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A B S T R A C T

Multispectral snapshot cameras fitted with a multispectral filter array (MSFA) acquire several spectral
bands in one shot and provide a raw mosaic image in which a single channel value is available at
each pixel. Texture features are classically extracted from fully-defined images that are estimated
by demosaicing. Such an estimation may however cause spatio-spectral artifacts. Moreover, texture
feature extraction becomes computationally ine�cient and yields to high-dimensional features as the
number of bands increases. In this paper, we propose an original approach based on a convolutional
neural network called MSFA-Net to capture spatio-spectral interactions in raw images at reduced
computation costs. Experiments of multispectral image classification and outdoor image segmentation
show that the proposed approach outperforms several hand-crafted and deep learning-based feature
extractors.

1. Introduction

Increasing the number of bands to enhance spectral reso-
lution is a goal of multispectral imaging. Multispectral cam-
eras embed several optical filters so that material surfaces are
observed in several spectral bands. Depending on the type of
filters that sample the incident light (radiance), multispectral
images may contain spectral information from the visible
(VIS), the near infrared (NIR), and/or the short wave infra-
red domain. “Multishot” devices [1] build an image by
stacking several successive frames. Oppositely, “snapshot”
devices provide a multispectral image from a single shot [2].
Multi-sensor snapshot devices use dichroic prisms to split
the incoming beam onto multiple sensors, hence are expen-
sive and can only sample few spectral bands. Single-sensor
snapshot devices embed a multispectral filter array (MSFA)
laid over the sensor, like the widely-used Bayer filter array
in color imaging, to spatio-spectrally sample incoming radi-
ance according to the photosensor locations. Each filter of
the MSFA is sensitive to a specific narrow spectral band, so
that each pixel of the acquired raw image represents a single
band. The missing other ones are computed by demosaicing
to recover the fully-defined multispectral image [3]. Outdoor
applications require illumination-independent spectral sig-
natures. To this end, reflectance images are classically com-
puted from demosaiced radiance ones, and texture features
extracted from them.

Because demosaicing generates artifacts and increases
computation costs, some authors propose to directly process
raw images for reflectance estimation [4] or feature extrac-
tion [5]. In [6], texture features based on the local binary pat-
tern (LBP) operator are directly extracted from raw images.
In the same goal, we here exploit deep learning advantages
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and design a convolutional neural network (CNN) that acts
as a texture feature extractor from raw images.

This paper is organized as follows. In Sec. 2, we first dis-
cuss the classical approach for multispectral texture feature
extraction and review some state-of-the-art texture descrip-
tors. Then, we introduce our approach for texture feature
extraction from raw images. In Secs. 3 and 4, we evalu-
ate the proposed method against state-of-the-art ones for
multispectral image classification and segmentation. Finally,
conclusions are drawn in Sec. 5.

2. Multispectral texture feature extraction

2.1. Texture features from multispectral images

To classify texture images provided by a single-sensor
snapshot camera that samples B2 bands through an MSFA,
one usually estimates fully-defined (B2-channel) images
from raw images by demosaicing, then computes texture fea-
tures [7]. The simplest demosaicing scheme uses a weighted
bilinear interpolation filter to estimate the B2*1 values that
miss at each pixel from those available at its neighbors for the
same respective bands [8]. Each neighbor is associated with
a weight that depends on its spatial distance to the consid-
ered pixel. This method only exploits intra-channel spatial
correlation to estimate missing values. To improve the es-
timation, demosaicing should use inter-channel correlation
or, if the latter is low, the correlation between each channel
and the pseudo-panchromatic image (PPI) [9]. The PPI is
first estimated from the raw image thanks to an averaging
filter. Then its sharpness is improved using local directional
variations of raw values. Finally, the PPI is analyzed by an
iterative procedure

Among local texture features, those based on the LBP
operator and its variants have been widely used for their ro-
bustness against illumination, rotation, and scale [10]. They
have also been extended to the multispectral domain using
vector approaches [11]. Considering spectral correlation
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between all bands provides state-of-the-art texture classifica-
tion performance, but is computationally greedy and yields
high-dimensional LBP features that are neither memory
e�cient nor easily interpretable [6]. The relative spectral dif-
ference occurrence matrix (RSDOM) [12] performs spectral
di�erences using the Kullback-Leibler pseudo-divergence
measure to extract low-dimensional texture features from
multispectral images as a multi-dimensional probability
density function. Such hand-crafted texture features have
recently been overshadowed by deep learning techniques
based on CNNs [13, 14]. For instance, the SegNet model
has been extensively and successfully applied to segment
scene images [14], and to analyze multispectral (RGB-NIR)
images in the context of weed detection [15]. The ResNet
model and its variants [16] are advanced deep CNNs that use
residual blocks to improve the classification performance
and avoid the vanishing gradient issue.

CNNs are commonly used as feature extractors and
classifiers. Hidden layers perform feature extraction, and the
output one (usually a softmax function in multi-class case)
turns features from the last hidden layer into probabilities
for prediction. Some authors propose to use CNNs only as
feature extractors. Donahue et al. [17] show that features pro-
vided by deep hidden layers, especially the last two ones, are
highly discriminant and provide astonishing classification
performances when combined with a supervised classifier.
Zhou et al. [18] use deep features of the last hidden (fully-
connected) layer to train a linear support vector machine
(SVM) classifier for scene classification. Razavian et al. [19]
conduct di�erent recognition tasks (e.g., object detection,
visual instance and fine-grained recognition) using the Over-
feat CNN model. In each experiment, features of the first
fully-connected layer are L2 normalized and used to train an
SVM classifier to perform predictions. The 2D-CNN called
S-CNN is used to extract features from multispectral im-
ages [20, 21]. These features are used by an SVM classifier
to perform multispectral band selection and face recognition.
This deep scheme outperforms state-of-the-art hand-crafted
descriptors such as HOG, LBP, and SIFT [20]. In spite
of their performances, deep learning-based approaches are
greedy in computation time and memory, and using them
with high spectral resolution images may be intractable.

2.2. MSFA texture features

To consider spatio-spectral correlation, some studies di-
rectly process raw images [5, 6]. When a descriptor suitably
analyzes a raw image, it can achieve similar or even better
classification performances than from a demosaiced one
because demosaicing generates artifacts that may alter the
texturMSFA Texture featue representation. In [6], texture
features are directly computed from raw images, which
avoids the demosaicing step and provides discriminant fea-
tures. Specifically, the method analyzes a raw image with
respect to the MSFA basic pattern and its band arrangement
to build an LBP-based texture descriptor. From the same
idea, we propose a new CNN architecture that is adapted to
raw images.
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Figure 1: Considered MSFAs: IMEC VIS 4 ù 4 (�b À
{469 nm, … , 633 nm}, b À [[0, 15]]) (left) and NIR 5 ù 5
(�b À {678 nm, … , 960 nm}, b À [[0, 24]]) (right).

The MSFAs used in this paper are defined by repetition
of a BùB basic pattern that samples B2 di�erent bands. No
consensus exists regarding the size of the basic pattern, and
finding a trade-o� between spatial and spectral samplings is
a challenging open problem [22] that is beyond the scope of
this paper. Therefore, we follow the MSFA arrangements in
the VIS domain (B = 4) and NIR domain (B = 5) of two
snapshot cameras manufactured by IMEC [23] (see Fig. 1).

2.3. Raw texture features based on CNN

Our CNN architecture called MSFA-Net directly extracts
texture features from raw square patches of size X ù X
pixels, where X = m � B is a multiple of the MSFA basic
pattern width. MSFA-Net is composed of three convolu-
tional blocks, followed by an average pooling layer and two
fully-connected layers (see Fig. 2). The first convolutional
layer is of utmost importance because it guides the feature
extraction according to the MSFA basic pattern. It uses 128
convolutional kernels {Hn}127n=0 of size B ù B and depth 1,
with a stride of B pixels along both spatial dimensions and
without padding. B-pixel stride ensures that each kernel
coe�cient is always associated to the same MSFA band
for all convolutions. This first layer learns spatio-spectral
interactions among channel values in each raw patch part that
matches the basic MSFA pattern. The convolution between
a raw patch P raw and a kernel Hn, n À [[0, 127]], is defined
at each pixel (x, y) À [[0,m * 1]]2 as:

On(x, y) =
B*1…
i=0

B*1…
j=0

Hn(i, j) �P raw(B �x+ i,B �y+ j). (1)

The resulting 128 feature maps {On}127n=0 of size m ù m are
fed into the second convolutional block that uses 256 kernels
of size 3 ù 3 with both a stride and zero-padding of one
pixel, such that its input and output feature maps have the
same size. The last convolutional block uses 384 kernels of
size 3 ù 3 with one pixel stride and no padding. Feature
maps of the last convolutional layer are usually vectorized
using a flattening layer before being fed into fully-connected
layers. Following [18], we introduce a global pooling layer to
average feature maps channel-wise so that the provided 384-
dimensional feature vector is more robust against noise and
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Figure 2: MSFA-Net architecture. ReLU: rectified linear unit activation, BN: batch normalization, FC: fully-connected layer. Filter

depths (e.g., 1 for first layer and 128 for second) are not shown for sake of clarity.

spatial translations. To introduce non-linearity and reduce
the feature size, a fully-connected layer provides the final
128-dimensional texture feature vector that is fed into the
softmax layer.

3. Texture classification experiment

In this first experiment, we use a dataset of multispectral
texture images called HyTexiLa [24]. It contains NC = 112
reflectance images, each of which can be regarded as a
distinctive class. An image R(K) = {Rk}K*1

k=0 has K = 186
channels of size 1024 ù 1024 pixels, and each channel Rk

is associated to a spectral band of central wavelength �k À
[405.37 nm, 995.83 nm].

3.1. Patch extraction

Each K-channel reflectance image is first transformed
into a B2-channel one (B2 À {16, 25}) by selecting the
channels whose associated wavelengths are the closest to
the spectral sensitivity function centers of IMEC snapshot
cameras. To obtain raw patches for feature extraction, we
simulate raw images that would be acquired by these cam-
eras by spatio-spectrally sub-sampling the fully-defined B2-
channel images according to the 4 ù 4 or 5 ù 5 MSFA.
To compare with the classical strategy, we also demosaic
these MSFA images using PPID as one of the state-of-the-
art multispectral demosaicing methods [9]. We discard 10
pixels on image borders where estimation is inaccurate.

Each image is then split into non-overlapping square
patches of width X = m � B, some of which are picked
for training and the others used for testing. To evaluate
how patch size a�ects the descriptors, we extract patches
of sizes 200 ù 200, 124 ù 124, and 64 ù 64 pixels (for
B = 4), or 200 ù 200, 125 ù 125, and 65 ù 65 pixels
(B = 5). We furthermore perform data augmentation to

introduce some texture variations and to ensure that enough
patches are available to train the network. We consider seven
transformations, namely Gaussian noise (� = 0, � = 4.4),
180˝ rotation, horizontal flip, vertical flip, random resized
crop, grid distortion, and elastic transform. Only the latter
two are used with the smallest patches (X À {64, 65}). The
number N of training and test patches is then N ˘ 37.8 �103
for X À {64, 65}, N ˘ 28.7 � 103 for X À {124, 125}, and
N ˘ 11.2 � 103 for X = 200.

3.2. Feature extraction

We consider several state-of-the-art descriptors, either
deep learning-based or hand-crafted ones, to compare their
performance to ours. We use a shallower version of SegNet
model [14], called SegNet-Basic, that we adapt to image
classification by considering the sole encoder part with an
extra flattening layer to vectorize feature maps. All convolu-
tional kernels are of size 3ù3 instead of 7ù7 to capture small
details (and reduce the number of hyperparameters to learn),
and we add two fully-connected layers for non-linearity
and dimension reduction, which provides a 512-dimensional
feature vector. We also consider the S-CNN deep learning
model [20] that is composed of three convolutional and
two fully-connected layers, whose first one provides a 1024-
dimensional feature vector. At last, we consider feature ex-
traction by deep residual learning [16]. The 18-layer archi-
tecture (ResNet18) is composed of a starting convolutional
block and 8 residual blocks, followed by a global average
pooling layer that provides a 512-dimensional feature vector.
Each residual block can learn identity mapping thanks to a
skip connection of (at least) two convolutional layers. In all
models (see details in Table 1), the texture feature vector is
finally fed into a fully-connected layer that uses the softmax
function to provide the NC-dimensional probability vector.
Note that oppositely to MSFA-Net (see Eq. (1)), the first

A. Amziane et al.: Preprint submitted to Elsevier Page 3 of 8



MSFA-Net

Table 1
CNN architectures used for feature extraction from fully-

defined images. The detailed architecture of ResNet18 is avail-

able at https://paperswithcode.com/model/resnet. See caption

and colors of Fig. 2. Blue boxes indicate the layers that provide

the final texture features we consider for classification.

SegNet-Basic encoder S-CNN
64 � (3 ù 3) Conv. kernels

1-pixel stride, zero-padding

96 � (6 ù 6) Conv. kernels

2-pixel stride, zero-padding

BN + ReLU BN + ReLU

Maxpool 2 ù 2 Maxpool 2 ù 2
128 � (3 ù 3) Conv. kernels

1-pixel stride, zero-padding

256 � (3 ù 3) Conv. kernels

2-pixel stride, zero-padding

BN + ReLU BN + ReLU

Maxpool 2 ù 2 Maxpool 2 ù 2
256 � (3 ù 3) Conv. kernels

1-pixel stride, zero-padding

512 � (3 ù 3) Conv. kernels

1-pixel stride, zero-padding

BN + ReLU ReLU

Maxpool 2 ù 2 Flatten

512 � (3 ù 3) Conv. kernels

1-pixel stride, zero-padding
FC-1024 + ReLU

BN + ReLU Dropout(0.5)

Maxpool 2 ù 2 -

Flatten -

FC-1024 + ReLU -

FC-512+ ReLU -

FC-NC
+ Softmax FC-NC

+ Softmax

convolutional layer of these models applies kernels H
(B2)
n of

depth B2 and size wùw to the input B2-channel patch P
(B2)

at each pixel (x, y) À [[0, (m � B) * 1]]2 in a classical way
(with 1-pixel stride, right and bottom zero-padding):

On(x, y) =
B2*1…
b=0

w*1…
i=0

w*1…
j=0

Hb
n (i, j) � P

b(x+ i, y+ j). (2)

Note that w = 3 for SegNet-Basic, w = 6 for S-CNN, and
w = 7 for ResNet18.

As hand-crafted features, we compute histograms of
LBP operators that have proven to be powerful for texture
extraction, namely the marginal LBP (as baseline) [6], the
local angular patterns (LAP) [11], the LBP-LCC descrip-
tor [25] that is a fusion of LBP features extracted from
the pseudo-panchromatic image and the local color contrast
(LCC) patterns, and the M-LBP descriptor that extracts
features from raw patches [6].

3.3. CNN Training

To train and validate CNN-based features, 95% of the
training patches are used for learning and the remainder for
validation. The CNNs are then trained using the learning
patches as follows.

Initialization: As we aim to train MSFA-Net from
scratch, we must choose an appropriate way to initialize
the weights of its convolutional and fully-connected layers.
Initializing the weights with too small values may slow

down the learning process and lead to vanishing gradients,
and larger values may cause exploding gradients. Since all
compared CNNs use the ReLU as activation function, we
follow He et al.’s weight initialization [26]. Specifically,
we use the He-uniform variant that draws the weights from
a uniform distribution instead of a normal one because it
slightly provides better results in our case.

Training: We use the stochastic gradient descent (SGD)
weight optimizer for all models. The loss function to be
minimized is the multi-class log-loss, and the optimization
is performed for 40 epochs because no performance increase
is observed afterwards. The batch size is set to 128. For
SegNet-Basic, we use a fixed learning rate ✏ = 10*2, no
weight decay, and momentum of 0.9 [14]. For S-CNN, we
follow a similar procedure to that described in [20] with
minor changes. We use ✏ = 0.005 instead of 0.05 because
it provides better convergence on HyTexiLa. Weight decay
and momentum values are kept to 5 � 10*4 and 0.9. For
ResNet18, we use ✏ = 0.1 with a weight decay of 10*4 and
momentum of 0.9 [16]. We train MSFA-Net with the same
learning parameters as those of S-CNN.

3.4. Classification results and discussion

Table 2 shows the classification results obtained for each
feature with 1-nearest neighbor (NN) classifier coupled with
the Euclidean distance.

Among hand-crafted features, M-LBP outperforms the
other LBP-based descriptors because it considers spatio-
spectral correlation in the raw image and avoids the de-
mosaicing step, whose estimation potentially a�ects texture
representation. Though marginal LBP does not consider
inter-channel correlation, it provides better results than LAP.
Globally, the performance of all descriptors increases with
respect to the patch size, especially marginal LBP and LAP
that are sensitive to the number of patch pixels.

Texture features extracted by deep learning from de-
mosaiced patches outperform hand-crafted ones. SegNet-
Basic, S-CNN, and ResNet18 encoders are little a�ected
by the patch size and outperform M-LBP-based features
with IMEC 5 ù 5 in most cases. As noticed in [6], the
performances of M-LBP, LAP, LBP-LCC, and marginal
LBP are better with IMEC 4ù4 than with IMEC 5ù5, though
the latter contains richer spectral information. This suggests
that LBP-based features perform better on HyTexiLa in the
VIS domain than the NIR domain. We observe the opposite
behavior with the three state-of-the-art deep learning-based
descriptors. CNNs may learn more spectral characteristics
with IMEC 5 ù 5 that samples more channels than IMEC
4 ù 4, regardless of their spectral domains.

Our proposed approach is ranked first five times among
the six tested cases, followed by ResNet18 that performs best
once. This confirms that features provided by MSFA-Net
are more discriminant despite their small size. The accuracy
reached by MSFA-Net is close to that of RSDOM descriptor
(98.5%) applied to higher-dimensional (204 ù 204 pixels
ù 186 channels) and original (undemosaiced) fully-defined
HyTexiLa patches [12]. MSFA-Net requires to learn much
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Table 2
Classification accuracy (%) on HyTexiLa database for 1-NN classifier with features extracted from either raw or demosaiced

patches. The best result in each column is shown as bold and second best as italics. Superscript
<

refers to IMEC 4 ù 4 and
†

to

IMEC 5 ù 5.
Input

patches

IMEC 4 ù 4< IMEC 5 ù 5†
Feature size 200 ù 200 124 ù 124 64 ù 64 200 ù 200 125 ù 125 65 ù 65

MSFA
MSFA-Net 128

<,† 99.5 98.3 98.7 99.0 98.4 95.1

M-LBP 4096
<
/6400

† 97.2 96.9 94.6 96.9 95.4 90.4

Demosaiced

SegNet-Basic 512
<,†

86.2 83.5 86.4 97.1 96.9 96.6
S-CNN 1024

<,†
82.5 83.6 81.1 94.4 97.4 93.4

ResNet18 512
<,†

95.5 88.1 81.7 98.5 97.8 97.4
LAP 256

<,†
80.0 69.1 41.3 68.4 65.6 36.1

LBP-LCC 512
<,†

87.0 83.8 69.6 70.9 71.4 53.7

Marginal LBP 4096
<
/6400

†
81.5 76.4 45.9 77.2 71.6 51.2

A
cc

ur
ac

y
ov

er
te

st
sa

m
pl

es
(%

)

Computation time of feature extraction (s)

MSFA-Net
M-LBP
SegNet-Basic
S-CNN
ResNet18
LAP
LBP-LCC
Marginal-LBP

Figure 3: Classification accuracy obtained by 1-NN classifier vs.

computation time of feature extraction from the (0.95 � N ˘
35.9 � 103) 65 ù 65 learning patches (IMEC 5 ù 5) of HyTexiLa

database. Nor demosaicing nor CNN training computation

times are considered.

fewer hyperparameters than the other three CNNs, e.g.,
about nine times fewer than ResNet18 and eight times fewer
than SegNet-Basic and S-CNN for the smallest patches. All
in all, it provides better or comparable performances than
other approaches at much reduced computation costs (see
Fig. 3). Table 2 also shows that MSFA-Net performance
is less a�ected by patch size than hand-crafted descriptors,
which suggests that it can learn texture feature maps from
small patches to perform segmentation tasks.

From the MSFA-Net architecture of Fig. 2, we finally
assess variant models with 2 or 4 convolutional layers, built
by keeping the first one and feature size untouched. Table 3
shows that the 3-layer model provides the best trade-o�
between classification accuracy and computation time.

4. Crop/weed detection and identification

In this section, we evaluate the contribution of raw-based
feature extraction to image segmentation. Specifically, we
are interested in both problems of crop/weed detection and
identification.

Table 3
1-NN classification accuracy (%) of HyTexiLa raw patches

(X = 64..200) and computation time (s) achieved by MSFA-

Net in the same case as in Fig. 3 (IMEC 5 ù 5, X = 65), but

with different numbers of layers.

Model
IMEC 4 ù 4 IMEC 5 ù 5 Comp.

200 124 64 200 125 65 time

2-layer 94.7 98.4 98.3 98.4 97.8 93.7 13.8

3-layer 99.5 98.3 98.7 99.0 98.4 95.1 15.7

4-layer 99.5 98.5 99.1 99.0 98.8 95.9 31.4

4.1. Image database

We own a database of 96 multispectral images of crop
(beet, wheat, and bean) and weed species (thistle, goosefoot,
and datura) (see Fig. 4(a,b)) that have been acquired by the
Chambre d’Agriculture (CA) de la Somme, France, in early
April 2019 using IMEC Snapscan camera [1]. From the 141-
channel radiance images acquired in outdoor conditions,
reflectance is estimated in order to extract illumination-
invariant spectral signatures [27]. To perform classification
based on raw patches, we design a specific 5ù5 basic MSFA
pattern (CA 5 ù 5) inspired by IMEC 5 ù 5. We first select
B2 = 25 channels from the available 141 ones using a
sequential forward selection (SFS) approach. The spectral
bands associated to the selected channels are arranged in CA
5ù5 according to their central wavelengths in the same band
arrangement as IMEC 5 ù 5. Note that after SFS, eight out
of the 25 channels are associated to NIR spectral bands. We
then simulate images that would be acquired by a snapshot
camera equipped with CA 5ù5 MSFA. Finally, we demosaic
these images using PPID method to obtain fully-defined
images for the sake of comparison.

4.2. Feature extraction and crop/weed

classification

Our segmentation approach is a supervised pixel clas-
sification. First, vegetation is distinguished pixel-wise from
background using the normalized di�erence vegetation in-
dex [28]. At each vegetation pixel, we consider a centered
neighborhood as a patch whose size is a small multiple of
B = 5 and in which at least 88% of the pixels represent
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Table 4
Crop/weed identification accuracy (%) of LGBM classifier. Weed species: Th(istle), Go(osefoot), Da(tura). Acc. is the overall

weighted accuracy score.

Feature Beet Th Go Da Acc. Wheat Th Go Da Acc. Bean Th Go Da Acc.
MSFA-Net 82.6 75.5 70.2 82.5 77.4 99.2 58.1 51.6 85.7 63.4 87.7 53.0 48.9 79.8 62.4

M-LBP 62.5 70.1 39.0 60.9 55.3 90.3 36.7 34.2 65.9 45.2 59.8 53.4 30.8 54.4 42.3

SegNet-Basic 83.2 69.2 70.6 83.9 77.2 99.4 50.6 52.9 86.0 63.2 81.1 47.7 47.6 80.2 59.9

BlobNet 90.4 81.7 29.0 82.9 66.2 99.3 50.0 57.2 83.6 65.1 83.5 49.2 52.1 79.3 62.8
cNet 90.9 80.9 25.4 84.4 65.6 99.4 46.8 58.6 81.9 65.2 80.7 45.8 52.4 79.4 62.1

R(25)
71.3 56.1 51.3 76.1 64.3 98.3 40.2 49.5 77.0 57.9 61.3 34.2 43.8 71.9 51.2

ÑR(25)
80.5 63.9 60.0 75.6 69.2 98.2 43.9 44.7 77.0 55.6 58.6 47.3 41.0 73.3 50.5

Number of test patches for beet/weed (P1), wheat/weed (P2), and bean/weed (P3) detection or identification problem:

P1: Beet: 694,201 | Th: 509,547 | Go: 259,130 | Da: 203,273

P2: Wheat: 584,599 | Th: 342,925 | Go: 79,169 | Da: 215,540

P3: Bean: 166,761 | Th: 381,717 | Go: 63,260 | Da:203,767

Table 5
Recall (Re) and precision (Pr) results (%) of weed detection

by LGBM classifier. The best result in each column is shown

as bold and second best as italics.

Feature
Beet vs. weed Wheat vs. weed Bean vs. weed

Re Pr Re Pr Re Pr

MSFA-Net 97.2 89.7 92.6 99.4 92.6 96.8
M-LBP 90.3 83.0 73.1 93.5 77.4 93.8

SegNet-Basic 96.3 92.3 91.0 99.5 90.2 96.8
BlobNet 95.1 93.1 91.2 99.5 88.0 94.3

cNet 94.8 93.2 90.1 99.5 84.7 94.7
R(25) 92.8 86.1 88.0 98.7 76.2 91.7

ÑR(25)
92.9 90.2 90.8 98.6 81.1 90.6

vegetation (to avoid feature extraction on zeroed-out back-
ground pixels). For each case (beet vs. weeds, wheat vs.
weeds, and bean vs. weeds), a specific number of learning
and test patches are extracted. We extract patches of size
25 ù 25 pixels, or 20 ù 20 for the wheat vs. weeds case to
have enough samples to characterize thin leaves of wheat.
For crop/weed detection, we randomly extractN1 ˘ 180�103
patches from learning images, half for crop and half for weed
class. As we merge thistle, goosefoot, and datura patches to
build a single weed class, we extract (N1_2)_3 patches for
each of them. For crop/weed identification, we extract N2 ˘
50�103 patches per class. The number of test patches for both
problems are displayed below Table 4. We extract texture
features from these patches, then the central pixel of each
test patch is classified as crop or weed (detection problem),
or as one of the four (one crop and three weeds) vegetation
classes (identification problem).

In this experiment, we consider MSFA-Net, M-LBP, and
SegNet-Basic encoder that is suited to segmentation and has
shown better performances than S-CNN in texture classi-
fication (see Sec. 3.4). To make it possible to learn from
very small patches, we omit the two maxpooling layers of
MSFA-Net. For SegNet-Basic encoder, we omit the second
and third maxpooling layers. We additionally consider two
CNNs that follow a patch-based classification approach for
crop/weed detection using RGB-NIR images. The model

(here called BlobNet) proposed by Milioto et al. [29] is
composed of three convolutional layers (two of 5ù5 kernels
and one of 3ù 3 kernels), followed by two 2ù 2 maxpooling
layers, and two fully-connected layers that provide a 512-
dimensional feature vector. The model called cNet [30] is
composed of two convolutional layers (of 5ù5 kernels), two
2ù2 maxpooling layers, and two fully-connected layers that
provide a 192-dimensional feature vector.

We also consider reflectance spectra as features. Each
demosaiced learning or test patch (see Sec. 4.1) is repre-
sented by a B2-dimensional reflectance vector R(B2), whose
b-th component is the average reflectance value over a small
square window (of 25 pixels) centered at the middle of the
considered patch to reduce noise influence. Furthermore,
to make reflectance signatures robust against shading and
specular reflection, we normalize each spectrum as ÑR(B2) so
that its energy sums up to 1. AsB2 = 25 here, R

(25) and ÑR(25)

represent the 25-dimensional unnormalized and normalized
reflectance features extracted from demosaiced patches.

To get results that are comparable with a previous study
on weed detection [27], we use the supervised gradient
boosting classifier LightGBM [31]. To reduce sparse pixel
misclassification after prediction, we assume that reflectance
does (almost) not change across locally close surface ele-
ments of a scene. Plausibly, these elements belong to the
same material, hence to the same class. Each prediction
associated to a test vegetation pixel is then filtered using
a majority voting rule, and its final class label is the most
frequent one over its 9 ù 9 neighborhood.

4.3. Segmentation results and discussion

Tables 4 and 5 show the crop/weed detection preci-
sion/recall and identification accuracies obtained by LGBM
classifier, respectively. In both problems, M-LBP descrip-
tor does not reach high performances with small patches
because there are not enough pixels to e�ciently capture
the spatio-spectral band interactions. Reflectance features
(that neither take these interactions into account) even per-
form better than M-LBP in most cases. Table 5 shows that
deep features outperform handcrafted ones for crop/weed
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(a) Test image A (b) Test image B
Beet Weed Beet Goosefoot

(c) Ground truth A (d) Ground truth B
93.9% 87.9% 95.2% 63.6%

(e) SegNet-Basic (mIoU = 83.4%) (f) SegNet-Basic (mIoU = 73.1%)
94.9% 86.4% 94.6% 69.5%

(g) BlobNet (mIoU = 83.6%) (h) BlobNet (mIoU = 76.0%)
( 96.5% 81.8%) 94.5% 61.5%

(i) cNet (mIoU = 82.4%) (j) cNet (mIoU = 71.8%)
96.7% 87.4% 96.7% 75.2%

(k) MSFA-Net (mIoU = 86.5%) (l) MSFA-Net (mIoU = 80.8%)

Figure 4: Segmentation results (mean intersection over union

(mIoU) and per-class accuracy scores) obtained by SegNet-

Basic, BlobNet, cNet, and MSFA-Net-based texture features.

(a, b): RGB renderings of two multispectral test images, (c, d):

ground truths, (e, g, i, and k): beet/weed detection results, (f,

h, j, and l): beet/goosefoot identification results. Bold values

show the best results between SegNet-Basic, BlobNet, cNet,

and MSFA-Net. Magenta and blue colors in (f, h, j, and l)

are beet or goosefoot pixels misclassified either as datura or

thistle, respectively.

detection. Moreover, our MSFA-Net provides the best recall
for the three detection problems and the best precision for
bean/weed detection. It also provides a precision (99.4%)
that is comparable to that of the other deep features (99.5%)
for wheat/weed detection. Table 4 shows that for crop/weed
identification, cNet is ranked first five times, SegNet-Basic
four times, MSFA-Net twice, and BlobNet once among the
12 classes. Because test pixel classes are highly skewed, we
also evaluate the overall classification performance using
the accuracy score weighted by the per-class number of test
patches. According to this criterion (see gray columns in
Table 4), MSFA-Net outperforms the other descriptors in
the beet/weed identification problem because it has more
success in recognizing goosefoot class. It also provides
comparable weighted accuracy scores with the best ones in
the wheat/weed and bean/weed identification problems.

These experiments show that the performance of outdoor
crop/weed recognition systems based on an analysis of spec-
tral signatures [27] can be improved by deep texture features.

For illustration purposes, Fig. 4 displays the segmenta-
tion results obtained by the considered deep learning ap-
proaches on two of our images for the beet/weed detec-
tion and identification problems. It shows comparable weed
detection performances between SegNet-Basic and MSFA-
Net that outperforms cNet and BlobNet. It also shows that
for beet/weed identification, MSFA-Net has more success in
recognizing beet and goosefoot leaves.

5. Conclusion

This work presents an approach for multispectral tex-
ture feature extraction from raw patches thanks to a CNN
architecture called MSFA-Net. Its first layer learns spatio-
spectral interactions among channel values that match the
basic MSFA pattern. This approach avoids the demosaicing
step that can be greedy in computation requirements and may
alter the texture representations. It requires learning much
fewer hyperparameters than state-of-the-art CNNs. Exten-
sive experiments on image classification and crop/weed seg-
mentation show that MSFA-Net globally outperforms other
tested approaches at much reduced computation costs.

However, deploying multispectral cameras in outdoor
crop fields faces several challenges, such as illumination
variations, shadows brought by leaves, and wind that makes
plant leaves move. Future work will focus on designing an-
other MSFA-Net whose discriminant power is robust against
these perturbations.
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