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Abstract. Direct kinematics (DK) is one of the most challenging prob-
lem for cable-driven parallel robot (CDPR) with sagging cables. Solving
the DK in real-time is not an issue provided that a guess of the solution
is available. But difficulties arise when all DK solutions have to be deter-
mined (e.g. in the design phase of the CDPR). Continuation and interval
analysis have been proposed to find the solutions but they are computer
intensive. A preliminary investigation on the use of classical neural net-
works (NN) for the DK has shown that they were performing poorly. We
present in this paper several methodological improvements that allows to
get on average 99.95% of the exact DK solutions in about 5 seconds. Still
this result is not completely satisfactory and we present possible axis to
obtain better results in terms of exact results and multiple solutions.

Keywords: cable-driven parallel robot · direct kinematics · neural net-
works

1 Introduction

In this paper we address the problem of finding all solutions of the DK for a 6
d.o.f. CDPR with sagging cable. The cable model is the classical Irvine textbook
planar model [11] that has been experimentally proven to be valid for usual
CDPR [19]. Provided that the length at rest L0 of the cable is known this model
provides 2 non-algebraic constraint equations for each of the n cables with as
unknowns the horizontal/vertical components Fx, Fz of the cable tension at its
attachment point B on the platform and the planar coordinates xb, zb of B
which can be derived from the 6 components of the platform pose parameters
X. Further constraints are the 6 mechanical equilibrium equations. Hence we
have 6 + 2n constraints equations for 6 + 2n unknowns (X, F i

x, F
i
z , i ∈ [1, n]) and

consequently we always get a square system that has usually multiple solutions.
An important point is that there is no known method to predict how many
DK solutions will be obtained for a given set of L0. The DK may be used
in the control law but this is not a problem as an appropriate Newton scheme
usually allows one to get the solution in real-time. In this paper we are interested
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in the DK in the design phase where some specific CDPR properties have to
calculated (e.g. the maximal cable tensions over a given workspace) very rapidly
in order to assess the performances of a given geometry. In that case we have
no a-priori knowledge of the CDPR state, meaning that for a given set of L0

we have to find all DK solutions as the considered property usually changes
with the solution. If the property is established by sampling the L0 workspace,
then a large number of DK problems will have to be solved. To the best of the
author knowledge there are only 2 methods that have been developed to fully
solve the DK: interval analysis [18] and an approach based on continuation1 [3]
that first compute all DK solutions for rigid legs and then incrementally change
the Young modulus E and linear density µ of the cable materiel from a high
value for E and a small one for µ toward their known values [17]. Unfortunately
both methods are extremely computer intensive (several hours for solving a
DK problem) and therefore cannot be used in the design phase. Therefore it
is interesting to investigate faster methods, such as neural networks, under the
constraint that all solutions are obtained but allowing for possible errors in the
X, Fx, Fz up to a limit that we have fixed arbitrarily to 5%.

2 First trials with neural networks

There are several types of neural networks (NN) but one of the most commonly
used is the multi-layer perceptron (MLP) [10]. It has an input layer, an output
layer and in-between one or several hidden layers. A layer contains different neu-
rons that receive as input a weighted sum of all the outputs of the neurons from
the previous layer and map this input to the neuron output by using an activa-
tion function. A MLP require a training set with samples that maps the input
(in our case the L0) to the desired output (here X, {Fx, Fz}). In the learning
phase of the MLP a stochastic optimizer try to find the weights that minimize a
statistical index (e.g. the Mean Squared Error (MSE)) on the errors between the
MLP outputs and the desired one over the whole training set, this index being
called the loss function. Being given an equations system F(L0,X, {Fx, Fz}) = 0
there is theoretically a MLP that can approximate accurately a function G such
that (X, {Fx, Fz}) = G(L0) but the parameters (number of layers, neurons, ac-
tivation functions, . . . ) of this MLP are not known. In our case we also have
a major issue as a MLP provides an output vector whose size is fixed: in our
case the size should reflect the number of DK solutions which is basically un-
known. Furthermore having a single MLP to obtain at the same time all the DK
solutions seems highly improbable as explained later on. Another issue is that
creating a MLP is a stochastic process so that reproducing a literature result
is difficult: however the strategy proposed in this paper should overcome this
problem. MLPs have been proposed for dealing with the DK of classical parallel

1 Continuation basically amount to incrementally increase the continuation parame-
ter(s) and to use the Newton method to compute the new solution at each step.
But the amount of increase in the parameter(s) must be carefully selected to avoid
skipping to another Newton solution.
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robots [1,4,5,7,8,12,14,20] but with very mixed results and for approximating
a single solution. More recently MLPs have been proposed for the kinematic
analysis of CDPR with elastic cables [2](DK) or sagging cables [9](DK) and[6]
(inverse kinematics). In this paper we will consider a complex case: the large 6
d.o.f. CDPR Cogiro with 8 cables. The geometry of this CDPR and the cable
characteristic are presented in [13] while the platform mass is 1 kg.

2.1 Preliminaries: the training set

We started considering MLP in 2021 and we first designed an algorithm to
provide arbitrarily large training set. Our exact methods allow us to calculate
all DK solutions for a given set of L0. We choose 8 poses distributed over the
CDPR workspace and fix the L0 as the distance between the winch output point
and the cable attachment point on the platform. We then solve exactly the DK
for the 8 sets L0j obtaining the set Sj = {S1

j , S
2
j , . . . , S

nj

j } of nj DK solutions

for the j-th L0 set. For each Sk
j of a Sj we then select a random unit vector

v in the L0 space and define a new L0 vector as L0 = L0j + λv where λ is
a parameter starting at 0 that will be used for a continuation process: a small
value, ε, is added incrementally to λ and the Newton scheme is used to obtain
the DK solutions for the current λ, using as guess the ones obtained for the
previous λ. Note that ε has not a constant value: it is adjusted at each step to
ensure that the Newton scheme converges to a solution that is coherent with the
previous solution. We initially store Sj in the learning set and we will store a
new set of DK solutions as soon as at least one of the L0 has changed by more
than 5cm with respect to the previously stored DK solution. The continuation
process stops as soon as soon as the Newton scheme does not converge for a very
small ε. The process is then repeated with a new v until an arbitrarily number
N of DK solutions has been obtained. A training set is therefore a set of files
that have been obtained by using as starting point the solution Sk

j of the set
Sj . The initial choice for Sj together with the random choice of v allows for a
good coverage of the L0 space. Furthermore we will see later on that during the
process new training sets will be added. The number of samples in the training
set may be huge as N is arbitrarily large. A training set with 144 files that
represent 72144 DK solutions is available [15].

2.2 Initial results and methods

As mentioned in the introduction we have to choose the geometry of the MLP,
i.e. the number of hidden layers, the number of neurons in the layers, the learning
rate and the activation function(s). There are no clear rules to choose these pa-
rameters but we noticed that the MLP training time was small (a few minutes)
so that we use a systematic approach by creating all MLPs with 2 to 8 layers, 2 to
202 neurons with a step size of 10 and one activation functions in a set of 5 classi-
cal activation functions (namely ReLU,LeakyReLU,CELU,GELU,Softplus). Each
combination was used for each file in the learning set. Initial results were very
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poor with 200-300% error on some of the unknowns for the 50 MLPs with the
lowest final loss. A first improvement was obtained by using hybridization: each
prediction of the MLP for a sample of the training set is used as initial guess
for the Newton method. This has led to obtain about 5% of exact solutions with
respect to all DK solutions in the whole training set. But we have noted that
the number of Newton convergences over the training set does not automatically
increase with the decrease of the loss. This may be explained as follows: around
a given solution for some essential variables the difference between the predic-
tion and their exact solution value must be very small for obtaining convergence
while for the other non-essential variables this difference may be much larger
before we get a divergence of the Newton scheme (note that the set of essential
variables is not constant, its depends upon the solution). As a decrease of the loss
may be obtained by a large decrease of the errors on the non-essential variables
together with a small increase on the errors on essential variables we may thus
obtain a lower number of Newton convergences although the loss has decreased.
We also observe that during the loss optimization some MLPs were exhibiting
small errors on some variables. This lead us to adopt a new strategy:

– during the optimization we check the number of Newton convergences after
each significant decrease of the loss and store the MLP having the highest
number of convergences denoted as main MLPs with prediction Pm

– we store the MLP having exhibited the lowest error on some variables. We
then substitute their predictions on these variables in Pm and test Newton
with these new predictions

We then noted that for each file in the training set there was large differences
in the exact Fx, Fz. We then define 12 different ranges for the Fx, Fz that cover
all their possible values and distribute the samples in 12 new training sets called
clusters. For each of the clusters we calculate new samples so that they have
approximately 500 samples and we train MLPs with this new training sets. This
has allowed us to discover about 30% of DK solutions over the whole training
set but we discover more than one solution and never more than 2 solutions only
in a few cases. Hence the above approach is still far from being satisfactory.

3 New approach for neural networks

Hybridization appears to be working but the proposed clustering method was
not very efficient and hence we have implemented a new clustering method.

3.1 New clustering approach

Let consider various sets L0j of cable lengths and their associated set of DK
solutions Sj = {S1

j , S
2
j , . . . , S

nj

j }. We may represent the Sj in a planar graph: an
horizontal line represents a given set L0j of L0 and we have nodes on this line
that represent the DK solutions for this set. We define as level the height of the
horizontal line, the bottom line having level 1 and the higher one level 8.
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Each Sk
j includes a pose Xk

j of the platform. Aspects may be defined in the
product of the X space and the L0 space as the sets of all poses that may be con-
nected by a continuous path in the L0 space, called kinematics branch. Aspects
are separated by kinematic singularities and possibly by physical limits [16]. As-
pects are much more coherent from a kinematics viewpoint than regrouping DK
solutions according to their values for Fx, Fz but computing aspects is a demand-
ing task. We therefore focus on DK solutions that can be connected by a linear
interpolation between the L0s from one level to the L0s of another level. Further-
more we impose an arbitrary limit of 100 N for each of the Fx with the purpose
of avoiding having very large changes in the Fx, Fz for very small changes in
the L0 (typically this occurs when the height of the platform become close to
the height of the winch output points). We consider two Sj , Sj1 , Sj2 at different
levels, and define a potential kinematics branch as L0 = L0j1

+ λ(L0j2
− L0j1

)
where λ is the branch parameter that lies in the range [0,1]. We then consider in
turn all DK solution Sk

j1
that will be the starting point of a continuation process

with λ as parameter. Two cases may occur:

– the continuation stops with λ = 1 so that DK solution Sk
j1

is connected to

the DK solution Sk1
j2

: we now have an edge in our graph that connect the

nodes of Sk
j1

and Sk1
j2

– the continuation encounters a singularity or one of the Fx exceed the limit
value before λ reaches 1 so that Sk

j1
is not connected to any element of Sj2

by a linear branch

After having completed all the edge calculations we get the graph presented in
figure 1. A seen in the figure we have a large number of connection between
nodes but also nodes that have no connection. We select as kinematic branches

{L1
0}

{L2
0}

DK solutions

1

Fig. 1. The graph: the black squares (called nodes) on an horizontal line represent
a DK solution for a given set of cable lengths. A line connect 2 nodes at different
horizontal levels if a continuation process based on a linear interpolation on the cable
lengths has led from the initial DK solution to the new one.
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the one emanating from the connected nodes of level 1 and going up to level
n where n is at most 8. The continuation process for building the edge has
allowed to determine multiples ordered pairs Pn = (Ln

0 ,Y
n) where Y is a DK

solution, the first point being the initial position. We select as sample Hk any
point such that |L0(P k) − L0(P k−1)| > d where d is a fixed threshold (these
samples are the black circles on figure 2). After having completed the branch we
create new samples from the Hk, represented as white circles on the figure, by
using a continuation process, the L0 moving along random unit vectors in the
L0 space (we use the same selection strategy on the changes on the L0 to store
the samples). The number of sample for each Hk is calculated so that we end
up with around 10 000 samples for each kinematic branch. For the graph nodes

Level

1

Fig. 2. The sampling of a kinematic branch

that are not connected we start directly selecting random unit vectors in the
L0 space and use a continuation process with the node as starting point. Note
that we may obtain other kinematic branches just by changing the order of the
horizontal lines so that we end up with N kinematic branches.

3.2 MLP training and results

For creating a training set for a kinematic branch we select 1 over 8 of the
samples obtained for the branch. Preliminary tests have shown that MLPs with
6 hidden layers, 70 or 80 neurons in the layers and using the activation func-
tions LeakyReLU or CELU were providing the best results. For each branch
we therefore create 4 MLPs that are exhibiting the largest number of Newton
convergences, the training time for a MLP being about 30 mn. To test the effi-
ciency of the training we check all the samples of the branch using the prediction
of the 4 MLPs as input for the Newton method. We define the success rate as
the percentage of samples for which we have obtained the exact DK solution (a
success rate of 100% implies that for all samples we get the exact DK solution).
Figure 3 shows the success rate for 32 kinematic branches. It may be seen that
the success ranges between 70 and almost 100%: this is not perfect but much
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69.51

79.66

89.81

99.96

branch

success rate

1

Fig. 3. Success rate for all samples of 32 kinematic branches: 4 MLPs prediction are
used for each sample.

better than the result we have obtained up to now, although we have used only
4 MLPs for each test.

The ultimate test will evidently be to check how many DK solutions are
found for a given set of L0. For that purpose we build a verification set as
follows: for each of the 8 full DK solutions Sj , each one having nj solutions,
we select a random unit vector v in the L0 space and move the L0 from L0j

in that direction, applying a continuation process simultaneously on each of the
DK solution until it fails for one of the solutions. During the process we store
samples using the same L0 changes strategy, all the samples having nj solutions.
We then select a new unit vector and start again until we have around 270
samples for each Sj . Note that although this process is somewhat similar to the
one used for the training sets the random choice of v in the 8-dimensional L0

space ensures that the verification set is really different from any training sets.
At the end we get a verification set with 2106 full DK solutions.

We check this verification set for N = 43 kinematics branches using 172
MLPs. Here the success rate is defined as the percentage of DK solutions that
are found relative to the expected one. We get a 66.66% success rate average with
a maximum of 100% for 7 samples (all solutions are found), a minimum of 33.33
% for 2 samples and 35 samples having a success rate ≥ 90%. Figure 4 shows
the success rate for all samples in the verification set. The average computation
time for obtaining the DK solutions for a given set of L0 is 2.36 seconds. This
time is however largely over-estimated as we mix a Pytorch model with a main
procedure written in C.

Although the success rate is not completely satisfactory these results may be
improved incrementally in two manners:

– by adding other kinematic branches. The first test with the verification set
may show what branches lead to a low number of convergences and therefore
should be complemented. For example with 456 MLPs we get an average
success rate of 87.93%. The best result has been obtained for 1154 MLPs
with a success rate of 99.955%. For the verification set with 2016 samples
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33.33

39.40

45.46

51.52

57.59

63.65

69.72

75.78

81.84

87.91

93.97

100.00

samples

1

Fig. 4. Success rate for each sample of the verification set for 43 branches

we get exactly all DK solutions for 1999 samples while the 17 remaining one
have a success over 90%.

– a given sample on a kinematic branch is supposed to have the same number
nj of DK solutions than its father Sj located at level lj . In most kinematic
branches we move from level lj to another level ln that has nn DK solution.
If nn > nj , then new DK solution(s) have to pop up during the continua-
tion process and we indeed frequently noticed that new Newton solution(s)
appear. We may thus define an intermediary level between lj and ln for con-
structing new kinematic branches. Thus our algorithm may learn from its
failures to improve the process.

Another way to evaluate the quality of the result is to look at the maximum of
the cable tensions over the whole verification set, the exact value being 103.56
N. If we look only at the exact DK solutions obtained by our algorithm with
43 MLP we get a maximal tension of 102.28 N which represents an error of
1.2% while for 1154 MLPs we get the exact value. The maximal cable tension
obtained from the 43 MLP predictions that lead to an exact solution is 212.83
N while with 1154 MLPs it is 158.94N. Hence it appears that using the exact
solutions computed by our algorithm provides a reasonably accurate evaluation
of the maximal tension while the MLPs prediction are largely over-estimating
it.

4 Other approaches

Although we get interesting results, using classical MLP may not be the only
approach. Physics-informed neural networks (PINNs) are unsupervised, model
based, neural network. We are currently trying to implement a PINN whose loss
function will be the MSE of the 22 equation values and then we will have to
manage the DK multiplicty of solutions.
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Another approach will be to use an autoencoder. The principle is to train the
NN with an output which is encoded so that its size is smaller than the one from
the original problem. Then the NN prediction is run through a decoder which
translates the prediction to the output of the original problem. Autoencoding
has been proposed mostly to reduce the learning time. In our case we are for
example currently investigating MLPs that will provide a prediction only for X
so that the end-point location of each cable is known. Then a numerical solver
or a MLP may be used to to determine the single solution in Fx, Fz of the 2
Irvine equations for a given cable.

5 Conclusion

In summary NN offer another method to solve the DK problem although a blind
use of their classical version leads to very poor result. As seen in this paper new
methodologies have to be developed to start getting interesting results. Although
the results we get are satisfactory thanks to the use of aspects we still have to
make efforts for reducing the number of used MLPs. For that purpose we have
noted than an aspect may include two different DK solutions for the same set
of L0. This induces trouble for the learning as the loss function cannot become
0. Therefore we are looking at refining the aspects by splitting them in charac-
teristic varieties, regions in which the number of DK solutions is constant. Still
with the current algorithm some properties such as the maximal cable tension
can be estimated with an acceptable accuracy.

A first drawback of the method is that we have assumed a constant platform
mass. We plan to investigate the efficiency of the MLPs that have been trained
for a mass of 1kg for managing other masses. If this efficiency is low continuation
may be used but it remains to manage the issue of varying number of solutions for
a given set of L0 as continuation does not allow to find new solutions. A second
drawback for the design phase is that we sample the workspace for checking the
property so that we may miss important changes in the property. However there
are methods (e.g. the Kantorovitch theorem) that may allow to expand the point
sample we have to a ball with bounded values for the unknowns and we plan to
investigate this inflation approach.
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