for all x ≥ 0.

Proof. For all x ≥ 0, we have

h′(x) =
cex

1 + c(ex − 1)
=

c

c+ (1− c)e−x
≥ c

c+ (1− c)
= c .

Therefore,

h(x) = h(0) +

∫ x

0

h(u) du ≥
∫ x

0

cdu = cx .

Now, we are ready to prove the exact minimax optimal rates. The main technical difficulty is that for the lower bound
in the 1-Wasserstein distance, we need to hide many bumps that are far apart, and we need to bound the resulting
Wasserstein distance.
Theorem 7 (Information-based complexity of sampling and log-partition with deterministic evaluation points). We
have

en(Fd,m,B , SL, Dabs) = Θm,d(Bn−m/d), eadn (Fd,m,B , SL, Dabs) = Θm,d(Bn−m/d),

en(Fd,m,B , Ssamp, Dsup-log) = Θm,d(Bn−m/d), eadn (Fd,m,B , Ssamp, Dsup-log) = Θm,d(Bn−m/d),

en(Fd,m,B , Ssamp, DTV) = Θm,d(min{1, Bn−m/d}), eadn (Fd,m,B , Ssamp, DTV) = Θm,d(min{1, Bn−m/d}),
en(Fd,m,B , Ssamp,W1) = Θm,d(min{1, Bn−m/d}), eadn (Fd,m,B , Ssamp,W1) = Θm,d(min{1, Bn−m/d}).

Proof. Step 0: Upper bounds. We know from Theorem 5 that the rate Om,d(Bn−m/d) can be achieved for approxi-
mation with non-adaptive deterministic evaluation points, and we know from Proposition 6 that this rate can therefore
also be achieved for the log-partition problem and the sampling problem with Dsup-log, DTV, and W1. Moreover, since
DTV(P,Q) ≤ 1 for all distributions P,Q, we obtain an upper bound of Om,d(max{1, Bn−m/d}) for DTV. Similarly,
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since X has diameter d1/2, W1 is upper bounded by d1/2 = Om,d(1), and hence we also obtain an upper bound of
Om,d(max{1, Bn−m/d}) for W1. The upper bounds also hold for the adaptive setting since it is more permissive.

In the following, we will derive matching asymptotic lower bounds for the adaptive setting, which then also hold for the
non-adaptive setting. To this end, let S̃ ∈ Aad

n for the log-partition or sampling problem on the function class Fd,m,B .

Step 1: Defining grids in the cube. We can cut the cube X along one axis into three equally shaped slices C0, C1, C2:

Ck := [k/3, (k + 1)/3]× [0, 1]d−1, k ∈ {0, 1, 2} .
Then, by Lemma C.3, we can find a finite set of points Gk ⊆ Ck with |Gk| = 2n such that the open cubes B∞(x, δn)
for x ∈ Gk and radius

δn =
(2n)−1/d

12
≥ n−1/d

24

are contained in Ck and disjoint.

Step 2: Removing points close to queried points. Let Xn denote the ≤ n points where S̃ queries the zero function.
For fixed k ∈ {0, 2}, the 2n cubes (B∞(x, δn))x∈Gk

are disjoint. Hence there must be a subset G̃k ⊆ Gk containing n
points whose corresponding cubes do not contain any point from Xn.

Step 3: Two different functions. Now, for k ∈ {0, 2} and Cm,d as in Lemma C.2, define the functions

fk(x) := BC−1
m,dδ

m
n

∑
z∈G̃k

bz,δn(x) .

We have δn ≤ 1 and hence ∥bz,δn∥Cm ≤ Cm,dδ
−m
n by Lemma C.2. Because the support of the bump functions does

not overlap, we have ∥fk∥Cm ≤ B by Lemma C.2 and hence fk ∈ Fd,m,B . By the construction of G̃k, f0 and f2 are
zero on Xn. Hence, even an adaptive S̃ must also query fk at the points in Xn, and since both are equal at those points,
we must have

S̃(f0) = S̃(f2) .

Step 4: Wasserstein distance of both functions. Because f0 and f2 use the same number of equally wide bump
functions whose support is fully contained in X , we have

Lf0 = Lf2 . (8)

To lower-bound the 1-Wasserstein distance, we use its dual formulation and choose the 1-Lipschitz function φ(x) :=
x1 − 1/3. This yields

W1(Pf0 , Pf2) ≥ Ex∼Pf2
φ(x)− Ex∼Pf0

φ(x) =

∫
X
φ(x)(ef2(x) − ef0(x)) dx

Eq. (8)
= e−Lf0

∫
X
φ(x)(ef2(x) − ef0(x)) dx . (9)

Step 5: Lower-bounding the normalization constant. We first define the “bump integral”

In :=

∫
B∞(z,δn)

(eBC−1
m,dδ

m
n bz,δn (x) − 1) dx ,

which is independent of z. Then, we have

In
Lemma C.2
≥

∫
B∞(z,δn/2)

(eBC−1
m,dδ

m
n − 1) dx

= δdn(e
BC−1

m,dδ
m
n − 1) . (10)

We then obtain

eLf0 =

∫
X
e0 dx+

∑
z∈G̃0

∫
B∞(z,δn)

(eBC−1
m,dδ

m
n bz,δn (x) − e0) dx

= 1 + nIn . (11)
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Step 6: Lower-bounding the integral. By construction of the functions φ, f0, and f2, we know that∫
X
φ(x)(ef2(x) − ef0(x)) dx ≥

∫
C2

φ(x)(ef2(x) − ef0(x)) dx . (12)

Using φ(x) ≥ 1/3 and f2(x) ≥ f0(x) for x ∈ C2, we can lower-bound the latter integral as∫
C2

φ(x)(ef2(x) − ef0(x)) dx ≥
∑
z∈G̃2

∫
B∞(z,δn)

1

3
(eBC−1

m,dδ
m
n bz,δn (x) − 1) dx

=
1

3
nIn .

Step 7: Wasserstein distance lower bound. By combining the previous lower bounds with Eq. (12), Eq. (11) and
Eq. (9), we arrive at

W1(Pf0 , Pf2) ≥
(1/3)nIn
1 + nIn

=
1

3

In
In + n−1

.

We can then apply Lemma C.4 and Eq. (10) to obtain, for a suitable constant cm,d > 0,

W1(Pf0 , Pf2) ≥
1

6
min

{
1,

In
n−1

}
≥ 1

6
min

{
1,

δdn(e
BC−1

m,dδ
m
n − 1)

n−1

}
≥ 1

6
min

{
1, nδdnBC−1

m,dδ
m
n

}
≥ 1

6
min

{
1, cm,dBn−m/d

}
.

Step 8: Wasserstein minimax rate lower bound. Suppose that we are considering the sampling problem. As argued
before, we have S̃(f0) = S̃(f2). Hence, by an application of the triangle inequality, we must have k ∈ {0, 2} such that

W1(Pfk , S̃(fk)) ≥
1

12
min

{
1, cm,dBn−m/d

}
.

The Wasserstein minimax lower bound then follows by setting f := fk.

Step 9: TV distance minimax lower bound. Since DTV(Pf , S̃(f)) ≥ d−1/2W1(Pf , S̃(f)) (see e.g. Gibbs and Su,
2002), we obtain the same asymptotic lower bound for the TV distance.

Step 10: Log-sup minimax lower bound. We have

Dsup-log(Pf0 , Pf2) = ∥(f0 − Lf0)− (f2 − Lf2)∥∞ = ∥f0 − f2∥∞ ≥ Ωm,d(BC−1
m,dδ

m
n ) = Ωm,d(Bn−m/d) .

Since S̃(f0) = S̃(f2), by the triangle inequality, there must hence exist k ∈ {0, 2} such that

Dsup-log(Pfk , S̃(fk)) ≥ Ωm,d(Bn−m/d) .

Step 11: Log-partition minimax lower bound. Suppose that we instead consider the log-partition problem. Setting
cd = 24−d, we obtain

Lf2 = log(1 + nIn) ≥ log(1 + nδdn(e
BC−1

m,dδ
m
n − 1))

≥ log
(
1 + cd(e

BC−1
m,dδ

m
n − 1)

)
Lemma C.5
≥ cdBC−1

m,dδ
m
n

≥ Ωm,d(Bn−m/d) .

Since S̃ cannot distinguish the zero function f ≡ 0 and f2, we must have

max{|Lf − S̃(f)|, |Lf2 − S̃(f2)|} ≥ Ωm,d(Bn−m/d) .
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C.2 Stochastic Evaluation Points

Again, we first adapt some related results from Novak (1988) to our setting.
Theorem 8 (adapted from Novak (1988)). We have

∗σad
n (Fd,m,B , Sapp, D∞) = Θm,d(Bn−m/d),

∗σad
n (Fd,m,B , Sopt∗ , Dabs) = Θm,d(Bn−m/d),

∗σad
n (Fd,m,B , Sint, Dabs) = Θm,d(Bn−1/2−m/d) .

Proof. Analogous to the proof of Theorem 5 in Appendix C.1, this can be shown using the positive homogeneity of
S ∈ {Sapp, Sopt∗ , Sint} and D ∈ {D∞, Dabs}, and by replacing the bump functions in the lower bound by the C∞

bump functions from Definition C.1.

We now prove our upper bound for log-partition estimation with stochastic evaluation points through approximation
and importance sampling:
Theorem 9 (Upper bound for stochastic log-partition). There exists a constant Cm,d > 0 depending only on m and d
such that

∗σad
n (Fd,m,B , SL, Dabs) ≤ Om,d

(
min

{
Bn−m/d, exp(Cm,dBn−m/d)Bn−1/2−m/d)

})
.

Proof. The bound Om,d(Bn−m/d) can be achieved even through methods with deterministic evaluation points, as
proven in Theorem 7, hence we only need to show the other bound. Since the bounds agree for n = 1, we can in the
following assume n ≥ 2.

Let S̃n ∈ An be a sequence of methods for which the worst-case errors

en := sup
f∈Fd,m,B

D∞(Sapp(f), S̃n(f))

achieve the optimal rate Om,d(Bn−m/d) for the approximation problem on Fd,m,B .

Set N := ⌊n/2⌋, such that N = Ω(n) (since we assumed n ≥ 2) and 2N ≤ n. Set g := S̃N (f). For N i.i.d. random
variables X1, . . . , XN ∼ Pg , set

µN :=
1

N

N∑
i=1

exp(f(Xi)− g(Xi))

S̃L(f) := Lg + logµN .

Then, S̃L only uses 2N ≤ n function evalutaions of f , hence S̃L ∈ ∗C(Aad
n ).

Since ∥f − g∥∞ ≤ eN and since exp is exp(eN )-Lipschitz on (−∞, eN ), we have

1− eN ≤ exp(−eN ) ≤ exp(f(Xi)− g(Xi)) ≤ exp(eN ) ≤ 1 + eN exp(eN ) .

Hence, | exp(f(Xi)− g(Xi))− EµN | ≤ (exp(eN ) + 1)eN , which implies

VarµN ≤ N−1((exp(eN ) + 1)eN )2 .

Additionally,

logEµN = log

∫
X
ef(x)−g(x)eg(x)−Lg dx = Lf − Lg .

Moreover, we have ef(Xi)−g(Xi) ∈ [exp(−eN ), exp(eN )] and hence µN ∈ [exp(−eN ), exp(eN )]. Since log is
exp(eN )-Lipschitz on [exp(−eN ), exp(eN )], we obtain

E|Lf − S̃L(f)| = E| log(EµN )− log(µN )| ≤ E exp(eN )|µN − EµN |
≤ exp(eN )

√
E[(µN − EµN )2] = exp(eN )

√
VarµN

≤ N−1/2eN exp(eN )(exp(eN ) + 1) ≤ 2 exp(2eN )N−1/2eN

≤ Om,d(exp(Cm,dBn−m/d)Bn−1/2−m/d)

for a suitable constant Cm,d > 0.
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In the optimization regime, we can directly exploit the relation to optimization to get a lower bound:
Proposition 10 (Lower bound for stochastic log-partition). For m ≥ 1, we have

∗σad
n (Fd,m,B , SL, Dabs) ≥ Ωm,d(Bn−m/d)− d log(1 + 3B) .

Proof. Take any stochastic log-partition method S̃ ∈ ∗C(Aad
n ). We can also interpret this as a stochastic optimization

method. Hence, we know from an adaptation of the corresponding lower bound by Novak (1988) that there exists
a constant cm,d > 0 and a function f ∈ Fd,m,B such that EDabs(S̃(f), Sopt∗(f)) ≥ cm,dBn−m/d. But then, using
|f |1 ≤ d1/2∥f∥C1 ≤ d1/2B from Lemma B.1, we obtain

E|S̃(f)− Lf | ≥ E|S̃(f)−Mf | − |Mf − Lf | = EDabs(S̃(f), Sopt∗(f))− |Mf − Lf |
Lemma 3
≥ cm,dBn−m/d − d log(1 + 3B) .

The following lemma will be useful to obtain a bound for rejection sampling in the sup-log distance:
Lemma C.6. Let p ∈ [0, 1] and c ≥ 0. Then, for any a ∈ [−c, c], we have

| log(1 + p(ea − 1))| ≤ min{c, p(ec − 1)} .

Proof. For an upper bound, we use log(1 + x) ≤ x to obtain

log(1 + p(ea − 1)) ≤ log(1 + p(ec − 1)) ≤ p(ec − 1) ,

log(1 + p(ea − 1)) ≤ log(1 + (ec − 1)) = c .

For lower bounds, we note that

1 + p(ea − 1) ≥ 1 + p(e−c − 1) ≥ 1 + (e−c − 1) = e−c .

This immediately yields log(1 + p(ea − 1)) ≥ −c. Moreover, because log is ec-Lipschitz on [e−c,∞), we have

log(1 + p(ea − 1)) ≥ log(1 + p(e−c − 1)) = log(1 + p(e−c − 1))− log(1) ≥ −ec|p(e−c − 1)|
= −p(ec − 1) .

Now, we can prove upper bounds for rejection sampling:
Lemma 11 (General rejection sampling bound). Suppose that f, g : X → R are bounded and measurable with
f(x) ≤ g(x) for all x ∈ X . Then, the distribution P̃f of REJECTIONSAMPLING(f, g, n) satisfies

P̃f = (1− pR)Pf + pRPg (2)

Dsup-log(Pf , P̃f ) ≤ min {Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
DTV(Pf , P̃f ) = pRDTV(Pf , Pg)

W1(Pf , P̃f ) = pRW1(Pf , Pg) ,

where pR = (1− Zf/Zg)
n ≤ exp(−nZf/Zg) is the probability of overall rejection.

Proof. Step 1: Exact distribution. We prove Eq. (2) via induction on n. For n = 0, this is clear. Now, suppose
the statement is true for n ∈ N0. Denote by A the event that REJECTIONSAMPLING(f, g, n+ 1) accepts in the first
iteration. Then, we have

P (A) = Ex∼Pg
Eu∼U([0,1])1[ue

g(x) ≤ ef(x)]
f≤g
= Ex∼Pg

ef(x)

eg(x)
=

∫
X
ef(x)−g(x) e

g(x)

Zg
dx =

Zf

Zg
.

The density of x ∈ X conditional on acceptance is

p(x|A) ∝ p(A|x)p(x) = ef(x)−g(x) e
g(x)

Zg
∝ pf (x) ,

hence P (x|A) = Pf . On the other hand, the distribution P (x|Ac), i.e. the distribution of x conditioned on not-
acceptance is the distribution for REJECTIONSAMPLING(f, g, n), which we know from Eq. (2) by the induction
hypothesis. Hence, the distribution P̃f for REJECTIONSAMPLING(f, g, n+ 1) is

P̃f = P (A)P (·|A) + P (Ac)P (·|Ac) =
Zf

Zg
Pf +

(
1− Zf

Zg

)(
Pf +

(
1− Zf

Zg

)n

(Pg − Pf )

)
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= Pf +

(
1− Zf

Zg

)n+1

(Pg − Pf ) = (1− pR)Pf + pRPg .

The argument above also shows that the overall rejection probability is (1− P (A))(1− Zf/Zg)
n = (1− Zf/Zg)

n+1.
Moreover, the bound (1− Zf/Zg)

n ≤ exp(−nZf/Zg) follows from 1− x ≤ exp(−x) for x ≥ 0.

Step 2: Sup-log distance. From step 1, we see that

Dsup-log(Pf , P̃f ) =
∥∥∥log ((1− pR)e

f̄ + pRe
ḡ
)
− f̄

∥∥∥
∞

=
∥∥∥log ((1− pR) + pRe

ḡ−f̄
)∥∥∥

∞

=
∥∥∥log (1 + pR(e

ḡ−f̄ − 1)
)∥∥∥

∞
Lemma C.6
≤ min

{
∥ḡ − f̄∥∞, pR

(
e∥ḡ−f̄∥∞ − 1

)}
= min {Dsup-log(Pg, Pf ), pR(exp(Dsup-log(Pg, Pf ))− 1)} .

Step 3: TV distance. Using Eq. (2), we obtain for the TV distance:

DTV(Pf , P̃f ) = sup
A⊆X measurable

|Pf (A)− P̃f (A)| = sup
A⊆X measurable

|pRPf (A)− pRPg(A)|

= pRDTV(Pf , Pg) .

Step 4: 1-Wasserstein distance. Using Eq. (2), we obtain for the 1-Wasserstein distance:

W1(Pf , P̃f ) = sup
φ 1-Lipschitz

(∫
φ(x) dPf (x)−

∫
φ(x) dP̃f (x)

)
= pR sup

φ 1-Lipschitz

(∫
φ(x) dPf (x)−

∫
φ(x) dPg(x)

)
= pRW1(Pf , Pg) .

With the upper bounds for rejection sampling proven above, we can analyze a combination of approximation and
rejection sampling to prove the following upper bound:

Theorem 12 (Upper bound for sampling with stochastic evaluation points). There exists a constant Cm,d > 0 such that

ead-stochn (Fd,m,B , Ssamp, Dsup-log) ≤
{
Om,d(Bn−m/d) , Cm,dBn−m/d > 1

Om,d((Cm,dBn−m/d)n/2+1) , Cm,dBn−m/d ≤ 1 .

Proof. Step 1: Sampling method definition. We consider the following sampling method:

(1) Use ⌊n/2⌋ function evaluations to create an approximation g of f , using a near-optimal approximation method
such that the worst-case sup-log error is En ≤ Om,d(Bn−m/d).

(2) Return a sample using REJECTIONSAMPLING(f, g + en, ⌈n/2⌉).
For step (1) we note that we have ⌊n/2⌋ ≥ Ω(n) except if n = 1. However, in the case n = 1, we can use the
approximation g = 0 with worst-case error En = B ≤ Om,d(Bn−m/d). Thus, it is indeed possible to achieve the
bound in step (1).

Step 2: Upper bound. Denote by Cm,d > 0 a constant such that En ≤ Cm,dBn−m/d/2. Moreover, denote by P̃f the
distribution produced by the sampling method defined in step 1. By Lemma 11, we have for g̃ := g + En:

Dsup-log(Pf , P̃f ) ≤ min

{
Dsup-log(Pf , Pg),

(
1− Zf

Zg̃

)⌈n/2⌉

(exp(Dsup-log(Pf , Pg))− 1)

}
. (13)

The first bound Dsup-log(Pg, Pf ) already yields the desired bound for Cm,dBn−m/d > 1. Now, consider the case
Cm,dBn−m/d ≤ 1. We have

Zf =

∫
X
ef(x) dx ≥

∫
X
eg̃(x)−2En dx ≥ exp(−Cm,dBn−m/d)Zg̃ .
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Now, the second bound in Eq. (13) yields

Dsup-log(Pf , P̃f ) ≤
(
1− exp(−Cm,dBn−m/d)

)n/2
(exp(Cm,dBn−m/d)− 1)

≤ exp(Cm,dBn−m/d)
(
1− exp(−Cm,dBn−m/d)

)n/2+1

≤ e · (Cm,dBn−m/d)n/2+1 ≤ Ωm,d((Cm,dBn−m/d)n/2+1) .

Next, we prove corresponding lower bounds in the optimization regime, again using bump functions:
Theorem 13 (Lower bound for sampling with stochastic evaluation points). There exists a constant cm,d > 0 such that
for B > 0 and n ∈ N with Bn−m/d ≥ cm,d(1 + log(n)), we have

ead-stochn (Fd,m,B , Ssamp, Dsup-log) ≥ Ωm,d(Bn−m/d)

ead-stochn (Fd,m,B , Ssamp, DTV) ≥ Ωm,d(1)

ead-stochn (Fd,m,B , Ssamp,W1) ≥ Ωm,d(1) .

Proof. We re-use some results from the proof of Theorem 7 in Appendix C.1. We consider again the decomposition of
the cube X into three slices

Ck := [k/3, (k + 1)/3]× [0, 1]d−1, k ∈ {0, 1, 2} .
Consider a sampling algorithm S̃ ∈ Aad-stoch

n with stochastic evaluation points and consider a corresponding random
sample Xf = ϕ(N(f, ω), ω) as defined in Section 2.2.

Step 1.1: Candidate functions for the sup-log distance. By Lemma C.3, C0 contains 4(n+ 1) disjoint open balls
B∞(zi, δn) with radius

δn := r4(n+1) =
(4(n+ 1))−1/d

12
≥ n−1/d

96
.

Let f0 ≡ 0 be the zero function. Consider the set Q(ω) containing the n random points where N(f0, ω) queries f0 and
the one random point ϕ(N(f0, ω), ω) that the sampling method outputs. We can pick an i ∈ {1, . . . , 4(n+ 1)} such
that the cube B∞(zi, δn) contains a point from Q(ω) only with probability ≤ 1/4. With Cm,d as in Lemma C.2, we
define

f1(x) := C−1
m,dBδ−1

n bzi,δn(x) ,

which satisfies f1 ∈ Fd,m,B . Using analogous arguments to the proof of Theorem 7 in Appendix C.1, we obtain

Lf1 = log(1 + In) ≥ log(1 + δdn(e
C−1

m,dBδmn − 1)) ≥ C−1
m,dBδmn + log(δdn)

≥ c̃m,dBn−m/d − log(n)− d log(96)

for a suitable constant c̃m,d > 0.

Step 1.2: Bounding the distribution on f1. Now, the probability that ϕ(N(f0, ω), ω) ∈ B∞(zi, δn) is at most 1/4 by
construction. Moreover, the probability of N(f0, ω) querying B∞(zi, δn) is also at most 1/4, hence the probability
of N(f1, ω) querying B∞(zi, δn) is also at most 1/4. By the union bound, the probability that ϕ(N(f1, ω), ω) ∈
B∞(zi, δn) is at most 1/2. Now, to have Dsup-log(S̃(f1), Pf1) <∞, S̃(f1) must be of the form Pg for some function
g : X → R. Without loss of generality, we can assume Lg = 0. Then, since the set X̂ := X \ B∞(zi, δn) satisfies
Pg(X̂ ) ≥ 1/2, there exists x ∈ X̂ with pg(x) ≥ 1/2, implying g(x) ≥ log(1/2). But then,

Dsup-log(S̃(f1), Pf1) ≥ |(g(x)− Lg)− (f1(x)− Lf1)| = |g(x) + Lf1 |
≥ c̃m,dBn−m/d − log(n)− d log(96)− log(2) ≥ c̃m,dBn−m/d − log(n)− 6d .

Especially, for Bn−m/d ≥ 12dc̃−1
m,d(1 + log(n)), we have

Dsup-log(S̃(f1), Pf1) ≥ c̃m,dBn−m/d − 1

2
c̃m,dBn−m/d = Ωm,d(Bn−m/d) .

Step 2.1: Candidate functions for the Wasserstein distance. By Lemma C.3, for M ∈ N to be determined later, we
can place Mn subcubes each in C0 and C2 with radius

δn := rMn :=
(Mn)−1/d

12
.
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By an analogous argument to Step 1.1, we can find subcubes B∞(z0, δn) and B∞(z2, δn) of C0 and C2 such that the
probability of one of them being queried for f0 is at most 2/M . Following Lemma C.2, we construct the functions

fk(x) := C−1
m,dBδmn bzk,δn(x), k ∈ {0, 2} ,

which are contained in Fd,m,B .

Step 2.2: Bounding the Wasserstein distance. We set M := 20d. Since the two subcubes are only queried with
probability at most 2/M , we know that

W1(S̃(f0), S̃(f2)) ≤ d1/2DTV(S̃(f0), S̃(f2)) ≤ d1/2
2

M
≤ 1

10
.

With an argument analogous to the proof of Theorem 7 in Appendix C.1, we obtain

W1(Pf0 , Pf2) ≥
1

3

In
1 + In

Lemma C.4
≥ 1

6
min{1, In} ,

and

In ≥ δdn(e
BC−1

m,dδ
m
n − 1) ≥ c̃m,dn

−1(ec̃m,dBn−m/d − 1)

for a suitable constant c̃m,d ∈ (0, 1). Now, suppose that

Bn−m/d ≥ c̃−1
m,d(1 + log(c̃−1

m,d))(1 + log(n)) .

We obtain

c̃m,dBn−m/d ≥ 1 + log(c̃−1
m,d) + log(n) ≥ log(c̃−1

m,dn+ 1)

and therefore

W1(Pf0 , Pf2) ≥
1

6
min{1, In} ≥

1

6
min{1, 1} = 1

6
.

Since W1 satisfies the triangle inequality, there must exist k ∈ {0, 2} with

W1(S̃(fk), Pfk) ≥
1

2

(
1

6
− 1

10

)
=

1

30
= Ωm,d(1) .

Step 3: TV lower bound. The corresponding lower bound for the TV distance follows from the inequality W1(P,Q) ≤
d1/2DTV(P,Q).

Finally, we prove our auxiliary result on the complexity of sampling when the log-partition function is known:

Proposition 14. Consider the function class F := {f ∈ C(X ) | ∥f∥∞ ≤ log(3/2), Lf = 0}. Then,

ead-stochn (F , Ssamp, Dsup-log) = 0

for all n ≥ 1.

Proof. For f ∈ F , define f̃(x) := log(2 exp(f(x))− 1) and g(x) := log(2). We have

Zf̃ =

∫
X
(2 exp(f(x))− 1) dx = 2Zf − 1 = 1 ,

Zg =

∫
X
elog(2) dx = 2 .

Let P̃f be the distribution of REJECTIONSAMPLING(f̃ , g, 1), which only uses one evaluation of f̃ and therefore only
one evaluation of f . By Lemma 11, we have

P̃f =
Zf̃

Zg
Pf̃ +

(
1−

Zf̃

Zg

)
Pg =

1

2
Pf̃ +

1

2
Pg = Pf .
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D Proofs for Relations Between Different Problems

The proof of the following theorem adapts results from the literature, showing that they apply to our setting:
Theorem 15 (adapted from Li (2016) and Mirzaei (2015)). Let m, d ∈ N≥1. Using the moving least squares method, it
is possible to construct an approximation fn of f ∈ Cm(X ) using n deterministic non-adaptive function evaluations
such that

(a) ∥f − fn∥Ck ≤ Om,d(∥f∥Cmn−(m−k)/d) for k ∈ {0, 1, . . . ,m},
(b) the runtime of constructing fn is zero (construction takes place on-the-fly during evaluation), and
(c) the runtime of evaluating fn at a point x ∈ X is Om,d(1).

Proof. Step 1: The method. The idea of the moving least squares method (Lancaster and Salkauskas, 1981) is to obtain
an approximation g(x) = gx(x) of f(x) at an evaluation point x by determining gx as the solution to a polynomial
least-squares regression problem with data (xi, f(xi)), weighted with weights Φ(x, xi) that (smoothly) vanish for large
∥x− xi∥. We will not state the exact method here but refer to the publications by Li (2016) and Mirzaei (2015), whose
analysis we are using here. While Theorem 4.1 of Li (2016) essentially directly provides the result (a), it is unclear
to us if the corresponding constants are independent of the evaluation points in the way that we need. Thus, in the
following, we will try to verify the slightly stronger conditions of Theorem 3.12 of Mirzaei (2015) and explain how it
can be adapted to our setting with minor modifications.

Step 2: Verifying the assumptions. Now, we list the major assumptions of Theorem 3.12 of Mirzaei (2015) and show
that they are satisfied for a suitable choice of evaluation points and weighting function. The assumptions on smoothness
are deferred until Step 3, where we will show how to adapt them to our setting. We define the number N := ⌊n1/d⌋ of
grid points along each axis. By dividing each axis into N equal intervals, we obtain a partition of X into Nd cubes. Let
X be the set of midpoints of these cubes. Hence, |X| = Nd = ⌊n1/d⌋d ≥ (n1/d/2)d = Ωm,d(n).

• The considered domain Ω is a bounded set with Lipschitz boundary. We want to consider Ω := X , which is
bounded and has a Lipschitz boundary.

• The maximum degree m of the polynomial basis satisfies m ≥ 1. While m denotes the (known) smoothness
of the target function f in our context, we will assume that the maximum degree of the polynomial basis is
also m. While a maximum degree of m− 1 should be sufficient for our purposes (as it is in Li (2016)), using a
maximum degree of m avoids notational confusion and simplifies the adaptation of the arguments of Mirzaei
(2015).

• The fill distance hX,Ω = supx∈Ω minx′∈X ∥x− x′∥2 satisfies hX,Ω ≤ min{h0, 1} for some given constant
h0 > 0. In our case, the fill distance is hX,Ω =

√
d/(2N) = Θm,d(n

−1/d), which satisfies the assumption for
large enough values of n. The errors for smaller n do not affect the asymptotic rate.

• The weight function is defined through a radial function ϕ : [0,∞)→ R, which is supported in [0, 1] and its
even extension belongs to Cm(R). For this, we can just use the even and C∞-smooth bump function b from
Definition C.1 and set ϕ(x) := b(x).

• The point set X is quasi-uniform with constant independent of f and n. This means that the separation distance

qX,Ω :=
1

2
min

x,x′∈X:x ̸=x′
∥x− x′∥2

satisfies qX,Ω ≤ hX,Ω ≤ cquqX,Ω for a constant cqu independent of f and n. In our case, we have qX,Ω =

1/(2N), and hence we can set cqu :=
√
d.

Step 3: Adapting the argument of Mirzaei (2015). Let fn be the moving least squares approximation of f with
evaluation points X . By Corollary 4.5 in Wendland (2004), fn is in Cm since the weight function is also in Cm. Hence,
the norms ∥f − fn∥Cm and ∥f − fn∥Wm

∞
are equivalent, where Wm

p (Ω) is the Sobolev space of smoothness m with
the p-norm applied to the (weak) derivatives. Theorem 3.12 in Mirzaei (2015) shows that

∥f − fn∥W |α|
q (Ω)

≤ Ch
m+s−|α|−dmax{0,1/p−1/q}
X,Ω ∥f∥Wm+s

p (Ω)

for p ∈ [1,∞), q ∈ [1,∞], s ∈ [0, 1) and a multi-index α satisfying m > |α|+ d/p. We would obtain (a) by setting
s = 0, p = q =∞, and |α| = k. However, setting p =∞ is not allowed by the assumptions of the theorem, and setting
|α| = m for m = k is also not allowed. Hence, we need to show that the theorem can be extended to p = ∞ and
|α| = m in the special case s = 0 and q =∞. The assumption p <∞ is used for the Sobolev extension operator, but it
is noted in the proof that p =∞ is allowed for s = 0. The only other point where p <∞ and |α| < m are required is
in the invocation of Eq. (3.4) in Lemma 3.3 of Mirzaei (2015). However, for the special case s = 0, p = q =∞ and
|α| ≤ m, the statement of Lemma 3.3 also holds, as is shown by the Bramble-Hilbert lemma (cf. Lemma (4.3.8) in
Brenner et al., 2008), which has also been employed by (Li, 2016) for the same purpose.
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Step 4: Runtime bound. For (b) and (c), we note that due to the local support of the weight function, evaluating
the moving least squares approximation at a point x ∈ X mainly requires the solution of a regression problem with
Om,d(1) variables and evaluation points. This is shown, for example, above Lemma 3.6 in Mirzaei (2015). The moving
least squares method does not require any pre-computations.

D.1 Proofs for Relation between Sampling and Log-Partition Estimation

For analyzing thermodynamic integration, we are going to use Hoeffding’s inequality in the form stated and proved in
Theorem 6.10 in Steinwart and Christmann (2008).
Theorem D.1 (Hoeffding’s inequality). Let (Ω,A, P ) be a probability space, a < b be two real numbers, n ≥ 1 be an
integer, and ξ1, . . . , ξn : Ω→ [a, b] be independent random variables. Then, for all τ > 0, we have

P

(
1

n

n∑
i=1

(ξi − EP ξi) ≥ (b− a)

√
τ

2n

)
≤ e−τ .

Theorem 18 (Convergence of thermodynamic integration). Given N ∈ N≥1 and a sampling algorithm producing
samples from approximate distributions P̃βf , consider the following algorithm:

• Sample β1, . . . , βN ∼ U([0, 1]) independently.
• Draw Xi ∼ P̃βif independently.
• Output L̃f := 1

N

∑N
i=1 f(Xi).

Then, for δ > 0, we have

|L̃f − Lf | ≤ |Lf − EL̃f |+ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ, where

|Lf − EL̃f | ≤ 2∥f∥∞ sup
β∈[0,1]

DTV(Pβf , P̃βf ),

|Lf − EL̃f | ≤ |f |1 sup
β∈[0,1]

W1(Pβf , P̃βf ).

Proof. Obviously, we have

|L̃f − Lf | ≤ |Lf − EL̃f |+ |L̃f − EL̃f | .

Step 1: Bounding the second term. For bounding the second term, we use Hoeffding’s inequality (Theorem D.1)
with ξi := f(Xi), n = N and τ := log(2/δ). Ignoring null sets, we can choose b = ∥f∥∞ and a = −∥f∥∞. We then
obtain

L̃f − EL̃f ≥ 2∥f∥∞
√

log(2/δ)

2N

with probability ≤ exp(− log(2/δ)) = δ/2. By applying the same argument to ξi = −f(Xi) and applying the union
bound, we obtain

|L̃f − EL̃f | ≤ 2∥f∥∞
√

log(2/δ)

2N

with probability ≥ 1− δ.

Step 2: Bounding the first term. We use

|Lf − EL̃f | =
∣∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼P̃βf
[f(x)]

∣∣∣
≤ sup

β∈U([0,1])

∣∣∣Ex∼Pβf
[f(x)]− Ex∼P̃βf

[f(x)]
∣∣∣ . (14)

We can assume that |f |1 ̸= 0 since the bound is clear otherwise. Using the dual formulation of the 1-Wasserstein
distance and that f/|f |1 is 1-Lipschitz, we directly obtain∣∣∣Ex∼Pβf

[f(x)]− Ex∼P̃βf
[f(x)]

∣∣∣ = |f |1 ∣∣∣Ex∼Pβf
[f(x)/|f |1]− Ex∼P̃βf

[f(x)/|f |1]
∣∣∣ ≤ |f |1W1(P̃βf , Pβf ) .
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Similarly, the bound on the TV distance follows from an alternative formulation of the TV distance (see e.g. Gibbs and
Su, 2002) given by

DTV(P,Q) =
1

2
sup

g:∥g∥∞≤1

∣∣∣∣∫ g dP −
∫

g dQ

∣∣∣∣ .
Remark D.2. In Theorem 18, we can hope for a better bound in terms of the sup-log distance. For example, suppose
that P̃βf = Pβg , where g is an approximation of f that is independent of β. Since g is only determined up to a constant
shift, we can assume that Lg = Lf . Then,

|Lf − EL̃f | =
∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼Pβg
[f(x)]

∣∣
≤
∣∣Eβ∼U([0,1])Ex∼Pβf

[f(x)]− Eβ∼U([0,1])Ex∼Pβg
[g(x)]

∣∣
+
∣∣Eβ∼U([0,1])Ex∼Pβg

[g(x)]− Eβ∼U([0,1])Ex∼Pβg
[f(x)]

∣∣
≤ |Lf − Lg|+ ∥g − f∥∞ = 0 +Dsup-log(Pf , Pg) = Dsup-log(Pf , Pg) .

However, in the general case, the approach in Eq. (14) of taking the supremum over β cannot yield such a good bound.
This can be seen by considering indicator functions f = a1A and g = (a+ δ)1A. Instead, it appears that it would be
necessary to obtain bounds depending on β and f and show that their integral over β ∈ [0, 1] is sufficiently small for all
f . ◀

Theorem 19 (Convergence of bisection sampling). Let m ≥ 1, B ≥ 0 and M ∈ N0. Let f ∈ Fd,m,B and let L̃ be
a log-partition estimator with worst-case error E ≥ 0 on Fd,m,B . Let f ∈ Cm(X ) and let P̃f be the distribution of
samples produced by BISECTIONSAMPLING(f, L̃,M) in Algorithm 2. Then,

Dsup-log(P̃f , Pf ) ≤ 2MdE + 2−Md∥f∥C1 .

Proof. Step 1: Log-density analysis. We want to show that P̃f has a density p̃f and bound ∥ log p̃f − log pf∥∞.
Partition X into 2Md cubes of side length 2−M . Since a density is only defined up to a null set, it suffices to consider
an arbitrary x in the interior of one of these cubes, which we fix in the following. We denote the corresponding cube by
Z(Md). We can then find exactly one sequence Z(0) = X ,Z(1), . . . ,Z(Md) of hyperrectangles which could have been
visited during the execution of Algorithm 2 to obtain x. Since Algorithm 2 samples uniformly from Z(Md) and the
volume of Z(Md) is 2−Md, we have the density

p̃f (x) = 2MdP̃f (Z(Md)) .

On the other hand, a simple integration argument shows that the target density satisfies

inf
x′∈Z(Md)

pf (x
′) ≤ 2MdPf (Z(Md)) ≤ sup

x′∈Z(Md)

pf (x
′) .

This yields

| log p̃f (x)− log pf (x)| ≤
∣∣∣log(2MdP̃f (Z(Md)))− log(2MdPf (Z(Md)))

∣∣∣
+

∣∣∣∣∣ sup
x′∈Z(Md)

log pf (x
′)− inf

x′′∈Z(Md)
log pf (x

′′)

∣∣∣∣∣ .
Step 2: Bounding the second term. Since Z(Md) is an axis-aligned cube with side length 2−M , we have for
x′, x′′ ∈ Z(Md):

|f(x′)− f(x′′)| ≤
d∑

i=1

∥∂if∥∞2−M ≤ 2−Md∥f∥C1 .

Step 3: Bounding the first term. We can simplify∣∣∣log(2MdP̃f (Z(Md)))− log(2MdPf (Z(Md)))
∣∣∣ = ∣∣∣log(P̃f (Z(Md)))− log(Pf (Z(Md)))

∣∣∣ .
We want to show by induction over k ∈ {0, . . . ,Md} that∣∣∣log(P̃f (Z(k)))− log(Pf (Z(k)))

∣∣∣ ≤ 2kE ,
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which will then yield the desired error bound for k = Md. This is obviously true for k = 0. Now, suppose that it is true
for some k ∈ {0, . . . ,Md− 1}. Consider a partition of Z(k) into two equal-sized sub-hyperrectangles Z1 and Z2 as in
Algorithm 2 such that Z(k+1) = Zi for some i ∈ {1, 2}. Then,

P̃f (Z(k+1)) = σ(L̃fZi
− L̃fZ3−i

)P̃f (Z(k)) ,

which also holds for i = 2 since the sigmoid function σ satisfies σ(−u) = 1− σ(u) for all u ∈ R. Moreover, we have

Pf (Z(k+1)) =
Pf (Zi)

Pf (Zi) + Pf (Z3−i)
Pf (Z(k)) =

e
LfZi

e
LfZi + e

LfZ3−i

Pf (Z(k)) = σ(LfZi
− LfZ3−i

)Pf (Z(k)) .

By definition of the functions fZi′ , i′ ∈ {1, 2} in Algorithm 2, since the side-lengths hj of Zi′ satisfy hj ≤ 1, we have
∥fZi′∥Cm ≤ ∥f∥Cm ≤ B, which means fZi′ ∈ Fd,m,B . Hence, by assumption, the log-partition error is

|L̃fZ
i′
− LfZ

i′
| ≤ ε .

Now, the log-sigmoid function h(u) := log σ(u) satisfies h′(u) = σ(u)(1−σ(u))
σ(u) = 1− σ(u) ∈ (0, 1) and is therefore

1-Lipschitz. Hence,∣∣∣log (P̃f (Z(k+1))
)
− log

(
Pf (Z(k+1))

)∣∣∣ ≤ ∣∣∣log (P̃f (Z(k))
)
− log

(
Pf (Z(k))

)∣∣∣
+
∣∣∣h(L̃fZi

− L̃fZ3−i
)− h(LfZi

− LfZ3−i
)
∣∣∣

≤ 2kE + 2E = 2(k + 1)E ,

which completes the induction.

D.2 Proofs for Relation to Optimization

Proposition 20 (Optimization by approximate sampling). Let Q be a probability distribution on X . Then, for any
δ ∈ (0, 1] and ε > 0,

(a) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ,
(b) Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)}) ≤ δ +DTV(Pf/ε, Q),
(c) Q({x ∈ X | f(x) < εLf/ε − ε log(2/δ)− 2δ−1|f |1W1(Pf/ε, Q)}) ≤ δ.

Proof.

(a) Suppose Dsup-log(Pf , Q) <∞. Then, Q = Pg for some g. For almost every x ∈ X , we have the implications
f(x) ≤ Lf − log(1/δ)−Dsup-log(Pf , Q)⇔ f̄(x) ≤ Lf̄ − log(1/δ)− ∥f̄ − ḡ∥∞

⇒ ḡ(x) ≤ Lf̄ − log(1/δ)

⇔ ḡ(x) ≤ Lḡ − log(1/δ) .

Hence,
Q({x ∈ X | f(x) ≤ Lf − log(1/δ)−Dsup-log(Pf , Q)})

≤ Q({x ∈ X | ḡ(x) ≤ Lḡ − log(1/δ)})

= Pḡ({x ∈ X | ḡ(x) ≤ Lḡ − log(1/δ)})
Lemma 3
≤ δ .

By using f/ε instead of f and multiplying both sides of the inequality by ε, we obtain
Q({x ∈ X | f(x) ≤ εLf/ε − ε log(1/δ)− εDsup-log(Pf/ε, Q)}) ≤ δ .

(b) The TV norm bound follows from Lemma 3 because for the considered event A,
Q(A) ≤ Pf/ε(A) + sup

A′
|Q(A)− Pf/ε(A

′)| = Pf/ε(A) +DTV(Pf/ε, Q) .

(c) Let ε̃ > 0. By definition of the Wasserstein distance, there exist random variables X ∼ Pf/ε and Y ∼ Q on a
common probability space (Ω,F , PΩ) such that E∥X − Y ∥2 ≤W1(Pf/ε, Q) + ε̃. By the Markov inequality,
we then have

∥X − Y ∥2 ≤ 2(W1(Pf/ε, Q) + ε̃)/δ

with probability ≥ 1− δ/2. Moreover, by Lemma 3, we have
f(X) > εLf/ε − ε log(1/δ)

with probability ≥ 1− δ/2. By the union bound, we hence have
f(Y ) > f(X)− |f |1∥X − Y ∥2 > εLf/ε − ε log(1/δ)− 2δ−1|f |1(W1(Pf/ε, Q) + ε̃)

with probability ≥ 1− δ. Since ε̃ > 0 was arbitrary, the claim follows.
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E Proofs for Algorithms

E.1 Proofs for Approximation-based Algorithms

E.1.1 Proofs for Piecewise Constant Approximation

To study the error of piecewise constant approximation, we study the log-partition function of linear functions f . A first
step is achieved using the following lemma:

Lemma E.1. Let

r : R→ R, t 7→ log

(∫ 1/2

−1/2

exp(tu) du

)
=

{
0 , t = 0

log
(
t−1(exp(t/2)− exp(−t/2))

)
, t ̸= 0 .

Then, r is even and (1/2)-Lipschitz with r(t) ≥ 0 for all t and we have more generally for a > 0 and t1, . . . , td ∈ R:

log

(∫
[−a/2,a/2]d

exp

(
d∑

k=1

tkuk

)
du

)
= d log(a) +

d∑
k=1

r(atk) .

Proof. It follows from a simple symmetry argument that r is even. We have∫ 1/2

−1/2

exp(tu) du ≥
∫ 1/2

−1/2

(1 + tu) du = 1 ,

which shows r(t) ≥ 0. For h > 0 and u ∈ [−1/2, 1/2], we have exp(hu) ∈ [exp(−h/2), exp(h/2)]. Using the mean
value theorem of integration, we obtain

r(t+ h)− r(t) = log

(∫ 1/2

−1/2

exp(tu) exp(hu) du

)
− log

(∫ 1/2

−1/2

exp(tu) du

)
∈ [−h/2, h/2] ,

which shows that r is 1/2-Lipschitz.

For the more general integral, we use that the integrand is a product of one-dimensional functions to decompose

log

(∫
[−a/2,a/2]d

exp

(
d∑

k=1

tkuk

)
du

)
= log

(
d∏

k=1

∫ a/2

−a/2

exp (tkuk) duk

)
Subst. uk = avk= log

(
d∏

k=1

∫ 1/2

−1/2

exp (tkavk) a dvk

)

= d log(a) +

d∑
k=1

r(atk) .

Another ingredient for the analysis of piecewise constant approximation is to analyze the global error through the errors
on individual subcubes:

Lemma E.2. Let f, g : X → R be bounded and measurable. Let Xi be a partition of X . Let Lf (Xi) :=

log
(∫

Xi
exp(f(x)) dx

)
. Then,

inf
i
[Lf (Xi)− Lg(Xi)] ≤ Lf − Lg ≤ sup

i
[Lf (Xi)− Lg(Xi)] .

Proof. We prove the second inequality here, the first one follows analogously. Let s := supi[Lf (Xi)− Lg(Xi)]. Then,

Lf = log

(∑
i

exp(Lf (Xi))

)
≤ log

(∑
i

exp(s) exp(Lg(Xi))

)
= Lg + s .

We now prove convergence rates for piecewise constant approximation, using a combination of different approaches:
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Theorem 21 (Convergence rate of piecewise constant approximation). Let m ≥ 1 and n = Nd as above. If gn is a
piecewise constant interpolant as above, we have

sup
f∈Fd,m,B

|Lf − Lgn | =
{
Θm,d(Bn−1/d) , if m = 1 or Bn−1/d > 1

Θm,d(max{B,B2}n−2/d) , otherwise.

sup
f∈Fd,m,B

Dsup-log(Pf , Pgn) = Θm,d(Bn−1/d) .

Proof. Recall from Section 4.1.1 that gn is piecewise constant on the cubes Xi, interpolating f in the cube centers x(i).

Step 1: Lipschitz-type upper bounds. Let f ∈ Fd,m,B . Since f is Bd1/2-Lipschitz by Lemma B.1, it is easy to see
that ∥f − gn∥∞ ≤ Om,d(B/N) = Om,d(Bn−1/d). Then, it follows directly from Proposition 6 that |Lf − Lgn | ≤
∥f − gn∥∞ ≤ Om,d(Bn−1/d) and Dsup-log(Pf , Pgn) ≤ 2∥f − gn∥∞ ≤ Om,d(Bn−1/d).

Step 2: Lipschitz-type lower bound for log-partition with m = 1. If m = 1, it follows that

sup
f∈Fd,m,B

|Lf − Lgn | ≥ en(Fd,m,B , SL, Dabs) ≥ Ωm,d(Bn−1/d) .

Step 3: Lipschitz-type lower bound for sampling. Take f(x) = β(x1 + · · · + xd), where β = B/d, such that
f ∈ Fd,m,B . Pick the cube X1 = (0, 1/N)d. Then, we have

Dsup-log(Pf , Pgn) = ∥f̄ − ḡn∥∞ ≥
1

2

(
sup
x∈X1

f(x)− inf
x∈X1

f(x)

)
=

1

2
B/N =

1

2
Bn−1/d .

Step 4: Lower bound for log-partition with m ≥ 2. As in Step 3, take f(x) = β(x1 + · · ·+ xd), where β = B/d,
such that f ∈ Fd,m,B . To prove a lower bound on Lf − Lgn , we follow Lemma E.2 and lower-bound the errors
Lf (Xi)− Lgn(Xi) on individual subcubes Xi.

Step 4.1: First lower bound. Fix a subcube Xi and set a = 1/N and t := ∂f
∂xk

(x(i)) = (β, . . . , β). Denote the volume
of Xi by Vn = 1/n = ad. Since gn is constant on Xi, we have

Lf (Xi)− Lgn(Xi) = log

(
exp(f(x(i)))

∫
Xi

exp(⟨t, x− x(i)⟩) dx
)
− log

(
Vn exp(f(x

(i)))
)

Lemma E.1
= d log(a) +

(
d∑

k=1

r(atk)

)
− log(Vn) =

d∑
k=1

r(atk) = dr(β/N)

Lemma E.4
≥ cdmin{|β/N |, |β/N |2} ≥ Ωm,d(min{Bn−1/d, B2n−2/d}) ,

This lower bound is independent of i, hence by Lemma E.2, we obtain

Lf − Lgn ≥ Ωm,d(min{Bn−1/d, B2n−2/d}) .

Step 4.2: Second lower bound. The lower bound above implicitly uses the strong convexity of exp(f). However,
all of the curvature in exp(f) comes from exp and none from f . This is not sufficient in the case B ≪ 1, where the
quadratic dependency on B in B2n−2/d can be improved. For the case B < 1, we put the curvature into f by setting
f(x) := β

∑d
k=1 x

2
k. We then have ∂kf(x) = 2βxk and ∂2

kf(x) = 2β. Hence, we set β := B/(2d) to ensure that
f ∈ Fd,m,B . We now again consider a subcube Xi, for which we compute∫

Xi

exp(gn(x)) dx = Vn exp(f(x
(i))) ,∫

Xi

exp(f(x)) dx = exp(f(x(i)))

∫
Xi

exp(f(x)− f(x(i))) dx

≥ exp(f(x(i)))

∫
Xi

(
1 + (f(x)− f(x(i)))

)
dx

= exp(f(x(i)))

(
Vn +

∫
Xi

(
d∑

k=1

β(xk − x
(i)
k )2

)
dx

)
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= exp(f(x(i)))

(
Vn + dad−1β

[
1

3
u3

]a/2
−a/2

)

= exp(f(x(i)))Vn

(
1 + d

2

3 · 23 βa
2

)
.

Hence, we have

Lf (Xi)− Lg(Xi) ≥ log

(
1 +

d

12
βn−2/d

)
= log

(
1 +

1

24
Bn−2/d

)
≥ 1

48
Bn−2/d ,

where we used log′(x) = 1/x ≥ 1/2 for x ∈ [1, 2] in the last step.

Step 5: Better upper bound for log-partition for m ≥ 2. Let m ≥ 2, f ∈ Fd,m,B and Bn−1/d ≤ 1. We define the
piece-wise first-order approximant hn, where for x in the interior of Xi, we set

hn(x) = f(x(i)) + ⟨∇f(x(i)), x− x(i)⟩ .
Our goal is to use

|Lf − Lgn | ≤ |Lf − Lhn
|+ |Lhn

− Lg| .

Step 5.1: Bounding the first term. To bound the first term, we will bound ∥f − hn∥∞. Let δ(t) = f(x(i) + t(x−
x(i)))− hn(x

(i) + t(x− x(i))). Then, we use Taylor’s theorem to bound

f(x)− hn(x) = δ(1) = δ(0) + 1 · δ′(0) + 12

2
· δ′′(ξ) ,

where ξ ∈ (0, 1). Since hn is constructed such that δ(0) = δ′(0) = 0, we have

|f(x)− hn(x)| =
1

2
|δ′′(ξ)| = 1

2
(x− x(i))⊤[∇2f(x(i) + ξ(x− x(i)))](x− x(i))

≤ d2∥x− x(i)∥2∞∥f∥C2 ≤ d2B

(2N)2
= Om,d(BN−2) = Om,d(Bn−2/d) .

This shows ∥f − hn∥∞ ≤ Om,d(Bn−2/d) and therefore |Lf − Lhn | ≤ Om,d(Bn−2/d).

Step 5.2: Bounding the second term. To bound |Lhn
−Lgn |, we follow Lemma E.2 and bound the errors |Lhn

(Xi)−
Lgn(Xi)| on individual subcubes Xi. Fix a subcube Xi and set a = 1/N and t := ∂f

∂xk
(x(i)). Denote the volume of Xi

by Vn = 1/n = ad. Since gn is constant on Xi, we have

|Lhn(Xi)− Lgn(Xi)| =

∣∣∣∣log(exp(f(x(i)))

∫
Xi

exp(⟨t, x− x(i)⟩) dx
)
− log

(
Vn exp(f(x

(i)))
)∣∣∣∣

Lemma E.1
=

∣∣∣∣∣d log(a) +
(

d∑
k=1

r(atk)

)
− log(Vn)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
k=1

r(atk)

∣∣∣∣∣
Lemma E.4
≤

d∑
k=1

Cmin{|atk|, |atk|2} ≤ Cdmin{Bn−1/d, B2n−2/d} ,

where we used |tk| ≤ ∥f∥Cm and a = 1/N = n−1/d in the last step. Using Lemma E.2, we now obtain

|Lhn − Lgn | ≤ Cdmin{Bn−1/d, B2n−2/d} ,
which concludes the upper bound.

The following two lemmas provide some additional bounds that have been used in the previous proof:
Lemma E.3. Let

H : R→ R, t 7→
∞∑
k=0

tk

(k + 1)!
=

{
exp(t)−1

t , t ̸= 0

1 , t = 0 .

h : R→ R, t 7→
∞∑
k=0

tk

(k + 2)!
=

{
H(t)−1

t , t ̸= 0

1/2 , t = 0 .

Then, H and h are C∞. Moreover,
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• H and H ′ are increasing on [0,∞) with H(0) = 1, H ′(0) = 1/2, and H(t) > 0 for all t ∈ (0,∞).
• h and h′ are increasing on [0,∞) with h(0) = 1/2, h′(0) = 1/6.

Proof. Using the series representation, it follows that H and h are C∞. We also directly obtain H(0) = 1 and
H ′(0) = 1/2 as well as h(0) = 1/2 and h′(0) = 1/6. Moreover, it follows that H ′, H ′′ ≥ 0 on [0,∞], which implies
that H ′ and H are increasing on [0,∞). The inequality H(t) > 0 follows from the non-series representation together
with H(0) = 1. The results for h can be derived analogously.

Lemma E.4. Consider the function r from Lemma E.1. Then, there exist constants c, C > 0 such that

cmin{|t|, |t|2} ≤ r(t) ≤ Cmin{|t|, |t|2}
for all t ∈ R.

Proof. Since r is an even function, it suffices to prove the inequalities for t ≥ 0.

Step 1: Simplifying the derivative. First, we compute the derivative of r for t ̸= 0:

r′(t) =
t

exp(t/2)− exp(−t/2) ·
(
exp(t/2) + exp(−t/2)

2t
− exp(t/2)− exp(−t/2)

t2

)
=

1

2

exp(t) + 1

exp(t)− 1
− 1

t
=

1

2
+

1

exp(t)− 1
− 1

t

=
1

2
+

1

t

 1(
exp(t)−1

t

) − 1

 =
1

2
+

1

t

(
1

H(t)
− 1

)
=

1

2
+

1

t
· 1−H(t)

H(t)
=

1

2
− h(t)

H(t)
, (15)

where we used the functions H and h from Lemma E.3. Since h and H are also continuous in t = 0, the equation

r′(t) =
1

2
− h(t)

H(t)

holds for all t ∈ R.

Step 2: Upper bound. Since r is 1/2-Lipschitz, we obtain r(t) = r(t)− r(0) ≤ t/2 for t ≥ 0. For t ∈ [0, 1], we can
use r′(0) = 0 to obtain

r(t) = r(0) + tr′(0) +
t2

2
r′′(ξ) ≤ t2

2
sup

u∈[0,1]

r′′(u) ≤ Ct2

for some ξ ∈ [0, t] and the constant C = 1
2 supu∈[0,1] r

′′(u) > 0. This shows r(t) ≤ O(min{t, t2}).
Step 3: Lower bound. We can now use Lemma E.3 to further simplify for t ≥ 0

r′(t) =
1

2
− h(t)

H(t)
≥ 1

2
− 1/2

H(t)
=

1

2

(
1− 1

H(t)

)
=: r̃(t) .

We find that

r̃′(t) =
H ′(t)

2H(t)2

satisfies r̃′(0) = 1/4 and r̃′(t) > 0 for all t ∈ [0,∞).

Set c̃ := inft∈[0,1] r̃
′(t) > 0. Since H(0) = 1, we have r̃(0) = 0. For t ∈ [0, 1], this yields

r̃(t) = r(0) +

∫ t

0

r̃(u) du ≥ c̃t .

For t > 1, since r̃ is increasing, we obtain r̃(t) ≥ c̃. In total, this yields

r̃(t) ≥ c̃min{1, t} for t ∈ [0,∞) .

Now, we obtain for t ∈ [0, 1]

r(t) = r(0) +

∫ t

0

r′(u) du ≥
∫ t

0

r̃(u) du ≥
∫ t

0

c̃min{1, u} du =
c̃

2
t2

and for t > 1

r(t) = r(1) +

∫ t

1

r′(u) du ≥ r(1) +

∫ t

1

r̃(u) du ≥ r(1) +

∫ t

1

c̃min{1, u} du ≥ c̃

2
+ c̃(t− 1) ≥ c̃

2
t .
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E.1.2 Proofs for Density-based Approximation

To prove bounds for density-based approximations, the following lemma will be helpful:

Lemma E.5. The function

f : [−1/2, 1/2]→ R, x 7→ 1− 1

1 + x

satisfies

|f(x)| ≤ 4|x| .

Proof. We have f(0) = 0 and |f ′(x)| = |(1 + x)−2| ≤ (1/2)−2 = 4.

Now, we can analyze how log-partition and sampling errors can be bounded in terms of the underlying unnormalized
densities:

Proposition 22 (Density approximation bounds). Let p, q : R → [0,∞) be bounded and measurable such that
Ip, Iq > 0, where Ip :=

∫
X p(x) dx. Define probability distributions P,Q with densities p/Ip and q/Iq, respectively.

Then,

| log Ip − log Iq| ≤ log

(
1

1− ∥p− q∥∞/Ip

)
if ∥p− q∥∞ < Ip,

DTV(P,Q) ≤ 3∥p− q∥∞
max{Ip, Iq}

≤ 3∥p− q∥∞
Ip

.

Proof. Step 1: Log-partition function. We have

log Ip − log Iq ≤ log Ip − log

(∫
X
(p(x)− ∥p− q∥∞) dx

)
= log

(
Ip

Ip − ∥p− q∥∞

)
= log

(
1

1− ∥p− q∥∞/Ip

)
log Iq − log Ip ≤ log

(∫
X
(p(x) + ∥p− q∥∞) dx

)
− log Ip = log

(
Ip + ∥p− q∥∞

Ip

)
= log(1 + ∥p− q∥∞/Ip)

≤ log

(
1

1− ∥p− q∥∞/Ip

)
.

Step 2: Total variation distance. Without loss of generality, assume that Iq ≤ Ip = 1. Define the normalized density
function q̃ := q/Iq . We consider two cases:

• Suppose ∥p− q∥∞ ≥ 1/2. Then,

DTV(P,Q) ≤ 1 ≤ 2∥p− q∥∞ .

• Suppose ∥p− q∥∞ ≤ 1/2. Then,

DTV(P,Q) =
1

2

∫
X
|p(x)− q̃(x)|dx ≤ 1

2

∫
X
(|p(x)− q(x)|+ |q(x)(1− 1/Iq)|) dx

≤ 1

2
∥p− q∥∞ +

1

2

∣∣∣∣1− 1

1 + (Iq − 1)

∣∣∣∣ .
To bound the second term, we first compute

|1− Iq| =
∣∣∣∣∫

X
(p(x)− q(x)) dx

∣∣∣∣ ≤ ∫
X
|p(x)− q(x)|dx ≤ ∥p− q∥∞ .

Since we are in the case where ∥p− q∥∞ ≤ 1/2, we can apply Lemma E.5 to obtain∣∣∣∣1− 1

1 + (Iq − 1)

∣∣∣∣ ≤ 4|Iq − 1| ≤ 4∥p− q∥∞ ,

which completes the proof.

Next, we turn to bounding ∥pf∥ in terms of ∥f∥. Our first result will provide a bound for the sup-norm:
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Lemma E.6. For f ∈ C1(X ), we have

∥pf∥∞ ≤ Om,d(max{1, ∥f∥C1}d) .

Proof. By Lemma B.1, we have |f |1 ≤ d1/2∥f∥C1 , and hence

∥pf∥∞ =
exp(Mf )

Zf
= exp(Mf − Lf )

Lemma 3
≤ exp(d log(1 + 3d−1/2|f |1)) = (1 + 3d−1/2|f |1)d ≤ Om,d(max{1, ∥f∥C1}d) .

The following lemma helps to bound the norms of products, which occur in the derivatives of exp(f):
Lemma E.7. Let f, g ∈ Cm(X ) for m ≥ 0. Then, ∥fg∥Cm ≤ 2m∥f∥Cm∥g∥Cm .

Proof. We use induction on m. This claim is obviously true for m = 0. Now suppose it is true for m and that
f, g ∈ Cm+1(X ). Take any α ∈ Nd

0 with |α|1 = m+ 1. Then, we can write ∂α = ∂β∂j for some j ∈ {1, . . . , d} and
β ∈ Nd

0 with |β| = m. We then have

∥∂α(fg)∥∞ = ∥∂β∂j(fg)∥∞ = ∥∂β((∂jf)g + f(∂jg))∥∞
≤ ∥(∂jf)g + f(∂jg)∥Cm ≤ 2m (∥∂jf∥Cm∥g∥Cm + ∥f∥Cm∥∂jg∥Cm)

≤ 2m+1∥f∥Cm+1∥g∥Cm+1 .

Moreover, for any α ∈ Nd
0 with |α|1 ≤ m, we have

∥∂α(fg)∥∞ ≤ ∥fg∥Cm ≤ 2m∥f∥Cm∥g∥Cm ≤ 2m+1∥f∥Cm+1∥g∥Cm+1 .

This completes the proof of the induction step.

Now, we can indeed bound higher-order norms of exp(f):
Lemma E.8. Let f ∈ Cm(X ) for m ≥ 0. Then,

∥ef∥Cm ≤ 2m(m−1)/2 max{1, ∥f∥Cm}m∥ef∥∞ .

Proof. We prove this by induction on m. The claim is obviously true for m = 0. Now, suppose the claim is true for
some m ≥ 0 and let f ∈ Cm+1(X ). Take any α ∈ Nd

0 with |α|1 = m+ 1. Then, we can write ∂α = ∂β∂j for some
j ∈ {1, . . . , d} and β ∈ Nd

0 with |β| = m. Thus,

∥∂αef∥∞ = ∥∂β∂jef∥∞ = ∥∂β(∂jf)ef∥∞
≤ ∥(∂jf)ef∥Cm

Lemma E.7
≤ 2m∥∂jf∥Cm∥ef∥Cm ≤ 2m∥f∥Cm+12m(m−1)/2 max{1, ∥f∥Cm}m∥ef∥∞

≤ 2(m+1)m/2 max{1, ∥f∥Cm+1}m+1∥ef∥∞ .

Moreover, for any α ∈ Nd
0 with |α|1 ≤ m, we have by the induction hypothesis

∥∂αef∥∞ ≤ ∥ef∥Cm ≤ 2m(m−1)/2 max{1, ∥f∥Cm}m∥ef∥∞ ≤ 2(m+1)m/2 max{1, ∥f∥Cm+1}m+1∥ef∥∞ .

This completes the proof of the induction step.

It might be possible to improve the dependence on m in the previous lemma; we ignored this since we do not study the
dependence on m. Combining the previous lemmas, we arrive at a higher-order norm bound for the density:
Theorem 23 (Density norm). For m ≥ 1, we have

sup
f∈Fd,m,B

∥pf∥Cm = Θm,d

(
max{1, B}m+d

)
and this asymptotic rate is attained by fd,m,B(x) = Bd−1(x1 + · · ·+ xd).

Proof. Step 1: Upper bound. For f ∈ Fd,m,B , we have

∥pf∥Cm = ∥ef/Zf∥Cm =
1

Zf
∥ef∥Cm
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Lemma E.8
≤ 2m(m−1)/2 max{1, ∥f∥Cm}m∥ef/Zf∥∞

Lemma E.6
≤ 2m(m−1)/2 max{1, ∥f∥Cm}mOd(max{1, ∥f∥C1}d)
≤ Om,d(max{1, ∥f∥Cm}d+m) .

Step 2: Lower bound. Consider f : X → R, x 7→ Bd−1(x1 + · · ·+ xd). A simple calculation yields ∥f∥Cm = B,
hence f ∈ Fd,m,B . Moreover, we have Mf = f(1, . . . , 1) = B. We can also calculate

Zf =

∫
X

(
d∏

i=1

exp(Bd−1xi)

)
dx =

(∫ 1

0

exp(Bd−1x1) dx1

)d

= (B−1d[exp(Bd−1)− 1])d ≤ (B−1d exp(Bd−1))d = (B−1d)d exp(B) .

Finally, we compute

∂m
x1
pf (x)|x=(1,...,1) = ∂m

x1

exp(f(x))

Zf

∣∣∣∣∣
x=(1,...,1)

= (Bd−1)m
f(1, . . . , 1)

Zf
≥ (Bd−1)d+m .

We know that supx∈X pf (x) ≥ 1 because pf is a density on a unit-volume domain. Hence, we conclude ∥pf∥Cm ≥
Ωm,d(max{1, B}d+m).

E.2 Proofs for Simple Stochastic Algorithms

E.2.1 Proofs for Rejection Sampling

The following bound for rejection sampling with uniform proposal distribution is a consequence of the general rejection
sampling bounds in Lemma 11.

Proposition 24 (Convergence of rejection sampling). Let m ≥ 1 and let f ∈ C1(X ). Then, the distribution P̃f

produced by REJECTIONSAMPLING(f , Mf , n) (see Algorithm 1) satisfies

Dsup-log(Pf , P̃f ) ≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)}
DTV(Pf , P̃f ) ≤ min{1, 2∥f∥∞} exp(−n/∥pf∥∞) ≤ Om,d(min{1, ∥f∥∞}max{1, ∥f∥C1}mn−m/d) .

Proof. Step 1: Rejection probability. Set g(x) := Mf . Since

∥pf∥∞ =
exp(Mf )

Zf
=

Zg

Zf
,

the overall rejection probability pR from Lemma 11 satisfies

pR
Lemma 11
≤ exp(−nZf/Zg) = exp(−n/∥pf∥∞) .

Step 2: Sup-log distance. We have Dsup-log(Pf , Pg) = ∥f̄ − ḡ∥∞ = ∥f̄∥∞ ≤ 2∥f∥∞. We then obtain from
Lemma 11 that

Dsup-log(Pf , P̃f ) ≤ min{Dsup-log(Pf , Pg), pR(exp(Dsup-log(Pf , Pg))− 1)}
≤ min {2∥f∥∞, exp (2∥f∥∞ − n/∥pf∥∞)} .

Step 3: TV distance. For the TV distance, we compute DTV(Pf , Pg) ≤ Dsup-log(Pf , Pg) ≤ 2∥f∥∞ and also employ
the trivial bound DTV(Pf , Pg) ≤ 1. From Lemma 11, we obtain

DTV(Pf , P̃f ) = pRDTV(Pf , Pg) ≤ exp(−n/∥pf∥∞)min{1, 2∥f∥∞} .

Using that exp(−x) ≤ Om,d(x
−m/d) for x > 0, we obtain

exp(−n/∥pf∥∞) ≤ ∥pf∥m/d
∞ n−m/d

Theorem 23
≤ Om,d

(
max{1, ∥f∥C1}mn−m/d

)
.
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E.2.2 Proofs for Monte Carlo Log-partition

For analyzing the Monte Carlo log-partition estimator, we are going to use Bernstein’s inequality in the form stated and
proved in Theorem 6.10 in Steinwart and Christmann (2008):

Theorem E.9 (Bernstein’s inequality). Let (Ω,A, P ) be a probability space, B > 0, σ > 0, n ≥ 1. Moreover, let
ξ1, . . . , ξn : Ω→ R be independent random variables with

• EP ξi = 0
• ∥ξi∥∞ ≤ B
• EP ξ

2
i ≤ σ2

for all i ∈ {1, . . . , n}. Then,

P

(
1

n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ e−τ

for all τ > 0.

We will use Bernstein’s inequality since it yields better bounds than Hoeffding’s inequality (Theorem D.1) when n is
large and σ is significantly smaller than B, which will be the case in the following proof.

Theorem 25 (Upper bounds for MC log-partition). Let f : X → R be Lipschitz, let X1, . . . , Xn ∼ U(X ) be
independent and let

L̃n := logSn, Sn :=
1

n

n∑
i=1

exp(f(Xi)).

Then, for any δ ∈ (0, 1], the following convergence rates hold:

(a) Optimization regime: If n ≤ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ d1/2(log(1/δ))1/d|f |1n−1/d + log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)
with probability ≥ 1− δ.

(b) Quadrature regime: If n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d, we have

|L̃n − Lf | ≤ 4 log(2/δ)1/2(1 + 3d−1/2|f |1)d/2n−1/2

with probability ≥ 1− δ.

Proof. Without loss of generality, we assume that f is shifted such that Mf = 0.

(a) Step A.1: Simple one-sided bound. We have

L̃n − Lf ≤ 0− Lf

Lemma 3
≤ d log(1 + 3d−1/2|f |1) .

Step A.2: Bounding the other side. Define the empirical maximum

Mn := max
i∈{1,...,n}

f(Xi) .

Since L̃n = log(
∑n

i=1 exp(f(Xi)))− log(n) ≥Mn − log(n), we obtain

Lf − L̃n ≤ 0− L̃n ≤ log(n)−Mn ≤ log(4 log(2/δ)) + d log(1 + 3d−1/2|f |1)−Mn .

It remains to provide a lower bound on Mn. Define R := (log(1/δ))1/dn−1/d.
• Case 1: R ≥ 1. In this case, for all x ∈ X , we have

f(x) = f(x)−Mf ≥ −d1/2|f |1 ≥ −d1/2|f |1R = −d1/2(log(1/δ))1/d|f |1n−1/d ,

which implies that

−Mn ≤ d1/2(log(1/δ))1/d|f |1n−1/d

with probability 1.
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• Case 2: R ≤ 1. Let x∗ be a maximizer of f . In this case, there exists an axis-aligned subcube X̃ of
X with side length R containing x∗. For each x ∈ X̃ , we have f(x) = f(x) − f(x∗) ≥ −|f |1d1/2R.
Moreover,

P (Mn ≤ −|f |1d1/2R) = P (f(X1) ≤ −|f |1d1/2R)n

≤ P (X1 /∈ X̃ )n = (1− P (X1 ∈ X̃ ))n = (1−Rd)n

≤ e−Rdn = δ .

(b) Define τ := log(2/δ). To apply Bernstein’s inequality to ξi := ef(Xi) − eLf , we need a sup-bound and a
variance bound.
Step B.1: Sup-bound. Since ef(X ) ⊆ [0, 1] by assumption on f , we have ∥ξi∥∞ ≤ 1.
Step B.2: Variance bound. Since ef(X ) ⊆ [0, 1], we have:

Var(ξi) = Var ef(Xi) ≤ E[(ef(Xi))2] ≤ Eef(Xi) = eLf .

Step B.3: Non-logarithmic concentration. By Bernstein’s inequality, we obtain for τ ∈ (0, 1):

P

(
|Sn − eLf | ≥

√
2eLf τ

n
+

2τ

3n

)
≤ 2e−τ = δ .

Step B.4: Lower bound on expectation. From Lemma 3, we obtain

eLf = eLf−Mf ≥ e−d log(1+3d−1/2|f |1) = (1 + 3d−1/2|f |1)−d .

Step B.5: Logarithmic concentration. By combining the previous steps, we obtain with probability
≥ 1− 2e−τ : ∣∣∣∣Sn − eLf

eLf

∣∣∣∣ ≤
√

2τ

n(1 + 3d−1/2|f |1)−d
+

2τ

3n(1 + 3d−1/2|f |1)−d
.

Since we assumed n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d = 4τ(1 + 3d−1/2|f |1)d, the right-hand-side is less than
1/2. Since the logarithm is 2-Lipschitz on [1/2, 3/2], we obtain

|L̃n − Lf | =
∣∣∣∣log( Sn

eLf

)∣∣∣∣
=

∣∣∣∣log(1 + Sn − eLf

eLf

)
− log(1)

∣∣∣∣
≤ 2

∣∣∣∣Sn − eLf

eLf

∣∣∣∣
≤ 2

(√
2τ

n(1 + 3d−1/2|f |1)−d
+

2τ

3n(1 + 3d−1/2|f |1)−d

)

By using the assumption n ≥ 4 log(2/δ)(1 + 3d−1/2|f |1)d = 4τ(1 + 3d−1/2|f |1)d from (b), we can further
bound

|L̃n − Lf | ≤ 2

(√
2τ

n(1 + 3d−1/2|f |1)−d
+

2τ

3n1/2(4τ(1 + 3d−1/2|f |1)d)1/2(1 + 3d−1/2|f |1)−d

)

= (
√
8 + 2/3)

√
τ

n(1 + 3d−1/2|f |1)−d

≤ 4(1 + 3d−1/2|f |1)d/2τ1/2n−1/2 .

E.2.3 Proofs for Monte Carlo Sampling

We now prove a simple lower bound for a simple Monte Carlo sampling algorithm. We use the TV distance, but the
general approach could also be used to prove lower bounds for the sup-log and 1-Wasserstein distances.
Theorem 26 (Lower bound for MC sampling). Let f : X → R be bounded and measurable. Let X1, . . . , Xn ∼ U(X )
and let the random index I ∈ {1, . . . , n} be distributed as

P (I = i) =
exp(f(Xi))∑n
j=1 exp(f(Xj))

.
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Consider the distribution P̃f of the random sample XI . Then, for all B > 0 and n ≥ 1 with Bn−1/d ≥ 4d log(4d),

sup
f∈Fd,m,B

DTV(Pf , P̃f ) ≥
1

2
.

Proof. Set f(x) := −β(x1 + · · · + xd), where β := Bd−1, such that f ∈ Fd,m,B . For δ ∈ (0, 1], set Xδ := [0, δ]d.
Then, similar as in Lemma E.1, we can compute

Z(δ) :=

∫
Xδ

exp(f(x)) dx =

(
1− exp(−βδ)

β

)d

.

We then obtain

Pf (Xδ) =
Z(δ)

Z(1)
=

(
1− exp(−βδ)
1− exp(−β)

)d

≥ (1− exp(−βδ))d ≥ 1− d exp(−βδ) ,

where we used Bernoulli’s inequality in the last step. Setting δ := log(4d)/β, we obtain

Pf (Xδ) ≥ 1− d exp(−βδ) ≥ 3

4
.

On the other hand, we have

P̃f (Xδ) = P (XI ∈ Xδ) ≤
n∑

j=1

P (Xj ∈ Xδ) = nδd = n
(log(4d))d

βd
= n

(d log(4d))d

Bd
.

Hence, if Bn−1/d ≥ 4d log(4d), then P̃f (Xδ) ≤ 4−d, which implies

DTV(Pf , P̃f ) ≥ Pf (Xδ)− P̃f (Xδ) ≥
3

4
− 4−d ≥ 1

2
.

E.3 Proofs for Variational Formulation

The following simple lemma is central to our lower bound for the variational formulation:

Lemma 27. For a model of the form g(x) = φ(x)∗Hφ(x) as above, we have

LOPT
g (Q) = sup

Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q̃) .

Proof. We have

LOPT
g (Q) = sup

P∈P(X )

tr[HΣP ]− inf
P̃ ,Q̃∈P(X ):ΣP̃=ΣP ,ΣQ̃=ΣQ

DKL(P̃ ∥ Q̃)

= sup
Σ∈K

tr[HΣ]− inf
P̃ ,Q̃∈P(X ):ΣP̃=Σ,ΣQ̃=ΣQ

DKL(P̃ ∥ Q̃)

= sup
Σ∈K

sup
P̃ ,Q̃∈P(X ):ΣP̃=Σ,ΣQ̃=ΣQ

tr[HΣ]−DKL(P̃ ∥ Q̃)

= sup
Q̃∈P(X ):ΣQ̃=ΣQ

sup
P̃∈P(X )

tr[HΣP ]−DKL(P̃ ∥ Q̃)

= sup
Q̃∈P(X ):ΣQ̃=ΣQ

Lg(Q).

Before proving the lower bound, we prove a Taylor-based bound on the cosine function, which is then used in the
subsequent lemma to bound an integral of the form

∫
X exp(β cos(x− z)) dx.

Lemma E.10. For all x ∈ [−1/4, 1/4], we have

cos(2πx) ≤ 1− 8

5
π2x2 .
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Proof. For f(x) := cos(2πx), we have

f ′(x) = −2π sin(2πx)

f ′′(x) = −4π2 cos(2πx)

f ′′′(x) = 8π3 sin(2πx)

f (4)(x) = 16π4 cos(2πx)

Applying Taylor’s theorem with the Lagrange form of the remainder for x ∈ [−1/4, 1/4] around x0 = 0, we obtain for
some ξ ∈ [−1/4, 1/4]:

f(x) = 1− 2π2x2 +
2

3
π4 cos(2πξ)x4 .

Therefore, we obtain for x ∈ [−1/4, 1/4]:

f(x) ≤ 1− 2π2x2 +

(
2

3
π4(1/4)2

)
· x2 ≤ 1− 2π2(1− 1/5)x2 = 1− 8

5
π2x2 .

We can now bound the normalizing constant of a rescaled cosine function, which will be used in the lower bound for
the variational formulation:
Lemma E.11. For any z ∈ Rd, define

gz : X → R, x 7→
d∑

i=1

cos(2π(xi − zi)) .

Then,

Zβgz ≤ β−d/2eβd .

Proof. Since gz is 1-periodic, exp(βgz) is 1-periodic. Moreover, we have X = [0, 1]d and hence

Zβgz =

∫
X
exp(βgz(x)) dx =

∫
X
exp(βg0(x)) dx

=

∫
X
exp(β cos(2πx1)) · · · exp(β cos(2πxd)) dx

=

(∫ 1

0

exp(β cos(2πx1)) dx1

)d

. (16)

From expanding the inequality (1−√β)2 ≥ 0, we obtain

eβ ≥ 1 + β ≥ 2
√

β . (17)

This allows us to upper-bound the one-dimensional integral in Eq. (16) as∫ 1

0

eβ cos(2πx1) dx1 =

∫ 3/4

−1/4

eβ cos(2πx) dx

≤
∫
[−1/4,1/4]

eβ cos(2πx) dx+

∫
[1/4,3/4]

eβ cos(2πx) dx

Lemma E.10
≤

∫
[−1/4,1/4]

eβ(1−
8
5π

2x2) dx+

∫
[1/4,3/4]

1 dx

≤ 1

2
+ eβ

∫ ∞

−∞
exp

(
− x2

2 · 5
16π

−2β−1

)
=

1

2
+ eβ

√
2π

5

16
π−2β−1

=
1

2
+ eβ

√
5β−1

8π
Eq. (17)
≤ eβ

(√
β−1

4
+

√
5β−1

8π

)
≤ β−1/2eβ .
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Finally, we can use some elementary convex geometry to find a lower bound for the error of the variational formulation.
Theorem 28 (Lower bound for OPT relaxation). Let φ : X → CN be continuous. Let

n := dimC Vlin, Vlin := SpanC {φ(x)φ(x)∗ | x ∈ X} ⊆ CN×N .

In other words, n is the number of effective degrees-of-freedom of the model g(x) = φ(x)∗Hφ(x), and hence
corresponds to the maximum number of points where such a model can interpolate arbitrary function values. Then,
there exists a point z ∈ X depending only on φ, such that the periodic and analytic function

f : X → R, x 7→
d∑

i=1

cos(2π(xi − zi))

satisfies

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ (7)

for any model g(x) = φ(x)∗Hφ(x) and any β > 0.

Proof. Step 1: Representability by discrete distributions. Let Q := U([0, 1]). We want to find a discrete distribution
Q̃ =

∑M
k=1 λ

(k)δx(k) with ΣQ̃ = ΣQ. Using the feature map Φ : X → Ck×k, x 7→ φ(x)φ(x)∗, we can write

ΣQ̃ =

∫
X
φ(x)φ(x)∗ dQ̃(x) =

M∑
k=1

λ(k)Φ(x(k)) ,

which shows that the matrices ΣQ̃ are exactly those in the convex hull conv(Φ(X )) of Φ(X ). Since ΣQ ∈ K
by definition of K, we first want to show that K = conv(Φ(X )). As we have just demonstrated, the inclusion
K ⊇ conv(Φ(X )) is simple. Moreover, because the integral ΣQ =

∫
X Φ(x) dQ(x) is a limit of finite sums, we obtain

K ⊆ conv(Φ(X )). Since Φ is continuous and X is compact, Φ(X ) is also compact. Hence, since we are in finite
dimension, conv(Φ(X )) is compact (see e.g. Proposition 2.3 in Gallier, 2008), which means that conv(Φ(X )) ⊆ K ⊆
conv(Φ(X )) = conv(Φ(X )).
Step 2: Bounding the number of discrete points. By definition, Vlin is the C-linear span of Φ(X ). Using Step 1, we
conclude K ⊆ Vlin. Hence, K is contained in the space Vlin with dimR Vlin ≤ 2n. By Carathéodory’s theorem (see e.g.
Theorem 2.2 in Gallier, 2008), the matrix ΣQ ∈ K is hence representable as a convex combination of 2n+ 1 points:

ΣQ =

2n+1∑
k=1

λ(k)Φ(x(k)),

with λ(k) ≥ 0,
∑

k λ
(k) = 1. By setting Q̃ :=

∑2n+1
k=1 λ(k)δx(k) , we obtain ΣQ̃ = ΣQ.

Step 3: Determining z. Choose an arbitrary index k∗ ∈ {1, . . . , 2n+ 1} such that λ(k∗) ≥ (2n+ 1)−1, which always
exists. For such an index, we set z := x(k∗).

Step 4: Lower-bounding the approximate log-partition function. By Lemma 27, we have

LOPT
g (U([0, 1])) ≥ Lg(Q̃) = log

(
2n+1∑
k=1

λ(k) exp(g(x(k)))

)
≥ log

(
λ(k∗) exp(g(x(k∗)))

)
≥ log

(
(2n+ 1)−1 exp(βf(x(k∗))− ∥g − βf∥∞)

)
= βd− log(2n+ 1)− ∥g − βf∥∞ .

Step 5: Upper-bounding the true log-partition function. We have

Lβf (U([0, 1])) = logZβf

Lemma E.11
≤ βd− log(βd/2) .

Step 6: Putting it together. The previous two steps immediately yield the desired bound

|LOPT
g (U([0, 1]))− Lβf (U([0, 1]))| ≥ LOPT

g (U([0, 1]))− Lβf (U([0, 1])) ≥ log

(
βd/2

2n+ 1

)
− ∥g − βf∥∞ .
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