
HAL Id: hal-04017921
https://hal.science/hal-04017921v1

Submitted on 7 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing two mechanistic formalisms for soil organic
matter dynamics: A test with in vitro priming effect

observations
Cathy Neill, Bertrand Guenet

To cite this version:
Cathy Neill, Bertrand Guenet. Comparing two mechanistic formalisms for soil organic matter dynam-
ics: A test with in vitro priming effect observations. Soil Biology and Biochemistry, 2010, 42, pp.1212
- 1221. �10.1016/j.soilbio.2010.04.016�. �hal-04017921�

https://hal.science/hal-04017921v1
https://hal.archives-ouvertes.fr


lable at ScienceDirect

Soil Biology & Biochemistry 42 (2010) 1212e1221
Contents lists avai
Soil Biology & Biochemistry

journal homepage: www.elsevier .com/locate/soi lbio
Comparing two mechanistic formalisms for soil organic matter
dynamics: A test with in vitro priming effect observations

Cathy Neill*, Bertrand Guenet
Université Pierre et Marie Curie, Laboratoire Biogéochimie et Ecologie des Milieux Continentaux, UMR 7618 CNRS/Paris 6, 46 rue d’Ulm, 75230 Paris Cedex 05, France
a r t i c l e i n f o

Article history:
Received 29 January 2010
Received in revised form
16 April 2010
Accepted 21 April 2010
Available online 7 May 2010

Keywords:
Model comparison
Maximum caliber
Organic matter dynamics
Litter decomposition
Mineral nitrogen
Microbial biomass
13C labelling
Priming effect
* Corresponding author at: Present address: Bioem
Grignon, Bâtiment Eger, 78850 Thiverval-Grignon, Fra
fax: þ33 1 30 81 54 97.

E-mail addresses: neill@biologie.ens.fr (C. N
(B. Guenet).

0038-0717/$ e see front matter � 2010 Elsevier Ltd.
doi:10.1016/j.soilbio.2010.04.016
a b s t r a c t

First order kinetics characterize most models of soil organic matter dynamics. Although first order
kinetics often provide a good description of litter decomposition, their general applicability has recently
been challenged by numerous observations of priming effects. A priming effect can be defined as
a change in native soil organic matter decomposition rate following the addition of some labelled
exogenous substrate. Recently two new formalisms were developed which predict a priori the existence
of priming effects, whether positive or negative. The Extended Mass Action (EMA) formalism is
a generalization of enzyme kinetics at the microbial scale. The Maximum Caliber (MAXCAL) formalism
describes the most probable dynamics of a system that arises when the multiple ways feasible macro-
scopic dynamics can be realized at the microscopic particle scale are accounted for. Here those two
formalisms were applied to a common soil compartimentation scheme and their predictions confronted
with an appropriate set of priming observations. We show that the two formalisms generate distinct,
testable predictions and that the MAXCAL formalism performed better than the EMA formalism. We
discuss the determinants of priming effects as predicted by the Maximum Caliber formalism.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Soil organic matter performs a number of key functions in agro-
ecosystems. It is a major reservoir of nutrients for plants. It also
maintains an aggregated soil structure enabling water and air
movement in soils. On a global scale, soil carbon is an important
pool as well. It is a quantitatively important pool (approx. twice the
atmospheric carbon pool (Schlesinger and Andrews, 2000)), and
has proven sensitive enough to global changes to represent either
a significant carbon sink or source (Guo and Gifford, 2002; Paul
et al., 1997; Lal et al., 1995).

Our current understanding of soil organic matter dynamics is
synthesized and quantitative predictions made possible with the
help of mathematical models. Soil organic matter models are
numerous (reviewed in Manzoni and Porporato, 2009). They
usually differ in the way they partition soil organic matter into
compartments (or “fractions”). However, many of them, including
co, Centre INRA Versailles-
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the popular Century model (Parton et al., 1987), share a common
mathematical formalism, namely first order kinetics.

First order kinetics assume that the decomposition rate of some
organic fraction is proportional to the amount of carbon in that
fraction (although some nitrogen limitation may be included based
on microbial stoichiometric requirements for N).

Despite the consensus on the robustness of these kinetics
reflected by current models, first order kinetics are questionable.
They indeed fail to account for organic matter dynamics as
observed with isotope labelling and tracing. Short to medium-term
incubations of soil samples amended with 14C or 13C labelled
substrates have consistently shown that decomposition processes
of distinct substrates interact with one another (reviewed in
Blagodatskaya and Kuzyakov, 2008; Kuzyakov et al., 2000). Adding
some labelled substrate may suppress or enhance native (unla-
belled) soil organic matter mineralization. This phenomenon,
known as the priming effect e whether positive or negative e

seemingly contradicts first order kinetics. Indeed first order kinetics
entail no interactions between the decomposition processes of
distinct substrates.

As priming effects may be quantitatively important at the yearly
scale and perhaps even more so if their cumulative effects are
considered on the long run (e.g. Fontaine et al., 2004a, 2007), the
following questions arise: How can we model them? What would
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Table 1
Experimental treatments.

Treatment Name Straw added
(gC kg�1 soil)

Mineral nitrogen
added (gN kg�1 soil)

Final input
C:N ratio

Control C0N0 0 0 n.a.
C1N0 1.5 0 44
C2N0 2.2 0 44
C3N0 3.2 0 44
C1N1 1.5 0.016 30
C2N1 2.2 0.0235 30
C3N1 3.2 0.0346 30
C1N2 1.5 0.0395 20
C2N2 2.2 0.0581 20
C3N2 3.2 0.0854 20
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be the consequences for long-term kinetics? Should we change our
current modelling consensus about first order kinetics?

Recently Neill and colleagues developed a new modelling
approach to ecosystem dynamics (Neill and Gignoux, 2008; Neill
et al., 2009). This approach is applicable to soil systems as well. It
is a combinatorial approach that consists in calculating the trajec-
tory of a system that is most probable because it can be realized in
more ways at the individual “particle” scale (whether particles of
matter or living particles). The number of ways a trajectory can be
realized at a microscopic scale has been coined the “caliber” by
Jaynes (1985). The model predicts that a system will follow its
maximum caliber trajectory.

When applied to a soil system consisting of labelled and unla-
belled organic fractions, and one explicit microbial pool, the
maximum caliber (“MAXCAL”) formalism predicts a priori the
existence of positive and negative priming effects as the result of
two antagonistic mechanisms: on the one hand, native soil organic
matter mineralization is an increasing function of microbial
biomass, which may increase if fed by the added substrate; on the
other hand, native soil organic matter mineralization is
a decreasing function of the availability of other substrates, because
substrates compete with one another to be decomposed by
microbes. If microbes have a higher affinity for the added substrate,
they will utilize it preferentially and this may induce a negative
priming effect.

An alternate formalism that can produce positive and negative
priming effects has been offered by Neill and Gignoux (2006). This
formalism can be derived from an analogy between decomposition
processes and enzymatic reactions, using the law of mass action.
Neill and Gignoux (2006) showed that it generalizes well-known
formalisms such as the MichaeliseMenten formalism, its inverse,
or the Beddington-DeAngelis formalism (Beddington, 1975;
DeAngelis et al., 1975). We will call it the “extended mass action”
formalism, “EMA” in short.

The two formalisms, MAXCAL and EMA, are in fact intriguingly
similar, but they do differ in some important aspects, and are
derived from entirely different rationales. It seemed interesting to
compare them and rate them with quantitative data on priming
effects. To do so, we used a series of incubations of cultivated soils
amended with various amounts of 13C labelled wheat straw and
mineral nitrogen (Guenet et al., submitted). This paper reports the
results of this model comparison.

2. Model description and methods

2.1. The data

To test the two formalisms, we used a series of 80 day in vitro
soil incubations that are described and discussed in detail else-
where (Guenet et al., submitted). Briefly, the soil used was a culti-
vated soil from Paris area, France (C:N ratio of 10, 10.4 g C/kg soil).
20 g soil samples were incubated at constant temperature (20 �C)
and humidity (pF 2.75) in 120 mL flasks. The experiment followed
a 4 � 3 incomplete factorial design, the first factor being the
addition of 13C labelled wheat straw (C:N ratio of 44) and the
second factor the final C:N ratio of exogenous inputs (the latter
being manipulated by additions of mineral nitrogen), yielding
a total of nine treatments plus one control. Table 1 sums up the
various amounts added. For instance treatment C1N1 corresponded
to an addition of 1.5 g C straw per kg soil and 16 mg mineral
nitrogen, which, including the nitrogen content of the straw, yiel-
ded a final input C:N ratio of 30. 13C labelled and unlabelled CO2
respirationweremeasured throughout the incubation period. In all,
15 replicates per treatment were set up, permitting the destructive
harvest of three of the replicates on incubation days 3, 7, 15, 28 and
80 for mineral nitrogen concentration measurements. Figs. 1, 2 and
3 show the dynamics of cumulated labelled and unlabelled CO2 and
mineral nitrogen concentration respectively.

2.2. The model structure

The comparison of the two formalisms required a common
model structure uponwhich both formalisms could be applied. We
chose the simplest model structure to represent the incubated soils,
namely one native, unlabelled soil organic matter pool (hereafter
denoted humus because soil was collected at depth >5 cm and
sieved to remove most fresh plant residues), one 13C labelled wheat
straw pool (denoted litter), one microbial pool and one mineral
nitrogen pool (Fig. 4). This parsimonious choice had advantages and
drawbacks. On the one hand, successful predictions stemming from
a simple model structure gives more credit to the mathematical
formalism applied upon that structure, whereas positive results
obtained with an over-parameterized model are difficult to inter-
pret. On the other hand, an overly simple model structure can
jeopardize the ability of the formalism to account for the data. We
will return to this issue below.

With this model structure, we assumed three microbial fluxes
would govern the dynamics of the whole system: microbial growth
on humus, xh, microbial growth on litter, xl, and microbial mortality
z. We assumed those three fluxes would determine all the other
fluxes through stoichiometric relationships (Fig. 4), so that the
dynamics of the system could be described by the following
equations:

dch ¼ �nhxh þ hz (1)

dcl ¼ �nlxl (2)

db ¼ xh þ xl � z (3)

dn ¼ ðnhnh � nbÞxh þ ðnb � hnhÞz� ðnb � nlnlÞxl (4)

where ch, cl, b and n stand for humus carbon, litter carbon, microbial
biomass carbon and mineral nitrogen respectively and the symbol
d denotes their variation over a small time step dt (Table 2 sums up
the model parameters and state variables). Units chosen for ch, cl
and bwere gC per kg of soil, and gN per kg of soil for n. Eq. (1) says
that for any new microbial unit grown on humus, nh humus units
have been decomposed (and thus nh�1 units have beenmineralized
to CO2). Likewise nl denotes the number of litter units needed to
make up one newmicrobial unit. When ch, cl and b are expressed in
gC per kg soil, nh and nl can be viewed as inverse of carbon assim-
ilation yields. Next, for any microbial unit that dies, a fraction h of it
is humified and thus feeds the humus stock. The rest is mineralized
to CO2, accounting in particular for maintenance respiration.
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Fig. 1. Cumulated 13C labelled CO2 respiration for all treatments. Each panel corresponds to a different exogenous input C:N ratio (44 (a), 30 (b), 20 (c)). Within a panel, different
symbols correspond to different straw supply levels (in gC per kg soil): 0 (circles), 1.5 (squares), 2.2 (diamonds), 3.2 (triangles).
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Nitrogen dynamics are a little bit more complicated. Let nh denote
the nitrogen concentration of humus and nb that of microbes.
Microbial growth on humus is accompanied with a gross immo-
bilization flux nbxh. Nitrogen is supplied by humus decomposition
itself, up to nhnhxh. This usually results in excess nitrogen compared
to microbial demand, yielding a net mineralization rate (nhnh�nb)
xh. In contrast, growth on litter should result in a net immobiliza-
tion rate (nb�nlnl)xl because gross mineralization from litter
decomposition nlnlxl does not meet microbial requirements nbxl.
Finally microbial mortality offers nbz units of nitrogen while
humification with concentration nh requires nhhz nitrogen units.
We checked that we always had nb � hnh so that there would be no
requirements of mineral nitrogen for humification (which would
have implied a functional dependency of microbial turnover on
mineral nitrogen availability, an unlikely outcome). These mass
balance equations and in particular this representation of microbial
stoichiometric constraints is not new and in fact similar to many
models (e.g. Molina, 1996; Agren and Bosatta, 1996) see (Manzoni
and Porporato, 2009).

We can also write mass balance equations governing the vari-
ations of cumulated CO2 respiration coming from the unlabelled
and 13C labelled carbon pools respectively. We will denote those
cumulated respirations w12 and w13 respectively, and we have :
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Fig. 2. Cumulated unlabelled CO2 respiration
dw12 ¼ ð1� ahÞðnh � 1Þxh þ ð1� alÞðnl � 1Þxl

þ ð1� azÞð1� hÞz (5)

dw13 ¼ ahðnh � 1Þxh þ alðnl � 1Þxl þ azð1� hÞz (6)

where ah, al and az respectively refer to the 13C labelled fraction
ððlabelledÞ=ðunlabelledþ labelledÞ fractionÞ of the fluxes xh, xl and z.
Let ach , acl and ab stand for the 13C labelled fractions of humus, litter
and microbial biomass respectively. We have acl ¼ 1 at all times
and ach ¼ 0 at time zero. Throughout the analysis, we assumed that
achz0 (i.e. the labelling of humus by litter humification was
negligible, which can be checked with simulations). We also
assumed ahzach and alzacl . This last assumption means that the
isotopic signature of microbial biomass does not affect the signa-
ture of the litter or humus mineralization fluxes. Alternatively we
could have assumed for instance that al ¼ ðnlacl þ abÞ=ðnl þ 1Þ, i.e.
the microbial signature dilutes that of litter. This can generate an
apparent priming effect where the unlabelled carbon of microbial
biomass is respired as a result of litter decomposition. However, in
such a model, as microbial biomass becomes labelled by litter
decomposition, its dilution effect fades out and the reverse
phenomenon appears: humus mineralization becomes labelled by
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for all treatments. Legend same as Fig. 1.
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Fig. 3. Mineral nitrogen concentration time courses. Legend same as Fig. 1.
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labelled biomass as well. We noticed that the two phenomena
cancelled out in model simulations, resulting in no apparent
priming. Moreover, the data shows no evidence of an apparent
priming in the first days of the incubation (Fig. 2). Therefore we
decided to neglect this phenomenon and assumed ah¼ 0 and al¼ 1.
Finally we also assumed that unlabelled biomass varied little
throughout the incubations, compared to labelled biomass. This is
supported by the data itself, as any abrupt change in unlabelled
biomass should have been reflected in the unlabelled CO2 respira-
tion which fuels it (Fig. 2). Direct biomass measurements in other
priming experiments also support this hypothesis (N. Nunan, pers.
comm. and Fontaine et al., 2004b). Near steady state for unlabelled
biomass implies that (1 e az)z z xh, i.e. azz z z�xh.

With these assumptions, eqs. (5) and (6) become:

dw12 ¼ ðnh � hÞxh (7)

dw13 ¼ ðnl � 1Þxl þ ð1� hÞðz� xhÞ (8)

Together with eq. (4), one can see that xh, xl and z are linearly
related to dw12, dw13 and dn. This remains true if the fluxes are
cumulated over any given time interval. These equations can help
us link the actual measurements made on larger time steps Dt
Fig. 4. Model structure.
(Dw12, Dw13 and Dn) with the underlying fluxes cumulated over the
same Dt. To distinguish “instantaneous” fluxes (i.e. calculated on dt)
xh, xl and z from cumulated ones, we will denote the latter with
capital letters Xh, Xl and Z.
2.3. The formalisms

The mass balance equations described above do not suffice to
complete a soil organicmattermodel. Mathematical formalisms are
needed to calculate the fluxes xh, xl and z as a function of the state
variables ch, cl, b and n. We considered two alternate formalisms
applying on small but discrete time steps. We chose discrete time
steps because we knew that the MAXCAL formalism could only
apply on discrete time steps (due to its conceptual framework),
while the EMA formalism is likely flexible. The extended mass
action formalism offered in Neill and Gignoux (2006) is based on an
analogy with enzyme kinetics at the microbial cell scale. It is
derived from the law of mass action and mass conservation
constraints, with no simplifying assumptions as in standard
enzyme kinetics. When applied to the framework developed here,
this formalism reads:

xh ¼ khðb� xh � xl � zÞ
�
ch � nhxh

nh

�
(9)

xl ¼ klðb� xh � xl � zÞ
�
cl � nlxl

nl

��
n� nnxl

nn

�
(10)

z ¼ mðb� xh � xl � zÞ (11)

where kh, kl,m are kinetic constants and nn¼ nb�nlnl. It is easy to show
that when xl ¼ 0, and ch=nh[bðresp: b[ch=nhÞ, eq. (9) reduces
to xh ¼ khðbch=nhÞ=ð1þ khch=nhÞðresp: xh ¼ khðbch=nhÞ=ð1þ khbÞÞ,
a formalism which is similar to the MichaeliseMenten formalism
(resp. its inverse). Alternatively, when xl¼ 0 and either b or ch=nh �
1=kh then eq. (9) reduces to xh ¼ khðbch=nhÞ=ð1þ khðbþ ch=nhÞÞ,
a formalism analogous to the Beddington-DeAngelis formalism
(Beddington, 1975; DeAngelis et al., 1975).

The MAXCAL formalism gives the most probable fluxes to be
observed given energy andmass constraints, and given also the fact
that any set of values for the three fluxes xl, xh and z can be the
result of many different combinations of events at the microscopic
level (indeed a particular microbial unit can be decomposing this
particular humus unit or that other one). To better understand this



Table 2
Model variables and parameters summary. ad. stands for adimensional.

Model variable
or parameter

Meaning Unit Value at day 0

ch Soil humus stock gC kg�1 soil 10.4
cl Litter stock gC kg�1 soil 1.5, 2.2 or 3.24
b Microbial biomass gC kg�1 soil n.a.
n Mineral nitrogen stock gN kg�1 soil 0.0195 in the control þ additions
w12 Cumulated unlabelled CO2 respiration gC kg�1 soil 0
w13 Cumulated labelled CO2 respiration gC kg�1 soil 0
ax

13C labelled fraction of a compartment or a flux ad. n.a.
xh Microbial growth on humus gC kg�1 soil h�1 n.a.
xl Microbial growth on litter gC kg�1 soil h�1 n.a.
z Microbial decay gC kg�1 soil h�1 n.a.
nh Number of humus units needed to make up one new microbial unit ad. 2
nl Number of litter units needed to make up one new microbial unit ad. 1/0.6
nn Number of mineral nitrogen units needed to make up one new microbial unit ad. nb e nlnl
h Microbial biomass humification coefficient ad. 0.33e0.66
nh Humus nitrogen content gN g�1 C humus 0.093
nl Litter nitrogen content gN g�1 C litter 0.023
nb Microbial biomass nitrogen content gN g�1 C biomass 1/12-1/8
kh Kinetic parameter for microbial growth on humus ad. n.a.
kl Kinetic parameter for microbial growth on litter ad. n.a.
m Kinetic parameter for microbial decay ad. n.a.
d Indicates variations over a small time step dt compatible with the

hypotheses of both formalisms
n.a. n.a.

D Indicates variations over a larger time step Dt n.a. n.a.
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rationale, we refer the reader more specifically to the Neill et al.
(2009) paper, where a simple example is fully worked out. The
equations predicted by the maximum caliber approach read (Neill
and Gignoux, 2008; Neill et al., 2009):

xh ¼ khðb� xh � xl � zÞ1=ð1þnhÞ
�
ch � nhxh

nh

�nh=ð1þnhÞ
(12)

xl ¼ klðb� xh � xl � zÞ1=ð1þnlþnnÞ
�
cl � nlxl

nl

�nl=ð1þnlþnnÞ

�
n� nnxl

nn

�nn=ð1þnlþnnÞ
ð13Þ

z ¼ mðb� xh � xl � zÞ (14)

where kh, kl, m are kinetic constants as well and again nn ¼ nb�nlnl.
These equations are implicit and have to be solved for xh, xl and z
numerically when needed.

A fundamental assumption of the MAXCAL derivation and that
must apply for EMA to be valid as well is that the time step dt be
small enough that the total amount of each entity (ch, cl, b and n)
involved in the fluxes xh, xl and z does not exceed the amount
available at the beginning of the time step. This is equivalent to
saying that newly formed items of each entity during dt will not
participate to the fluxes during dt. Mass conservation then implies
that xh þ xl þ z � b, nhxh � ch, nlxl � cl etc. This also results in
numerical stability for both formalisms.

One can showthat the solutions of eqs. (12)e(14) verify vxh=vcl <
0 and vxh=vb > 0 (see Appendix). This is the mathematical
embodiment of the two priming mechanisms alluded to in the
introduction: the first inequality expresses substrate competition
and the second one mineralization enhancement upon biomass
increase. The possibility of a negative priming in the EMA formalism
has been shown numerically before (Neill and Gignoux, 2006).

The MAXCAL equations only differ from the EMA formalism in
that the terms of the right hand side are raised to powers. In the
MAXCAL formalism the sum of the exponents of the right hand side
is always 1. As a result the corresponding kinetic constants are
adimensional. In the EMA formalism, the dimension of kinetic
constants varies with the number of reactants involved in the
process.

2.4. Methods for model comparison

Preliminary data analysis suggested that (i) microbial C:N ratio
varied between treatments (because the ratio (N immobilized in
treatment þ N mineralized in control)/(13C mineralized in treat-
ment) did, (Guenet et al., submitted for publication) and (ii) the
kinetic constant kl associated with the litter decomposition process
(eq. (10) or 13) decreased with time within any given treatment.
That is, as labile compounds of litter were mineralized, litter
recalcitrance increased. As a result of (ii), neither formalisms could
satisfactorily simulate the kinetics of litter mineralization with
a constant value for kl. In other words eqs. (10) and (13) were of
little use here. We assumed however that humus and microbial
characteristics were constant enough within each treatment for
eqs. (9), (11), (12) and (14) to hold. That is, we assumed both
formalisms were adequate to model xh as a function of xl and
microbial turnover z. Specifically, using eqs. (12) and (14), the
maximum caliber formalism predicts.

xh ¼ kh
� z
m

� 1
1þnh

�
ch � nhxh

nh

� nh
1þnh

With ch[xh, and ch not varying significantly over the incubation
period, this approximates to:

xhfz
1

1þnh

For the extended mass action formalism, we can derive a similar
relationship:

xhfz

Therefore both formalisms predict that the relationship log
(xh) w log(z) should be linear, but they do not predict the same
slope. These relationships hold for cumulated fluxes Xh and Z as
well if xh and z remain roughly constant during Dt. CO2 respiration
rates could be assumed constant between two consecutive
measurements throughout the incubation period. In contrast,



Table 3
Posterior mean (and 95% confidence intervals) for the regression parameters of the
relationship log(Xh) w log(Z), the correlation coefficient between those two vari-
ables and the microbial C/N ratios calculated for each treatment (marginalized over
the probability density functions for h and nb in treatment C1N0).

Model parameter Posterior mean � standard deviation

intercept log b0 �4.7 ((�5.1)e(�4.25))
slope b1 0.36 (0.32e0.39)
correlation coefficient r 0.93 (0.92e0.94)
1/nb in C1N0 9.8 (8.0e11.9)
1/nb in C2N0 11.4 (9.6e13.5)
1/nb in C3N0 13.2 (11.2e15.1)
1/nb in C1N1 8 (6.4e10)
1/nb in C2N1 8.2 (6.5e10.1)
1/nb in C3N1 8.4 (6.8e10.4)
1/nb in C1N2 7.1 (5.5e8.9)
1/nb in C2N2 6.5 (5e8.2)
1/nb in C3N2 6.4 (5e8.2)
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Fig. 5. log(Xh) w log(Z) relationship, all treatments pooled, for h ¼ 0.5 and nb ¼ 0.1 in
C1N0. Values correspond to fluxes expressed in g C per kg soil per day.
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substantial changes in mineral nitrogen concentrations occurred
between days 0 and 15 with too few measurements having been
done in this interval. But from day 15 onward, mineral nitrogen
concentrations varied little in all treatments (Fig. 3). In the analyses
we thus restricted the calculations of Xh and Z to days 15e67 and
assumed mineral nitrogen concentrations remained at quasi-
steady state (dn z 0) on that period for all treatments.

We calculated Xh and Z from actual measurements using only
the stoichiometric linear system defined by eqs. (4), (7) and (8). We
then sought to estimate the parameters b0, b1 of the regression log
(Xh) ¼ log(b0) þ b1 log(Z), check the linearity of this relationship
and test which formalism would best predict the slope b1.

Xh and Z could be calculated using eqs.(4), (7) and (8) provided
that all the stoichiometric parameters were known (including their
variations among treatments). nh and nl had been measured; as
noted before (Agren and Bosatta, 1996; Manzoni et al., 2008), the
kind of data andmass balance equations used here do not constrain
microbial assimilation yields and N:C ratio independently. Only
critical ratios nl=nb and nh=nb are likely important to know. As
microbial assimilation yields seem to vary less than microbial N:C
ratios, nh and nl were assigned the values 2 and 1/0.6 respectively
(recall that they are inverse of carbon assimilation effciencies)
(Table 2). Finally, nb and h were sufficiently uncertain and/or vari-
able that we had to account for this in the analysis. We thus sought
to estimate the Bayesian posterior distribution for the regression
parameters b ¼ (b0, b1) (log(b0) intercept and b1 slope) and the
correlation coefficient r of the log(Xh) w log(Z) relationship as :

pðb; r=dataÞ ¼
Z

h;nb

pðb; r=h; nb; dataÞpðh; nbÞdhdnb

The sampling algorithm of p(b, r/data) is detailed in the
Appendix. Briefly, marginalizing over h and nb required defining
their plausibility distribution p(h, nb). We assumed h would be
constant among treatments but could take any value within the
interval [1/3, 2/3], following previous experimental (Kindler et al.,
2006) and modelling results (Saffih-Hdadi and Mary, 2008;
Nicolardot et al., 2001). We assumed nb would vary among treat-
ments in a systematic way (but would remain constant with time
for any given treatment) so that knowing nb in any one of the
treatments allowed to assess nb in all the other treatments. We
describe this calculation in the Appendix. We assumed nb in the
treatment C1N0 could take any value within the [1/12, 1/8] interval,
following global patterns in microbial C:N ratios (Cleveland and
Liptzin, 2007). Hereafter nb always refers to its value in the C1N0
treatment. For any given pair of values for h and nb, we calculated all
the cumulated fluxes Xh and Z between two consecutive respiration
measurements between days 15 and 67 (those fluxes were
normalized on a per day basis). We pooled all those fluxes into
a single data set since neither formalisms predicted differences in
the parameters of the log(Xh) w log(Z) relationship among treat-
ments. We neglected the uncertainty in those fluxes resulting from
the uncertainty of the measurements, because we assumedmost of
the uncertainty in the regression parameters would come from the
variance among treatments, not that within treatments. We
sampled the posterior p(b, r/data) and calculated the means and
95% confidence intervals for the regression parameters b and the
correlation coefficient r.

3. Results

Table 3 shows the means and 95% confidence intervals of the
posterior distribution of the regression parameters b and the
correlation coefficient r. We also show the intervals spanned by
the microbial C:N ratios in the various treatments, as calculated
according to the methods for each pair of parameters h and nb in
treatment C1N0.

With the prior intervals chosen for h and nb in C1N0, microbial
C:N ratios in other treatments remained within plausible values of
5 and 15 (Cleveland and Liptzin, 2007; Sterner and Elser, 2002).
Also microbial C:N ratios varied consistently with the treatment
input C:N ratios: they were similar among treatments with similar
input C:N ratios and decreased with input C:N ratios. This agrees
both with estimates provided in Guenet et al. (submitted for
publication) and with previous statements that the microbial
community evolves in such a way as to adjust its C:N ratio with the
C:N ratio of its substrates (Danger et al., 2008) and lends support to
our calculatory hypotheses.

The correlation coefficient r of the log(Xh) w log(Z) relationship
was superior to 0.9 with probability >0.975, indicating a linear
relationship, as predicted by both formalisms (EMA and MAXCAL).
As an illustration, Fig. 5 shows this relationship for h ¼ 0.5 and
nb ¼ 0.1 in C1N0.

The slope of this relationship b1 had a mean value of 0.36 and
a 95% confidence interval of 0.32e0.39. This is at odds with the
predictions of the EMA formalism. In contrast, it agrees well with
the predictions of MAXCAL: the latter predicts a slope equal to
1=ð1þ nhÞ, where nh is the inverse of the carbon assimilation yield
for humus. With the value nh ¼ 2 that we have used throughout the
calculations, the MAXCAL formalism thus predicts a slope of 1=3,
which is very close to the observed mean and within the 95%
confidence interval.
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The formalism comparison therefore supports the MAXCAL
formalism over the EMA one.

Within theMAXCAL formalism, it can easily be shown identifying
eqs. (12) and (14) with xh ¼ b0zb1 that i) b0 ¼ ððkhÞ=ðm1=ð1þnhÞÞÞ
ðch=nhÞnh=1þnh and ii) in a systemwith humus alone, xh tends towards
the value x0h ¼ b1þnh=nh

0 ¼ ðk1þnh
h =mÞ1=nh ðch=nhÞ (see (Neill et al.,

2009)). Thus values obtained for b0 (with the log(Xh) w log(Z)
regression) can be used to predict Xh

0 (daily microbial growth on
humus in the control, whose corresponding observations have not
been used so far): with the uncertainty surrounding b0, the 95%
confidence interval for X0

h ranges from 0.48 to 1.7 with amean value
of 0.87mg CO2 per kg soil per day.Mean observed values for X0

h vary
with time and range from 0.75 to 1.4 with a mean value of 0.98 mg
CO2 per kg soil per day.
log(Z)

Fig. 6. Fluxes log(Xh þ Xl) plotted against log(Z) (see text), all treatments pooled, for
h ¼ 0.5 and nb ¼ 0.1. Values correspond to fluxes expressed in g C per kg soil per day.
The line is the 1:1 bisecting line.
4. Discussion

In this paper, we compared two formalisms, the maximum
caliber formalism and the extended mass action formalism, to
model soil organic matter dynamics and priming effects in
particular. Those formalisms were interesting to consider for
a number of reasons: both are able to predict a priori the existence
of priming effects, positive and negative. The maximum caliber
formalism is appealing for its mathematical properties, its theo-
retical derivation and implications (Neill and Gignoux, 2008; Neill
et al., 2009), whereas the extended mass action formalism has the
advantage to generalize a number of well-known formalisms. We
constructed a model using a simple soil representation and either
of the two formalisms. The 5 compartment soil representation
used here is a simplification of reality and this induced some
limitations as discussed in the methods section. However, as the
two formalisms were applied on the same model structure their
relative performance could not be attributed to structure limita-
tions. Furthermore the main shortcoming of our model structure
was the assumption of litter homogeneity and the ensuing
constancy of kl, while the ramifications of our results discussed
below do not depend on kl.

We showed with simple calculations that the relationship
between two fluxes, namely microbial growth on humus, xh, and
microbial mortality, z, differed between the two formalisms, and
we used a substantial data set to test these contrasted predictions.
Our test supported the MAXCAL formalism over the EMA one.

To what extent does this relationship matter in determining the
priming effect intensity or more generally the behaviour of a soil
system?

In and of itself the relationship between xh and z does not
suffice to determine the priming intensity in general, since, from
eqs. (12), (13) and (14), xh and z (and xl as well) are mutually
dependent. That is, z cannot be calculated from the state variables
ch, cl, n and b independently of xh. This relationship does suffice to
determine the priming effect intensity in one case of interest
however: when mineral nitrogen and microbial biomass are both
at quasi-steady state, i.e. dn z 0 and db z 0. This case is likely
informative of the asymptotic behaviour of the system if the added
labelled substrate decomposes slowly enough (such as straw). In
the experiment used here, we saw that mineral nitrogen was likely
at steady state between days 15 and 67 of the incubations (Fig. 3).
It is more difficult to ascertain whether microbial biomass was at
steady state during the same time interval without any direct
measurements. However our calculations of the three fluxes xh, xl
and z incidentally show that microbial biomass was not quite at
steady state within the 15e67 time interval, but not very far from
it either (see Fig. 6 where it is shown that xh þ xl � z and thus db
positive).
Setting dn ¼ 0 in eq. (4) yields:

ðnhnh � nbÞxh þ ðnb � hnhÞz� ðnb � nlnlÞxl ¼ 0

If we had in addition db ¼ xh þ xl�z z 0, then

ðnhnh � nlnlÞxh ¼ ðhnh � hlnlÞz
Using finally the relationship xh ¼ b0zb1 :

ðnhnh � nlnlÞxh ¼ ðhnh � nlnlÞ
�
xh
b0

�1=b1

(15)

If b1 ¼1 as predicted by the EMA formalism, xh cancels out from
eq. (15), which then has no solution except for a very particular set
of parameters. This means that in most cases, there is no simulta-
neous steady state for mineral nitrogen and microbial biomass in
a system governed by the EMA formalism.

Much more likely is that, as predicted by the MAXCAL
formalism, b1 ¼ ð1=1þ nhÞ. Then a steady state for mineral
nitrogen and microbial biomass is always feasible if hnh > nlnl (i.e. if
less nitrogen is provided in the litter than is required for humifi-
cation) and eq. (15) sets the value of xh:

xnhh ¼ b1þnh
0

ðnhnh � nlnlÞ
ðhnh � nlnlÞ

(16)

Therefore the value of b1 affects the feasibility of steady states
and this could have consequences for the medium to long-term
behaviour of the whole system.

With regards to the priming effect intensity, eq. (16) can be
interpreted in a meaningful way. Eq. (16) can be rewritten using xh

0

(introduced in the results section as xh in the control) as:

xh
x0h

¼
�
nhnh � nlnl
hnh � nlnl

�1=nh
(17)

The ratio xh=x
0
h is a way to quantify the priming effect in terms of

a proportional change rather than an incremental one. Eq. (17)
above says that, at quasi-steady state for mineral nitrogen and
microbial biomass in a soil system, the priming effect will: i) be
“positive” (i.e. xh > x0h) since nhnh�nlnl > hnh�nlnl. It is generally
observed that “negative” priming effects (xh > x0h) are only tran-
sient phenomena and that ultimately they become positive
(Blagodatskaya and Kuzyakov, 2008); ii) depend only on stoichio-
metric parameters, not kinetic ones; iii) increases with the differ-
ence nhnh�nlnl, which is the difference of nitrogen supply between
humus and litter; the more nitrogen humus is likely to provide, the
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higher the priming: this is consistent with the microbial nitrogen
mining hypothesis (Moorhead and Sinsabaugh, 2006; Craine et al.,
2007); iv) but priming also decreases with the difference hnh�nlnl,
which is the amount of nitrogen required in addition to the
nitrogen supplied by litter to humify nl units of litter carbon. Let us
call it the litter humification nitrogen demand. This might seem
contradictory with iii). Yet it is logical as well in that it reflects the
overall process rate limitations induced by nitrogen deficiency (see
below that at steady state for mineral nitrogen and microbial
biomass, litter decomposition rate is proportional to humus
decomposition rate). This is consistent with basic stoichiometric
decomposition theory. The model combines the two mechanisms
iii) and iv) to predict that priming intensity will be an increasing
function of nlnl, the litter nitrogen “offer”.

We also note that in eq. (17), the microbial C:N ratio does not
affect the priming intensity, nor does the amount of mineral
nitrogen available. The parameter nb (the microbial N:C ratio) dis-
appeared from the calculus above when we assumed microbial
biomasswas at steady state. This is logic: whenmicrobial biomass is
at steady state, it behaves as a pipe, and does not immobilize nor
remineralize nitrogen. Its C:N ratio thus becomes indifferent to the
dynamics of the system. This goes against previous views on the role
ofmicrobial stoichiometry in soil organicmatterdynamics (Fontaine
et al., 2003; Sinsabaugh et al., 2009). Fontaine et al. for instance,
argued that microbial competition should regulate priming inten-
sity through shifts in the community-level microbial C:N ratio.

Similarly, when mineral nitrogen is at steady state, it does not
affect the dynamics of the system any more, and its actual avail-
ability becomes indifferent. These two observations might explain
why, in the experiment analyzed here, mineral nitrogen additions
had little effect on the priming intensity. Indeed, adding mineral
nitrogen had two consequences: the microbial C:N ratio decreased
and mineral nitrogen availability increased. As we have just seen,
neither of these changes should be expected to alter the priming
intensity at quasi-steady state for microbes and mineral nitrogen.

It is important to realize that these results are not built in the
assumptions of the MAXCAL formalism. They arise as a conse-
quence of the dynamics of the system, when all the state variables
have had time to adjust to one another. On an “instantaneous”
basis, mineral nitrogen availability and microbial C:N ratio do affect
litter and humus mineralization rates, as is evident from the fact
that they appear in eq. (13) and that eqs. (12)e(14) are coupled.

Finally we point out that in a model where all the fluxes are
mutually dependent, knowing xh suffices to determine xl as well at
steadystate formineralnitrogenandmicrobial biomass.Onehas then:

ðhnh � nlnlÞxl ¼ nhðnh � hÞxh
which says that xl adjusts so that the nitrogen provided by humus
mineralization compensates exactly the litter humification
nitrogen demand. Again neither the availability of mineral nitrogen
nor nb appear in this equation. This might explain why studies that
have added mineral nitrogen show inconsistent effects on
decomposition, with a number of them showing little effect on
litter decomposition (Hobbie, 2005, 2008, and references therein),
including the data used here. This also suggests that the critical
litter C:N ratio abovewhich litter decomposition is nitrogen limited
is nl=hnh instead of nl=nb. This could shed a new light on results such
as those of Manzoni et al. (2008) for instance. Manzoni et al. used
simple mass balance equations to analyze an extensive data base of
litter decomposition rates. However in their equations they did not
account for microbial nitrogen remineralization and thus inter-
preted measured critical ratios as nl=nb (1=erb, in their notation,
with e carbon use efficiency and rb microbial N:C ratio). After they
assigned a value of 0.1 to nb (rb), they concluded that carbon use
efficiencies e ¼ 1/nl where lower than generally assumed (between
0.1 and 0.3 from their Fig. 3). Had they interpreted the measured
critical ratios in terms of nl=hnh and assigned a plausible value of
0.5 � 0.1 ¼ 0.05 to the denominator, they would have found carbon
use efficiencies between 0.2 and 0.6, more in line with in vitro
incubation studies measurements.

4.1. Conclusions

Two formalisms, the maximum caliber and the extended mass
action formalisms, were applied to a common soil comparti-
mentation scheme and their predictions confronted with a non
trivial set of priming observations. We acknowledged the limita-
tions of our simple model structure, particularly the difficulty to
simulate litter decomposition kinetics with a single litter pool. But
we showed that the two formalisms generated distinct, testable
predictions and that the maximum caliber formalism agreed with
the observations whereas the extended mass action formalismwas
at odds with them. We discussed the determinants of priming
effect intensity as predicted by the maximum caliber formalism.
Based on our findings, we advocate for the quantification of the
priming effect as a ratio rather than a difference. We also encourage
studies of priming effects with complex substrates, decomposing
slowly enough so that mineral nitrogen andmicrobial biomass may
reach quasi-steady states and the predictions of eq. (17) tested
more thoroughly.
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Appendix

Negative and positive priming in the maximum caliber formalism

Let us show using eqs. (12), (13) and (14) that vxh=vcl � 0
(negative priming because of substrate competition) and vxh=vb �
0 (positive priming because of biomass increase). Taking the loga-
rithm of eq. (12), we have:

logðxhÞ ¼ logðkhÞ þ
1

1þ nh
log
�bb�þ nh

1þ nh
log
�bch� (18)

where bb ¼ b� xh � xl � z ¼ z
m ¼ 1

1þmðb� xh � xlÞ from eq. (14)
and bch ¼ ðch � nhxh=nhÞ. Similarly, from eq. (13), we have:

logðxlÞ ¼ logðklÞ þ
1

1þ nl þ nn
log
�bb�þ nl

1þ nl þ nn
log
�bcl�

þ nn
1þ nl þ nn

log
�bn�

(19)

with bcl ¼ ðcl � nlxl=nlÞ and bn ¼ ðn� nnxl=nnÞ. Derivating 18 and 19
with respect to cl yields:

1
xh

vxh
vcl

¼ � 1
1þ nh

1bb 1
1þm

�
vðxh þ xlÞ

vcl

�
� nh
1þ nh

1bch vxh
vcl

1
xl

vxl
vcl

¼ � 1
1þ nl þ nn

1bb 1
1þm

�
vðxh þ xlÞ

vcl

�
þ nl
1þ nl þ nn

1bcl�
1
nl
� vxl

vcl

�
� nn
1þ nl þ nn

1bn vxl
vcl
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These equations can be rewritten as:

vxh
vcl

f� 1
1þ nh

1bb 1
1þm

�
vðxh þ xlÞ

vcl

�
(20)

vxl
vcl

f� 1
1þ nl þ nn

1bb 1
1þm

�
vðxh þ xlÞ

vcl

�
þ nl
1þ nl þ nn

1bcl 1nl
(21)

Note that from the way the model is constructed, bb, bch, bcl and bn
are always positive.

Suppose now vxh=vcl > 0. Then from eq. (20), we deduce that
vðxh þ xlÞ=vcl < 0 and from eq. (21), that vxl=vcl > 0. But then we
must have vðxh þ xlÞ=vcl > 0. The contradiction proves vxh=vcl � 0.

Similarly, let us take the derivative of 19 and 18with respect to b:

1
xh

vxh
vb

¼ 1
1þ nh

1bb 1
1þm

�
1� vðxh þ xlÞ

vb

�
� nh
1þ nh

1bch vxh
vb

1
xl

vxl
vb

¼ 1
1þ nl þ nn

1bb 1
1þm

�
1� vðxh þ xlÞ

vb

�
� nl
1þ nl þ nn

1bcl
�vxl
vb

� nn
1þ nl þ nn

1bn vxl
vb

Suppose ðvxh=vbÞ < 0. Then we must have 1� ðvðxh þ xlÞÞ=ðvbÞ
< 0 which results in ðvxl=vbÞ < 0. So vððxh þ xlÞÞ=ðvbÞ < 0 which
contradicts 1� ðvðxh þ xlÞÞ=ðvbÞ < 0, proving that ðvxh=vbÞ � 0.
Computing nb values in all treatments

Suppose we know nb in the treatment C1N0 and h for all
treatments. Using eqs. (7), (8), (3), (4), we can write the cumulated
variations between days 0 and 15 for the model state variables:

Dib ¼ Xi
h þ Xi

l � Zi

Din ¼ ðnhnh � nbÞXi
h þ ðnb � hnhÞZi � ðnb � nlnlÞXi

l

Diw12 ¼ ðnh � hÞXi
h

Diw13 ¼ ðnl � 1ÞXi
l þ ð1� hÞ

�
Zi � Xi

h

�
where capital letters refer to cumulated fluxes and the superscript i
refers to the initial phase (days 0e15).

Substituting also Xi
h þ Xi

l � Dib for Zi, we have:

Din ¼ nhðnh � hÞXi
h � ðhnh � nlnlÞXi

l � ðnb � hnhÞDib (22)

Diw12 ¼ ðnh � hÞXi
h (23)

Diw13 ¼ ðnl � hÞXi
l � ð1� hÞDib (24)

If nb is unknown, we have four unknowns and three equations,
so we need an additional equation. To this end, we made the
assumption that the following relationship Dib ¼ aXi

l held with
a constant coefficient a across all treatments. This would be true if
the gross biomass growth rate were constant from day 0 to day 15.
If so, then irrespective of the formalism chosen (maximum caliber
or extended mass action), we expect that when unlabelled biomass
is at quasi-steady state, the dynamics of the labelled biomass follow
an equation of the form dbl ¼ aXi

l � cbl. The solution of this
equation at day 15 reads Dib ¼ aXi

l
c ð1� ð1� cÞts Þ, with ts ¼ 15/dt,

showing that Dib=Xi
l is constant across treatments at day 15.
Labelled biomass probably does not grow at constant pace during
the first 15 days of the incubations, but this approximation seemed
reasonable enough. a could be estimated from treatment C1N0 and
the resulting relationship used henceforth to complete the nb
calculations in all other treatments. We checked that within the
plausible intervals for h and nb in C1N0, we would always have
nb � hnh in all treatments.

Parameter estimation with Bayesian posterior sampling

The algorithm for sampling the Bayesian posterior

pðb; r=dataÞ ¼
Z

h;nb

pðb; r=h;nb; dataÞpðh;nbÞdhdnb

followed a number of steps :

1) draw values for h and nb (in C1N0). To sample them adequately
within their respective plausible intervals, we used the logit-
transformed for h and the log-transformed for nb and sampled
those uniformly on their corresponding intervals.

2) compute nb values for each treatment using the rationale
above.

3) compute the Xh and Z values for all treatments between days 15
and 67 (7 values per treatment). Pool those values into a single
data set (with a total of n ¼ 7 � 9 ¼ 63 observations). Compute
log(Xh) and log(Z).

4) computePearson’s correlation coefficient r¼ corr(log(Xh), log(Z)).
5) sample the Bayesian posterior for the parameters of the linear

regression of log(Xh)w log(Z). Let y be the column vector of the
log(Xh) and X the (n � 2) design matrix with first colum filled
with ones and second column the vector of the log(Z). We
wanted to estimate b in the standard regression problem

yi ¼ xibþ ei

with ei w N(0, s2). The ordinary least-square expression to estimate
the coefficient vector b is:

bb ¼ ðXTXÞ�1
XTy

Using appropriate conjugate priors for b and s, the Bayesian
posterior for those parameters has the form:

pðb; s2=y;XÞfðs2Þ�ðnþn0þpÞ=2
exp

�
� 1
2s2

ðb� ~bÞ
T
ðXTX þ AÞ

ðb� ~bÞ
�
� exp

 
�
�
n0s20 þ ns2

�
2s2

!

with ~b ¼ ðXTX þ AÞ�1ðXTXbb þ AbÞ, s2 ¼ ð1=n� 2Þðy� XbbÞT
ðy� XbbÞ and n0, p, A, b and s0 prior hyperparameters. We chose
those hyperparameters to give non-informative priors. The poste-
rior could then be approximated with :

pðb; s2=y;XÞfðs2Þ�n=2
exp

�
� 1
2s2

ðb� bbÞT ðXTXÞðb� bbÞÞ
� exp

�
� ns2

2s2

�
To sample this posterior, we first drew s2 from pðs2=bb; y; XÞ,

which is an inverse gamma distribution. Then we drew b from p(b/
s2, y, X) which is a normal distribution. A normal Gibbs sampling
algorithm would require iterating those two steps a number of
times.
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