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Abstract
The Colin de Verdière graph parameter µ(G) was introduced in 1990 by Y. Colin de Verdière. It is
defined via spectral properties of a certain type of matrices, called Schrödinger operators, associated
to a graph G. We provide a combinatorial and self-contained proof that for all graphs G embedded
on a surface S, the Colin de Verdière parameter µ(G) is upper bounded by 7 − 2χ(S), where χ(S) is
the Euler characteristic of S.
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1 Introduction

In this paper, we establish an upper bound for the Colin de Verdière’s graph parameter µ for
graphs that can be embedded on a fixed surface. This parameter was introduced by Colin de
Verdière [4] in analogy with the multiplicity of the second eigenvalue of Schrödinger operators
on a Riemannian surface. The exact definition of µ(G) resorts to a transversality condition
between the space of so-called discrete Schrödinger operators on a graph G = (V, E) and a
certain stratification of the space of symmetric matrices of dimension V × V . This Strong
Arnold Hypothesis (SAH), as coined by Colin de Verdière [3], expresses a stability property
and ensures that µ is minor-monotone. It can thus be applied to the graph minor theory of
Robertson and Seymour. We refer to the survey by van der Holst, Lovász and Schrijver [13]
for more properties on µ.

Here, we are interested in an upper bound for the parameter µ of the minor-closed
family of graphs that can be embedded on a surface S. It is relatively easy to show that
µ(Kn) = n − 1 for Kn, the complete graph with n vertices [13]. On the other hand, the
largest n such that Kn embeds on S is known as the Heawood number

γ(S) =
⌊

7 +
√

49 − 24χ(S)
2

⌋
,

where χ(S) is the Euler characteristic of S. Colin de Verdière [2] conjectured that the
maximum of µ for all graphs that can be embedded in S is attained at Kγ(S). In other
words, µ is upper bounded by γ(S) − 1. In practice, the known upper bounds have been
proved in the realm of Riemannian surfaces where µ is defined for each Riemannian metric
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as the maximum multiplicity of the second eigenvalue of Schrödinger differential operators
(based on the Laplace-Beltrami operator associated to the given metric). In this framework,
Besson [1] obtained the bound 7 − 2χ(S). When the Euler characteristic is negative, this
bound was further decreased by 2 by Nadirashvili [8], who thus showed the upper bound
5 − 2χ(S). Sévennec [10] eventually divided by two the dependency in the characteristic
to obtain the upper bound 5 − χ(S). Note that all those bounds are linear in the genus
of S and remain far from the square root bound in the conjecture of Colin de Verdière. It
can be proved that any upper bound for µ in the Riemannian world holds for graphs, cf.
[6, Th. 6.3] and [2, Th. 7.1]. However, the proof relies on the construction of Schrödinger
differential operators from combinatorial ones and is not particularly illuminating from the
combinatorial viewpoint. The goal of this paper is to propose a purely combinatorial and
self-contained proof of the bound of Besson in the combinatorial framework of graphs. In
the following, S is a compact surface, orientable or not.

▶ Theorem 1.1. Let G be a graph that can be embedded on a surface S, then

µ(G) ⩽ 7 − 2χ(S).

Our proof completes and slightly simplifies a proof of Pendavingh that appeared in his PhD
thesis [9]. Before describing the general strategy of the proof, we provide some relevant
definitions and basic facts.

2 Background

2.1 Schrödinger operators and µ

Let G = (V, E) be a connected simplicial1 graph with at least two vertices. A Schrödinger
operator on G, sometimes called a generalized Laplacian, is a symmetric V × V matrix such
that for i ̸= j ∈ V , its ij coefficient is negative if ij ∈ E and zero otherwise. (There is
no condition on the diagonal coefficients.) We say that a Schrödinger operator L satisfies
the Strong Arnold Hypothesis (SAH) if there is no nonzero symmetric matrix X = (Xij)
such that LX = 0 and Xij = 0 whenever i = j or ij ̸∈ E, in other words, if the only
symmetric matrix satisfying these conditions is zero. This is an algebraic translation of a
transversality condition between the space of the discrete Schrödinger operators on G and
a certain stratification of the space of symmetric matrices of dimension V × V . It is not
necessary to understand the SAH for the purpose of this paper.

It follows from Perron–Frobenius theorem that the first (smallest) eigenvalue of a
Schrödinger operator L has multiplicity one [5]. Now, if λ2 is the second eigenvalue of
L, then the first eigenvalue of L − λ2Id, where Id is the identity matrix, is negative and
its second eigenvalue is zero. This translation by −λ2Id does not change the sequence
of multiplicities of the eigenvalues of L nor the stability of L with respect to the SAH.
Consequently, we can safely restrict to Schrödinger operators whose second eigenvalue is
zero. We can now define the Colin de Verdière graph parameter µ(G) as the maximal corank
(dimension of the kernel ker(L)) of any Schrödinger operator L satisfying the Strong Arnold
Hypothesis. In other words, µ(G) is the largest integer p such that there exists a Schrödinger
operator L with dim ker L = p and L satisfies the SAH.

Recall that a minor of G is a graph obtained from G by deleting edges, vertices or
contracting egdes. As a fundamental property, µ is minor-monotone.

1 A graph is simplicial, or simple, if it has no loops or multiple edges.
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▶ Theorem 2.1 ([4]). If H is a minor of G, then µ(H) ⩽ µ(G).

It also characterizes planar graphs.

▶ Theorem 2.2 ([4]). A graph G is planar if and only if µ(G) ⩽ 3.

Colin de Verdière made the following conjecture in [4].

▶ Conjecture 2.3. The chromatic number of a graph G satisfies chr(G) ⩽ µ(G) + 1.

This conjecture contains the four colour theorem thanks to Theorem 2.2. It is implied
by Hadwiger’s conjecture (a graph which is not colourable with k colours has the complete
graph Kk+1 as a minor), using the fact that µ(Kn) = n − 1 [13] and the minor-monotone
property of µ.

We view a vector of RV as a discrete map V → R, so that a Schrödinger operator acts
linearly on the set of discrete maps. For f : V → R, we denote by V +

f , V 0
f , V −

f the subsets of
vertices where f takes respectively positive, null and negative values. The support of f is
the subset V +

f ∪ V −
f of vertices with nonzero values. As a simple property of Schrödinger

operators we have

▶ Lemma 2.4 ([13]). Let L be a Schrödinger operator of G and let f ∈ ker L. Then, a vertex
v ∈ V 0

f is adjacent to a vertex of V +
f if and only if v is adjacent to a vertex of V −

f .

A discrete version of the nodal theorem of Courant reads as follows.

▶ Theorem 2.5 ([5, 12]). Let L be a Schrödinger operator of G and let f ∈ ker L be a nonzero
map with minimal support2. Then, the subgraphs of G induced respectively by V +

f and V −
f

are nonempty and connected.

2.2 Surfaces and Euler characteristic
By a surface of finite type we mean a topological space homeomorphic to a compact two
dimensional manifold minus a finite number of points. A surface may have nonempty
boundary and each of the finitely many boundary components is homeomorphic to a circle.
We shall only consider surfaces of finite type and omit to specify this condition. A closed
surface means a compact surface without boundary. By a triangulation of a surface, we mean
a simplicial complex together with a homeomorphism between its underlying space and the
surface.

The Euler characteristic χ(X) of a finite simplicial complex (and more generally a finite
CW complex) is the alternating sum of the numbers of cells of each dimension. In particular,
the Euler characteristic of a graph Γ = (V, E) is χ(Γ) = |V | − |E|. For a surface S we define
χ(S) as the Euler characteristic of a polygonisation of S, that is, a description of S as a
CW complex. The Euler characteristic is homotopy invariant: two spaces with the same
homotopy type have the same Euler characteristic.

The following property will be needed in our proof. It is a corollary of the Inclusion-
exclusion formula [11, p.205]. The proof is not completely trivial and can be found in [7,
Section 2] .

2 A discrete map f ∈ ker L has minimal support if it is nonzero and for every nonzero g ∈ ker L, if
V +

g ∪ V −
g ⊆ V +

f ∪ V −
f , then V +

g ∪ V −
g = V +

f ∪ V −
f .
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▶ Proposition 2.6. Let X be a triangulated compact surface and let Y be a subcomplex of X.
Then

χ(X) = χ(Y ) + χ(X \ Y ).

Here, X and Y should be considered as topological spaces, forgetting about their triangula-
tions. In general, X \ Y is not a subcomplex of X.

3 Overview of the proof

In this section, we give the main ideas of the proof of Theorem 1.1. The detailed proof can
be found in [7, Section 5].

Let G be a graph embedded on a surface S, which we can assume closed without loss
of generality. We may also assume that S is not homeomorphic to a sphere as otherwise
Theorem 1.1 follows directly from Theorem 2.2. In a first step, we remove an open disk
D ⊂ S \ G whose boundary avoids G, and build a graph3 H embedded in S \ D such that
C1. H triangulates S \ D and subdivides ∂D into a cycle of µ(G) − 1 edges,
C2. G is a minor of H, and
C3. the length of the shortest closed walk in H that is non-contractible in S \ D, i.e. the

edgewidth of H in S \ D, is µ(G) − 1.
We denote by W the set of vertices of H.

We next choose a Schrödinger operator L for H whose corank achieves µ(H). Condition
C2 and the monotonicity of µ imply µ(H) ⩾ µ(G), so that ker L has dimension at least µ(G).
By C1, ∂D has µ(G) − 1 vertices, so the vectors of the basis of ker L restricted to ∂D are
linearly dependent. Thus there exists a nonzero vector f ∈ ker L such that f cancels on the
vertices of ∂D. We pick such an f with minimal support so that by Theorem 2.5 the subsets
of vertices W +

f and W −
f induce connected subgraphs of H. We connect the vertices of ∂D

by inserting µ(G) − 4 edges in D to obtain a graph H ′ with the same vertices as H and that
triangulates S. We can now extend f linearly on each face of H ′ to get a piecewise linear
map f̄ : S → R. Let S+

f , S0
f , S−

f denote the subspaces of S where f̄ is respectively positive,
null, and negative. By Theorem 2.5, S+

f and S−
f are connected open subsurfaces of S, while

S0
f is a closed subcomplex of some subdivision of the triangulation induced by H ′. We can

thus apply Proposition 2.6 to write

χ(S) = χ
(
S0

f

)
+ χ

(
S+

f ∪ S−
f

)
= χ

(
S0

f

)
+ χ

(
S+

f

)
+ χ

(
S−

f

)
.

The subsets S+
f and S−

f cannot be homeomorphic to spheres because they are both proper
subsets of S. We deduce from the classification of surfaces, that χ(S+

f ) ⩽ 1 and χ(S−
f ) ⩽ 1.

It ensues that χ(S0
f ) ⩾ χ(S) − 2. The goal is now to provide an upper bound for χ(S0

f ) in
terms of µ(G) in order to obtain the desired upper bound for µ(G).

Start by observing S0
f : it is formed of plain triangles adjacent by an edge or a vertex, or

connected together, via their vertices, by a piece of dimension 1. To provide the upper bound
for χ(S0

f ), we build a graph Γ whose Euler characteristic is larger than S0
f by contracting its

two dimensional parts, that are the parts formed by the plain triangles. To ensure that this
operation results in the desired property on the Euler characteristic of Γ, precautions are
taken before the contraction to remove the singularities of the two dimensional parts while
keeping the same homotopy type. By definition of f̄ , D ⊂ S0

f , so we can define K as the two

3 See [7, Section 4] for a detailed construction of such a graph.
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dimensional part containing D. Because of condition C3 on H, we can argue that K has a
non-contractible boundary in S \ D. It follows that this boundary has length at least the
edgewidth of H, hence at least µ(G) − 1 by condition C3. Thanks to Lemma 2.4 we may
infer that K contracts to a vertex of degree at least µ(G) − 1 in Γ. We also argue thanks to
Lemma 2.4 that Γ has no vertex of degree one. By the handshaking lemma applied to Γ, we
deduce that χ(S0

f ) ⩽ χ(Γ) ⩽ (3−µ(G))/2. We finally conclude that χ(S)−2 ⩽ (3−µ(G))/2,
hence µ(G) ⩽ 7 − 2χ(S).
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