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EXOTIC LOCAL LIMIT THEOREMS AT THE PHASE TRANSITION IN FREE PRODUCTS

We construct random walks on free products of the form Z 3 * Z d , with d = 5 or 6 which are divergent and not spectrally positive recurrent. We then derive a local limit theorem for these random walks, proving that

. This also shows that the classication of local limit theorems on free products of the form Z d 1 * Z d 2 or more generally on relatively hyperbolic groups with respect to virtually abelian subgroups is incomplete.

Introduction

Let Γ be a nitely generated group and let µ be a probability measure on Γ.

In the sequel, we will always assume that µ is nitely supported and symmetric. Denote by µ * n the nth convolution power of µ, dened by µ * n (x) = y1,...,yn-1∈Γ µ(y 1 )µ(y -1 1 y 2 )...µ(y -1 n-1 x).

Let us consider the random walk (X n ) n driven by µ, dened by X n = g 1 ...g n where g k are independent random variables whose distribution are given by µ. Then, µ * n is the nth step distribution of the random walk, so for all x ∈ Γ, µ * n (x) is the probability that X n = x.

We will also always assume that the random walk is admissible, i.e. for every x ∈ Γ, there exists n such that µ * n (x) is positive. In other words, every element of the group can be visited with positive probability, i.e. the support of µ generates Γ as a semi-group (hence as a group, since µ is symmetric). We also say that the measure µ is admissible.

We denote by ρ the spectral radius of the random walk dened by

ρ = lim sup µ * n (x) 1/n .
The spectral radius ρ belongs to [0, 1] and is independent of x, provided that µ is admissible, see [24, (1.8)].

The local limit problem consists in nding the asymptotic behavior of µ * n (x) as n goes to innity. We assume for simplicity that µ is aperiodic, i.e. there exists n 0 such that for every n ≥ n 0 , µ * n (e) > 0, where e is the identity element of Γ. In many cases, the asymptotics arising in local limit theorems are of the form (1.1)

µ * n (x) ∼ C x R -n n -α , 1
where R is the inverse of the spectral radius. This is for example the case in all abelian groups of rank d, with α = d/2, see [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 13.12] and references therein, and more generally in all nilpotent groups of homogeneous dimension D, with α = D/2, see [START_REF] Alexopoulos | Random walks on discrete groups of polynomial volume growth[END_REF]Corollary 1.17]. This is also the case in all hyperbolic groups with α = 3/2, see [START_REF] Gerl | Local limits and harmonic functions for nonisotropic random walks on free groups[END_REF], [START_REF] Lalley | Finite range random walk on free groups and homogeneous trees[END_REF] for the case of trees and [START_REF] Gouëzel | Local limit theorem for symmetric random walks in Gromov-hyperbolic groups[END_REF] for the general case. Finally, to our knowledge, this was also the case so far in all known examples of relatively hyperbolic groups.

In the context of free products of the form Γ = Z d1 * Z d2 , Candellero and Gilch [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] gave a complete classication of every possible local limit theorem. In particular, they proved that they always are of the form (1.1), with α = 3/2 or α = d i /2 and the latter case can only happen if d i ≥ 5. Although in this paper we will not work in the general setting of relatively hyperbolic groups, let us mention that free products are the simplest examples of such groups and results of [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] are being generalized to this setting in recent works by the authors, see [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF], [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups II : the non spectrally degenerate case[END_REF], [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF].

Our main goal in this note is to disprove [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF]Lemma 4.5] and a similar statement that appeared in a rst version of [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF]. In particular, we prove that the classication obtained in [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] is incomplete: we derive a local limit theorem on Z 3 * Z 5 of the form (1.1) but with unexpected exponent α = 5/3, and a local limit theorem on Z 3 * Z 6 which is not of the form (1.1). Before stating our main results, let us introduce some terminology.

We consider the Green function G(x, y|r) dened by

G(x, y|r) = n≥0 µ * n (x -1 y)r n .
If x = y = e, we will often write G(e, e|r) = G(r). Its radius of convergence R is independent of x and y, provided µ is admissible and it is the inverse of the spectral radius of µ. All the groups under consideration in this paper will be non-amenable. Consequently,

• by a landmark result of Kesten [START_REF] Kesten | Full Banach mean values on countable groups[END_REF], R > 1 (see also [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Corollary 12.5]),

• by a result of Guivarc'h [START_REF] Guivarc | Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire[END_REF], G(R) is nite (see also [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 7.8]).

Following the notations of [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF], we dene I (k) (r) by (1.2)

I (k) (r) = x1,...,x k ∈Γ G(e, x 1 |r)G(x 1 , x 2 |r)...G(x k-1 , x k |r)G(x k , e|r).
The sums I (k) are related to the kth derivatives of the Green function. Precisely, by [15, Proposition 1.9], I (1) (r) = rG ′ (r) + G(r) and similar formulae hold for higher derivatives. Following [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF], we say that the random walk driven by µ is divergent if

I (1) (R), or equivalently G ′ (R), is innite.
We say that it is convergent otherwise.

Assume from now on that Γ = Γ 1 * Γ 2 . We dene for i = 1, 2

(1.3)

I (k) i (r) = x1,...,x k ∈Γi G(e, x 1 |r)G(x 1 , x 2 |r)...G(x k-1 , x k |r)G(x k , e|r)
and we set (1.4)

J (k) (r) = I (k) 1 (r) + I (k) 2 (r).
Still following [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF], we say that the random walk driven by µ is spectrally positive recurrent if it is divergent and if J (2) (R) is nite.

For i = 1, 2, we also consider the rst return kernel p Γi,r to Γ i associated with rµ (see (2.2) for a proper denition). Then, p Γi,r denes a transition kernel on Γ i and we denote by R i (r) the inverse of its spectral radius. We say that the random walk driven by µ is spectrally degenerate along R) are bigger than 1, we say that the random walk is spectrally non-degenerate.

Γ i if R i (R) = 1. When both R 1 (R) and R 2 (
Roughly speaking, when the random walk is spectrally degenerate along Γ i , the free factor Γ i has strong inuence on its asymptotic behavior; we refer to [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups II : the non spectrally degenerate case[END_REF] and [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF] for further details. This notion should be compared with what is called "typical case" in [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF], where another way of measuring inuence of a free factor is given. By [9, Proposition 2.9], these two notions coincide, i.e. the "typical case" corresponds to the case of a spectrally non-degenerate random walk.

All these quantities and denitions can be generalized to the context of relatively hyperbolic groups, replacing free factors with the appropriate notion of maximal parabolic subgroups. The current classication of local limit theorems on relatively hyperbolic groups is as follows. When the random walk is spectrally non-degenerate, the local limit has the form (1.1), with α = 3/2 [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups II : the non spectrally degenerate case[END_REF]. This was rst proved by Woess [START_REF] Woess | Nearest neighbour random walks on free products of discrete groups[END_REF] for random walks on free products in the "typical case" situation. When the random walk is spectrally positive recurrent, we can only prove the rough estimate µ * n (e) ≍ R -n n -3/2 , which means that the ratio of the quantities on the left and right hand-side is bounded away from 0 and innity [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF]. When the random walk is convergent and parabolic subgroups are virtually abelian, the local limit theorem has the form (1.1), with α = d/2, where d is the minimal rank of a parabolic subgroup along which the random walk is spectrally degenerate [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF]. Moreover, in this situation, one can only have d ≥ 5.

Thus, we recover so far the classication given in [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] and presented above. Furthermore, up to the present paper, for free products of the form Z d1 * Z d2 the case of a divergent and not spectrally positive recurrent random walk was considered as not being able to occur, see [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF]Lemma 4.5]. As announced, we disprove here this result and we actually construct such a random walk on Γ = Z 3 * Z d , with d = 5 or 6. As a consequence, the classication of possible behaviors of µ * n needs to be completed. We also derive a local limit theorem for the random walk we construct. This is the rst step into this program. Theorem 1.1.

Let Γ = Γ 1 * Γ 2 , with Γ 1 = Z 3 , Γ 2 = Z d and d ∈ {5, 6}. For i = 1, 2,
let µ i be a nitely supported, admissible and symmetric probability measure on Γ i . For α ∈ [0, 1], let µ α be the probability measure µ α = αµ 1 + (1 -α)µ 2 on Γ. Then, there exists α * ∈ (0, 1) such that the random walk driven by µ α * is divergent and not spectrally positive recurrent.

When either µ 1 or µ 2 is aperiodic, the same property holds for µ α . From now on, in order to simplify the argument, we assume that both measures µ 1 and µ 2 are aperiodic; this allows us to avoid to consider several sub-cases for the estimation of the Green functions associated with the corresponding random walks on Γ 1 and Γ 2 , see (4.1) and (4.9) below. Theorem 1.2. Assume that the measures µ 1 and µ 2 are aperiodic. Then, the random walk on Γ driven by µ α * given by Theorem 1.1 satises the following local limit theorem: If d = 5, we have

µ * n α * (e) ∼ CR -n n -5/3
and if d = 6, we have

µ * n α * (e) ∼ CR -n n -3/2 log(n) -1/2 ,
where R is the inverse of the spectral radius of µ α * .

Without assuming aperiodicity, the same asymptotics hold for µ * 2n , since µ is symmetric, so its period must be 1 or 2.

Let us state that to our knowledge, the asymptotic for d = 6 in Theorem 1.2 gives the rst example of a local limit theorem on a non-amenable group which is not of the form (1.1). For amenable groups, the situation is quite dierent and there exist many examples where µ * n (e) behaves like exp(-n c ).

Up to a sub-exponential error term, this is the case for all polycyclic groups of exponential growth [START_REF] Theodoros | Groups of superpolynomial growth[END_REF], [1, Theorem 1] and for amenable Baumslag-Solitar groups [20, Theorem 5.2 (5.2)], with c = 1/3. This is also the case for lamplighter groups of the form A ≀ Z d , where A is a nite non-trivial group [20, Theorem 5.2 (5.6)], with c = d/(d + 2). Note that amenable Baumslag-Solitar groups and lamplighter groups are examples of solvable non-polycyclic groups.

For d = 1, a precise local limit theorem for the lamplighter group of the form µ * n (e) ∼ Cn 1/6 exp(-n 1/3 ) was proven by Revelle [START_REF] Revelle | Heat kernel asymptotics on the lamplighter group[END_REF]. This was further extended to Diestel-Leader graphs DL(q, r) by Bartholdi, Neuhauser and Woess, see [4, Theorem 5.4] and [START_REF] Bartholdi | Horocyclic products of trees[END_REF]Corollary 5.26]. Diestel-Leader graphs are not amenable when q ̸ = r, since the spectral radius of the simple random walk is smaller than 1, see [4, (1.3)]. Thus, the examples of [START_REF] Bartholdi | Spectral computations on lamplighter groups and Diestel-Leader graphs[END_REF] and [START_REF] Bartholdi | Horocyclic products of trees[END_REF] already provide local limit theorems which are not of the form (1.1) but of the form µ * n (e) ∼ CR -n exp(-n c )n α for nonamenable graphs. However, according to [START_REF] Eskin | Coarse dierentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs[END_REF]Theorem 1.4] when q ̸ = r, DL(q, r) is not quasi-isometric to the Cayley graph of a nitely generated group.

We also refer to [START_REF] Brieussel | Speed of random walks, isoperimetry and compression of nitely generated groups[END_REF] where many other examples are given, beyond the class of amenable groups. Asymptotics are only given there for -log µ * n (e) though. Thus, for non-amenable groups, these examples only recover the fact that R > 1.

We now briey outline the content of our paper. In Section 2, we give various characterizations of spectral degeneracy in terms of quantities that are suited to the study of random walks on free products. Along the way, we introduce functions and quantities dened in [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]. The conclusion of this section is a useful characterization of spectral degeneracy and divergence in terms of the sign of a single quantity, see precisely Corollary 2.5.

In Section 3, we use Corollary 2.5 to prove Theorem 1.1, that is, we construct a probability measure µ on Z 3 * Z d , d = 5 or 6, which is divergent but not spectrally positive recurrent. We will actually construct a family of probability measure µ α and exhibit a phase transition at some α * . The measure µ α * will have the required properties.

Finally, Section 4 is devoted to derive a local limit theorem for µ α * , thus proving Theorem 1.2. This is done by rst nding precise asymptotics of the derivative of the Green function G r (e, e) as r → R and then using Karamata's Tauberian theorem. Most of the intermediate results in this section are of geometric nature and we believe it should be possible to extend them to relatively hyperbolic groups, with (possibly challenging) new arguments replacing those that rely on the combinatorial structure of free products.

Characterizations of spectral degeneracy in free products

Let Γ = Γ 1 * Γ 2 be a free product of two groups. Consider nitely supported, symmetric and admissible probability measures µ 1 and µ 2 on Γ 1 and Γ 2 respectively. For α ∈ [0, 1], set

µ α = αµ 1 + (1 -α)µ 2 .
In the sequel, we write µ for µ α and we set α 1 = α and α 2 = (1 -α). If α i > 0, the probability measure µ is nitely supported, symmetric and admissible on Γ. Such a probability measure is called adapted to the free product structure. We denote by R the inverse of the spectral radius of µ and by R i the inverse of the spectral radius of µ i .

The Green functions G, G 1 and G 2 of µ, µ 1 and µ 2 respectively are related as follows. For i = 1, 2, for every x, y ∈ Γ i , for every r ≤ R, (2.1)

G(x, y|r) G(e, e|r) = G i (x, y|ζ i (r)) G i (e, e|ζ i (r)) ,
where ζ i is a continuous function of r, see [24, Proposition 9.18] for an explicit formula. We always have

ζ i (R) ≤ R i and for r < R, ζ i (r) < R i .
We denote by p Γi,r the rst return transition kernel to Γ i associated with rµ, which is dened as (2.2)

p Γi,r (x, y) = n≥1 z1,...,zn / ∈Γi r n µ(x -1 z 1 )µ(z -1 1 z 2 )...µ(z -1 n y).
We denote by G Γi,r the Green function associated with p Γi,r . By [10, Lemma 4.4], for every x, y ∈ Γ i , it holds (2.3)

G Γi,r (x, y|1) = G(x, y|r),
which is actually the main reason for introducing p Γi,r . In fact, because µ is adapted to the free product structure, if the random walk ever leaves Γ i at some point x, it can only come back to Γ i at the same point x. We deduce that the rst return kernel p Γi,r can be written in our context as

p Γi,r (e, x) = α i rµ i (x) + w i δ e,x ,
where w i = w i (r) is the weight of the rst return to e associated to rµ, starting with a step driven by α j µ j , j ̸ = i. Thus, [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Lemma 9.2] shows that for any x, y ∈ Γ i , (2.4)

G Γi,r (x, y|t) = 1 1 -w i t G i x, y α i rt 1 -w i t .
In particular, for t = 1,

G Γi,r (x, y|1) = 1 1 -w i G i x, y α i r 1 -w i Since G Γi,r (x, y|1) = G(x, y|r), we recover (2.1) with ζ i (r) = α i r 1 -w i .
Recall that following [START_REF] Dussaule | Stability phenomena for Martin boundaries of relatively hyperbolic groups[END_REF], we say that the random walk is spectrally degenerate along Γ i if the spectral radius of the rst return kernel p Γi,R is 1. In this section, we prove equivalent conditions to spectral degeneracy, using the more standard terminology for free products introduced in [24, Chapter 9].

The following characterization is proved in [9, Proposition 2.9]. We detail it here for convenience.

Lemma 2.1. The random walk is spectrally degenerate along Γ i if and only if

ζ i (R) = R i .
Proof. By applying (2.4) with t = 1 + ϵ and r = R, we get

G Γi,R (x, y|1 + ϵ) = 1 1 -w i (1 + ϵ) G i x, y α i R(1 + ϵ) 1 -w i (1 + ϵ) .
The condition ϵ > 0 yields αiR(1+ϵ)

1-wi(1+ϵ) > αiR 1-wi = ζ i (R).
Thus, there exists t > 1 such that G Γi,R (x, y|t) is nite if and only if there exists z > ζ i (R) such that G i (x, y|z) is nite, which concludes the proof.

□

In [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF], the situation where ζ i (R) < R i for i = 1, 2 is called the "typical case". Thus, Lemma 2.1 shows that this typical case corresponds to being spectrally nondegenerate.

Lemma 2.2. For all r ≤ R, we have

ζ i (r)G i (ζ i (r)) = α i rG(r).
Proof. Let us introduce the quantities U and U i , i = 1, 2, dened by 

U (r) = U (e,
G(r)H i (r) 1 + G(r)H i (r) = U i (ζ i (r)), i.e. G(r)H i (r)(1 -U i (ζ i (r))) = U i (ζ i (r)). The equality G i (1 -U i ) = 1 yields G(r)H i (r) G i (ζ i (r)) = G i (ζ i (r)) -1 G i (ζ i (r)) ,
i.e.

(2.5)

1 + G(r)H i (r) = G i (ζ i (r)).
Consequently, since

G(1 -U ) = 1, ζ i (r) = α i r 1 -w i = α i r 1 -U (r) + H i (r) = α i rG(r) 1 + G(r)H i (r) ,
so by (2.5),

ζ i (r) = α i rG(r) G i (ζ i (r)) . □
Let us now introduce the notations θ = RG(R), θ i = R i G(R i ), i = 1, 2 and θ = min{θ i /α i }. These parameters play a crucial role in the study of the Green function on free products in [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Chapter 9]. In particular, by [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 9.19], it holds that θ ≤ θ i /α i , i = 1, 2, so θ ≤ θ.

The following statement gives a characterization of spectral degeneracy in terms of θ and θ Lemma 2.3. The random walk is spectrally degenerate along Γ i if and only if

θ = θ = θ i /α i . Proof. Assume that θ = θ = θ i /α i , i.e. RG(R) = R i G i (R i )/α i . By Lemma 2.2, we thus have ζ i (R) = R i G i (R i ) G i (ζ i (R)) . Since ζ i (R) ≤ R i , we deduce that G i (R i ) ≥ G i (ζ i (R)) and so ζ i (R) ≥ R i . Finally, ζ i (R) = R i
and so the random walk is spectrally degenerate along Γ i by Lemma 2.1.

Conversely, if the random walk is spectrally degenerate along Γ i , then

ζ i (R) = R i by Lemma 2.1. This implies G i (ζ i (R)) = G i (R i ). Consequently, R i = ζ i (R) = α i RG(R) G i (ζ i (R)) = α i RG(R) G i (R i ) . Therefore, R i G i (R i )/α i = RG(R), i.e. θ = θ i /α i .
Combining this with the inequality θ ≤ θ, we nally obtain θ = θ.

□

Following [24, Chapter 9], let us introduce two functions Φ and Ψ which are very useful in the context of free products.

On the one hand, he function Φ is dened implicitly by the formula

G(r) = Φ(rG(r))
for every r ≤ R. This function is dened in general on an open neighborhood (inside the complex plane) of the interval [0, θ). Since G(R) is nite, it is also dened on

[0, θ].
On the other hand, we set Ψ(t) = Φ(t)-tΦ ′ (t). By [24, (9.14)], letting t = rG(r), we have

Ψ(t) = 1 rU ′ (r) + 1 -U (r) = 1
1 + n≥0 (n -1)P((rst return time of the µ-random walk to e) = n)r n . In particular Ψ is strictly decreasing on the interval [0, θ] and satises Ψ(t) < 1 for t > 0 and Ψ(0) = 1. The equality G(r)(1 -U (r)) = 1 readily implies that (2.6)

Ψ(t) = G(r) 2 rG(r) ′ + G(r) .
Thus,

Ψ(θ) = 0 if and only if G ′ (R) = ∞, since G(R) is nite.
In our context of free products Γ = Γ 1 * Γ 2 , we have by [24, Theorem 9.19] (2.7)

Φ(t) = Φ 1 (α 1 t) + Φ 2 (α 2 t) -1 and (2.8) Ψ(t) = Ψ 1 (α 1 t) + Ψ 2 (α 2 t) -1.
Thus, both functions Φ and Ψ can be extended on [0, θ] and Ψ is still continuous and strictly decreasing on [0, θ].

Lemma 2.4. The random walk is spectrally degenerate if and only if

Ψ(θ) ≥ 0. Moreover, G ′ (R) is innite if and only if Ψ(θ) ≤ 0.
Proof. This statement is a consequence of [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 9.22].

Assume rst that Ψ(θ) < 0, hence by [24, Theorem 9.22], it holds θ < θ and by Lemma 2.3, this implies that the random walk is not spectrally degenerate. Moreover, in this case θ is the unique solution of Ψ(t) = 0 in (0, θ). In particular

Ψ(θ) = 0, hence G ′ (R) is innite.
Assume now Ψ(θ) ≥ 0. Then, [24, Theorem 9.22] implies θ = θ and so the random walk is spectrally degenerate. On the one hand, if Ψ(θ) > 0, then Ψ(θ) > 0 and so G ′ (R) is nite. On the other hand, if Ψ(θ) = 0, then Ψ(θ) = 0 and so G ′ (R) is innite.

□

Let us conclude this section by summarizing the situation as follows.

Corollary 2.5. We have the following trichotomy.

• If Ψ(θ) < 0, the random walk is spectrally non-degenerate and divergent.

• If Ψ(θ) = 0, the random walk is spectrally degenerate and divergent.

• If Ψ(θ) > 0, the random walk is spectrally degenerate and convergent.

A divergent not spectrally positive recurrent random walk

In this section, we construct an adapted random walk on Γ = Z 3 * Z d , d = 5 or 6, which is divergent but not spectrally positive recurrent. Such a random walk is necessarily spectrally degenerate and corresponds to the second case in Corollary 2.5. 

G ′ 1 (ζ 1 (R)) and G ′ 2 (R 2 )
are nite, then if Ψ(θ) = 0, Φ ′′ (θ) is nite. By [15, Proposition 1.9], the sum I (1) dened by (1.2) satises (3.1)

I (1) (r) = rG ′ (r) + G(r).
Similarly, letting for i = 1, 2

I (1) Gi (ζ i (r)) = x∈Γi G i (e, x|ζ i (r))G(x, e|ζ i (r)),
we have (3.2)

I (1) Gi (ζ i (r)) = ζ i (r)G ′ i (ζ i (r)) + G i (ζ i (r)), i = 1, 2.
By induction, similar formulae hold for higher derivatives, see [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF]Lemma 3.2]. In the sequel, we will use in particular the one concerning the second derivatives :

(3.3) 2rI (2) (r) = 2rG(r) + 4r 2 G ′ (r) + r 3 G ′′ (r).
First, by [10, Proposition 6.3], the quantity

I (1) i = x∈Γi G(e, x|R)G(x, e|R) Since G i (ζ i (R)) and G ′ i (ζ i (R)
) must be nite by (3.4), we deduce that (3.9)

J (2) (R) < ∞ i G ′′ i (ζ i (R)) < ∞, i = 1, 2.
Thus, this lemma is a special case of the following wrong statement that appeared in a rst version of [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF].

Erroneous Lemma 3.3 (Generalized version of Erroneous Lemma 3.1). In the context of relatively hyperbolic groups with respect to virtually abelian subgroups, if

G ′ (R) is innite, then J (2) (R)
is nite, i.e. the random walk is spectrally positive recurrent.

3.2. Constructing counterexamples. Let us disprove Erroneous Lemma 3.1.

From now on, we set α 1 = α and α 2 = 1 -α. First, note that there exists α c such that

• if α < α c , then θ = θ 2 /α 2 < θ 1 /α 1 , • if α = α c , then θ = θ 1 /α 1 = θ 2 /α 2 , • if α > α c , then θ = θ 1 /α 1 < θ 2 /α 2 . Therefore, • if α < α c , then α 1-α θ 2 < θ 1 and Ψ(θ) = Ψ 1 α 1-α θ 2 + Ψ 2 (θ 2 ) -1. • if α = α c , then Ψ(θ) = Ψ 1 (θ 1 ) + Ψ 2 (θ 2 ) -1. • if α > α c , then 1-α α θ 1 < θ 2 and Ψ(θ) = Ψ 1 (θ 1 ) + Ψ 2 1-α α θ 1 -1.
As a consequence, the function α → Ψ(θ) is continuous, see also [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF]Lemma 7.1]. We now set Γ = Z d1 * Z d2 and we consider symmetric admissible and nitely supported probability measures µ i on

Γ i = Z di , i = 1, 2. It is well known that we have µ * 2n i (e) ∼ C i R -2n 1 n -di/2
, see for instance [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 13.12]. Now we choose d 1 and d 2 in such a way that

• G i (R i ) is nite, i = 1, 2, • G ′ 1 (R 1 ) is innite but G ′ 2 (R 2 ) is nite, • G ′′ (R 2 ) is innite.
These three conditions, together with the fact that R 1 = R 2 = 1 impose that d 1 = 3 or 4 and d 2 = 5 or 6. From now on, we set d 1 = 3 and we write d = d 2 ∈ {5, 6}. In terms of the functions Φ i and Ψ i , it holds [START_REF] Alexopoulos | A lower estimate for central probabilities on polycyclic groups[END_REF]. Thus by continuity, there exists α * ∈ (0, α c ) such that Ψ(θ) = 0 when α = α * . This yields for this value α * of the parameter

Ψ 1 (θ 1 ) = 0, Ψ 2 (θ 2 ) > 0 and Φ ′′ 2 (θ 2 ) is innite. It follows that Ψ(θ) = 0 when α = 1, that Ψ(θ) = Ψ 2 (θ 2 ) > 0 when α = 0 and that Ψ(θ) = Ψ 2 ( 1-α α θ 1 ) -1 < 0 when α ∈ [α c ,
α θ = θ = θ 2 /α 2 < θ 1 /α 1 , with α 1 = α * and α 2 = 1 -α * .
In other words, the random walk driven by µ α * is spectrally degenerate along

Γ 2 = Z d but not along Γ 1 = Z 3 . As a consequence, ζ 1 (R) < R 1 and so G ′ (ζ 1 (R))
is nite. The assumptions of Erroneous Lemma 3.1 are hence satised, so it would imply that Φ ′′ (θ) is nite, so Φ ′′ 2 (θ 2 ) is nite by (3.6). This is a contradiction, so we disproved Erroneous Lemma 3.1.

Notice that the probability measure µ α * satises the following properties.

(1) the random walk is spectrally degenerate along

Γ 2 = Z d , (2) 
the random walk is not spectrally degenerate along

Γ 1 = Z 3 , (3) 
Ψ(θ) = 0, hence the random walk driven by 2) is innite by (3.9) and the random walk driven by µ α * is not spectrally positive recurrent. If we assume that µ 1 or µ 2 is aperiodic, i.e. µ * n 1 (e) or µ * n 2 (e) is positive for large enough n, then µ α is also aperiodic for every α. This can be obtained for instance assuming that µ 1 (e) and µ 2 (e) are positive, i.e. by considering lazy random walks on the free factors. This ends the proof of Theorem 1.1.

µ α * is divergent, (4) Φ ′′ 2 (θ 2 ) is innite, i.e. G ′′ 2 (ζ 2 (R)) is innite. Thus J (

□

We thus exhibited a phase transition at α = α * , where the sign of Ψ(θ) changes, so does the behavior of the random walk by Corollary 2.5. Moreover, the following holds.

• When Ψ(θ) < 0, the random walk is spectrally non-degenerate and by [9, Theorem 1.1],

µ * n (e) ∼ CR -n n -3/2 .
• when Ψ(θ) > 0, the random walk is convergent, hence spectrally degenerate. By [10, Proposition 6.1], it cannot be spectrally degenerate along Z 3 . In this case, it holds by [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF]Theorem 1.3]

µ * n (e) ∼ CR -n n -d/2 .
As claimed in the introduction, at the phase transition α = α * , the local limit theorem has an again dierent form. This is the purpose of Section 4.

Identifying the mistakes in Erroneous

Lemmas. The mistake in the former version of [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF] when proving Erroneous Lemma 3.3 was to assume that the spectral radius ρ H,r of the rst return transition kernel p H,r dened in (2.2) were dierentiable at r = R. However, this dierentiability property is only proved for convergent random walks. The issue in [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] is more subtle. The authors write ζ i (r) = ζ i (R) + X i (r) and rst nd a linear system of the form

C (i) 1 X 1 (r) + C (i) 2 X 2 (r) + o R -r = LP i (r), i = 1, 2,
where LP i is a linear polynomial function. Then, they derive a contradiction from this linear system, using the assumptions of Erroneous Lemma 3.1. On Page 19 of [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF], they expand (ζ i (R) + X i (r)) n and then switch two sums to identify the coecients C (i) j , see precisely [7, (4.8)]. However, switching sums is not legitimate, because the coecients in front of X j (r) kj X i (r) ki involve successive derivatives of the Green function G j at ζ j (R) and these successive derivatives can be innite. This is typically the case when assuming that Φ ′′ (θ) is innite and θ = θ 2 /α 2 = θ, in which case the second derivative of G 2 at ζ 2 (R) is innite.

In any case, in both [START_REF] Candellero | Phase transitions for random walk asymptotics on free products of groups[END_REF] and [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF], the spotted invalid arguments are only related to the proofs of Erroneous Lemma 3.1 and Erroneous Lemma 3.3 and do not aect the remainder of the papers.

Local limit theorems

We consider from now on the adapted probability measure µ α * on Z 3 * Z d , with d = 5 or 6. The random walk driven by µ α * is spectrally degenerate along Z d , divergent, but not spectrally positive recurrent. Now that α is xed, we write µ = µ α * for simplicity.

For simplicity, we assume that µ 1 and µ 2 are aperiodic, i.e. µ * n 1 (e) and µ * n 2 (e)

are positive for large enough n, so that µ is also aperiodic. Our goal is to prove Theorem 1.2.

4.1. Asymptotic dierential equations. By (3.1) and (3.3), the two quantities I (1) (r) and I (2) (r) are related to the rst and second derivatives of the Green function G. Similarly, by (3.7) and (3.8), the quantity J (2) is related to the second derivatives of the Green functions G i , i = 1, 2. One of the main results in [START_REF] Dussaule | Local limit theorems in relatively hyperbolic groups I : rough estimates[END_REF] in the context of relatively hyperbolic group is the following rough formula that links the quantities I (2) , I (1) and J (2) :

I (2) (r) ≍ I (1) (r) 3 J (2) (r)
which means that the ratio of these two quantities is bounded from above and below.

In the context of adapted measures on free products, the above rough estimates ≍ can be improved to the more accurate asymptotics ∼ as follows.

Proposition 4.1. Consider an adapted probability measure µ α on Γ = Γ 1 * Γ 2 , with 0 < α < 1 and assume that G ′ (R) = ∞. Then, there exist constants C, c 1 , c 2 and C ′ such that the following holds. As r → R, we have

G ′′ (r) ∼ C (G ′ (r)) 3 c 1 G ′′ 1 ζ 1 (r) + c 2 G ′′ 2 ζ 2 (r) -C ′ .
In particular, if

G ′′ 1 (ζ 1 (R)) is nite and G ′′ 2 (ζ 2 (R)) is innite, there exists C such that G ′′ (r) ∼ C (G ′ (r)) 3 G ′′ 2 (ζ 2 (r)).
Proof. On the one hand, by (3.5) it holds

Φ ′′ (rG(r)) = G(r)G ′′ (r) -2G ′ (r) 2 (rG ′ (r) + G(r)) 3 .
The term

2G ′ (r) 2
(rG ′ (r)+G(r)) 3 converges to 0 as r tends to R and G(r) converges to G(R) which is nite. Thus,

Φ ′′ (rG(r)) ∼ G(R)G ′′ (r) R 3 G ′ (r) 3 , r → R.
On the other hand, by (2.7) and Lemma 2.2

Φ ′′ (rG(r)) = α 2 1 Φ ′′ 1 (α 1 rG(r)) + α 2 2 Φ ′′ 2 (α 2 rG(r)) = α 2 1 Φ ′′ 1 (ζ 1 (r)G 1 (ζ 1 (r))) + α 2 2 Φ ′′ 2 (ζ 2 (r)G 2 (ζ 2 (r))).
Therefore, (3.5) applied this time to the Green functions G i yields

Φ ′′ (rG(r)) ∼ c 1 G ′′ 1 (ζ 1 (r)) + c 2 G ′′ 2 (ζ 2 (r)) -C ′ , with c i = α 2 i G i (ζ i (R)) (ζ i (R)G ′ i (ζ i (R)) + G i (ζ i (R))) 3 , i = 1, 2
and

C ′ = 2α 2 1 G ′ 1 (ζ 1 (R)) 2 ζ 1 (R)G ′ 1 (ζ 1 (R)) + G 1 (ζ 1 (R)) 3 + 2α 2 2 G ′ 2 (ζ 2 (R)) 2 ζ 2 (R)G ′ 2 (ζ 2 (R)) + G 2 (ζ 2 (R)) 3 .
As a consequence, and so for all z ∈ Γ i , Similarly, y∈Γ G(x, y|r)G(y, e|r) = I (1) (r)

I (1) (r) = 1 G(e, e|r
I (1) (r) I (1) i (r) = 1 G(e, e|r
I (1) i (r) z∈Γi G(x, z|r)G(z, e|r).
Consequently, 

d dr r 2 I (1) i (r) = r I (1) (r) I (1) i (r 
i (r).

Since G ′ (R) = ∞, (3.1) shows that I (1) (r) ∼ RG ′ (r) as r → R. Furthermore, by [10, Proposition 6.3], the quantity I (1) i (R) is nite. Thus, we nally get

d dr r 2 I (1) i (r) ∼ 2R 2 I (1) i (R) G ′ (r)I (2) 
i (r) as r → R, which concludes the proof. 

4.3. Assuming that G ′ (R) is innite, G ′′ 1 (ζ 1 (R)) is nite and G ′′ 2 (ζ 2 (R))
is innite, there exists C such that

G ′′ (r) (G ′ (r)) 2 ∼ C d dr r 2 I (1) 
2 (r) .

Proof. By (3.4), the quantity

G ′ 2 (ζ 2 (R)) is nite. Applying (3.3) to G 2 , we get G ′′ 2 (ζ 2 (r)) ∼ CI (2) 
2 (r).

The result thus follows from Proposition 4.1 and Lemma 4.2.

□

We will also use the following result later on.

Lemma 4.4. We have

ζ 2 (R) -ζ 2 (r) ∼ C G 2 (ζ 2 (R)) -G 2 (ζ 2 (r)) .
Proof. By (3.4), the quantity

G ′ 2 (ζ 2 (R)) is nite. Derivating the Green function G 2 at ζ 2 (R) yields G 2 (t) = G 2 (ζ 2 (R)) + G ′ 2 (ζ 2 (R))(ζ 2 (R) -t) + o (ζ 2 (R) -t) .
Applying this at t = ζ 2 (r) gives the result.

□

Everything is now settled to prove Theorem 1.2. We treat separately the odd and even cases. 4.2. The case d = 5. We consider the adapted probability measure µ α constructed in Section 3 and we set α = α * and write µ = µ α . Recall that the measures µ 1 and µ 2 are assumed to be symmetric, admissible, aperiodic and nitely supported on Γ 1 = Z 3 and on Γ 2 = Z 5 respectively. In particular, R 1 = R 2 = 1 by [24, Corollary 8.15] and

• the random walk is not spectrally degenerate along Γ 1 , so Integrating this asymptotic dierential equation between r and R and using the fact that G ′ (R) = ∞ yields For every ϵ > 0, there exists r 0 such that if r ≥ r 0 , we have

G ′′ 1 (ζ 1 (R)) is nite, • it is spectrally degenerate along Γ 2 , so ζ 2 (R) = R 2 == 1, • G 2 (
1 G ′ (r) ∼ C 2 R 2 I (1 
o G ′′ (r) (G ′ (r)) 2 ≤ ϵ G ′′ (r) (G ′ (r))
2 1 This follows from the classical local limit theorem µ * n 2 (e) ∼ Cn -5/2 given for instance by [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Theorem 13.12] and from Karamata's Tauberian theorem [START_REF] Bingham | Regular variation[END_REF]Corollary 1.7.3]. See also [START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF]Proposition 17.16] where the singular expansion at 1 of the Green function is given for simple random walks on Z d . Re-injecting this in (4.7), we deduce that (4.8)

G ′ (r) ∼ C 10 1 (R -r) 1/3 .
We can then directly use [START_REF] Gouëzel | Random walks on co-compact Fuchsian groups[END_REF]Theorem 9.1] to deduce that µ * n (e) ∼ C 11 R -n n -5/3 . This concludes the proof of the case d = 5 in Theorem 1.2. □ 4.3. The case d = 6. The proof for d = 6 is very similar. We still have that 

R 1 = R 2 = ζ 2 (R) = 1, G ′ (R) = ∞, G ′′ 1 (ζ 1 (R)) < ∞ and G ′′ 2 (R 2 ) = ∞.
G ′ 2 (1) -G ′ 2 (ζ 2 (r)) = 1 ζ2(r)
G ′′ 2 (ρ)dρ.

This time, using (4.9) yields

G ′ 2 (1) -G ′ 2 (ζ 2 (r)) ∼ -C 2 (1 -ζ 2 (r)) log(1 -ζ 2 (r)).
We deduce from (4.3) that Integrating between r and R, we have (4.11)

I (1) 2 (R) -I (1) 2 (r 
-(G(R) -G(r)) 2 log(G(R) -G(r)) ∼ C 6 (R -r),
which we rewrite as

-(G(R) -G(r)) log(G(R) -G(r)) ∼ C 6 R -r G(R) -G(r)
.

Re-injecting this in (4.10), we deduce that (4.12)

1 G ′ (r) ∼ C 7 R -r G(R) -G(r)
.

  e|r) = n≥0 P((rst return time of the µ-random walk to e) = n)r n and U i (r) = U i (e, e|r) = n≥0 P((rst return time of the µ i -random walk to e) = n)r n .By [24, Lemma 1.13 (a)], G(r)(1 -U (r)) = G i (r)(1 -U i (r)) = 1. Following [24, Proposition 9.18 (b)], the weight w i may be written as w i = U (r) -H i (r), where H i satises the equation

3. 1 .

 1 Several erroneous lemmas. We rst restate [7, Lemma 4.5] (switching the indices 1 and 2) and then explains how it leads to a contradiction. This contradiction is what alerted us in the rst place. The aw in the argument is quite subtle and we will come back to it in Section 3.3. Erroneous Lemma 3.1. [7, Lemma 4.5] Assume that θ = θ = θ 2 /α 2 and that

) 2 y∈ΓeG

 2 (e, y|r)G(y, e|r) = 1 G(e, e|r) 2 y∈Γz G(z, y|r)G(y, z|r).Combining all this, we get y∈Γ G(e, y|r)G(y, x|r) = I (1) (r)I (1) i (r) z∈ΓiG(e, z|r)G(z, x|r).

i

  ) x∈Γi z∈Γi G(e, z|r)G(z, x|r)G(x, e|r) (r) x∈Γi z∈Γi G(e, x|r)G(x, z|r)G(z, e|r),

□

  By combining Proposition 4.1 and Lemma 4.2, we get the following statement.

Corollary

  

) 2 (

 2 R) -C 2 r 2 I

  ) ∼ -C 3 (1 -ζ 2 (r)) log(1 -ζ 2 (r)). ) ∼ -C 4 (G(R) -G(r)) log(G(R) -G(r)).As above, the fact thatG ′ (R) is innite yields (R -r) = o(G(R) -G(r)), with G(R) -G(r) = o(1), so R 2 -r 2 = o (G(R) -G(r)) log(G(R) -G(r)) ,hence by (4.2), (4.10)1 G ′ (r) ∼ -C 5 (G(R) -G(r)) log(G(R) -G(r)).

  1) and G ′ 2 (1) are nite but G ′′ 2 (1) is innite, • G ′ (R) is innite. Moreover, the function G ′′ 2 (t)has the following asymptotic expansion at 1 : (4.1) By applying Corollary 4.3, there exists C 2 > 0 such that as r → R,

	G ′′ 2 (t) ∼ C 1	√	1 1 -t
	G ′′ (r) (G ′ (r))	2 ∼ C 2	d dr	r 2 I	(1)

, as t → 1. 1 2 (r) .

  We can thus apply Corollary 4.3, so that (4.2) and (4.3) again holds in this situation. Moreover, (4.1) is replaced with (4.9) G ′′ 2 (t) ∼ -C 1 log(1 -t), as t → 1, 2 As above, we integrate G ′′ 2 between ζ 2 (r) and ζ 2 (R) = 1 to obtain

As above, this follows from the classical local limit theorem µ * n 2 (e) ∼ Cn -3 given for instance by[START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF] Theorem 13.12] and from Karamata's Tauberian theorem[START_REF] Bingham | Regular variation[END_REF] Corollary 1.7.3]. See also[START_REF] Woess | Random Walks on Innite Graphs and Groups[END_REF] Proposition 17.16] where the singular expansion at 1 of the Green function is given for simple random walks on Z d .

is nite. Using (2.1), we deduce that I (1) Gi (ζ i (r)) is nite. Consequently, for i = 1, 2, we have by (3.2) (3.4)

Now, by Lemmas 2.1 and 2.3, the equality θ = θ 2 /α 2 implies that the random walk is spectrally degenerate along Γ 2 and so

Second, we need an explicit form of Φ ′′ . The equality

readily implies

and

Consequently,

In particular, for r = R, we obtain 

which implies that Φ ′′ (θ) is nite if and only if Φ ′′ 1 (α 1 θ) and Φ ′′ 2 (α 2 θ) are both nite. Finally, by Corollary 2.5, the condition Ψ(θ) = 0 is equivalent to the fact that the random walk driven by µ is spectraly degenerate and divergent. Thus, Erroneous Lemma 3.1 can be written as follows.

Erroneous Lemma 3.2 (Alternative version of Erroneous Lemma 3.1). Assume the random walk driven by µ is spectrally degenerate along

is nite. A more general statement also appeared in a rst version of [START_REF] Dussaule | A local limit theorem for convergent random walks on relatively hyperbolic groups[END_REF], which led the authors to modify their statement. Dene for i = 1, 2,

By (2.1), the quantity J (2) dened in (1.4) can be written as

In particular,

This concludes the proof.

□

We also prove the following result. Recall that the quantities

Lemma 4.2. Consider an adapted probability measure µ α on Γ = Γ 1 * Γ 2 , with 0 < α < 1 and assume that G ′ (R) = ∞. Then, there exists C such that for i = 1, 2

i (r).

Proof. We write Fix i ∈ {1, 2} and y ∈ Γ. Denote by z the projection of y on Γ i . In other words, y may be written in its normal form as

where Thus, setting Γ z to be the set of y ∈ Γ which project on Γ i at z, we get 

.

By using (3.1) for the Green function G 2 , we get

For t = ζ 2 (r), we get

2 (R) -I

(1)

with

Therefore, by (4.1), (4.4)

According to Lemma 4.4, the two rst terms in the right-hand side of (4.3) are of order of magnitude 1-ζ 2 (r), while the third one has order of magnitude 1 -ζ

This readily implies

In particular, G(R) -G(r) = o(1), so applying 4.5, we get

The equality

hence by (4.2), (4.7)

Integrating between r and R, we have

Thus, by integration between r and R, (4.13)

By multiplying (4.10) and (4.12) and using (4.13), we get

It remains to derive from (4.14) the asymptotic behavior of µ * n (e). In the previous case when d = 5, the estimation (4.8) allowed us to apply directly [15, Theorem 9.1], whose proof is based on a version of Karamata's Tauberian Theorem given in [START_REF] Bingham | Regular variation[END_REF]. Due to the presence of the factor log(R -r), which does not appear in [START_REF] Gouëzel | Random walks on co-compact Fuchsian groups[END_REF], we need to detail the proof.

We introduce the power series

whose radius of convergence is 1. By [15, Corollary 9.4], there exists β > 0 such that (4.15)

where q n is an increasing sequence. It follows from (4.14) that as s tends to 1, This concludes the proof of the case d = 6 in Theorem 1.2.

□