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EVALUATION OF DISTANCE-BASED APPROACHES FOR FORENSIC 

COMPARISON: APPLICATION TO HAND ODOR EVIDENCE 

ABSTRACT 

The issue of distinguishing between the same-source and different-source hypotheses based 

on various types of traces is a generic problem in forensic science. This problem is often 

tackled with Bayesian approaches, which are able to provide a likelihood ratio that quantifies 

the relative strengths of evidence supporting each of the two competing hypotheses. Here, 

we focus on distance-based approaches, whose robustness and specifically whose capacity to 

deal with high-dimensional evidence are very different, and need to be evaluated and 

optimized.  

A unified framework for direct methods based on estimating the likelihoods of the distance 

between traces under each of the two competing hypotheses, and indirect methods using 

logistic regression to discriminate between same-source and different-source distance 

distributions, is presented. Whilst direct methods are more flexible, indirect methods are 

more robust and quite natural in machine learning. Moreover, indirect methods also enable 

the use of a vectorial distance, thus preventing the severe information loss suffered by scalar 

distance approaches. 

Direct and indirect methods are compared in terms of sensitivity, specificity and robustness, 

with and without dimensionality reduction, with and without feature selection, on the 

example of hand odor profiles, a novel and challenging type of evidence in the field of 

forensics. Empirical evaluations on a large panel of 534 subjects and their 1690 odor traces 

show the significant superiority of the indirect methods, especially without dimensionality 

reduction, be it with or without feature selection. 

KEYWORDS 

Bayesian inference; dissimilarity measure; forensic science; human hand odor; likelihood 

ratio; logistic regression. 
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HIGHLIGHTS 

• Direct and indirect distance-based likelihood ratio estimation methods for forensic 

comparison are investigated 

• These methods are applied to high-dimensional evidence consisting of hand odor traces 

• The methods’ robustness, AUC, sensitivity and specificity are evaluated on a panel of 534 

subjects 

• Indirect methods based on logistic regression outperform direct ones and are more robust 

• The indirect method using a vectorial distance outperforms that using a scalar one, both 

with and without feature selection 

 
 

1. Introduction 

A generic problem in courts of law is to decide whether a trace of an unknown origin, often 

drawn from a crime scene, and a specimen from a known source, stem from the same source, 

for example a person or a firearm. If the source is a person, the traces might be biometric such 

as a DNA profile [1-2], fingerprints [3], a voice [4], an olfactory profile [5], or they might consist 

of footwear impressions [6], handwriting [7], etc. If the source is a firearm, the traces may be 

features such as striations and impressions on a bullet or on a cartridge case [8]. 

The most common approach of forensic science to this problem is to estimate a likelihood 

ratio (LR), i.e. the ratio of the joint probability of occurrence of the two traces under the 

hypothesis that they arose from the same source and under the hypothesis that they arose 

from different sources. A convenient solution is to replace the joint probability of the traces 

by the probability of a distance between the two traces quantifying their dissimilarity [9, 10, 

6, 11, 12, 13, 14]. If, as is most often the case, the distance is scalar, there is an important loss 

of information. Thus, we choose to focus on distance-based methods, but with the possibility 

to use a vectorial distance between traces. 

Furthermore, the distance-based LR estimate can be obtained either directly, by estimating 

the distance likelihoods under the two hypotheses, or indirectly, by first using logistic 

regression to discriminate between same-source and different source distance distributions, 

and then Bayes’ formula to infer the LR. Whilst the direct method is more flexible, the indirect 

method is more robust and quite natural in machine learning [15-16]. It is sometimes 
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advocated for in the forensic context, for the same reasons and also because it enables score 

calibration and fusion with minimal mathematical complexity [17-18]. Here, we show that the 

indirect method also enables the use of a vectorial distance, thus preventing the severe 

information loss suffered by scalar distance approaches. We discuss the direct and indirect 

methods in terms of robustness and ability to handle high dimensional evidence, with or 

without dimensionality reduction, and with or without feature selection. We evaluate them 

in terms of sensitivity, specificity and robustness on the example of traces consisting of a hand 

odor profile. 

2. Materials and methods 

2.1 Problem statement 

The aim is, given the evidence consisting of a pair of traces (e.g. two olfactory profiles), to 

decide whether these traces have the same source (e.g. the same person) or not. In the 

following, Hss refers to the hypothesis that the two traces stem from the same source, and Hds 

to the alternative hypothesis that they stem from different sources. Given the a priori 

probabilities P(Hss) and P(Hds), the Bayesian formula yields the posterior probability of Hss 

given the evidence E: 

      (1) 
where f(E|Hss) and f(E|Hds) are the distributions of the evidence under Hss and Hds, or 

likelihoods. Jeffreys developed an absolute scale to evaluate the degree of confidence in the 

same-source hypothesis outside a decisional framework based on the posterior probability of 

Hss using the LR [19-20] defined as: 

          (2) 
which is independent of the a priori probabilities. In fact, the observed evidence E consists of 

the two traces which are represented by n-dimensional vectors (whose components are the 

amounts of each odor compound). Since we focus on distance-based methods, the 

information contained in these two vectors is transformed into a distance or dissimilarity 

measure, which can be either a scalar or an n-vector (a distance for each feature of the trace, 
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here for each odor compound). In the following sections, this distance between the two traces 

will be denoted by d. 

2.2 Candidate methods 

The LR can be obtained either directly, i.e. by estimating the likelihoods of the distance under 

the two competing hypotheses, or indirectly, i.e. using first logistic regression to discriminate 

between same-source and different source distance distributions, and then formulas (1) and 

(2) to infer the LR.  

2.2.1 Direct methods 

For direct methods, we need to be able to evaluate f(d|Hss) and f(d|Hds) for any value of d. For 

this purpose, part of the available dataset can be used to build pairs of traces of the two types: 

same-source and different-source pairs. If d is scalar, or of dimension 2 or 3 at most, the two 

empirical distributions can be fitted, with Gaussian mixtures, for example, leading to 

parametric estimates of f(d|Hss) and f(d|Hds) [8, 10, 13]. In the case of many features, a fit of 

each component of d can be performed in the same way, and the overall likelihoods can be 

approximated through the product of the likelihoods in each dimension, leading to the naïve 

Bayes classifier. To be successful, the latter approach requires however that the features are 

not overly correlated. 

2.2.2. Indirect methods 

The aim of these method is to build a discriminative model of the boundary between the two 

categories of pairs (same-source and different-source pairs) rather than a generative model 

explicitly parameterizing the distributions in the two categories. It is well known that, under 

the hypothesis of single-Gaussian distributions with the same variance under Hss and Hds in 

the scalar case, or same covariance matrix in the multidimensional case, the posterior 

probability of Hss takes the form of a sigmoidal curve [15-16], hence the motivation for a 

logistic regression approach. Despite its result being a discriminative model, it enables to 

calculate the posterior probability of Equation (1) as well as the LR of Equation (2). As a matter 

of fact, the logistic regression model with parameters q = [aT b]T has output: 

        (3) 

r d
a d b

( , ) 1
1 exp ( )T( )θ =
+ − +
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where b is a scalar, and a is either a scalar in the case of a scalar distance, or otherwise an n-

vector (of the dimension of the evidence). If the proportions of the same-source and different-

source categories in the calibration set are denoted by fss and fds, r(d, q) approximates: 

         (4) 
Thus, the posterior probability for a priori probabilities P(Hss) and P(Hds) can be retrieved with: 

      (5) 
and the likelihood ratio with: 

         (6) 

2.3. Pros and cons 

 The indirect method offers several advantages:  

- it spares the necessity to fit the likelihoods, 

- in the multi-dimensional case, contrary to the naïve Bayes classifier, the independence 

assumption is not necessary, because the logistic regression automatically takes care of the 

correlation between features,  

- by construction, the log LR is defined by a hyperplane, and thus robust with respect to the 

equal variance assumption, and to outliers or sparse data far from the boundary,  

- in the forensic context, since the log LR is directly proportional to aT d + b, the logistic allows 

a convenient and interpretable calibration of the dissimilarity score d, and a fusion of scores 

in the multidimensional case [18]. 

On the other hand, the indirect method might suffer from: 

- a reduced flexibility since it amounts to assuming single-Gaussian distributions, 

- a possibly important computation time in the case of high-dimensional evidence and of a 

distance of the same dimension. 

These advantages and disadvantages will be examined and discussed on the example of hand 

odor evidence using a large panel of subjects. 
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2.4. Dataset description 

A panel of 534 volunteers was set up which gathers 218 men and 316 women aged 7 to 94 

years (median 28, interquartile interval [22 ; 48]), see Table 1 for the detailed composition in 

terms of gender and age. Note that this composition does not aim at reflecting that of a 

precise target population, such as one which is more likely to commit a crime, but to be as 

representative of the diversity of odors as possible. As a matter of fact, criminal investigations 

also often necessitate to look for victims, or to discriminate between traces from different 

people present at a crime scene, including those of victims or witnesses, who might be women 

as well as men, children or seniors as well as middle-aged adults. All data were completely 

anonymized prior to analysis, and no personal information was stored. 

The goal was here to identify the subjects by their hand odor, whose volatile profile was shown 

to display a between-subject variability which is sufficient for differentiation [21, 5]. Also, in 

the forensic context, the hands have the advantage to be more likely to be directly in contact 

with objects at a crime scene, and to be easier to sample during a police interrogation. 

The volatile profiles were obtained by a direct sampling procedure using identical sample 

collection kits of 4 small polymer strands that the subjects were asked to rub together in their 

hands for 15 minutes. The polymer strands were thermodesorbed, and the concentrated 

substances were separated by comprehensive bidimensional gas chromatography (GCxGC) 

coupled with mass spectrometry (MS). The sampling method and the optimization of the 

GCxGC-MS analysis were extensively described in [22-23]. Data were acquired, converted to 

.mzXML files with GC Real Time Analysis 4.20 (Shimadzu software), and then processed with 

MatlabTM (Natick, MA, USA) version 9.6.0.1150989 (R2019a), its Statistics and Machine 

Learning Toolbox version 11.5 and its Bioinformatics Toolbox version 4.12. 

Using a “home-made” Matlab script [24], the preliminary manual processing of 25 

chromatograms obtained on 3 subjects between 23 and 26 years old of both genders sampled 

several times at different time instants enabled us to draw up a first list of several hundreds 

of peaks. A library was built to store their retention times, their linear retention index, their 

mass spectrum, and the name of the corresponding compound when it could be identified 

using the NIST library. Indeed, if the availability of its mass spectrum is compulsory, a 

compound does not need to be formally identified for the comparison of chromatograms. We 

also checked whether compounds described in the literature as constituents of the human 

hand odor were present in this library, otherwise they were included. The library was then 



 7 

continuously enriched as the panel was increased with compounds potentially relevant to 

human hand odor because of their empirical frequency in new samples. This work led us to a 

customized library of 741 compounds, which were looked for in each chromatogram. As a 

result, each sample was characterized by the peak areas of 741 compounds. 

In order to compensate for uncontrolled variations of the total area of the chromatograms, 

the sum of these areas was normalized in logarithmic scale to unit value, see Table 2 for a 

comparison of the reproducibility of the data without normalization, and normalization in 

scalar and logarithmic scales. Not knowing whether all 741 compounds are really relevant for 

identification, such a normalization across all compounds might be questionable. Thus, the 

possibility to avoid the problem by working on the dichotomized areas, i.e. 1 if the compound 

is present, or 0 if it is absent from the sample, was also investigated. Also, this approach might 

be of interest for forensic identification problems dealing with intrinsically binary features, 

such as gradient, structural and concavity (GSC) binary features in handwriting identification 

[25]. In the following, we refer to these traces of 741 features, continuous or dichotomized, 

as "odor traces". 

As stated above, the subjects were sampled in quadruplicate, but due to unavoidable mishaps 

with some samples (like accidently dropping a polymer on the floor during sampling) and to 

chromatographic problems (such as failures of the cryogenic modulator), 1690 odor traces 

were obtained for the 534 subjects (44 were sampled once, 77 twice, 160 three times, and 

the remaining 253 subjects four times, leading to an average of 3.2 odor traces per subject). 

This data set was split into a calibration set for training and validation, and an independent 

test set for performance estimation. Since gender [26] and age [27] are known to impact odor 

traces, the split was made so as to respect the gender proportions, with subject of all ages in 

the two sets, and odor traces of the same subject being put in the same set. As a result, the 

calibration set comprises 412 subjects and their 1 299 odor traces (corresponding to 1 594 Hss 

and 841 457 Hds pairs), and the test set comprises the remaining 122 subjects and their 391 

odor traces (leading to 481 Hss and 75 764 Hds pairs). The way the odor traces distribute 

between calibration and test set can be grasped through the Principal Component Analysis 

(PCA) of Figure 1. 

2.5. Implementation 

Three methods are implemented:  
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1) the direct method using a scalar distance between odor traces, 

2) the indirect method using a scalar distance between odor traces, 

3) the indirect method using a vectorial distance, i.e. a distance on each odor compound. 

Note that, given the large dimension of the problem (n=741) and the known correlations 

between features, we did not attempt to implement the direct method using a vectorial 

distance (i.e. a scalar distance on each feature and the naïve Bayes classifier). 

2.5.1. Distances between two odor traces 

Let xi denote the n-vector representing odor trace i. A standard choice of scalar dissimilarity 

measure between odor traces i and j is the Euclidian distance between vectors  xi and xj, i.e.: 

        (7) 

But this distance is not robust with respect to shifts and linear transformations of the features. 

Thus, a more appropriate distance would be Pearson’s linear correlation based distance: 

      (8) 

However, Pearson’s correlation is sensitive to non-linearities, whereas Spearman’s non-

parametric correlation coefficient on the ranks is able to capture monotonic nonlinear 

associations as well as linear ones [28]. Thus, the Spearman correlation based distance (same 

as Equation (8) with the xi
k and xj

k replaced by their ranks) is expected to be more robust with 

respect to nonlinear variations of the peak areas. The three distances were compared in a 

previous study where Spearman’s correlation based distance indeed clearly outperformed the 

two other distances [29]. Therefore, the direct and indirect method using a scalar distance 

have been implemented with Spearman’s correlation based distance. 

The chosen vectorial distance for the indirect method using a vectorial distance is simply the 

vector of the absolute differences between feature values: 

       (9) 
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2.5.2. Estimation of the likelihoods for the direct method 

The calibration set was used to build pairs of odor traces of same and different sources, and 

to compute their distances. The empirical densities being essentially uni- or bimodal (see 

Figure 2), they were best fitted with a two-Gaussian mixture distribution, using Matlab’s 

function “fitgmdist”, leading to estimates of the likelihoods f(d|Hss) and f(d|Hds). 

When performing feature selection (see section 2.5.5 below), the same-source and different-

source distributions vary, depending on the subset of features. However, checking the 

optimality of the two-Gaussian mixture for all subsets of features during the feature selection 

process would be too time consuming. Nevertheless, the convergence of the fits was checked 

for, each fit being repeated three times with a different random set of initial parameters in 

order to retain the fit with the largest likelihood, and the optimality of the fit obtained with 

the selected number of features was tested. Of course, as stated in section 2.3, the necessity 

to fit the likelihoods and to optimize these fits, or to suffer suboptimal fits, is the first 

disadvantage of the direct method. 

2.5.3. Estimation of the logistic model for the indirect methods 

The logistic regression model of Equation (3) with parameters q = [aT b]T was fitted through 

maximum likelihood, by minimizing the cross-entropy cost function with Matlab’s function 

“glmfit”. 

2.5.4. Likelihood ratio and performance estimation 

For the direct method, the LR was evaluated using the estimates of the likelihoods f(d|Hss) 

and f(d|Hds) and Equation (2), as a function of the distance d. For the indirect methods, the LR 

was obtained from the fitted logistic regression and Equation (6), and plotted as a function of 

the distance d or of the score aT d + b, depending on d being scalar of vectorial. 

Since there is no true reference for the LR, the performance of the different methods was 

evaluated by estimating the posterior probability P(Hss|d) according to Equations (1) and (5) 

for the direct and indirect methods respectively, and by performing a binary classification 

using equal prior probabilities (P(Hss) = P(Hds) = 0.5). Varying the decision threshold on 

P(Hss|d), the sensitivity and the specificity were estimated on the calibration and test sets, 

and used to compute the corresponding areas under the receiver operating characteristic 

“ROC” curve (AUC) [30]. The performance was further characterized by the sensitivity Sn and 

specificity Sp maximizing Youden's index [31], i.e. Sn + Sp –1.  
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2.5.5. Feature selection 

In a previous study [29], improved results were obtained using feature selection. The idea is 

to retain the features that contribute the most to the difference between distance densities 

under Hss and Hds. Given the large number of features (odor compounds) and the large size of 

the data set, a filter approach to this selection was chosen. Filter approaches are based on a 

statistical measure of the difference between the two densities for each feature. They are 

hence independent from the main algorithm (direct or indirect method), as opposed to the 

so-called wrapper approaches, which sequentially evaluate the relevance of each feature 

subset based on the performance of the whole procedure, i.e. feature selection together with 

main algorithm [32]. Since filter approaches consider the features independently, they might 

retain redundant features, but in turn this gives them more robustness and, most importantly, 

they require less computation time. For each feature, considering the absolute values of the 

differences for the Hss and Hds pairs, we chose Wilcoxon’s non-parametric test statistic as 

statistical measure in the case of continuous features, and Fisher's exact test statistic in the 

case of dichotomized features. Then, the features were ranked in decreasing order of the one-

sided p-value of the test, which is a one-sided test since smaller distances between features 

under Hss than under Hds are sought for. The number of features maximizing the AUC was 

estimated on the calibration set using 3-fold cross-validation. The cross-validation partitions 

were randomly chosen with the constraint that the odor traces of the same subject were put 

in the same partition. Note that cross-validation also enabled us to estimate the uncertainty 

on the AUCs through the mean standard deviation on the three partitions. 

3. Results and discussion 

The three methods are first evaluated using all the features of the odor traces (baseline 

comparison) and then, the possibility to further improve their performance using feature 

selection is investigated. 

3.1. Baseline comparison of the three methods (without feature selection) 

The results obtained with the three methods on the calibration and test sets are summarized 

in Tables 3 and 4 for dichotomized and continuous features respectively. As a first remark, the 

performance of the direct and indirect methods using a scalar distance in terms of AUC and of 
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sensitivity and specificity are almost identical, for both dichotomized and continuous features. 

Thus, the higher flexibility of the direct method does not increase the performance. On the 

contrary, its lack of robustness can be visualized on Figure 2 depicting the posterior probability 

and the LR obtained with the dichotomized features: due to the larger variance of the 

likelihood under Hss, the posterior probability and the LR, instead of being monotonous, start 

to increase with the distance at some point (d » 0.7). Whereas whatever the situation with 

the indirect method, posterior probability and LR always decrease with d, see Figure 3 

depicting the posterior probability and the LR obtained with indirect method, this time on the 

continuous features. 

Also noteworthy, the performance obtained with the indirect method using a vectorial 

distance is significantly better than those of the methods working with a scalar distance: the 

AUC on the calibration and test sets jumps from 91-92% to 97-98%, the standard deviation of 

the AUC being estimated at 0.7% using 3-fold cross-validation on the calibration set. The 

distributions of the score (aT d + b) resulting from the logistic regression, the regression itself, 

the posterior probability and the LR are shown in Figure 4. The only drawback lies in the 

increased, but perfectly tractable computational cost (10 minutes instead of a few seconds, 

on a 4,2 GHz Intel Core i7). 

Finally, the binarization of the features decreases the performance, but only marginally (the 

AUC is decreased by » 1%). Note that, in this precise case where the features quantify the 

amount of odor compounds, this could be due to the fact that the normalization of the 

compound proportion uses all these compounds whereas it is not known whether they are all 

relevant. Note also that the normalization was improved by performing it in the logarithmic 

scale rather than in the linear scale (the former improving the reproducibility, see Table 2), 

with which continuous features did not outperform dichotomized features, as shown in a 

previous study [29]. Finally, other normalization methods specific to GCxCG-MS data might 

advantageously be investigated [Chen et al. 2017], but are outside the scope of this paper. 

3.2. Comparison of three methods with feature selection 

The number of selected features using the filter approach is reported in Tables 5 and 6, 

together with the corresponding results on the calibration and test sets, for dichotomized and 

continuous feature respectively. 
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Again, there is almost no difference in performance between the direct and indirect methods 

with a scalar feature, be it on dichotomized or continuous features. In terms of AUC, the 

selection is more efficient on binary features than on continuous ones (94.4% with selection 

instead of 91.5% without for dichotomized features, 93.5% instead of 93.0% for continuous 

features, on the test set), with an important reduction of the number of the dichotomized 

features (267 instead of 741), and a moderate one for continuous features (535 instead of 

741). Note also that in both cases, this increased performance benefits the specificity, which 

is highly desirable in a forensic application (it is crucial in this context not to reject the 

different-source hypothesis, i.e. the defense hypothesis, when in fact it is true). 

For both dichotomized and continuous features, the indirect method using a vectorial distance 

is again significantly better than the previous ones (AUCs around 97-98% instead of 94-95% 

on both calibration and test sets), with a similar number of selected features (440 for 

dichotomized features, 500 for continuous ones). However, in both cases, the parsimony due 

to feature selection does not increase the performance as compared to the baseline method, 

it is quasi-identical with and without selection. In return, this testifies to a robustness of the 

indirect method with respect to possibly irrelevant features. And of course, not to have to 

perform the selection spares computation time. 

3.3. Discussion of the choice of equal priors  

In this manuscript, the methods are compared in terms of AUC, sensitivity and specificity. In 

the case of the indirect methods, the regression being obtained by fitting a logistic function to 

the data, whatever the prior probabilities P(Hss) and P(Hds), the posterior probability P(Hss|d) 

given by Equation (5) is also a logistic function. Thus, when the threshold on P(Hss|d) is varied 

from 1 to 0, the same ROC curve is described, whose AUC only depends on the distance 

distributions under Hss and Hds: only the threshold maximizing Youden’s index changes. 

With the direct method, the choice of the prior has an influence on the shape of the posterior 

probability, so that the threshold on P(Hss|d) can possibly be varied in a different interval (see 

Figure 3 where P(Hss|d) never reaches 0 for example). However, in practice, there is no 

influence on AUC, sensitivity and specificity because, again, the AUC depends essentially on 

the distance distributions under Hss and Hds.  The only palpable change is on the threshold 

yielding the best compromise between sensitivity and specificity, threshold which adjusts to 

P(Hss) by roughly following it.  

Thus, the assumption of equal prior probabilities has practically no impact on the LR estimate. 
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3.4. Limitations 

From a practical point of view, our work suffers several limitations for a real-world forensic 

application. First, for practical reasons, the subjects were sampled at a single time point, so 

that the variability of the data is essentially due to the analytical variability. Second, the 

chromatograms being compared are of the same nature, i.e. obtained on samples provided 

by directly sampling the subjects (with contact with the subjects’ hands) whereas in real life, 

the unknown source sample will be obtained indirectly from an object on the crime scene 

(without contact with the subject). Third, the odor collected on the crime scene might be 

contaminated by other odors, from the environment or from other people. A study focused 

on mixtures of odors, contaminations, and weathered traces has not been carried out yet but 

is considered. However, despite these controlled conditions, the PCA of Figure 1 and the 

statistics of Table 2 show that the data is already of limited reproducibility, so that the good 

results we have obtained are encouraging concerning the robustness of the best method to 

more realistic sampling conditions. 

From a methodological point of view, the proposed methods are based on a common source 

scenario, where it is asked whether the two traces originate from the same source or from 

different sources without specifying which sources are considered, and not on a specific 

source scenario, where the question is whether the two traces stem specifically from the 

known source [34]. The problem of the common source scenario is that it does not take 

account of the typicality of the source, contrary to recommendations for a better estimation 

of the strength of evidence through the LR [18, 7, 35]. But to implement a specific source 

scenario, a number of traces from the known source are needed in order to be able to 

estimate the distribution under Hss (for the direct method) or to discriminate between the Hss 

and Hds populations (for the indirect methods), which is quite unpractical when dealing with 

human hand odor, and not feasible at this stage of the study (at most four usable odor traces 

were obtained, for only 253 subjects among the 534). 

4. Conclusion 

To summarize, the advantages expected from an indirect method are fully obtained, in 

particular the dispensation to parameterize the likelihoods, and the robustness with respect 

to differences in their variance and/or to possible outliers. Moreover, an increase in 
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performance of the indirect method as compared with the direct one is not obtained with a 

scalar distance between odor traces, but when using the vector of the distances between each 

feature of the odor traces. This improvement was not really expected, because, especially in 

the forensic context, it is often advocated to convert multivariate data to a univariate datum 

summarizing the relationship between features. Finally, the indirect method with a vectorial 

distance proves also robust with respect to potentially irrelevant features since removing 

them does not modify the performance, an appealing quality for dealing with traces which are 

not yet solidly characterized, such as odor traces. 
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Table 1. Panel composition in terms of gender and age. 

 

age 

     gender 

7-17 18-64 65-94 total 

man 18 182 18 218 

woman 28 268 20 316 

total 46 450 38 534 
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Table 2. Repeatability of the odor trace features (peak areas), without and with two 

normalizations, estimated on the 490 subjects sampled at least twice (IQI stands for 

interquartile interval). 

 

Normalization Median relative standard deviation [IQI] in % 

None 61.0 [32.1 ; 78.0] 

In scalar scale 56.1 [31.9 ; 74.2] 

In logarithmic scale 33.2 [17.9 ; 48.8] 
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Table 3. Baseline comparison between the three methods on the calibration and test sets, 

using dichotomized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) for the 

threshold maximizing Youden's index, all in %. 

 

 Calibration Test 

Method AUC threshold Sn Sp AUC threshold Sn Sp 

Direct 91.2 0.43 80.6 91.3 91.4 0.54 78.4 94.9 

Indirect scal. d 91.2 0.62 80.6 91.3 91.5 0.75 78.4 94.9 

Indirect vect. d 98.5 0.54 93.4 96.3 97.1 0.56 91.1 94.2 
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Table 4. Baseline comparison between the three methods on the calibration and test sets, 

using continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) for the 

threshold maximizing Youden's index, all in %. 

 

 Calibration Test 

Method AUC threshold Sn Sp AUC threshold Sn Sp 

Direct 92.1 0.44 81.1 92.5 93.0 0.50 81.3 94.6 

Indirect scal. d 92.1 0.64 81.1 92.5 93.0 0.73 81.3 94.6 

Indirect vect. d 98.9 0.58 94.4 97.0 97.8 0.57 91.3 95.1 
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Table 5. Comparison between the three methods on the calibration and test sets, using 

dichotomized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing 

Youden's index, with selection of the number of features among the 741 by cross-validation 

of the calibration set (AUC-CV3 the mean 3-fold cross-validation AUC on the calibration set, 

and #feat. denotes the number of features selected by cross-validation). 

 

 Calibration Test 

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp 

Direct 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8 

Indirect scal. d 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8 

Indirect vect. d 96.4 440 97.6 89.5 97.5 97.0 91.3 94.3 
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Table 6. Comparison between the three methods on the calibration and test sets, using 

continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing Youden's 

index, with selection of the number of features among the 741 by cross-validation of the 

calibration set (AUC-CV3 the mean 3-fold cross-validation AUC on the calibration set, and 

#feat. denotes the number of features selected by cross-validation). 

 

 Calibration Test 

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp 

Direct 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5 

Indirect scal. d 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5 

Indirect vect. d 97.0 500 98.3 91.6 97.3 97.7 91.7 94.9 
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FIGURE CAPTIONS 

 

Figure 1. PCA of the data set showing the distribution of the odor traces between calibration 

and test sets. The PCA was performed on the covariance matrix of the continuous features, 

i.e. normalized in logarithmic scale. 

 
 
Figure 2. Results of the direct method with the scalar distance d on dichotomized feature, as 

functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs), and 

estimated density (mixture of 2 Gaussians). b) Empirical distribution of d under Hds 

(841 457pairs), and estimated density (mixture of 2 Gaussians). c) Posterior probability of Hss 

obtained using Bayes' formula with equal priors. d) Likelihood ratio. 

 
 
Figure 3. Results of the indirect method with the scalar distance d on continuous features, as 

functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs). b) 

Empirical distribution of d under Hds (841 457pairs). c) Logistic regression (dotted line), and 

deduced posterior probability of Hss with equal priors (continuous line). d) "Likelihood ratio" 

exp(aT d +b) corresponding to the logistic regression (dotted line), and likelihood ratio 

(continuous line). 

 
 
Figure 4. Results of the indirect method with the vectorial distance d on continuous features, 

as functions of the score aT d +b, on the calibration set. a) Empirical distribution of the score 

aT d + b under Hss (1 594 pairs). b) Empirical distribution of the score aT d + b under Hds 

(841 457pairs). c) Logistic regression (dotted line), and deduced posterior probability of Hss 

with equal priors (continuous line). d) "Likelihood ratio" exp(aT d +b) corresponding to the 

logistic regression (dotted line), and likelihood ratio (continuous line). 
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Figure 1. PCA of the data set showing the distribution of the odor traces between calibration 

and test sets. The PCA was performed on the covariance matrix of the continuous features, 

i.e. normalized in logarithmic scale. 
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Figure 2. Results of the direct method with the scalar distance d on dichotomized feature, as 

functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs), and 

estimated density (mixture of 2 Gaussians). b) Empirical distribution of d under Hds 

(841 457pairs), and estimated density (mixture of 2 Gaussians). c) Posterior probability of Hss 

obtained using Bayes' formula with equal priors. d) Likelihood ratio. 
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Figure 3. Results of the indirect method with the scalar distance d on continuous features, as 

functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs). b) 

Empirical distribution of d under Hds (841 457pairs). c) Logistic regression (dotted line), and 

deduced posterior probability of Hss with equal priors (continuous line). d) "Likelihood ratio" 

exp(aT d +b) corresponding to the logistic regression (dotted line), and likelihood ratio 

(continuous line). 
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Figure 4. Results of the indirect method with the vectorial distance d on continuous features, 

as functions of the score aT d +b, on the calibration set. a) Empirical distribution of the score 

aT d + b under Hss (1 594 pairs). b) Empirical distribution of the score aT d + b under Hds 

(841 457pairs). c) Logistic regression (dotted line), and deduced posterior probability of Hss 

with equal priors (continuous line). d) "Likelihood ratio" exp(aT d +b) corresponding to the 

logistic regression (dotted line), and likelihood ratio (continuous line). 


