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Abstract

A new Eulerian-Lagrangian coupling on a staggered fluid mesh is proposed to simulate multiscale

atomization. This coupling relies on a sharp interface capturing method (ICM) to transport

the resolved fluid structures and a Lagrangian tracking algorithm to model the under-resolved

Eulerian droplets. The Lagrangian droplets momentum is spread to the source terms of the

incompressible fluid momentum equations through a spatial filtering operation, and the flow

velocity around the Lagrangian droplets is corrected to account for their local flow disturbance.

This allows accurate transport of Lagrangian droplets that are both smaller and larger than the

fluid mesh spacing. The implementation of the algorithm for switching from and Eulerian toward

Lagrangian framework is discussed, along with criteria validating a transformation. Then the

Eulerian-Lagrangian coupling is applied to several test cases from the literature, and is compared

to our in-house pure ICM solver on the atomization of a liquid jet. The results show that the

Eulerian-Lagrangian coupling improves the physical analysis of the atomization, and achieves

more accurate results for poorly resolved droplets.

Keywords: DNS, Two Phase Flow, Atomization, ICM, Eulerian-Lagrangian coupling

1. Introduction1

Two phase flow atomization is involved in several natural and industrial applications, such2

as geyser eruption [1], jet sprinkler applications [2], liquid fuel injection in combustion cham-3

bers [3], and many others [4]. The analysis of atomization within a combustion chamber relies4

upon an accurate description of flow injection. Indeed, the injection and fragmentation of the5

jet create the initial conditions for the development of the spray, and therefore, allow for the6

estimation of important statistics such as total surface area. Thus, the scientific community has7
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put considerable efforts to describe liquid jet breakup, referred now as the primary atomization8

area [5]. This area involves complex phenomena such as turbulence, high momentum exchanges9

and break up events. Hence, robust experimental [6, 7], and numerical techniques [8–10], are10

required for a thorough understanding and description of the primary atomization area.11

Direct numerical simulation (DNS) is an ideal tool to numerically investigate atomization.12

Interface capturing method (ICM) are often used to transport the interface between fluid and13

gas phases [11]. Several ICM have been successfully applied to analyze the primary atomization14

area, such as level set [12, 13], volume of fluid (VOF) [14, 15], or a coupling of both level set and15

VOF (CLSVOF) [16, 17]. With these methods, it is possible to accurately describe the liquid16

structure resulting from the breakup of the liquid jet, such as ligaments or large droplets. In17

particular, the CLSVOF method accurately represents the interface topology changes through18

the level set while taking advantage from the mass conservation properties of the VOF. In19

previous studies, our group applied the CLSVOF to several multiphase flows applications with20

complex interface topology change [18–20].21

Ligaments and large droplets arising from primary breakup can experience successive break-22

ups downstream to the jet [21]. Therefore, DNS must provide an accurate description of both23

the primary atomization and subsequent fragmentation, referred to as the secondary atomiza-24

tion [22]. Droplets in the secondary atomization area are several orders of magnitude smaller25

than the injected liquid jet. This leads to a significant scale range, from µm for droplets to26

mm for the liquid jet, that is too consequent to provide a complete description of a spray using27

current numerical resources. In addition to a poor physical representation of the secondary at-28

omization, the transport of under-resolved droplets can generate numerical instabilities, known29

as flotsam or jetsam. Several solutions exist to circumvent this multiscale issue: to couple the30

fluid solver with an adaptive mesh refinement method [23], to model the transport of small fluid31

structures using a Lagrangian method [24], or, to simply remove these droplets from the DNS32

simulations [25]. Within the scope of this manuscript, small fluid structures are modeled.33

This modeling approach, referred here to as the Eulerian-Lagrangian coupling [26, 27], com-34

bines the resolved transport of larger structures (ICM), and the modeling of under-resolved35

droplets (Lagrangian). A Lagrangian method is used to track these droplets, herein after called36

Lagrangian droplets. Semi-empirical correlations are used to transport Lagrangian droplets,37

relying upon instantaneous local fluid properties [28]. One of the challenges of this framework38

is to ensure a stable and conservative coupling at the transformation of an Eulerian droplet39
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toward a Lagrangian droplet, and vice-versa, without including artificial source terms to both40

frameworks. This goes with the definition of numerical and physical criteria of transformation41

and modification of the Eulerian fields.42

In the pioneer works of Herrmann [26] and Tomar et al. [27], the Eulerian-Lagrangian frame-43

work is coupled with an adaptive mesh refinement (AMR). The Lagrangian framework is used to44

transport all Eulerian droplets far from the primary atomization. A two way Lagrangian coup-45

ling is used to transport Lagrangian droplets, accounting for both the transport of Lagrangian46

droplets and the fluid-droplets interphases momentum in the source terms of the fluid equations.47

After transformation, the fluid mesh is coarsened and the Lagrangian droplets are smaller than48

the fluid mesh. To distinguish between droplets, several criteria of transformation are used such49

as the distance between Eulerian droplets and other structures, or, the sphericity of Eulerian50

droplet. The latter enables transport of Lagrangian droplets using semi-empirical correlations51

derived from spherical shape [28]. The implementation of the Eulerian-Lagrangian coupling52

of Herrmann [26] and Tomar et al. [27] reduces the computational cost of the simulation while53

conserving an accurate description of the droplets’ statistics downstream to the jet. However,54

results of Zuzio et al. [29] show that the coarsening of the fluid mesh during the transformation55

step can yield to numerical instabilities. They propose to first transport Eulerian droplet as a56

resolved solid particle, where all interactions between the fluid and the particle are resolved, en-57

suring a smooth transition toward coarser levels of the Eulerian fluid grid. This method requires58

adaptive mesh refinement which is challenging to implement.59

In Ling et al. [30] an Eulerian-Lagrangian coupling for fixed Eulerian grid is proposed simpli-60

fying the Eulerian-Lagrangian coupling strategy. The transformation on a constant grid implies61

that Lagrangian droplets are larger than the fluid mesh spacing, yielding to a large local dis-62

turbance on the resolved flow. In the work of Ling et al. [30], this disturbance is filtered using a63

regularized weighted function to spread the coupling force over several droplets’ diameter [31].64

Despite the regularization of the Lagrangian droplets’ feedback force, the local flow disturbance65

for Lagrangian droplets larger than the fluid mesh spacing are not filtered [32, 33]. This disturb-66

ance affects both the resolved flow and the Lagrangian droplets, as it yields to an inaccurate67

estimation of local fluid forces acting on Lagrangian droplets. Moreover, this flow disturbance is68

shown to be proportional to the number of cells across the diameter of the Lagrangian droplet,69

which deteriorates the accuracy of the Eulerian-Lagrangian coupling on a constant grid.70

To circumvent large local disturbances on the resolved flow when dealing with particles71
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larger than the fluid mesh spacing, Evrard et al. [34] propose an Eulerian-Lagrangian coupling72

based on the filtering of the governing equations [35, 36]. It relies upon the filtering of the73

volume fraction, the drag force experienced by the particles, and the fluid velocity, as well as74

exchanges between the Eulerian and the Lagrangian frameworks. The results presented in the75

work of Evrard et al. [34] drastically improve the accuracy of the transport of the dispersed phase76

within the Lagrangian framework, however it requires the transport of the volume fraction as77

well as modification of the Poisson solver resolution.78

Another solution to improve the Lagrangian transport of the particles larger than the fluid79

mesh spacing is to subtract the local flow disturbance by recovering the local undisturbed velocity80

through an analytical analysis of the Stokes and Oseen flow solutions [37, 38]. In Balachandar81

et al. [37] and Evrard et al. [38], the flow disturbance correction enables accurate transport82

of Lagrangian droplets larger than the fluid mesh. In addition, this method does not require83

the modification of the fluid solver. Thus, it is an ideal solution to transport the dispersed84

phase within the Lagrangian framework in the Eulerian-Lagrangian coupling. The fundamental85

originality of our study is the implementation, validation, and analysis of this coupling.86

The present method couples a resolved transport of large fluid structures with the CLSVOF87

method of Ménard et al. [16] and a modeling of the small droplets with a Lagrangian two way88

coupling on the same grid level. A spatial filtering operation through a regularization of the89

force coupling is used [30], along with the correction of local flow disturbance derived in Evrard90

et al. [38] to transport Lagrangian droplets larger than the fluid mesh spacing. Although the im-91

plementation is straightforward because both Eulerian and Lagrangian solvers are independent,92

the analysis of the transformation step shows a mass inconsistency in the Lagrangian toward Eu-93

lerian transformation. A cost-efficient solution based on a minimization algorithm is proposed,94

reducing the error of several orders of magnitude. Additionally, all criteria of transformation95

implemented within this work are discussed along with their algorithms of implementation to96

provide a guideline for future implementations. The new method, as well as the new transform-97

ation criteria, are validated among reference cases from the literature, and successfully applied98

to two phase flow atomization of a liquid jet.99

The manuscript is organized as follows. Section 2 presents the general framework, the in-100

terface capturing (ICM) and the Lagrangian particle tracking methods. In Section 3, limits of101

the ICM are investigated, as the basis of Eulerian-Lagrangian coupling. Section 4 presents the102

general Eulerian-Lagrangian coupling framework, and focuses on the criteria used to validate103
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both transformations. The Eulerian-Lagrangian coupling is thoroughly studied over a series of104

numerical examples in Section 5, validating the conservation of mass and momentum. In Sec-105

tion 6 the Eulerian-Lagrangian coupling is applied to the study of two phase flow atomization of106

a cross flow configuration, previously studied in the work of Herrmann [39]. Concluding remarks107

are outlined in Section 7.108

2. Methodology109

2.1. Eulerian framework110

2.1.1. Interface Capturing Method111

The transport of the interface is done by coupling the level set with the Volume of Fluid112

method (VOF), referred to as CLSVOF [40]. The motivation of this coupling is to benefit from113

both the second order geometrical accuracy of the level set and the mass conservative properties114

of the VOF. In this section, the methodology is briefly introduced, and the reader is referred115

to Ménard et al. [16] for a meticulous description of the CLSVOF and its implementation within116

our flow solver.117

The location of the interface is defined from the signed level set distance function φ (x),118

where φ (x) < 0 indicates the gas fluid phase, φ (x) > 0 the liquid fluid phase, and φ (x) = 0119

the interface. The volume occupied by the fluid phase (VOF), F, in a cell is obtained from120

the VOFTools library [41]. Then, the VOF and the level set, F and φ, are advected using a121

transport equation. For the level set field, it reads122

∂φ

∂t
+ u · ∇φ = 0 , (1)

whith u the fluid velocity vector. The VOF being a passive scalar, the same transport123

equation, Eq. 1 is used to advect F . Eq. 1 is solved with a second order conservative operator124

split advection scheme [40]. To conserve the numerical stability of our solver, a volume restriction125

algorithm is implemented that removes small numerical artifacts of VOF from the computational126

domain. It reads for the kth fluid cell as127
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Fk =


0 if Fk < εF or No interface in all neighbor cells

1 if Fk > 1− εF or No interface in all neighbor cells

Fk otherwise

(2)

where εF is the numerical threshold for the VOF quantity, set to εF = 1× 10−12 and εφ the128

numerical threshold for the level set distance, set to εφ = 3
4

√
3∆x, with ∆x the mesh spacing.129

Each time step, the position of the level set at the interface is corrected from the VOF updated130

field, ensuring conservation of geometric properties and mass. To preserve the sign distance131

properties of the level set function, a redistancing algorithm is applied at the end of each time132

step133

∂d

∂τ
= sign(φn) (1− |∇d|) , where d(x, τ)τ=0 = φn(x, t) (3)

where τ is a fictitious time, and d is used to ensure the distance property. After solving Eq. 3, the134

level set field is updated, setting φn+1 = d. Finally, the classical projection method is applied,135

updating the velocity and the pressure fields (Section 2.1.2).136

2.1.2. Projection method137

The fluid phase is considered an incompressible Newtonian fluid subject to the Navier-Stokes138

equations and reads as139

∇ · u = 0 , (4)

ρ
∂u

∂t
+∇ · (ρu⊗ u) = −∇P +∇ · D + f , (5)

where ρ is the density, P the pressure, D the strain rate tensor, and f , a volume force accounting

for the presence of particles, surface tension force, and external forces such as gravity g. The

strain rate tensor is defined as

D = µ
(
∇u + (∇u)T

)
, (6)
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with µ the dynamic viscosity.140

A standard projection method is used to solve the system after the interface transport. The141

first step is to solve the momentum equation excluding the pressure terms at the current time142

step n. This predictor step reads143

u∗ = un + ∆t

(
− (un · ∇) un +

1

ρn+1
(∇ · D + fn)

)
, (7)

where ∆t is the nth time step. The pressure is obtained from the intermediate velocity field u∗144

as a solution of an implicit system (Poisson equation)145

∇ ·
(

1

ρn+1

(
∇Pn+1

))
= ∇ · u∗. (8)

Finally, the velocity at the next time step is obtained as146

un+1 = u∗ +
1

ρn+1

(
−∇Pn+1

)
. (9)

The momentum flux computation is discretized with a fifth-order WENO scheme in a con-147

servative form [18]. The viscous term is discretized with the algorithm of Sussman and Puckett148

[40]. The pressure, density and viscous jumps across the interface are handled using a ghost fluid149

method, that consists of extrapolating fluid quantities on both sides of the interface, preventing150

discontinuities in the derivation of fluid variables for a sharp interface method [42]. The Poisson151

equation is solved with a Conjugate Gradient preconditioned by a Multi-grid Method coupled152

with a Red-Black Gauss-Seidel algorithm [43]153

2.1.3. Time integration154

The temporal integration is done with a second order TVD Runge-Kutta explicit time155

scheme. An adaptive time stepping is used based on the convection, viscosity, surface ten-156

sion and gravity. The adaptive time step, ∆t, is estimated from these constraints as in Kang157

et al. [42]. In the present work, the CFL condition is fixed to KCFL = 0.3 to ensure the stability158

of the approach.159
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2.2. Lagrangian framework160

To circumvent the shortcomings of the ICM, under-resolved droplets are modeled with a161

Lagrangian tracking method (Section 2.2.1), and the droplets’ momentum is transferred toward162

the source terms of the fluid momentum equation (Section 2.2.2). A flow disturbance correction is163

coupled with a spatial filtering of the feedback force to prevent over estimation of hydrodynamic164

forces experienced by Lagrangian droplets (Section 2.2.3).165

2.2.1. Lagrangian transport166

The motion of a rigid Lagrangian droplet obeys Newton’s second law167

dXp

dt
= Up , (10)

mp
dUp

dt
=
∑

Fp , (11)

where mp, Xp, Up, and Fp are the mass, coordinates, velocity, and sum of the forces acting on168

a Lagrangian droplet. The resultant of forces reads169

Fp = Fp,ext + Fp,fluid , (12)

with Fp,ext accounting for the action of external forces on Lagrangian droplets, reduced to the170

gravitational acceleration in this work, and Fp,fluid the action of the fluid which reads171

Fp,fluid =
3

4

ρfVpCD
Dp

|Uslip|Uslip , (13)

where Vp and Dp are the volume and diameter of the Lagrangian droplet, Uslip is the difference172

between the velocity of the Lagrangian droplet, Up, and the velocity of the fluid phase interpol-173

ated at the position of the droplet, uf@p. The coefficient CD is a drag coefficient obtained from174

the correlation of Schiller and Naumann [44] and varies with respect to the Lagrangian droplet’s175

Reynolds number176
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Rep =
ρfDp|Uslip|

µf
. (14)

2.2.2. Momentum coupling177

The feedback force accounting for the presence of the droplets is transferred toward the fluid178

with a smooth regularized kernel function [31]. A Gaussian kernel is used179

G(x) = (2πσ)−2/3 e
−|x|2

2σ2 , (15)

where σ is the length controlling the region of the force spreading. Ideally, the support of the180

Gaussian kernel is of infinite length, but, for computational efficiency the support is considered181

of finite length, referred to as compact support. This assumption is valid because the Lagrangian182

droplet mostly affects its local surrounding. The main drawback of a compact support with a183

Gaussian kernel is that the momentum transfer is not fully conservative, however by adequately184

choosing σ we can ensure that at least 99% of the energy is transferred over this compact support.185

The volume force fp in Eq. 5 reads186

fp =

Np∑
i=1

= Fp,iG(|x−Xp,i|). (16)

The analytical discretization of the Gaussian filter for a Cartesian uniform grid is used [38]. It187

reads for an arbitrary 2D cell ki,j188

G(Xp) =
1

VK

∫
VK

G(|x−Xp|)dx =

[
erf
(
x−Xp
σ
√

2

)]xi+1

xi

[
erf
(
y−Yp
σ
√

2

)]yj+1

yj

4(xi+1 − xi)(yj+1 − yj)
, (17)

where Vk = [xi, xi+1]× [yj , yj+1] is the discretized volume of the cell k.189

2.2.3. Velocity disturbance correction190

The velocity interpolation at the position of the Lagrangian droplet, uf@p, can be decom-191

posed between two contributions as192
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uf@p = ũf@p + u
′
f@p , (18)

where u
′
f@p is the estimation of velocity disturbance arising from the momentum coupling at193

the position of the droplet, and, ũf@p is the reconstruction of the interpolated velocity, uf@p,194

filtering the velocity disturbance.195

An analytical correction to the flow disturbance in Eq. 18 is derived for the Stokes flow196

through the regularized momentum contribution of the Lagrangian droplet, and, extended to197

finite Reynolds number accounting for the Oseen’s approximation of the Navier-Stokes equa-198

tions [37, 38]. In the respective works of Balachandar et al. [37] and Evrard et al. [38], a199

point-wise correction and an averaged velocity correction based are derived, respectively. Both200

methods have been coupled and tested within our flow solver, the averaged correction is con-201

served for numerical stability reasons. This correction reads as202

ũf@p = A(uf@p)λ −
fpψSt(λ/δ)ψOs(ReG)

2πµfδ
, (19)

where δ is the compact support of integration for a Wendland kernel, linked to the Gaussian203

kernel by204

δ =
σ√
2/9π

, (20)

used as controlling length in Eq. 17. λ is the size of the averaging regularized support and is205

chosen as206

λ = max(δ, 2∆x) , (21)

and the averaged velocity over the length λ, A(uf@p)λ obtained through the convolution of the207

velocity through the regularized kernel function defined in Eq. 15,208
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A(uf@p)λ =
1

VΩ

∫
Ω
G(|x−Xp|)u(x)dx, (22)

with Ω the domain of convolution of the regularized kernel function and VΩ its equivalent volume.209

The corrections ψSt and ψOs are the Stokes and Oseen corrections given in Appendix A.210

2.2.4. Time integration211

The Lagrangian quantities are temporally integrated with a second order Runge-Kutta tem-212

poral schemes. The coupling between Lagrangian and Eulerian frameworks is split, which gives213

more flexibility for both implementations. The coupling follows the steps listed in algorithm 1214

for a first order time scheme, where Capital letters indicate Lagrangian quantities.215

Algorithm 1: Lagrangian solver coupling with flow solver

foreach Lagrangian droplet do
Interpolate uf@p from un

Apply flow disturbance corrections (Section 2.2.3)
Compute fluid forces Fn

p

Transport Lagrangian droplets (Un+1
p , Xn+1

p , Section 2.2.1)
Regularize Fn

p and add to source terms fn (Section 2.2.2)

end
Add fn to predictor step (Eq. 7).

3. Analysis of the numerical limits of the ICM216

In this section, we study the limits of the ICM methods in the simulation of under-resolved217

droplets on a classical test case, a sedimented droplet falling in a box [29, 30, 34]. The config-218

uration is also used to validate the implementation of the Lagrangian framework (Section 2.2).219

3.1. Numerical configuration220

We analyze the temporal evolution of a sedimented spherical droplet falling in a box under

gravity. The computational domain is a rectangular box of size Lx× Ly × Lz with Lx = Lz =

Ly/2 and Lx = 1×10−3 m. Wall boundary conditions are used everywhere but the top face along

y which is set to a outflow boundary condition. The physical properties are taken from Ling

et al. [30], Dp/Lx = 0.1, with Dp the diameter of the Lagrangian droplet, ρ∗ = ρl/ρg = 100,

with ρl and ρg the density of the liquid and the gas, respectively, and µ∗ = µl/µg = 10, the

viscous ratio, only relevant to the Eulerian droplet. Surface tension forces are not considered in

11



the Eulerian droplet [29]. The gravitational acceleration is set to g = 9.81 m/s2. The terminal

velocity of the droplet is obtained by balancing gravity and drag forces (Eq. 13). To account for

the confined environment, the terminal velocity of the droplet is multiplied by a semi-empirical

parameter modeling the confined environment [45], giving

Vτpkη = 4.112× 10−2 m/s , (23)

with kη set to kη = 0.824 for this configuration.This set of parameters gives a particles’ Reynolds221

number of Rep = 0.4112.222

The Eulerian droplet can be compared to the Lagrangian droplet only if it remains spherical.223

Subsequent snapshots of the interface of the Eulerian droplet falling in the box are presented in224

figure 1. The results show that these physical parameters almost maintain the spherical shape225

of the Eulerian droplet, allowing the comparison of both methods.226

Figure 1: Successive representations of the interface of the sedimented Eulerian droplet falling within a box.
Interface is shown at distances φ(x) = [−∆x; 0; ∆x], in green, red, green, respectively. Results are obtained at
DD/∆x = 6.4 at t/τp = [0, 1.8, 3.6, 4.5], from top to bottom.

Since we are interested in the performance of ICM method in the coarse regime, we vary the227

numerical resolution of ICM simulation in the range DD/∆x = 3.2, 4.8, 6.4, 8 and 16, with DD228

the diameter of the droplet. Simulations with finer resolution are used to compute a reference229

solution for the ICM method. Simulations below the numerical resolution DD/∆x = 3.2 are230

unstable. On the other hand, the two way method employed in the present Eulerian-Lagrangian231

coupling is also tested. Thus, the two way approach simulations vary over the range Dp/∆x =232

0.4, 0.8, 1.6, 3.2 and 4.8. This corresponds to the numerical resolution where the resolved ICM233
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cannot accurately transport the droplets. The size of the regularized kernel support affects the234

drag force experienced by the Lagrangian droplet. Therefore, we vary the length of the Gaussian235

regularized kernel support, δ, over several Lagrangian droplets’ radii (Rp) δ = 3Rp, 5Rp, 7Rp and236

10Rp, where the upper bounds are given by the size of the box. The two way coupling results237

without flow disturbance corrections are obtained with the method presented in Ling et al. [30]238

to transport the small droplets in the Eulerian-Lagrangian coupling. The averaging kernel length239

varies accordingly to δ (Eq. 21).240

3.2. Results241

3.2.1. Lagrangian solver242

The temporal evolution of the Lagrangian droplets’ velocity scaled by the terminal velocity,243

Eq. 23, is presented in figure 2. The simulation time is scaled by the particles’ characteristic244

time τp =
ρpD2

p

18µf
.This figure is organized as follows, the columns present the results with the self-245

disturbance correction (left), and without (right). In the latter, a trilinear interpolation is used246

to obtain uf@p. The four rows show the evolution of length of the Gaussian regularized kernel247

support δ (increases from top to bottom). The color map indicates the numerical resolution,248

and, the solid black line shows the results for the equivalent one way coupling. The one way249

results are used as a numerical reference solution because flow disturbance is null, u
′
f@p = 0.250

For both two way approaches, the number of fluid cells across the diameter of the particle251

affects the temporal evolution of the particle and its terminal velocity. We observe an overestim-252

ation of the terminal velocity proportional to the number of fluid cells across the diameter, the253

worst results are obtained at Dp/∆x = 4.8. These observations agree with the literature [37, 38].254

The results with the self-disturbance correction reduces the influence of the flow disturbance255

in the two way coupling. For example, at δ = 3Rp and Dp/∆x = 4.8, the correction prevents the256

solver from diverging (the results without correction are numerically unstable). Yet, at δ = 3Rp257

and Dp/∆x = 4.8 the terminal velocity is overestimated by a factor 1.5. To increase accuracy258

at high Dp/∆x the size of the spatial filter, δ, can be increased. For example at δ = 10Rp, the259

reference results are recovered. Nonetheless, the larger is the support of the regularized function,260

the more expensive is the two way coupling, i.e. integration of the flow variable and spreading261

of the particles’ momentum on a larger compact support. Therefore, the choice of δ results from262

a trade-off between physical accuracy and computational cost.263
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Figure 2: Temporal velocity evolution of the sedimented free-falling particle scaled by the terminal velocity Vτp
using the two way Lagrangian coupling. Left column: two way coupling including self-disturbance corrections
on the averaged velocity interpolation Eq. 19. Right column: without corrections using a trilinear interpolation.
Results are obtained for four support size, δ = [3Rp; 5Rp; 7Rp; 10Rp] (from top to bottom) and numerical res-
olutions Dp/∆x = [0.4; 0.8; 1.6; 3.2; 4.8] (color map and symbols). Black solid line shows the one way coupling
evolution.
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3.2.2. Eulerian solver264

The ICM results are shown in the figure 3a. The ICM results converge at a terminal velocity265

higher than the reference one. This is because the reference terminal velocity is given for a solid266

spherical particle and the ICM resolves two-phase flow.267

A new reference velocity is computed for these results using a Richardson extrapolation268

from the results obtained at DD/∆x = 6.4, 8 and 16. This value is VR = 4.55 × 10−2 m/s. At269

low resolution, the reference terminal velocity of the droplet is underestimated by the coarse270

numerical resolution. For example, at DD/∆x = 3.2, we observe an underestimation of 26.3%271

of the terminal velocity. For numerical resolutions higher than 4.8DD/∆x the error drops below272

10%, and the ICM method recovers the reference results under spatial refinement.273
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disturbance correction varying the support size δ. Refer-
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Figure 3

3.2.3. Numerical limits274

The snapshots of the velocity fields are extracted at the same time step for the three studied275

configuration, at Dp/∆x = 4.8, and are reported in figure 4. The main differences are the276

location of the droplet at the same time step and the local velocity field in the surrounding of277

the droplets. The fluid velocity reaches a higher magnitude with the ICM method, meanwhile278

it is significantly lower with the two way coupling without corrections. These differences do279

not alter the main velocity pattern: the recirculation in-between the droplet and the walls is280

observed for all cases. The location of the droplets agrees with the temporal evolution of the281

velocity of the droplets, see figure 2 and left figure 3b; this shows the importance of the velocity282

disturbance correction in the two way coupling.283
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Figure 4: Velocity field around the free-falling sedimented droplet at Dp/∆x = 4.8 at time t/τp = 1.8. Left:
CLSVOF, Center: two way Lagrangian method with correction, Right: two way Lagrangian method without
correction (filter length δ = 7Rp).

The terminal velocity obtained with the ICM and the two way Lagrangian coupling, including284

the self-disturbance corrections, are compared for the entire spectra of numerical resolutions.285

The terminal velocity is scaled by the reference velocity Vτp , and the results are shown in286

figure 3b. The reference velocity of the ICM method obtained from the Richardson extrapolation287

of our results is also reported. Above 4.8 fluid cells across the diameter, the ICM accurately288

transports the droplets and the results are close to the Richardson’s reference velocity. For289

Dp/∆x = 4.8, only the two way results obtained with the length δ = 10Rp improves the results290

of ICM method. At Dp/∆x = 3.2, the necessary filter width to improve the ICM method is of291

δ = 7Rp. In addition, the results below δ = 7Rp do not improve the transport of the droplets292

in the range Dp/∆x ≥ 3.2. Therefore, the filter length δ is always set to δ = 7Rp if not stated293

otherwise in the manuscript.294

4. Eulerian-Lagrangian coupling295

4.1. From the Eulerian droplet toward the Lagrangian particle296

This section discusses the steps, from the selection of criteria of transformation toward the297

reconstruction of the Eulerian fields after transformation, required to switch from Eulerian298

framework toward the Lagrangian one, and vice-versa. The first step consists in the detection299

of all Eulerian and Lagrangian droplets in the computational domain.300

While the knowledge of the Lagrangian droplets’ coordinates is natural in the Lagrangian301

framework, this is not straightforward for the ICM. A labeling algorithm is used to identify all302
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the fluid structures by associating a group of neighboring fluid cells [26, 27], that can represent303

the liquid core of an atomized jet, a ligament, a droplet, etc.304

From this algorithm can be derived Lagrangian statistics, such as the volume of the droplet,305

used to define a numerical resolution criterion, the distance to other structures, or to qualify the306

droplet as spherical under a morphological analysis. These steps are summarized in algorithm 2.307

Algorithm 2: Eulerian-Lagrangian coupling: Eulerian droplet transformation.

Get labeling field (Section 4.1.1)
foreach Labelled structure j do

Compute structure volume Vj and equivalent diameter Deq,j (Section 4.1.1)
if Droplet under resolved then

Compute distance to other fluid structures LD (Section 4.1.3)
if Droplet isolated then

Compute morphological parameters αj and ιj (Section 4.1.4)
if Droplet is spherical then

Add j to the droplets’ transformation list
end

end

end

end
foreach Droplet in transformation list do

Update VOF and level set fields (Section 4.1.5)
Update Velocity field (Section 4.1.6)
Remove Eulerian droplet and add it to Lagrangian droplet list

end

4.1.1. Detection of fluid structures308

General algorithm309

The implementation of the labeling algorithm combines both the VOF and level set fields,310

and is applied for the kth cell as311

Xk =


ik if Fk ≥ εF and φk ≥ −εφ

0 otherwise

(24)

where X is the label field, i is the value associated to the kth fluid cell, and εF and εφ are312

thresholds based on the desired accuracy. Here εF is set to 10× 10−10 and εφ to
√

3
4∆x2 (being313

the distance from the edge of a cube to its center). The level set is used to filter small VOF314

artifacts. From the labelled field a linked list connects all labelled fluid cells with a value strictly315

superior to 0 to its neighbors. Following the required MPI communications, all the labelled316
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belonging to the fluid cells in a fluid structure are switched to the smallest value to provide a317

unique label to each droplet.318

Figure 5 shows the three steps of the algorithm, 1) identification of the fluid structures based319

on the VOF and level set fields, 2) labeling of all the fluid cells X , 3) fix the label of all fluid320

cells in the same fluid structure to the minimum value after MPI communications. The last321

step illustrates the configuration where a small droplet, X = 3, is grouped with a neighboring322

structure because of the poor numerical resolution.323

(a) Droplets shown in gray, level set iso-
contour at φ = 0.
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(b) labeling of all fluid cells.
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(c) Unique label per droplet.

Figure 5: Labeling algorithm.

Eulerian droplets tracking324

The label field X is used to track Eulerian droplets coordinates, and to detect coalescence325

and break up events. The volume-based centroid of the droplets is obtained as326

Xj =

Ncells∑
k=1

Fkxkδk,j , (25)

with Xj the center of the jth fluid structure, Fk, xk and Xk being the volume fraction, the327

center and the label of the kth fluid cell, respectively. δk,j is the Kronecker-Delta set to δk,j = 1328

if k = j and 0 if k 6= j.329

To track the spatial evolution of these structures, the Euclidean distance between the center330

of the jth fluid structure at time step n and the ith structures at the previous time step is331

computed. To reduce uncertainties a first order temporal integration scheme is used to advect332

the center of all the ith fluid structures at the previous time step (n − 1), and the comparison333

reads334

|Xn
j −Xn−1

i + ∆tVn−1
i | < η∆x , (26)
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with η a constant adapting to the calling frequency. This constant is set to η = 1/2 when the335

algorithm is employed at every time step.336

In addition to the center-to-center distance computation, the volume variation is computed337

between two paired structures to ensure an accurate tracking. For the jth structure, the volume338

is obtained with339

Vj =

Ncells∑
k=1

Fk∆x
3δk,j (27)

An unpaired structure often results from a breakup or a coalescence event. To enhance the340

statistics, two algorithms are implemented to detect these events, and are given in Appendix B341

and Appendix C.342

4.1.2. Numerical resolution criterion343

A numerical resolution criterion, based on the fluid mesh spacing and the numerical size of344

the droplet, is defined. The volume-based-equivalent diameter of the studied droplet is used345

to compute the numerical size of the droplet. It is obtained from the volume of the jth fluid346

structure (see Eq. 27)347

Deq = 2

(
3

4π
Vj

)1/3

, (28)

used to discriminate under resolved droplets,348

Deq/∆x ≤ εV ,

with εV a numerical-resolution-based accuracy threshold.349

Based on the analysis of the limits of the present ICM method in the simulation of under-350

resolved droplets, see Section 3, the value of εV is set to εV = 4 if not stated otherwise in the351

manuscript.352
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4.1.3. Distance criterion LD353

The distance criterion, LD, ensures that the Eulerian droplet is isolated before an eventual354

transformation. This prevents topology changes for the surrounding droplets resulting from the355

modification of the Eulerian fields, discussed in the Sections 4.1.5 and 4.1.6. From numerical356

experiment, the minimum distance LD must satisfy357

LD ≥ Deq , (29)

to consider the Eulerian droplet isolated. This value prevents topology changes at the trans-358

formation from Eulerian droplet toward Lagrangian droplet.359

The inequality in Eq. 29 consists of looping over the fluid cells near the droplet to detect

any other fluid structure. The distance criterion is validated for the jth structure if all the fluid

cells in a box given by

|xx,k−(Xx,j +Deq,j/2) | ≤ Deq,j , |xy,k−(Xy,j +Deq,j/2) | ≤ Deq,j , |xz,k−(Xz,j +Deq,j/2) | ≤ Deq,j ,

have a label equal to zero or to the structure label. In the previous equation, Xj is the center360

of mass of the jth structure and xk the center of the Eulerian grid.361

4.1.4. Morphological criterion362

Parameters definition363

The morphological analysis of a fluid structure in 2D has been widely analyzed, see the364

detailed literature review of existing parameters of Ghaemi et al. [46]. On the other hand,365

few parameters exist to characterize fluid structures in 3D, such as the eccentricity parameter366

defined in Herrmann [26] who scales the maximal distance to the interface from the center of the367

droplet by the volume-based-equivalent radius of the droplet, or the sphericity parameter defined368

in Zuzio et al. [29], Arienti et al. [47] who scales the minimum distance to the interface from369

the center of the droplet by the volume-based-equivalent radius of the droplet. In a previous370

work [48], our research group analyzed 3D morphological parameters, and showed that the aspect371

ratio [49], and the irregularity [50], are relevant morphological parameters to study the shape of372

a 3D droplet. The aspect ratio, α, reads373
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Figure 6: Construction of the aspect ratio α and irregularity ι from the lengths a, b and quantities of surface SD,
Seq = 4πR2

eq, for a peanut like droplet.

α =
b

a
, (30)

with a and b the maximum and minimum distances from the center of mass of the droplet to374

its interface. The irregularity ι reads375

ι =
SS
SD

, (31)

with SS the surface of the volume-based-equivalent sphere of radius Req, see Eq. 28, and SD the376

surface of the droplet. The computation of the quantities a, b, SD for a droplet and Req for the377

equivalent sphere is schemed in figure 6. These two parameters are bounded over [0; 1] with 1378

for a perfect sphere and 0 for an infinite cylinder.379

Parameter thresholds380

The goal of this numerical test case is to provide a value for the parameter thresholds based381

on the irregularity and the aspect ratio. The Eulerian droplets candidate to transformation are382

under-resolved, see Section 4.1.2; Chéron et al. [48] show that it results in an overestimation of383

the deformation of the droplets. Thus, the numerical accuracy of the aspect ratio and irregularity384

is studied for realistic droplets in a spray by extending the spatial convergence analysis of Chéron385

et al. [48] to spheroidal shapes. The results of this numerical test case is used to provide a386

value for the parameters thresholds based on the irregularity and the aspect ratio, ει and εα,387

respectively.388

In this numerical test, the spheroid is created using an analytical equation, and is centered389

in a cubic domain of size 4Deq. The morphological parameters are directly computed without390
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solving the fluid equations. For coarse resolution, the location of the centroid of the spheroid391

affects the estimation of the morphological parameters, creating a mesh dependency. Thus,392

several simulations are performed varying the location of the centroid of the spheroid, and393

averaged, maximum and minimum values are reported.394

The initial shape of the spheroids is based on the aspect ratio and varies in the range α = 0.5395

to 1 with an increment of 0.05. The numerical resolution of the spheroids varies in the range396

Deq/∆x = 2 to 36, with a volume397

VD =
4

3
πab2 with a ≥ b. (32)

The averaged, maximum and minimum values are reported in figure 7a for the aspect ratio,398

α, and in figure 7b for the irregularity, ι (for clarity not all the results are shown). The two399

parameters converge toward their expected values for well resolved interfaces, regardless of the400

initial deformation of the spheroid. At coarse resolution, the mean of both parameters always401

underestimate the expected value, thus over-estimating the deformation of the droplets. For the402

aspect ratio, the more flattened is the spheroid the higher is the overestimation. For instance,403

at α = 0.5, 10 fluid cells across the diameter are required to reach an error of 1%, meanwhile404

accurate results are obtained with 4 fluid cells across the equivalent diameter when α ≥ 0.85.405

The same variation is observed for the extreme values. In opposition to the aspect ratio, the406

spatial convergence of the mean, minimum, and maximum irregularity parameter does not show407

a dependence to the shape. For example at Deq/∆x = 4, a mean error below 10% is reached for408

all spheroids.409

The average values of aspect ratio and irregularity show an over-estimation of the deforma-410

tions of the droplets in the coarse regime. To circumvent the over-estimation of the shape de-411

formation, the criteria of transformations based on the morphological parameters α and ι must412

allow ‘non-spherical’ droplets to be transformed. To do so, their values are set to εα = 0.65 for413

the aspect ratio based threshold, and ει = 0.85 for the irregularity based threshold.414

4.1.5. Eulerian transformation: reconstruction of the level set and VOF415

At the transformation from Eulerian droplet toward Lagrangian droplet, the level set and416

VOF fields represent an Eulerian droplet that no longer exist in the Eulerian framework. In417

the literature, the methodologies to reconstruct the VOF and level set fields vary. In our flow418
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solver, the VOF field is updated setting419

Fk =


0 if Xk = Xj

Fk otherwise,

(33)

and the level set, setting420

φ(x)rec = min
(
φ(x),

√
|xD − x|2 − 6Deq

)
, (34)

over the entire computational domain to conserve the continuous description of the level set.421

In Eq. 34 the negative signed distance ensures that the fluid phase is removed (in our solver422
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Figure 7: Spatial convergence of the aspect ratio α, figure 7a, and the irregularity ι, figure 7b, for a spheroid
varying a : b. Black dashed line is the reference value of the morphological parameter. The error bar indicates
the maximum and minimum values obtained varying the location of the spheroid center.
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φ > 0 is for the liquid phase). The coefficient 6 has been fixed after some numerical test in our423

numerical solver. It prevents the reconstruction of a liquid droplet during the redistance step424

(Eq. 3).425

4.1.6. Eulerian transformation: reconstruction of the velocity field426

The transformation of the Eulerian droplet toward the Lagrangian droplet breaks the conser-427

vation of the momentum. Hereby reconstruction of the velocity field, Ling et al. [30] circumvent428

this inconsistency in the momentum equation. Their solution consists of defining a box centered429

on the particle and to modify the velocity field inside this box using a first order linear interpola-430

tion from the fluid cells’ velocity at the faces of the box. This updated velocity field is divergence431

free only if the velocity at the faces of the box is divergence free and the divergence components432

are constant within the area of reconstruction. Figure 8 illustrates the reconstruction of the433

velocity field after the transformation of an Eulerian droplet.434

;

Figure 8: Reconstruction of the velocity field after the transformation of an Eulerian droplet (in blue) toward a
Lagrangian droplet (in red). Red box indicates the area of reconstruction.

Although this transformation does not guarantee a solenoid vector field at the transformation435

step, it provides satisfactory results and is shown to enhance momentum conservation.436

4.2. From the Lagrangian particle toward the Eulerian droplet437

The Lagrangian droplets are allowed to transform toward Eulerian droplet to capture the438

interface topology changes arising from the coalescence of droplets in spray. The implementation439

is discussed within Section 4.2, with a special care on the reconstruction of the Eulerian fields440

at the transformation, and the main steps are summarized in algorithm 3.441

4.2.1. Distance criterion LP442

The distance from the center of the particle toward the closest interface is obtained through443

a linear interpolation at the position of the particle toward the level set field φ(Xp). From444
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Algorithm 3: Eulerian-Lagrangian coupling: Lagrangian droplet transformation.

foreach Lagrangian droplet j do
Compute distance to Eulerian droplets (Section 4.2.1)
if Lagrangian droplet near Eulerian droplet then

Add j to the Lagrangian droplets’ transformation list
end

end
foreach Lagrangian droplet in transformation list do

Update VOF and level set fields (Section 4.2.2)
Update Velocity field (Section 4.2.3)
Remove Lagrangian droplet and add it to Eulerian droplet list

end

our analysis, the distance criterion LP and LD cannot be equal in order to avoid successive445

transformations from the Eulerian toward the Lagrangian frameworks. Therefore, the distance446

criterion LP and LD are set to447

LD = 2LP ,

to favor the transformation from Eulerian droplet toward Lagrangian particle.448

4.2.2. Lagrangian transformation: reconstruction of the level set and the VOF449

Reconstruction of the Eulerian fields450

The reconstruction of the ICM fields at the Lagrangian toward Eulerian transformation has451

not been of particular interest in the literature. The update of the ICM method follows the452

general algorithm of the CLSVOF [16] (Section 2.1.1). The level set is reconstructed using a453

sphere equation, based on the radius of the Lagrangian droplet Rp. Next, the VOF is integrated454

over the new level set field, and the redistancing algorithm is used to recover the level set455

distance properties. This procedure is shown for a Lagrangian droplet (in red) moving toward456

an Eulerian droplet (in blue) in figure 9. Step 1 computes LP from a linear interpolation of457

φ(Xp). Following the transformation, Step 2 updates the Eulerian fields to account for the new458

Eulerian droplet. Step 3 is to iterate the redistancing algorithm until the level set distance459

properties are recovered.460

Mass conservation improvement461

The transformation from Lagrangian droplet toward Eulerian droplet yields to an over-462

estimation of the volume occupied by the droplet at the reconstruction of the interface step.463
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A line, or plane equation in 3D, is used to reconstruct the VOF based on the level set of a464

sphere. Although a minimization algorithm over a 9-point stencil, in 2D, is used to minimize465

the distance between the level set and the reconstructed line equation, a line equation cannot466

represent a parabolic surface. Therefore, the error on F for the kth cell is proportional to the467

numerical resolution, as illustrated in left figure 10 for a cell k.468

To reduce the overestimation, we seek for the radius of reconstruction that minimizes the469

error |VD−Vp|, with VD and Vp the volumes of the reconstructed Eulerian droplet and Lagrangian470

droplet, respectively, considering two methodologies. The first one substitutes Rp by a radius471

R∗p, obtained from a parametrization472

R∗p = Rp −
1

4
∆x3 ,

schemed in the left figure 10. The second relies upon an iterative Newton minimization algorithm473

to substitute Rp by an optimal value R∗p that minimizes the error |VD − Vp|. It consists in the474

reconstruction of the Eulerian fields, level set and VOF, over a fictitious domain, centered on the475

Lagrangian droplet centroid, of length 2Deq, to estimate the reconstructed volume VD, satisfying476

an accuracy threshold.477

Both implementations are tested along with the reconstruction of the ICM fields based on the478

true radius of the Lagrangian droplet. The numerical experiment consists of the transformation479

of a Lagrangian droplet varying both its numerical resolution, here in the range Dp = 2∆x to480

Dp = 12∆x, and the centroid location (the center varies over the mesh spacing, as in the spatial481

convergence analysis of Section 4.1.4). The accuracy criterion of the Newton algorithm is set to482

1

(a) Step 1: A Lagrangian particle in the
vicinity of an Eulerian droplet.

2

(b) Step 2: modification of the Eulerian
fields after Lagrangian transformation.

3

(c) Step 3: redistancing algorithm is
used to recover the level set distance
properties.

Figure 9: Transformation of a Lagrangian particle toward Eulerian droplet. Particle surface: red dashed line,
level set levels: φ < 0 solid green, φ = 0 solid blue, φ > 0 solid black, VOF planes: orange dashed line.
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Figure 10: Error on the volume conservation. Left: volume fraction reconstruction from the level set (Sec-
tion 2.1.1). Right: Spatial convergence error |VD − Vp|.

10−5, the maximum number of iterations to 10.483

The results of the spatial convergence of the volume variation |VD−Vp| is shown in figure 10.484

The results of the ICM and the R∗p substitution converge with a second order of spatial accuracy.485

In addition, the results using R∗p always improves the volume conservation, for example at coarse486

numerical resolution, Dp/∆x = 2, the error is reduced of one order of magnitude with respect487

to the ICM. The results obtained with the Newton minimization algorithm always significantly488

improve the mass conservation regardless of the numerical resolution for a reasonable number489

of iterations.490

In the manuscript, the Newton minimization algorithm is used for the simulations of valida-491

tion. For the analysis of the jet, the retraction of the radius methodology is used to reduce the492

overall computational cost in massively parallel simulations.493

4.2.3. Lagrangian transformation: reconstruction of the velocity field494

At Lagrangian transformation, the velocity field is reconstructed as in Ling et al. [30]. It495

consists in setting the velocity of the particle within the fluid cells inside the reconstructed496

Eulerian droplet. They also account for the flow disturbance induced by the two-way coupling497

and propose a correction to filter this disturbance. This correction is natural to our framework498

because the flow disturbance correction derived in Evrard et al. [38] is used.499

4.3. Eulerian-Lagrangian coupling with the two phase flow solver500

The coupling between the flow solver and the Eulerian-Lagrangian framework is presented as501

a flow chart in figure 11. The classical time loop for our flow solver, that includes the transport502
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of interfaces, transport of Lagrangian droplets, resolution of the Navier-Stokes equations with503

the projection method, the Eulerian-Lagrangian coupling is applied.504

The methodology follows the organization of Section 4.1 for the Eulerian droplets and Sec-505

tion 4.2 for the Lagrangian droplets. The values used for the criteria of transformation, presented506

in Sections 4.1 and 4.2 are summarized in table 1. The droplets qualifying for transformation507

are stored in a general list, used to reconstruct the Eulerian fields. Then, the list storing the508

droplets’ information is updated and shared with neighboring processors. This step concludes509

the current time step.510

Criterion Symbol Value Definition
From Eulerian droplet toward Lagrangian droplet

Numerical resolution εV 4. Section 4.1.2
Distance from other Eulerian droplets LD 2Deq ≥ LD Section 4.1.3
Aspect ratio εα 0.65 Section 4.1.4
Irregularity ει 0.85 Section 4.1.4

From Lagrangian droplet toward Eulerian droplet
Distance from other droplet LP LP ≤ LD/2 Section 4.2.1

Table 1: Summary of the criteria of transformation for Eulerian toward Lagrangian droplets transformation, and
vice-versa.

5. Validation511

5.1. Particle to Droplet and Droplet to Particle transformations512

5.1.1. Numerical configuration513

In this numerical experiment successive transformations from Lagrangian droplets to Eu-514

lerian ones are studied to validate the reconstruction of the interface for a large number of515

transformations in both directions. The coupling with the flow solver is deactivated and only516

the level set and the VOF fields are modified at the transformation.517

100,000 mono dispersed Lagrangian droplets are randomly initialized within a unit cubic box,518

allowing the particle to overlap but to touch the borders of the domain. The total number of519

cells is 3843, with Dp/∆x = 3.84.The thresholds used for the transformation are listed in table 1.520

In order to emphasize transformation, both distance distance criteria are set to LP = 2∆x and521

LD = 2∆x.522

5.1.2. Results523

The fields at initialization, after transformation toward Eulerian droplets, and after the524

reverse transformation from Eulerian toward Lagrangian droplets, are shown in figure 12. From525
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Lagrangian solver

CLSVOF solver

Flow solver

Start

New time step u, P, φ,Up,Xp

Transport interface φ

Solve flux transport u∗Interpolate u∗
f@p

Transport particle Un+1
p ,Xn+1

p

Estimate feedback force fp

Predictor step u∗∗

Solve Poisson Eq. Pn+1

Get un+1 from Pn+1

Start transformation loopLagrangian particles transformation

Get LP

Eulerian droplets transformation

Label fluid structures and get Deq

Get LD

Get α and ι

Reconstruct fields

Update φ and VOF

Update u

Update particles list

IF Transformation (see Algorithm 3)

IF Transformation (see Algorithm 2)

Figure 11: Flow chart of the Eulerian-Lagrangian coupling within the flow solver.

the 100,000 initialized Lagrangian droplets, only 26,640 isolated structures are identified after526

Eulerian transformation and structure detection through the labeling algorithm because of the527

initial overlaps. An example of overlapping liquid structure is given in figure 13.528

The shape analysis of the 26,640 Eulerian droplets is plotted in figure 14. From the scattering529
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Figure 12: Left: Initialization of Lagrangian droplets (in red), center: Lagrangian droplets are transformed to
droplets (in blue), right: selected droplets are transformed back toward Lagrangian droplets.

Figure 13: Overlapping liquid structures identified after transformation from Lagrangian toward Eulerian droplet.

of points, the droplets are classified in three populations, i) droplets qualifying for transform-530

ation, ii) droplets within the range 0.2 < α ≤ 0.65, iii) droplets with α ≤ 0.2 and ι ≤ 0.8. In531

population i) the droplets are close to the initial sphere, as seen with their volume in the range532

1 ≤ VD/VP < 1.2. At VD/VP = 1, the minor deviations from the ideal value of ι and α for a533

sphere are to be expected due to the numerical resolution (Section 4.1.4). In population ii) most534

of the droplets have a volume in the range 1.2 ≤ VD/VP < 10 (see extracted structure from the535

numerical simulation in figure 13), the morphological criteria do not qualify these droplets for536

transformation. Population iii) is composed of large overlapping structures, or groups of struc-537

tures. The combination of the two morphological criteria allows us to accurately discriminate538

against these structures.539

The transformation from Eulerian toward Lagrangian droplets identifies 31.6% of Lagrangian540

droplets and 68.4% of isolated Eulerian droplets (right figure 12). The average radius of these541

Lagrangian droplets is 5.11×10−3, this represents an increase of 2.2% with respect to the initial542

Lagrangian droplet.543
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Figure 14: Irregularity parameter, ι, against aspect ratio, α, for all the transformed droplets. The color map
represents the volume of the droplet scaled by the maximum volume identified. Dashed black line represents the
value set for the two morphological criteria. Blue solid and dashed lines are the analytical relation between α and
ι for a prolate and an oblate spheroid, respectively [51].

5.2. Transformation of a free-falling confined droplet544

5.2.1. Numerical configuration545

The second validation case considers the transformation of a free-falling Eulerian droplet546

toward a Lagrangian droplet. The numerical configuration is similar to Section 3. The Eu-547

lerian droplet is transformed toward Lagrangian droplet at three transformation times, ttrans =548

1.25t/τp, 3.125t/τp and 5t/τp, which corresponds to two distinct stages of acceleration evolu-549

tion and a stationary droplet, respectively. The motivation is to study the influence of the550

transformation over the free-falling droplet evolution and its terminal velocity.551

The numerical resolution of the Eulerian droplet is DD/∆x = 4.8. The transformation is552

done toward both the one way and two way coupling, using the best parameters resulting from553

Section 3, i.e. an interpolation/spreading kernel as large as the computational domain permits554

coupled with the correction of the self-disturbance in the two way coupling.555

5.2.2. Results556

The temporal evolution of the transformed free-falling droplet is reported in figure 15, for the557

three characteristic times of transformation and both methods. A zoom on the transformation558

time is added for each graph showing the temporal evolution of the position, velocity, and559

acceleration of the particle for a few time steps after transformation.560

For all transformation times, the one way method accelerates the Lagrangian droplet, res-561

ulting in increasing the speed of the droplets after transformation. The transformation toward562

the two way coupling ensures the continuity of the velocity profile at the transformation time;563

31



a continuous evolution for both the acceleration and the velocity of the Lagrangian droplet is564

observed.565

For all test cases the transformation from Eulerian toward Lagrangian reduces the compu-566

tational time of the simulation. The CFL restriction defined on the curvature being the most567

restrictive, removing the interface allows larger time steps.568

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

t/τp [-]

|u
(t
)|/
V
τ
p
[−

]

a(t)

u(t)

X(t)

(a) ttrans = 1.25t/τp

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

t/τp [-]

|u
(t
)|/
V
τ
p
[−

]

a(t)

u(t)

X(t)

(b) ttrans = 3.125t/τp

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

t/τp [-]

|u
(t
)|/
V
τ
p
[−

]

a(t)

u(t)

5

x(t)

(c) ttrans = 5.t/τp

Figure 15: Temporal evolution of the velocity of a transformed free-falling droplet. Three transformation time
are shown ttrans = 1.25, 3 and 5t/τp. A zoom on the transformation time is proposed, showing the temporal
evolution of the acceleration, the velocity, and the position of the particle for a few time steps. Solid black line:
ICM, solid green line: two way, solid red line: one way. The dash lines are the pure ICM and two way references.

5.3. Decaying Homogeneous Isotropic Turbulence569

5.3.1. Numerical configuration570

This validation case considers the transformation of Eulerian droplets subject to complex571

flows. The goal is to compare the results of the Eulerian-Lagrangian coupling method to the572

coarse ICM in a complex flow. The turbulent flow field is generated as in Duret et al. [52]573

and Canu et al. [19] using a linear forcing [53]. The mean kinetic energy kc is set to kc = 3.6574
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m2/s2, the fluctuating velocity u
′
to u

′
=
√

2
3kc, and the eddy turnover time Te to Te = u

′
/Λ with575

Λ being the Taylor length scale set to half the domain length. The physical size of the domain,576

and the physical properties of both phases are reported in table 2. This set of physical parameters577

gives an inertial Taylor length scale based Reynolds number of ReΛ = Λ

√
2kc
3 /νf = 37.77, a578

liquid Weber number of WeD =
ρfDD(u

′
)2

σ = 1.60, which ensures that the droplets remain579

spherical, and a Stokes number of St = τp/Te = ρfD
2
D/18µg × u′/Lc = 2.58.580

These non-dimensional numbers are reported in table 3 along with the relevant characteristic581

times: the eddy turnover time Te, the particle relaxation time τp and, the collision time τc =582 [
4NDD

2
D

√
π(u′)2

]−1

, where ND is the total number of droplets. To limit coalescence the liquid583

volume fraction is set to 0.1%, giving ND = 64. The total number of fluid cells is 1283, it results584

in 4 fluid cells across the diameter of the Eulerian droplets.585

ρf [ kg
m3 ] ρg [ kg

m3 ] µf [ kgm.s ] µg [ kgm.s ] σ [kg
s2

] L [m] ∆x [−] DD [m] DD/∆x [−]

1945.0 65.0 5.650× 10−4 1.879× 10−5 1.35× 10−2 1.5× 10−4 1.172× 10−6 4.69× 10−6 4

Table 2: Physical parameters employed in the Decaying Homogeneous Isotropic Turbulence configuration.

ReΛ [−] Λ [m] φ [%] ND [−] WeD [−] Te [s] τp [s] τc [s] St [−] kc [m
2

s2
]

37.77 7.064× 10−6 0.10 64 1.60 4.885× 10−5 1.25× 10−4 1.5× 10−8 2.58 3.6

Table 3: Relevant non dimensional parameters of the Decaying Homogeneous Isotropic turbulence configuration.

A specific methodology is employed to initialize the two phase flow turbulence in order to586

prevent strong shear at the Eulerian droplets’ interface [54]. A single phase flow is initialized587

forcing the gas phase during 5Te. Then 64 equally spaced fixed resolved particles are added in588

the domain using the immersed boundary method of Uhlmann [55] that resolves all fluid-surface589

interactions. The forcing scheme is held during 2Te to adapt the flow to the particles. Then, the590

forcing is stopped and the resolved particles are transformed toward moving Eulerian droplets.591

At 8Te the Eulerian droplets are transformed toward Lagrangian droplets, and statistics over592

three realizations performed per method are studied, until the turbulent kinetic energy drops to593

50% of the energy at 8Te.594

5.3.2. Results595

The trajectory of Eulerian/Lagrangian droplets starting at the transformation time is shown

in figure 16. The position at the transformation, Xp,trans is used as a reference to normalize the
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Figure 16: The droplets temporal position evolution after transformation for the ICM (blue), Eulerian-Lagrangian
coupling one way (red) and two way (green). The solid lines with markers: 3D trajectory, solid lines without
markers: 2D projection.

spatial evolution

X∗ = (Xp(t)−Xp,trans) /L . (35)

The trajectory of the droplets at the time after the transformation is similar for all methods.596

However, the trajectory of the ICM droplets deviates from the trajectory of the droplets trans-597

ported within the Lagrangian framework several time steps after the transformation. Differences598

in trajectory are also observed between both Lagrangian frameworks.599

The temporal evolution of the averaged dispersion, defined

< |XD(t)−XD(ttrans)| >=
1

ND

√√√√[ND∑
i=1

|XD,i(t)−XD,i(ttrans)|
]2

, (36)

and the root-mean-square velocity, VRMS ,

VRMS(t) =
1

ND

√√√√[ND∑
i=1

|uD,i(t)|
]2

, (37)

are reported in figure 17. The Eulerian-Lagrangian coupling increases the dispersion of the600

Lagrangian droplets with respect to the ICM. The comparison of both Lagrangian approaches601

show that the Lagrangian droplets transported within the one way framework have a lower602

dispersion than the two way framework; this is a result of the modeling approach. The VRMS603

analysis shows that the ICM method reaches a higher peak, meanwhile the results obtained with604

the Eulerian-Lagrangian coupling overlap. Thus, in complex flow configuration, the comparison605
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of the Eulerian-Lagrangian coupling with the under-resolved ICM shows a modification of the606

droplets’ statistics that can be impeded to the poor resolution of the ICM droplets.607
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Figure 17: Mean position evolution (left) and VRMS (right) against characteristic time. ICM (blue), Eulerian-
Lagrangian coupling one way (red) and two way (green).

6. Eulerian-Lagrangian coupling applied to cross flow atomization608

6.1. Numerical configuration609

The Eulerian-Lagrangian coupling is applied to the analysis of a jet in cross flow, relevant610

to several industrial applications [56]. The configuration consists of the injection of a turbulent611

liquid jet bent under the action of a perpendicularly injected uniform flow. This configuration612

produces a large number of droplets, as reported both experimentally in Aalburg et al. [57],613

Brown and McDonell [58] and numerically in the work of Herrmann [59], Xiao et al. [60] as well614

as within our research group [20].615

The fluid physical properties are set to ρf = 12.25 kg/m3, µf = 1.11×10−4 kg/(m.s), and the616

gas carrier phase to ρg = 1.225 kg/m3, µg = 1.82× 10−5 kg/(m.s). The surface tension is set to617

σ = 7×10−2 N/m2. The size of the computational domain is [−10×Dinj : 30×Dinj ,−5×Dinj :618

5×Dinj , 0 : 20×Dinj ] m, where Dinj is the diameter of injection set to Dinj = 1.3×10−3 m. The619

injection point is located at [0, 0, 0]. The turbulent pipe flow profile is obtained using filter based620

turbulent data generation [61], with a mean velocity of Uinj = 97.84 m/s. The carrier velocity621

is uniform and set to Uc = 120.4 m/s. This set of physical parameters gives the characteristic622

numbers reported in table 4.623

We use a total of 16.7×106 fluid cells, resulting in 14.5 cells across the diameter of injection.624

This results in a coarse description of the jet, but sufficient to our numerical analysis. The625

boundary conditions are: inflow and outflow in the streamwise direction (x-component), wall in626
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ρ∗ M Wej Rej Wec Rec
10 6.6 2178 14, 079 330 10, 652

Table 4: Cross flow atomization’s characteristic dimensionless numbers, density ratio ρ∗ = ρf/ρg, momentum
ratio M = ρfU

2
inj/ρgU

2
c , the injection Weber number Wej = ρfDinjU

2
inj/σ, the injection Reynolds number

Rej = ρfDinjUinj/µf , the carrier Weber number Wec = ρgDinjU
2
c /σ and the carrier Reynolds number Rec =

ρgDinjUc/µg.

the direction of the liquid injection (y-component) except at the liquid jet injection (bottom)627

and free slip in the spanwise direction (z-component). The simulation is performed during628

4 × t∗ where t∗ is a characteristic time based on the droplets’ residence time in the domain,629

t∗ = tUc/(30Dinj) = 3.24× 10−4 s.630

Three configurations are compared, the ICM approach, the Eulerian-Lagrangian coupling631

with the one way and the two way methods. The criteria of transformation from droplets632

toward particles and vice-versa are listed in table 1. The morphological parameters are not633

checked when the droplet has less than 2 fluid cells across the diameter; these droplets are634

directly transported within the Lagrangian framework.635

6.2. Analysis of the transformation criteria636

To study the transformation criteria relying on the sphericity of the droplets, the irregularity637

and the aspect ratio of all the droplets in the ICM simulation are computed. The results are638

shown in figure 18a where the color map indicates the droplet diameter to fluid mesh size ratio639

(here for clarity only 10% of the droplets are shown). The population of droplets within the range640

Deq/∆x ≤ 2, (in red), spreads from α = 0 to α = 0.85. A large part of these droplets validate641

the morphological criteria of transformation. The droplets in the range 2 < Deq/∆x ≤ 4, (in642

blue), spread along the spheroid relations derived in Chéron et al. [51], and are in the range643

α = [0, 0.85], and ι = [0.4, 1.]. Several droplets are identified within the transformation area,644

these droplets are expected to be transported using the Lagangian method within the Eulerian-645

Lagrangian coupling. The largest droplets, (in black) are identified in the range 0.2 ≤ α ≤ 0.4;646

0.3 ≤ ι ≤ 0.5; they are large ligaments observed near the breakup area and are transported with647

the resolved interface method.648

The transformation criteria implies that the droplets remain spherical within the simulation

time. The droplet Weber number can be used to indicate the probability to break of a droplet,

defined as

We =
ρgDeq|uD −Uc|2

σ
,
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where uD is the velocity of the droplet and, Uc is the cross flow velocity. The Weber is plotted649

only for the droplets satisfying the morphological criteria of transformation against their distance650

to the injection point in figure 18b (here for clarity only 50% of the droplets are shown). The651

results indicate that the further from the injection point, the lower is the Weber number of the652

droplets. Moreover, most of the droplets have a Weber number below We < 12; thus these653

droplets are not likely to break [62], and are good candidates for transformation.654
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Figure 18: Morphological and physical analysis of the droplets produced in the reference ICM simulation.

6.3. Analysis of the Eulerian-Lagrangian coupling655

6.3.1. Qualitative analysis656

A snapshot of the developed atomized jet is presented in figure 19 for the ICM configuration657

and the Eulerian-Lagrangian coupling (one way). In this figure we observe the bending of the658

turbulent liquid jet under the action of the aerodynamic force induced by the cross flow [63], and659

the flattening of the jet in the direction normal to both the cross flow and the liquid injection.660

Two phase flow instabilities are observed on the liquid column. They propagate over the surface661

of the jet until the breakup of the liquid column, generating several large ligaments in the662

primary atomization area [64]. These large ligaments can further break into smaller droplets663

under aerodynamic shear effects. This results in a poly-dispersion of the droplets’ size. In the664

bottom figure, corresponding to the Eulerian-Lagrangian coupling results, it can be seen that the665

majority of the small droplets are transported within the Lagrangian framework (white color),666

and the large structures are accurately resolved with the ICM (red color).667
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Figure 19: ICM (top) and Eulerian-Lagrangian coupling one way (bottom) snapshots of the side view of the cross
flow atomization simulation. Dark color represents the iso-zero level of the ICM method, light color represents
the surface of the spherical Lagrangian particles.
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From figure 19 we identify three ‘states’, the liquid core that is the continuous liquid column668

until breakage Score, the dispersed phase characterized by the droplets SD, and the carrier669

phase Sg. These three states are identified using the labeling algorithm, Section 4.1.1. They are670

classified as follow671

Sg = 1− Fk
Score = Fk if Xk = Xcore
SD = Fk if Xk 6= Xcore

where Xcore is the label of all the fluid cells connected to the jet injection.672

In the Eulerian-Lagrangian coupling, the dispersed phase can be divided further among two673

categories, the droplets transported within the ICM framework and the Lagrangian droplets.674

The volume occupied by the liquid core, the ICM droplets and Lagrangian droplets is temporally675

averaged, and, the results are reported in table 5 for the ICM, and the two Eulerian-Lagrangian676

couplings. The liquid volume occupied per categories are similar for all configurations.677

Method Liquid Core [%] ICM droplets [%] Lagrangian particles [%]

ICM 36.76 63.23 -
Eul-Lag one way 32.05 35.58 32.37
Eul-Lag two way 35.54 34.68 29.78

Table 5: Liquid volume occupied by the liquid core, droplets transported within the ICM framework and droplets
transported with the Lagrangian framework for the three studied configurations applied to the cross flow atom-
ization.

6.3.2. Quantitative analysis678

From the qualitative analysis of the primary atomization area, a quantitative analysis can

be drawn using an entropy-based probability function [65], using the definition of ‘states’ to

which the fluid cell belongs: Score, SG, SD. The number of states seen by each fluid mesh are

temporally averaged over all the time steps to determine the probability of occurrence of each

state, referred to as pS . The regions upstream to the jet are more likely to see exclusively the

carrier phase, therefore having a null entropy. The same comments hold for the area of the liquid

jet injection. On the other hand, regions where the breakup occurs are more likely to identify

the three states, and, the maximum entropy is reached when

pScore ≈ pSD ≈ pSg ,
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which is used to normalize the entropy field,

Entropy =
−∑S pS ln pS

ln 3
.

To identify the primary atomization area the three state entropy threshold defined in Blaisot679

and Yon [65] is used, Entropy = ln 2
ln 3 ≈ 0.631, that captures the regions where each of the three680

states are located. The projection of the 3D Entropy field is done over the wall-normal and681

spanwise direction, see figure 20. The co-ordinates of the droplets transformed into particles682

for the two way Eulerian-Lagrangian coupling are also added (only 25% of the total number of683

events is shown for the readability of the figure). Only two way transformation co-ordinates are684

reported, since the one way and two way Eulerian-Lagrangian couplings’ results do not vary.685

The spanwise projection of the Entropy shows the conic shape of the liquid core (Entropy =686

0). The three states entropy contour indicates the presence of the three states near the injector,687

which corroborates the creation of droplets near the injector. This area expands from the liquid688

core limits to downstream to the jet. Also, the further from the injection point, the further the689

high entropy area is from the bottom wall. This agrees with the observations on the snapshot690

of the atomization in figure 19. Similarly to the spanwise projection, the wall-normal projection691

indicates a null entropy area where only the carrier phase is identified (Entropy = 0, bottom692

and top left corners). This area reduces along with the expansion of the jet, and thus the high693

entropy area. The co-ordinates of the Eulerian droplets’ transformation indicate that there are694

few transformations near the liquid jet, and that the majority of the transformation occurs near695

or within the high entropy area.696

Figure 20: Entropy projection over the spanwise (left) and wall-normal (right) directions. Solid green: contour
of the three state entropy threshold Entropy ≈ 0.631. Markers indicate the co-ordinates of transformation of the
Eulerian droplets (two way Eulerian-Lagrangian coupling).
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6.3.3. Dispersed phase analysis697

The results reported in figure 19 show a larger number of Lagrangian particles near the698

end of the computational domain than the Eulerian droplets. To quantify these qualitative699

differences the droplets’ size distributions functions at x/Dinj = 5, 10 and 20, using a log-space700

base, are reported in figure 21 along with the results of the ICM configuration. At x/Dinj = 5701

and 10 several Eulerian droplets have been transformed into Lagrangian droplets, this coincides702

with the results shown in figure 20. These Lagrangian droplets are exclusively in the range703

Deq/∆x = [1; 4] and represent the majority of the droplets in this range. The comparison with704

the ICM results show similarities in the histograms. At x/Dinj = 20 the probability to find705

small Eulerian droplets in the ICM configuration decreases, meanwhile it remains constant in706

the Eulerian-Lagrangian coupling. The ICM fails to transport these small droplets downstream707

to the jet as they break into smaller structures that results in numerical artifacts, removed with708

the VOF restriction (Section 2.1.1). In the Eulerian-Lagrangian coupling these droplets are709

transported, it results in a larger number of small droplets in this simulation, which explains710

the higher probability to find large droplets in the ICM framework.711
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Figure 21: Frequency distribution of the volume-based-equivalent diameter scaled by the mesh spacing at several
distances of injection x/Dinj = [5, 10, 20]. ICM: filled bars, Eulerian-Lagrangian coupling one way - ICM droplets:
white bars, Lagrangian droplets: hatch bars.

The analysis of the temporal evolution of a free-falling confined particle shows that the712

method and the numerical resolution influence the velocity evolution, Section 3. Thus, we report713

in figure 22 the frequency distribution of the velocity of the Eulerian/Lagrangian droplets for714

the three studied configurations in the range 0. ≤ Deq∆x ≤ 4..These figures show the velocity715

components in the cross flow direction (up) and the spanwise direction (wp), respectively. Both716

plots are scaled by the cross flow velocity. For all methods, the up component is centered on717

up/Uc = 1 showing that the droplets evolve at the speed of the cross flow; these droplets behave718

as tracers and agrees with the previous observations of Herrmann [39]. The dispersion in the719

41



spanwise direction, wp/Uc, is centered on 0 for all methods, as observed in the work of Herrmann720

[39]. However, their results show a larger dispersion of small droplets that is not found in our721

work due to the low numerical resolution used. The use of the Eulerian-Lagrangain two way722

coupling slightly reduces the concentration of the droplets at wp/Uc = 0.723
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Figure 22: Velocity distribution in the streamwise (left) and the spanwise (right) directions scaled by cross flow
injection velocity for the droplets in the range of transformation 0. ≤ Deq∆x ≤ 4.. ICM: circle markers, Eulerian-
Lagrangian one way: square markers, Eulerian-Lagrangian two way: cross markers.

6.4. Computational cost724

The computational time spent in the flow solver per configuration is analyzed for the fully725

developed jet. Here the total CPU time is split in five main groups: the Lagrangian solver,726

the transformations, the transport of the interface [18] (ICM), the iterative resolution of the727

Poisson equation, and, the other functions related to the Eulerian framework such as the pro-728

jection method or the time spent in the output writing (Others). The total time spent for 0.2t∗729

characteristic time per method and groups are reported in table 6. The methods considered730

are the ICM and the Eulerian-Lagrangian couplings. For all configurations the most significant731

computational efforts are in the transport of the interface/flux, the Other functions related to732

the Eulerian framework, and the Poisson solver. The implementation of the transformation733

algorithm from Eulerian toward Lagrangian and vice-versa is negligible compared to the total734

CPU time.735

The comparison between ICM and Eulerian-Lagrangian couplings do not exhibit a compu-736

tational gain or increase for the transport of interface, or resolution of the solver. However, the737

comparison of the Eulerian-Lagrangian couplings show that the time spent in the Lagrangian738

function for the two way coupling significantly increases the CPU time, meanwhile the one way739

coupling CPU computational cost is negligible. Most of this time is spent in sequential: in the740
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Method ICM [s] Trans. [s] Lag. [s] Poisson solver [s] Others [s] Total [s]

ICM 740.21 - - 546.19 799.62 2102.38
- MPI 512.76 - - 223.62 517.41 1253.79

Eul-Lag one way 727.25 0.09 0.24 515.79 787.07 2031.70
- MPI 474.98.27 0.04 0.05 198.61 485.33 1381.74

Eul-Lag two way 793.45 0.12 336.29 533.43 856.26 2520.12
- MPI 531.14 0.07 0.07 204.40 540.04 1488.39

Table 6: Computational time spent per block of functions in percent and total time spent for 0.2t∗ characteristic
time in second.

averaged interpolation and spreading operations between the Eulerian fluid mesh and the Lag-741

rangian particles. Therefore, the spatial filtering operations implemented within our work must742

be improved to reduce the computational cost of the Eulerian-Lagrangian two way coupling.743

7. Conclusion744

In this paper, a new Eulerian-Lagrangian coupling based on the resolved transport of the745

interface through a sharp interface capturing method (ICM) and Lagrangian transport for mod-746

eling under-resolved droplets for multiscale atomization is presented. The motivation of the747

coupling is to improve the poor transport of under-resolved droplets in the ICM framework. In748

this work, a threshold of 4 fluid cells across the volume-based-equivalent diameter is given for749

our ICM method.750

With the present Eulerian-Lagrangian coupling, the transformation from Eulerian droplet751

toward Lagrangian droplet is done on the same fluid mesh, and thus the Lagrangian droplet752

is larger than the local fluid mesh. In two way Lagrangian coupling, the spread of the source753

terms induces a local flow disturbance, accelerating the Lagrangian particle. This results in a754

poor representation of the forces experienced by Lagrangian droplets, resulting in an inaccurate755

estimation of the drag force, or worst, a divergence of the solver. The present method circumvents756

this inaccurate transport of Lagrangian droplets by spatially filtering the particles’ momentum757

across several fluid cells and correcting the local flow disturbance of the particle. The results of758

the test case studying the free-falling sedimented droplet demonstrate the improvement of the759

transport of an individual particle regardless of its diameter to fluid mesh spacing ratio.760

The criteria of transformation from Eulerian droplet toward Lagrangian droplet, and vice-761

versa, are meticulously detailed in the present paper, as well as a methodology to track individual762

Eulerian droplet or ligament. The goal of these criteria is to ensure that the spherical assumption763

used in the modeling of the transport of droplets is valid. The analysis of each one of the criteria764
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is necessary because it is computed for under-resolved droplets. In the morphological analysis,765

this results in an overestimation of the droplet deformation. This must be acknowledged in the766

choice of the threshold values. Similarly, the methodology to reconstruct the Eulerian fields is767

also detailed, as well as the algorithms used to implement the transformation in both frameworks.768

The coupled methodology is validated among several test cases from the literature. The769

Eulerian-Lagrangian coupling is then successfully applied to the atomization of a liquid jet in a770

cross flow configuration. The results using Eulerian-Lagrangian coupling and ICM method have771

a similar accuracy, but the smallest droplets are conserved in the Eulerian-Lagrangian coup-772

ling. However, the proposed Eulerian-Lagrangian coupling freezes the volume of the particles,773

a secondary break-up modeling must be considered in an extension of this work. Although the774

Eulerian-Lagrangian coupling conserves and improves the transport of the smallest droplets, to775

our point of view, this method does not prevent flotsam or jetsam to occur.776

Finally, the computational cost of the liquid jet simulation is slightly reduced with the777

Eulerian-Lagrangian one way coupling. With the two way Lagrangian coupling, the simulation778

becomes computationally more expensive. The convolution of the fluid variables at the location779

of the Lagrangian droplet, as well as the spreading toward the source terms of the momentum780

equation, are responsible for this increase. The computational cost of the simulation using the781

two way Lagrangian coupling can be decreased by reducing the length of the compact support782

of the Gaussian kernel.783
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Appendix A. Disturbed velocity corrections in the two way Lagrangian coupling790

In Section 2.2 the Stokes correction reads

ψSt(x) =
1

2145

{ 2145− 1001x2 + 910x4 − 735x5 + 250x6 − 33x7 if x ∈ [0 : 1]

2145/x− 1001/x3 + 910/x5 − 735/x6 + 250/x7 − 33/x8 if x > 1
(A.1)

and varies with respect to the averaging and spreading kernel lengths with x = λ/σ. The Oseen

correction is

ψOs(Reσ) =
9π

4Re3
σ

(
9π

(
1− erf(Re3

σ/3
√
π) exp

Re2
σ

9π

)
− 6Reσ +Re2

σ

)
, (A.2)

and varies with Reσ, a Reynolds number based on the length of the regularized kernel function791

(the characteristic length is the size of the compact support of the Gaussian kernel).792

Appendix B. Coalescence detection algorithm793

The detection of coalescence events is based on a balance of volume between two successive794

time steps in a fixed control volume. The droplets in this control volume are identified by Xk 6= 0795

for the kth cell in the box, at the current time step and the previous one. Then, the volume796

of the droplets within this control volume is compared to the current droplet, and, an eventual797

coalescence is detected if the volume coincides.798

The simulation of droplets’ coalescence is done to illustrate this algorithm. Both droplets799

have the same diameter, are located at a normal surface-to-surface distance of one radius, and800

their velocity is initialized to force a coalescence. The field X is given in figure Appendix B.1a,801

before and after coalescence. Before coalescence, the two fields have a unique non-zero label,802

1 and 2 for the lower and upper droplets, respectively. At coalescence, only one droplet is803

identified and former labels are stored for droplets’ statistics, as shown in figure Appendix B.1b804

that shows the temporal evolution of the labels in the domain.805

Appendix C. Breakup detection algorithm806

The breakup algorithm is based on the field X and aims to identify the droplet breaking807

into new droplets. Similarly to the coalescence detection, a control volume is used to identify808

all droplets in the new droplet vicinity where the volume balance is computed between two809
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3

(a) Snapshots of two coalescing droplets represented by their labels.
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X

(b) Droplets’ label evolution after co-
alescence.

Figure Appendix B.1: Droplet coalescence.

(a) Snapshots of Plateau-Rayleigh simulation where a small droplet is de-
tached from the main liquid core on the left, color bar represents the label
of the droplets.
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X

(b) Droplets’ label evolution, in blue main
core, in black created droplet, and in
dashed detached droplet mother.

Figure Appendix C.1: Droplet breakup.

successive time steps. From the knowledge of volume variation the droplets that broke can be810

tracked to the newly formed droplet.811

The breakup algorithm is illustrated through the simulation of the Plateau-Rayleigh atom-812

ization, using the numerical configuration of Denner et al. [66]. The simulation consists of the813

atomization of a pulsed liquid cylinder, which generates a single droplet at its tip. The breakup814

of the tip of the liquid cylinder into a droplet is shown in figure Appendix C.1a for two suc-815

cessive snapshots. Several droplets are identified with a varying label X . The second snapshot816

shows the creation of a small droplet near the tip of the liquid cylinder with X = 6. Here, a817

breakup event is identified through the breakup algorithm, as seen in the temporal evolution of818

the droplets’ label in figure Appendix C.1b (here only the label of the liquid core and the new819

droplet are shown). At breakup, iteration 5, the new droplet is identified and the label of the820

breaking droplet is stored.821
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