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EXOTIC LOCAL LIMIT THEOREMS AT THE PHASE

TRANSITION IN FREE PRODUCTS

MATTHIEU DUSSAULE AND MARC PEIGNÉ AND SAMUEL TAPIE

Abstract. We construct random walks on free products of the form Z
3
∗Z

d,
with d = 5 or 6 which are divergent and not spectrally positive recurrent.
We then derive a local limit theorem for these random walks, proving that
µ∗n(e) ∼ CR−nn−5/3 if d = 5 and µ∗n(e) ∼ CR−nn−3/2 log(n)−1/2 if d = 6,
where µ∗n is the nth convolution power of µ and R is the inverse of the spectral
radius of µ. This disproves a result of Candellero and Gilch [7] and a result of
the authors of this paper that was stated in a first version of [11]. This also
shows that the classification of local limit theorems on free products of the
form Z

d1 ∗ Z
d2 or more generally on relatively hyperbolic groups with respect

to virtually abelian subgroups is incomplete.

1. Introduction

Let Γ be a finitely generated group and let µ be a probability measure on Γ.
In the sequel, we will always assume that µ is finitely supported and symmetric.
Denote by µ∗n the nth convolution power of µ, defined by

µ∗n(x) =
∑

y1,...,yn−1∈Γ

µ(y1)µ(y
−1
1 y2)...µ(y

−1
n−1x).

Let us consider the random walk (Xn)n driven by µ, defined by Xn = g1...gn where
gk are independent random variables whose distribution are given by µ. Then, µ∗n

is the nth step distribution of the random walk, so for all x ∈ Γ, µ∗n(x) is the
probability that Xn = x.

We will also always assume that the random walk is admissible, i.e. for every
x ∈ Γ, there exists n such that µ∗n(x) is positive. In other words, every element of
the group can be visited with positive probability, i.e. the support of µ generates
Γ as a semi-group (hence as a group, since µ is symmetric). We also say that the
measure µ is admissible.

We denote by ρ the spectral radius of the random walk defined by

ρ = lim supµ∗n(x)1/n.

The spectral radius ρ belongs to [0, 1] and is independent of x, provided that µ is
admissible, see [24, (1.8)].

The local limit problem consists in finding the asymptotic behavior of µ∗n(x) as
n goes to infinity. We assume for simplicity that µ is aperiodic, i.e. there exists n0

such that for every n ≥ n0, µ
∗n(e) > 0, where e is the identity element of Γ. In

many cases, the asymptotics arising in local limit theorems are of the form

(1.1) µ∗n(x) ∼ CxR
−nn−α,

1



2 MATTHIEU DUSSAULE AND MARC PEIGNÉ AND SAMUEL TAPIE

where R is the inverse of the spectral radius. This is for example the case in all
abelian groups of rank d, with α = d/2, see [24, Theorem 13.12] and references
therein, and more generally in all nilpotent groups of homogeneous dimension D,
with α = D/2, see [2, Corollary 1.17]. This is also the case in all hyperbolic groups
with α = 3/2, see [13], [18] for the case of trees and [14] for the general case. Finally,
to our knowledge, this was also the case so far in all known examples of relatively
hyperbolic groups.

In the context of free products of the form Γ = Z
d1 ∗ Zd2 , Candellero and Gilch

[7] gave a complete classification of every possible local limit theorem. In particular,
they proved that they always are of the form (1.1), with α = 3/2 or α = di/2 and
the latter case can only happen if di ≥ 5. Although in this paper we will not work in
the general setting of relatively hyperbolic groups, let us mention that free products
are the simplest examples of such groups and results of [7] are being generalized to
this setting in recent works by the authors, see [8], [9], [11].

Our main goal in this note is to disprove [7, Lemma 4.5] and a similar statement
that appeared in a first version of [11]. In particular, we prove that the classification
obtained in [7] is incomplete: we derive a local limit theorem on Z

3 ∗ Z
5 of the

form (1.1) but with unexpected exponent α = 5/3, and a local limit theorem on
Z
3 ∗ Z

6 which is not of the form (1.1). Before stating our main results, let us
introduce some terminology.

We consider the Green function G(x, y|r) defined by

G(x, y|r) =
∑

n≥0

µ∗n(x−1y)rn.

If x = y = e, we will often write G(e, e|r) = G(r). Its radius of convergence R is
independent of x and y, provided µ is admissible and it is the inverse of the spectral
radius of µ. All the groups under consideration in this paper will be non-amenable.
Consequently,

• by a landmark result of Kesten [17], R > 1 (see also [24, Corollary 12.5]),
• by a result of Guivarc’h [16], G(R) is finite (see also [24, Theorem 7.8]).

Following the notations of [8], we define I(k)(r) by

(1.2) I(k)(r) =
∑

x1,...,xk∈Γ

G(e, x1|r)G(x1, x2|r)...G(xk−1 , xk|r)G(xk , e|r).

The sums I(k) are related to the kth derivatives of the Green function. Precisely, by
[15, Proposition 1.9], I(1)(r) = rG′(r) +G(r) and similar formulae hold for higher
derivatives. Following [8], we say that the random walk driven by µ is divergent if
I(1)(R), or equivalently G′(R), is infinite. We say that it is convergent otherwise.

Assume from now on that Γ = Γ1 ∗ Γ2. We define for i = 1, 2

(1.3) I
(k)
i (r) =

∑

x1,...,xk∈Γi

G(e, x1|r)G(x1 , x2|r)...G(xk−1 , xk|r)G(xk , e|r)

and we set

(1.4) J (k)(r) = I
(k)
1 (r) + I

(k)
2 (r).

Still following [8], we say that the random walk driven by µ is spectrally positive

recurrent if it is divergent and if J (2)(R) is finite.
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For i = 1, 2, we also consider the first return kernel pΓi,r to Γi associated with rµ
(see (2.2) for a proper definition). Then, pΓi,r defines a transition kernel on Γi and
we denote by Ri(r) the inverse of its spectral radius. We say that the random walk
driven by µ is spectrally degenerate along Γi if Ri(R) = 1. When both R1(R) and
R2(R) are bigger than 1, we say that the random walk is spectrally non-degenerate.

Roughly speaking, when the random walk is spectrally degenerate along Γi, the
free factor Γi has strong influence on its asymptotic behavior; we refer to [9] and
[10] for further details. This notion should be compared with what is called "typical
case" in [24], where another way of measuring influence of a free factor is given. By
[9, Proposition 2.9], these two notions coincide, i.e. the "typical case" corresponds
to the case of a spectrally non-degenerate random walk.

All these quantities and definitions can be generalized to the context of relatively
hyperbolic groups, replacing free factors with the appropriate notion of maximal
parabolic subgroups. The current classification of local limit theorems on relatively
hyperbolic groups is as follows. When the random walk is spectrally non-degenerate,
the local limit has the form (1.1), with α = 3/2 [9]. This was first proved by Woess
[23] for random walks on free products in the "typical case" situation. When the
random walk is spectrally positive recurrent, we can only prove the rough estimate
µ∗n(e) ≍ R−nn−3/2, which means that the ratio of the quantities on the left and
right hand-side is bounded away from 0 and infinity [8]. When the random walk is
convergent and parabolic subgroups are virtually abelian, the local limit theorem
has the form (1.1), with α = d/2, where d is the minimal rank of a parabolic
subgroup along which the random walk is spectrally degenerate [11]. Moreover, in
this situation, one can only have d ≥ 5.

Thus, we recover so far the classification given in [7] and presented above. Fur-
thermore, up to the present paper, for free products of the form Z

d1 ∗ Zd2 the case
of a divergent and not spectrally positive recurrent random walk was considered as
not being able to occur, see [7, Lemma 4.5]. As announced, we disprove here this
result and we actually construct such a random walk on Γ = Z

3 ∗ Zd, with d = 5
or 6. As a consequence, the classification of possible behaviors of µ∗n needs to be
completed. We also derive a local limit theorem for the random walk we construct.
This is the first step into this program.

Theorem 1.1. Let Γ = Γ1∗Γ2, with Γ1 = Z
3, Γ2 = Z

d and d ∈ {5, 6}. For i = 1, 2,
let µi be a finitely supported, admissible and symmetric probability measure on Γi.

For α ∈ [0, 1], let µα be the probability measure µα = αµ1 + (1− α)µ2 on Γ. Then,

there exists α∗ ∈ (0, 1) such that the random walk driven by µα∗
is divergent and

not spectrally positive recurrent.

When either µ1 or µ2 is aperiodic, the same property holds for µα. From now
on, in order to simplify the argument, we assume that both measures µ1 and µ2 are
aperiodic; this allows us to avoid to consider several sub-cases for the estimation
of the Green functions associated with the corresponding random walks on Γ1 and
Γ2, see (4.1) and (4.9) below.

Theorem 1.2. Assume that the measures µ1 and µ2 are aperiodic. Then, the

random walk on Γ driven by µα∗
given by Theorem 1.1 satisfies the following local

limit theorem: If d = 5, we have

µ∗n
α∗
(e) ∼ CR−nn−5/3
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and if d = 6, we have

µ∗n
α∗
(e) ∼ CR−nn−3/2 log(n)−1/2,

where R is the inverse of the spectral radius of µα∗
.

Without assuming aperiodicity, the same asymptotics hold for µ∗2n, since µ is
symmetric, so its period must be 1 or 2.

Let us state that to our knowledge, the asymptotic for d = 6 in Theorem 1.2
gives the first example of a local limit theorem on a non-amenable group which is
not of the form (1.1). For amenable groups, the situation is quite different and
there exist many examples where µ∗n(e) behaves like exp(−nc).

Up to a sub-exponential error term, this is the case for all polycyclic groups of
exponential growth [21], [1, Theorem 1] and for amenable Baumslag-Solitar groups
[20, Theorem 5.2 (5.2)], with c = 1/3. This is also the case for lamplighter groups
of the form A ≀ Zd, where A is a finite non-trivial group [20, Theorem 5.2 (5.6)],
with c = d/(d+ 2). Note that amenable Baumslag-Solitar groups and lamplighter
groups are examples of solvable non-polycyclic groups.

For d = 1, a precise local limit theorem for the lamplighter group of the form
µ∗n(e) ∼ Cn1/6exp(−n1/3) was proven by Revelle [19]. This was further extended
to Diestel-Leader graphs DL(q, r) by Bartholdi, Neuhauser and Woess, see [4, The-
orem 5.4] and [3, Corollary 5.26]. Diestel-Leader graphs are not amenable when
q 6= r, since the spectral radius of the simple random walk is smaller than 1, see
[4, (1.3)]. Thus, the examples of [4] and [3] already provide local limit theorems
which are not of the form (1.1) but of the form µ∗n(e) ∼ CR−nexp(−nc)nα for non-
amenable graphs. However, according to [12, Theorem 1.4] when q 6= r, DL(q, r) is
not quasi-isometric to the Cayley graph of a finitely generated group.

We also refer to [6] where many other examples are given, beyond the class of
amenable groups. Asymptotics are only given there for − logµ∗n(e) though. Thus,
for non-amenable groups, these examples only recover the fact that R > 1.

We now briefly outline the content of our paper. In Section 2, we give various
characterizations of spectral degeneracy in terms of quantities that are suited to the
study of random walks on free products. Along the way, we introduce functions and
quantities defined in [24]. The conclusion of this section is a useful characterization
of spectral degeneracy and divergence in terms of the sign of a single quantity, see
precisely Corollary 2.5.

In Section 3, we use Corollary 2.5 to prove Theorem 1.1, that is, we construct a
probability measure µ on Z

3 ∗Zd, d = 5 or 6, which is divergent but not spectrally
positive recurrent. We will actually construct a family of probability measure µα

and exhibit a phase transition at some α∗. The measure µα∗
will have the required

properties.
Finally, Section 4 is devoted to derive a local limit theorem for µα∗

, thus proving
Theorem 1.2. This is done by first finding precise asymptotics of the derivative of the
Green function Gr(e, e) as r → R and then using Karamata’s Tauberian theorem.
Most of the intermediate results in this section are of geometric nature and we
believe it should be possible to extend them to relatively hyperbolic groups, with
(possibly challenging) new arguments replacing those that rely on the combinatorial
structure of free products.
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2. Characterizations of spectral degeneracy in free products

Let Γ = Γ1 ∗ Γ2 be a free product of two groups. Consider finitely supported,
symmetric and admissible probability measures µ1 and µ2 on Γ1 and Γ2 respectively.
For α ∈ [0, 1], set

µα = αµ1 + (1 − α)µ2.

In the sequel, we write µ for µα and we set α1 = α and α2 = (1−α). If αi > 0, the
probability measure µ is finitely supported, symmetric and admissible on Γ. Such
a probability measure is called adapted to the free product structure. We denote
by R the inverse of the spectral radius of µ and by Ri the inverse of the spectral
radius of µi.

The Green functions G, G1 and G2 of µ, µ1 and µ2 respectively are related as
follows. For i = 1, 2, for every x, y ∈ Γi, for every r ≤ R,

(2.1)
G(x, y|r)
G(e, e|r) =

Gi(x, y|ζi(r))
Gi(e, e|ζi(r))

,

where ζi is a continuous function of r, see [24, Proposition 9.18] for an explicit
formula. We always have ζi(R) ≤ Ri and for r < R, ζi(r) < Ri.

We denote by pΓi,r the first return transition kernel to Γi associated with rµ,
which is defined as

(2.2) pΓi,r(x, y) =
∑

n≥1

∑

z1,...,zn/∈Γi

rnµ(x−1z1)µ(z
−1
1 z2)...µ(z

−1
n y).

We denote by GΓi,r the Green function associated with pΓi,r. By [10, Lemma 4.4],
for every x, y ∈ Γi, it holds

(2.3) GΓi,r(x, y|1) = G(x, y|r),
which is actually the main reason for introducing pΓi,r.

In fact, because µ is adapted to the free product structure, if the random walk
ever leaves Γi at some point x, it can only come back to Γi at the same point x.
We deduce that the first return kernel pΓi,r can be written in our context as

pΓi,r(e, x) = αirµi(x) + wiδe,x,

where wi = wi(r) is the weight of the first return to e associated to rµ, starting with
a step driven by αjµj , j 6= i. Thus, [24, Lemma 9.2] shows that for any x, y ∈ Γi,

(2.4) GΓi,r(x, y|t) =
1

1− wit
Gi

(

x, y

∣

∣

∣

∣

αirt

1− wit

)

.

In particular, for t = 1,

GΓi,r(x, y|1) =
1

1− wi
Gi

(

x, y

∣

∣

∣

∣

αir

1− wi

)

Since GΓi,r(x, y|1) = G(x, y|r), we recover (2.1) with

ζi(r) =
αir

1− wi
.

Recall that following [10], we say that the random walk is spectrally degenerate
along Γi if the spectral radius of the first return kernel pΓi,R is 1. In this section,
we prove equivalent conditions to spectral degeneracy, using the more standard
terminology for free products introduced in [24, Chapter 9].
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The following characterization is proved in [9, Proposition 2.9]. We detail it here
for convenience.

Lemma 2.1. The random walk is spectrally degenerate along Γi if and only if

ζi(R) = Ri.

Proof. By applying (2.4) with t = 1 + ǫ and r = R, we get

GΓi,R(x, y|1 + ǫ) =
1

1− wi(1 + ǫ)
Gi

(

x, y

∣

∣

∣

∣

αiR(1 + ǫ)

1− wi(1 + ǫ)

)

.

The condition ǫ > 0 yields αiR(1+ǫ)
1−wi(1+ǫ) >

αiR
1−wi

= ζi(R). Thus, there exists t > 1 such

that GΓi,R(x, y|t) is finite if and only if there exists z > ζi(R) such that Gi(x, y|z)
is finite, which concludes the proof. �

In [24], the situation where ζi(R) < Ri for i = 1, 2 is called the "typical case".
Thus, Lemma 2.1 shows that this typical case corresponds to being spectrally non-
degenerate.

Lemma 2.2. For all r ≤ R, we have ζi(r)Gi(ζi(r)) = αirG(r).

Proof. Let us introduce the quantities U and Ui, i = 1, 2, defined by

U(r) = U(e, e|r) =
∑

n≥0

P((first return time of the µ-random walk to e) = n)rn

and

Ui(r) = Ui(e, e|r) =
∑

n≥0

P((first return time of the µi-random walk to e) = n)rn.

By [24, Lemma 1.13 (a)], G(r)(1 − U(r)) = Gi(r)(1 − Ui(r)) = 1. Following [24,
Proposition 9.18 (b)], the weight wi may be written as wi = U(r) −Hi(r), where
Hi satisfies the equation

G(r)Hi(r)

1 +G(r)Hi(r)
= Ui(ζi(r)),

i.e. G(r)Hi(r)(1 − Ui(ζi(r))) = Ui(ζi(r)). The equality Gi(1− Ui) = 1 yields

G(r)Hi(r)

Gi(ζi(r))
=

Gi(ζi(r)) − 1

Gi(ζi(r))
,

i.e.

(2.5) 1 +G(r)Hi(r) = Gi(ζi(r)).

Consequently, since G(1− U) = 1,

ζi(r) =
αir

1− wi
=

αir

1− U(r) +Hi(r)
=

αirG(r)

1 +G(r)Hi(r)
,

so by (2.5),

ζi(r) =
αirG(r)

Gi(ζi(r))
. �

Let us now introduce the notations θ = RG(R), θi = RiG(Ri), i = 1, 2 and

θ = min{θi/αi}. These parameters play a crucial role in the study of the Green
function on free products in [24, Chapter 9]. In particular, by [24, Theorem 9.19],

it holds that θ ≤ θi/αi, i = 1, 2, so θ ≤ θ.
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The following statement gives a characterization of spectral degeneracy in terms
of θ and θ

Lemma 2.3. The random walk is spectrally degenerate along Γi if and only if

θ = θ = θi/αi.

Proof. Assume that θ = θ = θi/αi, i.e. RG(R) = RiGi(Ri)/αi. By Lemma 2.2, we
thus have

ζi(R) = Ri
Gi(Ri)

Gi(ζi(R))
.

Since ζi(R) ≤ Ri, we deduce that Gi(Ri) ≥ Gi(ζi(R)) and so ζi(R) ≥ Ri. Finally,
ζi(R) = Ri and so the random walk is spectrally degenerate along Γi by Lemma 2.1.

Conversely, if the random walk is spectrally degenerate along Γi, then ζi(R) = Ri

by Lemma 2.1. This implies Gi(ζi(R)) = Gi(Ri). Consequently,

Ri = ζi(R) =
αiRG(R)

Gi(ζi(R))
=

αiRG(R)

Gi(Ri)
.

Therefore, RiGi(Ri)/αi = RG(R), i.e. θ = θi/αi. Combining this with the inequal-
ity θ ≤ θ, we finally obtain θ = θ. �

Following [24, Chapter 9], let us introduce two functions Φ and Ψ which are very
useful in the context of free products.

On the one hand, he function Φ is defined implicitly by the formula

G(r) = Φ(rG(r))

for every r ≤ R. This function is defined in general on an open neighborhood (inside
the complex plane) of the interval [0, θ). Since G(R) is finite, it is also defined on
[0, θ].

On the other hand, we set Ψ(t) = Φ(t)−tΦ′(t). By [24, (9.14)], letting t = rG(r),
we have

Ψ(t) =
1

rU ′(r) + 1− U(r)

=
1

1 +
∑

n≥0(n− 1)P((first return time of the µ-random walk to e) = n)rn
.

In particular Ψ is strictly decreasing on the interval [0, θ] and satisfies Ψ(t) < 1 for
t > 0 and Ψ(0) = 1. The equality G(r)(1 − U(r)) = 1 readily implies that

(2.6) Ψ(t) =
G(r)2

rG(r)′ +G(r)
.

Thus, Ψ(θ) = 0 if and only if G′(R) = ∞, since G(R) is finite.
In our context of free products Γ = Γ1 ∗ Γ2, we have by [24, Theorem 9.19]

(2.7) Φ(t) = Φ1(α1t) + Φ2(α2t)− 1

and

(2.8) Ψ(t) = Ψ1(α1t) + Ψ2(α2t)− 1.

Thus, both functions Φ and Ψ can be extended on [0, θ] and Ψ is still continuous

and strictly decreasing on [0, θ].

Lemma 2.4. The random walk is spectrally degenerate if and only if Ψ(θ) ≥ 0.

Moreover, G′(R) is infinite if and only if Ψ(θ) ≤ 0.
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Proof. This statement is a consequence of [24, Theorem 9.22].
Assume first that Ψ(θ) < 0, hence by [24, Theorem 9.22], it holds θ < θ and

by Lemma 2.3, this implies that the random walk is not spectrally degenerate.
Moreover, in this case θ is the unique solution of Ψ(t) = 0 in (0, θ). In particular
Ψ(θ) = 0, hence G′(R) is infinite.

Assume now Ψ(θ) ≥ 0. Then, [24, Theorem 9.22] implies θ = θ and so the
random walk is spectrally degenerate. On the one hand, if Ψ(θ) > 0, then Ψ(θ) > 0
and so G′(R) is finite. On the other hand, if Ψ(θ) = 0, then Ψ(θ) = 0 and so G′(R)
is infinite. �

Let us conclude this section by summarizing the situation as follows.

Corollary 2.5. We have the following trichotomy.

• If Ψ(θ) < 0, the random walk is spectrally non-degenerate and divergent.

• If Ψ(θ) = 0, the random walk is spectrally degenerate and divergent.

• If Ψ(θ) > 0, the random walk is spectrally degenerate and convergent.

3. A divergent not spectrally positive recurrent random walk

In this section, we construct an adapted random walk on Γ = Z
3 ∗ Z

d, d = 5
or 6, which is divergent but not spectrally positive recurrent. Such a random
walk is necessarily spectrally degenerate and corresponds to the second case in
Corollary 2.5.

3.1. Several erroneous lemmas. We first restate [7, Lemma 4.5] (switching the
indices 1 and 2) and then explains how it leads to a contradiction. This contradic-
tion is what alerted us in the first place. The flaw in the argument is quite subtle
and we will come back to it in Section 3.3.

Erroneous Lemma 3.1. [7, Lemma 4.5] Assume that θ = θ = θ2/α2 and that

G′
1(ζ1(R)) and G′

2(R2) are finite, then if Ψ(θ) = 0, Φ′′(θ) is finite.

By [15, Proposition 1.9], the sum I(1) defined by (1.2) satisfies

(3.1) I(1)(r) = rG′(r) +G(r).

Similarly, letting for i = 1, 2

I
(1)
Gi

(ζi(r)) =
∑

x∈Γi

Gi(e, x|ζi(r))G(x, e|ζi(r)),

we have

(3.2) I
(1)
Gi

(ζi(r)) = ζi(r)G
′
i(ζi(r)) +Gi(ζi(r)), i = 1, 2.

By induction, similar formulae hold for higher derivatives, see [8, Lemma 3.2]. In
the sequel, we will use in particular the one concerning the second derivatives :

(3.3) 2rI(2)(r) = 2rG(r) + 4r2G′(r) + r3G′′(r).

First, by [10, Proposition 6.3], the quantity

I
(1)
i =

∑

x∈Γi

G(e, x|R)G(x, e|R)
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is finite. Using (2.1), we deduce that I
(1)
Gi

(ζi(r)) is finite. Consequently, for i = 1, 2,
we have by (3.2)

(3.4) G′
i(ζi(R)) < ∞.

Now, by Lemmas 2.1 and 2.3, the equality θ = θ2/α2 implies that the random
walk is spectrally degenerate along Γ2 and so ζ2(R) = R2. Finally, G′

1(ζ1(R)) and
G′

2(R2) are both finite.

Second, we need an explicit form of Φ′′. The equality

G(r) = Φ(rG(r))

readily implies

G′(r) = (rG(r))′Φ′(rG(r)) = (rG′(r) +G(r))Φ′(rG(r))

and

G′′(r) = (rG(r))′′Φ′(rG(r)) + ((rG(r))′)2Φ′′(rG(r))

=
rG′(r)G′′(r) + 2G′(r)2

rG′(r) +G(r)
+ (rG′(r) +G(r))2Φ′′(rG(r)).

Consequently,

(3.5) Φ′′(rG(r)) =
G(r)G′′(r) − 2G′(r)2

(rG′(r) +G(r))3
.

In particular, for r = R, we obtain

Φ′′(θ) =
G(R)G′′(R)− 2G′(R)2

(RG′(R) +G(R))3
.

Therefore, if G′(R) is finite, then Φ′′(θ) is finite if and only if G′′(R) is finite.
Now, differentiating twice Equation (2.7), we get

(3.6) Φ′′(t) = α2
1Φ

′′(α1t) + α2
2Φ

′′(α2t),

which implies that Φ′′(θ) is finite if and only if Φ′′
1(α1θ) and Φ′′

2(α2θ) are both finite.

Finally, by Corollary 2.5, the condition Ψ(θ) = 0 is equivalent to the fact that the
random walk driven by µ is spectraly degenerate and divergent. Thus, Erroneous
Lemma 3.1 can be written as follows.

Erroneous Lemma 3.2 (Alternative version of Erroneous Lemma 3.1). Assume

the random walk driven by µ is spectrally degenerate along Γ2. If G′(R) is infinite,

then G′′
2 (R2) is finite.

A more general statement also appeared in a first version of [11], which led the
authors to modify their statement. Define for i = 1, 2,

I
(2)
Gi

(ζi(r)) =
∑

x,y∈Γi

Gi(e, x|ζi(r))G(x, y|ζi(r))G(y, e|ζi(r)).

By (2.1), the quantity J (2) defined in (1.4) can be written as

(3.7) G(r)3J (2)(r) = G1(ζ1(r))
3I

(2)
G1

(ζ1(r)) +G2(ζ2(r))
3I

(2)
G2

(ζ2(r)).

In particular, J (2)(R) is finite if and only if I
(2)
G1

(ζ1(R)) and I
(2)
G2

(ζ2(R)) are both

finite. Applying (3.3) to Gi, we have that

(3.8) 2ζi(r)I
(2)
Gi

(ζi(r)) = ζi(r)Gi(ζi(r)) + 4ζi(r)
2G′

i(ζi(r)) + ζi(r)
3G′′

i (ζi(r)).
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Since Gi(ζi(R)) and G′
i(ζi(R)) must be finite by (3.4), we deduce that

(3.9) J (2)(R) < ∞ iff G′′
i (ζi(R)) < ∞, i = 1, 2.

Thus, this lemma is a special case of the following wrong statement that appeared
in a first version of [11].

Erroneous Lemma 3.3 (Generalized version of Erroneous Lemma 3.1). In the

context of relatively hyperbolic groups with respect to virtually abelian subgroups, if

G′(R) is infinite, then J (2)(R) is finite, i.e. the random walk is spectrally positive

recurrent.

3.2. Constructing counterexamples. Let us disprove Erroneous Lemma 3.1.
From now on, we set α1 = α and α2 = 1− α. First, note that there exists αc such
that

• if α < αc, then θ = θ2/α2 < θ1/α1,
• if α = αc, then θ = θ1/α1 = θ2/α2,
• if α > αc, then θ = θ1/α1 < θ2/α2.

Therefore,

• if α < αc, then α
1−αθ2 < θ1 and Ψ(θ) = Ψ1

(

α
1−αθ2

)

+Ψ2(θ2)− 1.

• if α = αc, then Ψ(θ) = Ψ1(θ1) + Ψ2(θ2)− 1.
• if α > αc, then 1−α

α θ1 < θ2 and Ψ(θ) = Ψ1(θ1) + Ψ2

(

1−α
α θ1

)

− 1.

As a consequence, the function α 7→ Ψ(θ) is continuous, see also [7, Lemma 7.1].

We now set Γ = Z
d1 ∗ Z

d2 and we consider symmetric admissible and finitely
supported probability measures µi on Γi = Z

di , i = 1, 2. It is well known that
we have µ∗2n

i (e) ∼ CiR
−2n
1 n−di/2, see for instance [24, Theorem 13.12]. Now we

choose d1 and d2 in such a way that

• Gi(Ri) is finite, i = 1, 2,
• G′

1(R1) is infinite but G′
2(R2) is finite,

• G′′(R2) is infinite.

These three conditions, together with the fact that R1 = R2 = 1 impose that d1 = 3
or 4 and d2 = 5 or 6. From now on, we set d1 = 3 and we write d = d2 ∈ {5, 6}.
In terms of the functions Φi and Ψi, it holds Ψ1(θ1) = 0, Ψ2(θ2) > 0 and Φ′′

2(θ2) is
infinite.

It follows that Ψ(θ) = 0 when α = 1, that Ψ(θ) = Ψ2(θ2) > 0 when α = 0 and

that Ψ(θ) = Ψ2(
1−α
α θ1)− 1 < 0 when α ∈ [αc, 1). Thus by continuity, there exists

α∗ ∈ (0, αc) such that Ψ(θ) = 0 when α = α∗. This yields for this value α∗ of the
parameter α

θ = θ = θ2/α2 < θ1/α1, with α1 = α∗ and α2 = 1− α∗.

In other words, the random walk driven by µα∗
is spectrally degenerate along

Γ2 = Z
d but not along Γ1 = Z

3. As a consequence, ζ1(R) < R1 and so G′(ζ1(R))
is finite. The assumptions of Erroneous Lemma 3.1 are hence satisfied, so it would
imply that Φ′′(θ) is finite, so Φ′′

2 (θ2) is finite by (3.6). This is a contradiction, so
we disproved Erroneous Lemma 3.1.

Notice that the probability measure µα∗
satisfies the following properties.

(1) the random walk is spectrally degenerate along Γ2 = Z
d,

(2) the random walk is not spectrally degenerate along Γ1 = Z
3,
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(3) Ψ(θ) = 0, hence the random walk driven by µα∗
is divergent,

(4) Φ′′
2 (θ2) is infinite, i.e. G′′

2(ζ2(R)) is infinite. Thus J (2) is infinite by (3.9)
and the random walk driven by µα∗

is not spectrally positive recurrent.

If we assume that µ1 or µ2 is aperiodic, i.e. µ∗n
1 (e) or µ∗n

2 (e) is positive for large
enough n, then µα is also aperiodic for every α. This can be obtained for instance
assuming that µ1(e) and µ2(e) are positive, i.e. by considering lazy random walks
on the free factors. This ends the proof of Theorem 1.1. �

We thus exhibited a phase transition at α = α∗, where the sign of Ψ(θ) changes,
so does the behavior of the random walk by Corollary 2.5. Moreover, the following
holds.

• When Ψ(θ) < 0, the random walk is spectrally non-degenerate and by [9,
Theorem 1.1],

µ∗n(e) ∼ CR−nn−3/2.

• when Ψ(θ) > 0, the random walk is convergent, hence spectrally degenerate.
By [10, Proposition 6.1], it cannot be spectrally degenerate along Z

3. In
this case, it holds by [11, Theorem 1.3]

µ∗n(e) ∼ CR−nn−d/2.

As claimed in the introduction, at the phase transition α = α∗, the local limit
theorem has an again different form. This is the purpose of Section 4.

3.3. Identifying the mistakes in Erroneous Lemmas. The mistake in the
former version of [11] when proving Erroneous Lemma 3.3 was to assume that the
spectral radius ρH,r of the first return transition kernel pH,r defined in (2.2) were
differentiable at r = R. However, this differentiability property is only proved for
convergent random walks.

The issue in [7] is more subtle. The authors write ζi(r) = ζi(R)+Xi(r) and first
find a linear system of the form

C
(i)
1 X1(r) + C

(i)
2 X2(r) + o

(

R− r
)

= LPi(r),

i = 1, 2, where LPi is a linear polynomial function. Then, they derive a contra-
diction from this linear system, using the assumptions of Erroneous Lemma 3.1.
On Page 19 of [7], they expand (ζi(R) + Xi(r))

n and then switch two sums to

identify the coefficients C
(i)
j , see precisely [7, (4.8)]. However, switching sums is

not legitimate, because the coefficients in front of Xj(r)
kjXi(r)

ki involve successive
derivatives of the Green function Gj at ζj(R) and these successive derivatives can

be infinite. This is typically the case when assuming that Φ′′(θ) is infinite and
θ = θ2/α2 = θ, in which case the second derivative of G2 at ζ2(R) is infinite.

In any case, in both [7] and [11], the spotted invalid arguments are only related
to the proofs of Erroneous Lemma 3.1 and Erroneous Lemma 3.3 and do not affect
the remainder of the papers.

4. Local limit theorems

We consider from now on the adapted probability measure µα∗
on Z

3 ∗Zd, with
d = 5 or 6. The random walk driven by µα∗

is spectrally degenerate along Z
d,

divergent, but not spectrally positive recurrent. Now that α is fixed, we write
µ = µα∗

for simplicity.
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For simplicity, we assume that µ1 and µ2 are aperiodic, i.e. µ∗n
1 (e) and µ∗n

2 (e)
are positive for large enough n, so that µ is also aperiodic. Our goal is to prove
Theorem 1.2.

4.1. Asymptotic differential equations. By (3.1) and (3.3), the two quantities
I(1)(r) and I(2)(r) are related to the first and second derivatives of the Green
function G. Similarly, by (3.7) and (3.8), the quantity J (2) is related to the second
derivatives of the Green functions Gi, i = 1, 2. One of the main results in [8] in the
context of relatively hyperbolic group is the following rough formula that links the
quantities I(2), I(1) and J (2) :

I(2)(r) ≍
(

I(1)(r)
)3

J (2)(r)

which means that the ratio of these two quantities is bounded from above and
below.

In the context of adapted measures on free products, the above rough estimates
≍ can be improved to the more accurate asymptotics ∼ as follows.

Proposition 4.1. Consider an adapted probability measure µα on Γ = Γ1 ∗ Γ2,

with 0 < α < 1 and assume that G′(R) = ∞. Then, there exist constants C, c1, c2
and C′ such that the following holds. As r → R, we have

G′′(r) ∼ C (G′(r))
3
(

c1G
′′
1

(

ζ1(r)
)

+ c2G
′′
2

(

ζ2(r)
)

− C′

)

.

In particular, if G′′
1(ζ1(R)) is finite and G′′

2 (ζ2(R)) is infinite, there exists C such

that

G′′(r) ∼ C (G′(r))
3
G′′

2(ζ2(r)).

Proof. On the one hand, by (3.5) it holds

Φ′′(rG(r)) =
G(r)G′′(r) − 2G′(r)2

(rG′(r) +G(r))3
.

The term 2G′(r)2

(rG′(r)+G(r))3 converges to 0 as r tends to R and G(r) converges to G(R)

which is finite. Thus,

Φ′′(rG(r)) ∼ G(R)G′′(r)

R3G′(r)3
, r → R.

On the other hand, by (2.7) and Lemma 2.2

Φ′′(rG(r)) = α2
1Φ

′′
1 (α1rG(r)) + α2

2Φ
′′
2 (α2rG(r))

= α2
1Φ

′′
1 (ζ1(r)G1(ζ1(r))) + α2

2Φ
′′
2 (ζ2(r)G2(ζ2(r))).

Therefore, (3.5) applied this time to the Green functions Gi yields

Φ′′(rG(r)) ∼ c1G
′′
1 (ζ1(r)) + c2G

′′
2 (ζ2(r)) − C′,

with

ci = α2
i

Gi(ζi(R))

(ζi(R)G′
i(ζi(R)) +Gi(ζi(R)))3

, i = 1, 2

and

C′ =
2α2

1G
′
1(ζ1(R))2

(

ζ1(R)G′
1(ζ1(R)) +G1(ζ1(R))

)3 +
2α2

2G
′
2(ζ2(R))2

(

ζ2(R)G′
2(ζ2(R)) +G2(ζ2(R))

)3 .
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This concludes the proof. �

We also prove the following result. Recall that the quantities I
(k)
i are defined

in (1.3).

Lemma 4.2. Consider an adapted probability measure µα on Γ = Γ1 ∗ Γ2, with

0 < α < 1 and assume that G′(R) = ∞. Then, there exists C such that for i = 1, 2

d

dr

(

r2I
(1)
i (r)

)

∼ CG′(r)I
(2)
i (r).

Proof. We write

r2I
(1)
i (r) =

∑

x∈Γi

rG(e, x|r)rG(x, e|r).

Using (3.1) twice,

d

dr

(

r2I
(1)
i (r)

)

= r
∑

x∈Γi

∑

y∈Γ

G(e, y|r)G(y, x|r)G(x, e|r)

+ r
∑

x∈Γi

∑

y∈Γ

G(e, x|r)G(x, y|r)G(y, e|r).

Fix i ∈ {1, 2} and y ∈ Γ. Denote by z the projection of y on Γi. In other words, y
may be written in its normal form as

y = zy1y2...yn,

where y1 ∈ Γ1 if z ∈ Γ2 and conversely. Since the random walk is adapted, it has
to pass through z before reaching y. In other words,

G(e, y|r)
G(e, e|r) =

G(e, z|r)
G(e, e|r)

G(z, y|r)
G(e, e|r) ,

see also [22, (3.3)]. Therefore,

G(e, y|r) = 1

G(e, e|r)G(e, z|r)G(z, y|r)

and similarly,

G(y, x|r) = 1

G(e, e|r)G(y, z|r)G(z, x|r).

Thus, setting Γz to be the set of y ∈ Γ which project on Γi at z, we get
∑

y∈Γ

G(e, y|r)G(y, x|r) = 1

G(e, e|r)2
∑

z∈Γi

∑

y∈Γz

G(e, z|r)G(z, y|r)G(y, z|r)G(z, x|r)

with
∑

y∈Γz

G(z, y|r)G(y, z|r) =
∑

y∈Γe

G(e, y|r)G(y, e|r)

by invariance by translation by z. In particular, for x = e,
∑

y∈Γ

G(e, y|r)G(y, e|r) = 1

G(e, e|r)2
∑

z∈Γi

∑

y∈Γz

G(e, z|r)G(z, e|r)G(z, y|r)G(y, z|r)

=
1

G(e, e|r)2
∑

z∈Γi

∑

y∈Γe

G(e, z|r)G(z, e|r)G(e, y|r)G(e, z|r).
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As a consequence,

I(1)(r) =
1

G(e, e|r)2
∑

y∈Γe

G(e, y|r)G(y, e|r)I(1)i (r)

and so for all z ∈ Γi,

I(1)(r)

I
(1)
i (r)

=
1

G(e, e|r)2
∑

y∈Γe

G(e, y|r)G(y, e|r)

=
1

G(e, e|r)2
∑

y∈Γz

G(z, y|r)G(y, z|r).

Combining all this, we get

∑

y∈Γ

G(e, y|r)G(y, x|r) = I(1)(r)

I
(1)
i (r)

∑

z∈Γi

G(e, z|r)G(z, x|r).

Similarly,
∑

y∈Γ

G(x, y|r)G(y, e|r) = I(1)(r)

I
(1)
i (r)

∑

z∈Γi

G(x, z|r)G(z, e|r).

Consequently,

d

dr

(

r2I
(1)
i (r)

)

= r
I(1)(r)

I
(1)
i (r)

∑

x∈Γi

∑

z∈Γi

G(e, z|r)G(z, x|r)G(x, e|r)

+ r
I(1)(r)

I
(1)
i (r)

∑

x∈Γi

∑

z∈Γi

G(e, x|r)G(x, z|r)G(z, e|r),

which we rewrite
d

dr

(

r2I
(1)
i (r)

)

= 2r
I(1)(r)

I
(1)
i (r)

I
(2)
i (r).

Since G′(R) = ∞, (3.1) shows that I(1)(r) ∼ RG′(r) as r → R. Furthermore, by

[10, Proposition 6.3], the quantity I
(1)
i (R) is finite. Thus, we finally get

d

dr

(

r2I
(1)
i (r)

)

∼ 2R2

I
(1)
i (R)

G′(r)I
(2)
i (r)

as r → R, which concludes the proof. �

By combining Proposition 4.1 and Lemma 4.2, we get the following statement.

Corollary 4.3. Assuming that G′(R) is infinite, G′′
1 (ζ1(R)) is finite and G′′

2 (ζ2(R))
is infinite, there exists C such that

G′′(r)

(G′(r))2
∼ C

d

dr

(

r2I
(1)
2 (r)

)

.

Proof. By (3.4), the quantity G′
2(ζ2(R)) is finite. Applying (3.3) to G2, we get

G′′
2 (ζ2(r)) ∼ CI

(2)
2 (r).

The result thus follows from Proposition 4.1 and Lemma 4.2. �

We will also use the following result later on.
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Lemma 4.4. We have

ζ2(R)− ζ2(r) ∼ C

(

G2(ζ2(R))−G2(ζ2(r))

)

.

Proof. By (3.4), the quantity G′
2(ζ2(R)) is finite. Derivating the Green function G2

at ζ2(R) yields

G2(t) = G2(ζ2(R)) +G′
2(ζ2(R))(ζ2(R)− t) + o (ζ2(R)− t) .

Applying this at t = ζ2(r) gives the result. �

Everything is now settled to prove Theorem 1.2. We treat separately the odd
and even cases.

4.2. The case d = 5. We consider the adapted probability measure µα constructed
in Section 3 and we set α = α∗ and write µ = µα. Recall that the measures µ1

and µ2 are assumed to be symmetric, admissible, aperiodic and finitely supported
on Γ1 = Z

3 and on Γ2 = Z
5 respectively. In particular, R1 = R2 = 1 by [24,

Corollary 8.15] and

• the random walk is not spectrally degenerate along Γ1, so G′′
1(ζ1(R)) is

finite,
• it is spectrally degenerate along Γ2, so ζ2(R) = R2 == 1,
• G2(1) and G′

2(1) are finite but G′′
2 (1) is infinite,

• G′(R) is infinite.

Moreover, the function G′′
2 (t) has the following asymptotic expansion at 1 :

(4.1) G′′
2(t) ∼ C1

1√
1− t

, as t → 1. 1

By applying Corollary 4.3, there exists C2 > 0 such that as r → R,

G′′(r)

(G′(r))2
∼ C2

d

dr

(

r2I
(1)
2 (r)

)

.

Integrating this asymptotic differential equation between r and R and using the
fact that G′(R) = ∞ yields

1

G′(r)
∼ C2R

2I
(1)
2 (R)− C2r

2I
(1)
2 (r)

= C2r
2
(

I
(1)
2 (R)− I

(1)
2 (r)

)

+ C2(R
2 − r2)I

(1)
2 (R).

(4.2)

Indeed,

1

G′(r)
= C2R

2I
(1)
2 (R)− C2r

2I
(1)
2 (r) +

∫ R

r

o

(

G′′(ρ)

(G′(ρ))
2

)

dρ.

For every ǫ > 0, there exists r0 such that if r ≥ r0, we have
∣

∣

∣

∣

∣

o

(

G′′(r)

(G′(r))
2

)
∣

∣

∣

∣

∣

≤ ǫ

(

G′′(r)

(G′(r))
2

)

1This follows from the classical local limit theorem µ∗n
2

(e) ∼ Cn−5/2 given for instance by
[24, Theorem 13.12] and from Karamata’s Tauberian theorem [5, Corollary 1.7.3]. See also [24,
Proposition 17.16] where the singular expansion at 1 of the Green function is given for simple
random walks on Z

d.
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and so
∣

∣

∣

∣

∣

∫ R

r

o

(

G′′(r)

(G′(r))
2

)

dρ

∣

∣

∣

∣

∣

≤ ǫ
1

G′(r)
.

By using (3.1) for the Green function G2, we get

d

dt
(tG2(t)) = tG′

2(t) +G2(t) =
∑

x∈Γ2

G2(e, x|t)G2(x, e|t).

For t = ζ2(r), we get I
(1)
2 (r) = ζ2(r)G

′
2(ζ2(r)) +G2(ζ2(r)). Thus,

I
(1)
2 (R)− I

(1)
2 (r) =

(

1− ζ2(r)
)

G′
2(1) +

(

G2(1)−G2(ζ2(r))
)

+ ζ2(r) (G
′
2(1)−G′

2(ζ2(r))) ,
(4.3)

with

G′
2(1)−G′

2(ζ2(r)) =

∫ 1

ζ2(r)

G′′
2 (ρ)dρ.

Therefore, by (4.1),

(4.4) G′
2(1)−G′

2(ζ2(r)) ∼ C3

√

1− ζ2(r).

According to Lemma 4.4, the two first terms in the right-hand side of (4.3) are of

order of magnitude 1−ζ2(r), while the third one has order of magnitude
√

1− ζ2(r)
by (4.4). Consequently,

(4.5) I
(1)
2 (R)− I

(1)
2 (r) ∼ C4

√

1− ζ2(r).

By Lemma 2.2, ζ2(r)G2(ζ(r)) = α2rG(r), so

α2(G(R)−G(r)) =
ζ2(R)

R
G2(ζ2(R))− ζ2(r)

r
G2(ζ2(r))

=
ζ2(R)

R
(G2(ζ2(R))−G2(ζ2(r))) +G2(ζ2(r))

(

ζ2(R)

R
− ζ2(r)

r

)

=
ζ2(R)

R
(G2(ζ2(R))−G2(ζ2(r))) +G2(ζ2(r))

(

1

R
− ζ2(r)

r

)

.

This readily implies

G(R)−G(r) ∼ C5(1− ζ2(r)) + C6(R − r).

Since G′(R) is infinite, (R− r) = o(G(R)−G(r)), hence

(4.6) G(R)−G(r) ∼ C5(1− ζ2(r)).

In particular, G(R)−G(r) = o(1), so applying 4.5, we get

I
(1)
2 (R)− I

(1)
2 (r) ∼ C7

√

G(R)−G(r).

The equality (R − r) = o(G(R) −G(r)) also yields

R2 − r2 = o
(

√

G(R)−G(r)
)

,

hence by (4.2),

(4.7)
1

G′(r)
∼ C8

√

G(R)−G(r).

Integrating between r and R, we have

(G(R) −G(r))3/2 ∼ C9(R − r).
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Re-injecting this in (4.7), we deduce that

(4.8) G′(r) ∼ C10
1

(R − r)1/3
.

We can then directly use [15, Theorem 9.1] to deduce that

µ∗n(e) ∼ C11R
−nn−5/3.

This concludes the proof of the case d = 5 in Theorem 1.2. �

4.3. The case d = 6. The proof for d = 6 is very similar. We still have that
R1 = R2 = ζ2(R) = 1, G′(R) = ∞, G′′

1(ζ1(R)) < ∞ and G′′
2 (R2) = ∞. We

can thus apply Corollary 4.3, so that (4.2) and (4.3) again holds in this situation.
Moreover, (4.1) is replaced with

(4.9) G′′
2 (t) ∼ −C1 log(1 − t), as t → 1, 2

As above, we integrate G′′
2 between ζ2(r) and ζ2(R) = 1 to obtain

G′
2(1)−G′

2(ζ2(r)) =

∫ 1

ζ2(r)

G′′
2 (ρ)dρ.

This time, using (4.9) yields

G′
2(1)−G′

2(ζ2(r)) ∼ −C2(1− ζ2(r)) log(1 − ζ2(r)).

We deduce from (4.3) that

I
(1)
2 (R)− I

(1)
2 (r) ∼ −C3(1− ζ2(r)) log(1− ζ2(r)).

Applying (4.6) and Lemma 4.4, we have

I
(1)
2 (R)− I

(1)
2 (r) ∼ −C4(G(R)−G(r)) log(G(R)−G(r)).

As above, the fact that G′(R) is infinite yields (R − r) = o(G(R) − G(r)), with
G(R)−G(r) = o(1), so

R2 − r2 = o

(

(G(R)−G(r)) log(G(R)−G(r))

)

,

hence by (4.2),

(4.10)
1

G′(r)
∼ −C5(G(R)−G(r)) log(G(R) −G(r)).

Integrating between r and R, we have

(4.11) − (G(R) −G(r))2 log(G(R)−G(r)) ∼ C6(R − r),

which we rewrite as

−(G(R)−G(r)) log(G(R) −G(r)) ∼ C6
R− r

G(R)−G(r)
.

Re-injecting this in (4.10), we deduce that

(4.12)
1

G′(r)
∼ C7

R− r

G(R)−G(r)
.

2As above, this follows from the classical local limit theorem µ∗n
2

(e) ∼ Cn−3 given for instance
by [24, Theorem 13.12] and from Karamata’s Tauberian theorem [5, Corollary 1.7.3]. See also
[24, Proposition 17.16] where the singular expansion at 1 of the Green function is given for simple
random walks on Z

d.
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Thus, by integration between r and R,

(4.13) log(G(R) −G(r)) ∼ C8 log(R− r).

By multiplying (4.10) and (4.12) and using (4.13), we get

1

G′(r)2
∼ −C9(R − r) log(R− r),

i.e.

(4.14) G′(r) ∼ C10
1

√

−(R− r) log(R − r)
.

It remains to derive from (4.14) the asymptotic behavior of µ∗n(e). In the
previous case when d = 5, the estimation (4.8) allowed us to apply directly [15,
Theorem 9.1], whose proof is based on a version of Karamata’s Tauberian Theorem
given in [5]. Due to the presence of the factor log(R − r), which does not appear
in [15], we need to detail the proof.

We introduce the power series

A(s) =
∑

n≥0

nµ∗n(e)Rnsn = (sR)G′(sR)

whose radius of convergence is 1. By [15, Corollary 9.4], there exists β > 0 such
that

(4.15) µ∗n(e)Rn = qn +O
(

e−βn
)

,

where qn is an increasing sequence. It follows from (4.14) that as s tends to 1,
∑

n≥0

nqns
n ∼ C11

1
√

−(1− s) log(1− s)
.

Applying [5, Corollary 1.7.3] to the slowly varying function s 7→ (log s)−1/2, we get

nqn ∼ C12n
−1/2 log(n)−1/2.

Thus, applying (4.15),

nµ∗n(e)Rn ∼ C12n
−1/2 log(n)−1/2

and so

µ∗n(e) ∼ C12R
−nn−3/2 log(n)−1/2.

This concludes the proof of the case d = 6 in Theorem 1.2. �
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