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Figure 1: ChartDetective is a system capable of recovering a chart’s underlying data by leveraging its vector representation.

Users select a vector chart and then (A, B) drag-and-drop elements that they which to extract. (C) The extracted data can be

leveraged for downstream tasks such redesigning or interacting with the figure.

ABSTRACT

Extracting underlying data from rasterized charts is tedious and in-
accurate; values might be partially occluded or hard to distinguish,
and the quality of the image limits the precision of the data being
recovered. To address these issues, we introduce a semi-automatic
system leveraging vector charts to extract the underlying data eas-
ily and accurately. The system is designed to make the most of
vector information by relying on a drag-and-drop interface com-
bined with selection, filtering, and previsualization features. A user
study showed that participants spent less than 4 minutes to accu-
rately recover data from charts published at CHI with diverse styles,
thousands of data points, a combination of different encodings, and
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elements partially or completely occluded. Compared to other ap-
proaches relying on raster images, our tool successfully recovered
all data, even when hidden, with a 78% lower relative error.
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1 INTRODUCTION

Charts are often the preferred way of presenting data because
they offload cognitive work to the visual system [45, 58]. For read-
ers, accessing the numerical data of charts unlocks a broad range
of applications: they can explore the data to better understand
it [8, 20], generate new visualizations [57, 67, 71], redesign exist-
ing charts [29, 64, 73], answer questions [39, 40, 62], and generate
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textual summaries [13, 19, 60], as well as make existing visual-
izations accessible [11, 24], interactive [43, 76], and more informa-
tive [42, 44]. Further, researchers need this data to replicate analyses
and compare results. However, despite the push for Open Science,
not all scientists publish their data. This has been particularly true
in the field of Human-Computer Interaction; an analysis of 509
CHI papers published before 2018 found that data was provided in
less than 1% of cases [1]. Much of authors’ hesitation comes from
privacy concerns and little incentive or perceived benefits [80],
suggesting they are unlikely to change their practises. Even if pro-
viding data became commonplace, the issue remains for previously
published papers for which the data has long been lost.

One solution to recover data is to analyze charts, a practice
called “chart reverse-engineering” [63]. By carefully locating series
and inferring their position in the axis coordinates, the underlying
data can be estimated. Of course, the more complex and dense the
chart, the more tedious and error-prone the process becomes. Con-
sequently, tools such as ChartSense [37] and WebPlotDigitizer [68]
offer semi-automatic features to make the process easier. The core
idea is to automate the recovery of the chart’s structure, identifying
every line, rectangle, and text in the image, and then inferring the
element’s role such as axis, series or legend.

However, most chart reverse-engineering approaches rely on
what can be seen using pixels, and all previous tools operate only
on raster images. Yet, vector graphics are commonly shared on the
web [6] or in scientific publications [12, 13]. In fact, publishers often
recommend, or even require the use of vector graphics for their
scalability without loss of resolution [33, 75]. As a result, vector
charts are ubiquitous, but their potential benefits are lost when
existing systems rasterize them [2, 18, 37, 65].

This focus on raster images is a missed opportunity to improve
chart reverse-engineering tools in terms of accuracy, usability and
performance. With raster graphics, image resolution limits the qual-
ity of the data. Even assuming perfect accuracy from the recognition
system, information is irreversibly lost, either because pixels do
not capture the full resolution of the original data or because an
element such as the legend hides part of the information. A pixel
in a raster chart may represent a fraction of a unit or millions of
units, even if the original data provided much finer resolution. The
problem is aggravated when the raster image has compression ar-
tifacts or when the chart is dense with overlapping elements. In
contrast, charts embedded as vector graphics are ideal for reverse-
engineering because they encode the complete image structure and
reference all components, even if hidden or overlapped, with an
exact position and size.

Leveraging the extra benefits provided by the vector format is
challenging because it requires understanding the specifics of the
file format, knowledge of how the chart was generated, and the
ability to access and operate vector graphics editors. In fact, little
is known about how to recover the data from vector charts, how
accurate the extracted data is compared to using raster images,
and if the extra information encoded by the format can help the
reverse-engineering process. To the best of our knowledge, only
Choudhury et al. [12] describe an approach for separating curves
from vector line charts. All other approaches focus exclusively on
raster images.

In this paper, we introduce ChartDetective, a tool to extract un-
derlying data from charts by leveraging their vector specification
(Figure 1). The approach creates an interactive pipeline to extract
data from a chart: a chart in a vector format, such as SVG and PDF,
is processed and presented in a user interface where its underlying
data is extracted using an integrated set of interactive selection,
filtering, and previsualization mechanisms. Leveraging vector in-
formation has several advantages, enabling: novel features (e.g.,
filtering mechanisms); support for a wide variety of charts such as
bar, line, scatter, and box plots; data recovery with greater accu-
racy and precision than other approaches; and extraction of charts
exhibiting challenging characteristics such as diverse styles, thou-
sands of data points, multiple encodings, and occluded elements.

Our work makes the following contributions: (1) Highlight of the
advantages of vector graphics over raster images from a theoretical
perspective. (2) Design and implementation of a tool to extract
underlying data from vector charts demonstrating how using a
vector representation enables new features and results in high-
quality underlying data. (3) Experiment results showing the system
is usable when extracting charts with challenging properties from
real scientific publications. (4) A technical evaluation using a dataset
of synthetic and in-the-wild charts validating superior accuracy of
extracted data compared to existing approaches for raster images.

2 RELATEDWORK

2.1 Involving Users to Improve Accuracy of

Chart Data Extraction

A large body of work looked at fully-automatic pipelines for chart
extraction, see Davila et al. [16] for a recent survey. While a fully
automatic approach might be desirable, Davila et al. found that
most approaches struggle when faced with charts in-the-wild. They
list common characteristics of charts from PubMedCentral papers1

noting “despite being common, none of the works covered here dealt

explicitly with these and other chart complexities”. In fact, this mo-
tivated a chart mining competition held annually since 2019 [15].
Yet, as of 2022, the best approach (relying on large deep-learning
models [50]) could recover only 69% of the data from charts in-the-
wild, and the accuracy of the recovered data is not reported [17].
These poor performances may be attributed to the great diversity
of charts [37] and the difficulty to obtain large annotated datasets,
forcing automatic approaches to use artificial datasets and limit
their scope to specific chart-styles and encodings. As a result, these
approaches can fail when charts deviate even slightly from the
training dataset [16].

When fully automatic approaches fall short, a common solu-
tion is to resort to manual or semi-automatic approaches to chart
extraction [70]. Manual approaches to chart extraction such as
Digitize [65] and Ycasd [26] rely on human annotations: after a cali-
bration step to define the axes, the user needs to click on every data
point in the chart. Semi-automatic approaches provide tools relying
on computer-vision to facilitate and speed up manual extraction.
For example, WebPlotDigitizer [68], Engauge Digitizer [25], and
DataThief III [2] include automatic selection tools based on masking
and colour filtering. The parameters of the underlying algorithms

1https://www.ncbi.nlm.nih.gov/pmc/
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(e.g., curve fitting, blob detector, line tracing) can be tweaked for
better results. ChartSense [37] goes one step further by automat-
ically extracting marks from a chart and requiring users to only
specify critical features like the y-axis, and to check and correct
the automatic selection. By involving users, these tools support a
larger variety of charts.

In this work, we also use a semi-automatic approach to support a
greater diversity of charts. However, our algorithms leverage struc-
tural information in vector graphics for more accurate extraction.

2.2 Leveraging Structured File Formats

Charts can be embedded using formats with more structure than
raster images (e.g., HTML, D3.js). Perhaps because of their ubiq-
uity, most of the work on chart data extraction revolves around
rasterized charts. Indeed, any format displayable on-screen can be
trivially converted to a raster image. However, for the task of chart
extraction, the structure will need to be recovered through an often
imperfect vectorization step.

Instead, others have circumvented this vectorization step by us-
ing formats which preserve structure and semantics. For example,
D3 [7] and Vega-Lite [72] directly embed chart data and specifica-
tions, making it possible to redesign an existing visualization [29],
create re-usable styles [30], search visualizations based on structure
and style [31], answer questions [40] and generate visual explana-
tions [40]. However, these approaches are limited to charts embed-
ded in these specialized formats and do not support the broader
spectrum of charts in formats such as PDF or SVG.

Although the semantic role of each shape is lost, the vector for-
mat constitutes a middle ground as it provides precise information
about chart geometries and vector charts are widely used [6, 12].
Previous work leveraged the vector formats to classify visualiza-
tions [6, 74], create visualizations [57], retrieve visualizations based
on their structure [47], and generate chart animations [25]. While
some of these work try to recover information about visualizations
including charts, they are not concerned with obtaining the precise
underlying data. Instead, they use simplifications, for example, by
assuming the data is already available [25] or by recovering only
high-level characteristics [6, 74], often sufficient to accomplish their
goals. Closest to our work, Choudhury et al. [12, 13] proposed a
fully automatic pipeline that extracts information from line graphs
in a PDF to generate natural language summary descriptions. How-
ever, as is common with automatic pipelines [16], their solution
relies on strict assumptions. For example, the approach assumes
each line series has a unique colour, axes lines are close to the
image boundary, tick marks intersect with axes lines, and legends
are close to curve paths.

In this work, we also focus on vector charts. However, we avoid
making strict assumptions about chart layout and design. Instead,
we adopt a semi-automatic approach to recover data from diverse
charts using different styles (line, bar, scatter, and box plots).

3 BACKGROUND

Charts can be represented in two formats: raster images or vector
graphics. Below, we review how data can be recovered from both
formats and what are the theoretical advantages of vector graphics.

3.1 How Can Data be Recovered From Charts?

If not readily available, data can often be partially recovered from
charts as cleaned and aggregated data subsets. Consider how an
author creates a chart: first, a chart is generated using visualization
tools such as matplotlib, ggplot, excel, or tableau in order to turn
tabular data into a visualization like a bar chart that readers can
quickly comprehend. The visualization is then exported either as
a rendered image in a raster file format (e.g., PNG, JPG, BMP) or
re-encoded into a vector file format (SVG, EPS, PDF), and shared by
being included in a document or a web page. Recovering the data
visualized by a chart is later accomplished by identifying each data
point as a shape with a location and size, and transforming those
into the local coordinate system defined by the chart axes. With
vector charts, the position and size of each shape are recovered
from the definition of vector graphics. In contrast, for raster images,
the information has to be measured.

3.2 Advantages of Vector Graphics

There are several characteristics of vector graphics that make them
advantageous for extracting chart data.

3.2.1 Higher Theoretical Precision. Because of how raster and vec-
tor graphics encode information, the precision of the data should
be higher for vector graphics.

Raster images are composed of pixels. Given a raster image with
one linear axis representing 𝑛 units displayed on 𝑝 pixels, one pixel
represents 𝑛/𝑝 units. For example, a linear axis ranging from 0 to
1000 displayed over 100 pixels means that each pixel represents
1000/100 = 10 units. Thus, a value of 0 is indistinguishable from a
value of 9 because they are the same pixel. In other words, achieving
a high accuracy when recovering the position of an element in a
raster image requires a comparatively high resolution, inevitably
increasing the size of the image file.

Vector graphics define shapes in real number coordinates. Thus,
precision is limited by the number of decimals used to define coor-
dinate positions and rounding errors due to coordinate transforma-
tions. To accommodate 32-bit processors, the PDF format uses the
“single-precision floating-point format” and limits floating point
numbers to approximately five decimals (ISO 32000-1:2008§C.2).
The SVG file format encodes coordinates decimal numbers in strings
and does not limit the number of decimals2. As for transforma-
tions, both PDF and SVG specifications recommend using double-
precision floating-point numbers (ISO 32000-1:2008§7.10.5.1) to re-
duce rounding errors when rendering. However, document viewers
perform these operations and could use a higher precision format
if needed. Thus, data values encoded in PDF charts can be theo-
retically recovered with up to five decimals with no impact on file
size (the floating value will occupy 32 bits regardless of the number
of decimals). The precision of values extracted from SVG charts
is theoretically not bounded. Returning to our previous example,
obtaining the same five-decimal level of precision with a raster
chart ranging from 0 to 1000 would require 100 million pixels.

3.2.2 Recovery of Occluded Data. The vector graphic can include
all geometry in a visualization, regardless of what is viewable in
a final rendering. In particular, by default occluded shapes are
2https://www.w3.org/TR/SVG/

https://www.w3.org/TR/SVG/


CHI ’23, April 23–28, 2023, Hamburg, Germany Damien Masson, Sylvain Malacria, Daniel Vogel, Edward Lank, and Géry Casiez

included, even if completely hidden when rendered. This enables
the recovery of occluded data, a common issue with many charts [16,
37]. For example, a legend often hides part of a series, line series
might overlap or cross each other, or a dense scatterplot might have
clusters of indistinguishable points due to stacking.

3.2.3 Reduced Ambiguity. Classifying the role of elements in a
chart is challenging in general [17, 37, 63] and raster image com-
pression makes this even more difficult. For example, artifacts like
blurry edges and irregular fill colours make elements hard to auto-
matically separate. Additionally, rasterized text such as alphanu-
meric labels and annotations has to be located and recognized using
Optical Character Recognition (OCR). With vector graphics, shapes
are clearly identified and text is often directly accessible.

3.2.4 Ubiquitous. Most charting tools offer to export in vector for-
mats, and this format is commonly used to share charts. On the
web, the SVG format is natively supported and often preferred in a
context in which pages are rendered on different screens of different
sizes. Specifically, charts are commonly shared online in the SVG
format [6]. Because of their scalability properties, vector graphics
also represent a substantial proportion of all charts included in doc-
uments. For example, the popular PDF format allows the inclusion
of different types of content such as text, fonts, raster images, and,
specifically vector graphics [54]. In fact, major publishers such as
IEEE [33] and Springer [75] recommend the use of vector graphics,
because “Creating and saving your graphics in vector format will

ensure that your graphics appear as clearly as possible in your fi-

nal published article”, and “Vector graphics (rather than rasterized

images) should be used for diagrams and schemas whenever possible”.
Quantifying the proportion of vector charts shared on different

platforms and medias is difficult. As an example relevant to the
HCI community, we counted3 that vector charts represented 38%
of the 5,855 charts published in the last six years (2015-2021) of
proceedings at the Conference on Human Factors in Computing
Systems (CHI). In a similar analysis, Choudhury et al. found up to
70% of vector charts across the top-50 computer science conferences
spanning all fields [12].

4 CHALLENGES AND DESIGN GOALS

We first summarize the main challenges when extracting data from
vector graphics, then propose a set of system design goals. We use
these to drive the design of ChartDetective, a new system leveraging
vector graphics specifications to extract data from charts.

4.1 Challenges of Vector Chart Extraction

When Jung et al. [37] designed ChartSense to extract data from
rasterized charts, they faced three main challenges: 1) chart styles
are diverse; 2) visual entities can overlap; and 3) there is no off-the-
shelf solution for text-region-detection. While reverse-engineering
vector charts help with some of these challenges (see Section 3.2),
some remain and new ones arise.

C1: Chart Diversity – Charts vary in the way data is represented
as graphical shapes and style. To better understand this diversity,
3We manually annotated which figures were charts after extracting all figures in the
six years of CHI papers. We calculated the proportion of those that did not contain a
single raster element.

we manually reviewed and annotated the 5,855 charts we extracted
from the proceedings of CHI from 2015 to 2021. The majority could
be classified into 12 categories: bar chart (43.3%); line chart (25%);
scatter plot (9.6%); box plot (9.4%); stacked bar (9.3%); heat map
(0.9%); pie chart (0.8%); violin chart (0.7%); density plot (0.6%); radar
chart (0.4%); and stacked density plot (0.1%). Some combined dif-
ferent encodings (2%), for example a bar chart combined with line
series, or a box plot using scatter points. While difficult to quantify,
we observed many variations in style, such as embellished charts [5],
diverse colour palettes, annotations, and overlays. Tools to extract
data from charts require flexibility to adapt to this diversity.

C2: Inconsistent Vector Specifications – A raster image is the result of
exactly one configuration of pixels but vector graphics can be gen-
erated from a theoretically infinite number of shape arrangements.
We define shape as a single geometric shape defined in a vector
graphics language and chart element as a semantic element in a
chart (e.g., a series, an axis, a legend). In our exploration, we found
three relationships between shapes and chart elements (Figure 2).
- One-To-One is when each shape maps to a unique chart element

(e.g., a line maps to a series).
- Many-To-One is when multiple shapes represent a single chart

element. For example, there were two common ways of repre-
senting dashed-lines: applying a “dashed-line” style to a line or
using several smaller lines, one per “dash”. Even contiguous chart
elements like a line series are not necessarily encoded as one
polyline. For example, matplotlib has a tendency to split a single
line series into smaller connected lines.

- One-To-Many is when a single shape represents multiple chart
elements. The vector format is flexible enough to allow the defi-
nition of disconnected shapes (by using a moveto primitive when
defining the path). This behaviour is often exploited to draw all
the bars from a bar chart using the same shape, or drawing the
legend and the series at the same time.

The challenge thus becomes how to divide or group shapes to get
a one-to-one mapping in order to match humans’ perception of a
single shape and make the extraction of data possible.

C3: Hidden Shapes – Vector graphics may contain shapes that are
invisible in the rendered image such as shapes occluded by other
shapes. However, some hidden shapes are meaningless and intro-
duced by mistake using vector editing tools such as Inkscape. For ex-
ample, we found text and annotations completely occluded by other
shapes. They serve no purpose because they are invisible when
rendered, and most likely result from mistakes. We also observed
several examples of shapes hidden by modifying their colours in-
stead of being removed. For instance, a user might hide axes or
grid lines by setting the stroke and fill colour to match the back-
ground. However, these shapes remain in the vector specification.
Of course, these hidden shapes should be ignored, but identifying
them systematically is difficult because they take various forms.

C4: Rendered Text – Text in vector graphics can be specified us-
ing text-specific vector graphics command to position a string of
characters using attribute like font and size or by forming letters
using geometric shapes. For the latter, the text cannot be directly
recovered as each letter is represented visually not semantically.
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stroke()

(a) ONE-TO-ONE

legend

moveto(0,0) 
lineto(2,3) 
lineto(6,4) 
stroke() 
moveto(3,5) 
lineto(4,5) 
stroke() 

(b) ONE-TO-MANY

legend

moveto(3,5) 
lineto(3.5,5) 
stroke()

moveto(4.5,5) 
lineto(4,5) 
stroke()

moveto(0,0) 
lineto(2,3) 
stroke()

moveto(2,3) 
lineto(6,4) 
stroke()

(c) MANY-TO-ONE

Figure 2: The same chart can be formed with different vector shape arrangements: (a) One-To-One when shapes match se-

mantic elements; (b) One-To-Many when one shape maps to multiple semantic elements; and (c)Many-To-One when many

shapes map to a single semantic element.

In that case, identifying text regions and extracting the text then
becomes as challenging as with raster images.

4.2 Design Goals

Using those main challenges, we formulate a set of design goals to
guide the development of our system. They consider previous limi-
tations regarding the lack of flexibility and the poor performance
when faced with charts in-the-wild [15, 16], leverage the advantages
of semi-automatic rather than fully-automatic solutions [37, 70],
and follow recommendations for mixed-initiative systems [32, 59].

D1: Maximize Data Accuracy – For reliability and repeatability,
high accuracy means a low relative error between the extracted
values and ground truth values in the original data. Previous work
seldom reports accuracy, yet accuracy was necessarily limited by
the resolution of the raster images [16]. We consider accuracy as
the utmost priority and aim to leverage vector graphics to obtain
high-fidelity data.

D2: Support Diversity – Across various forms of charts (see Chal-
lenge 1), flexibility is required to support different ways of encoding
data (e.g., line, bar, scatter, box) and variations in style (e.g., colour,
size, shape, organization). In practice, this means making few as-
sumptions [16], and likely incorporating user interaction in the
extraction process to disambiguate alternative extraction outcomes.

D3: Minimize User Interaction – While a fully automatic approach
would be ideal, in practice, the user has to be involved—if only to
check that the result is correct. Previous work can be placed on
a continuum from fully manual [26, 65] to semi-automatic [2, 18,
36, 37, 52, 68] to fully automatic [16]. Our goal is to minimize user
involvement by automating tedious and long tasks.

D4: Simplify Verification – Checking data extracted from a large,
dense chart could entail verifying thousands of data cells. Users
should be able to quickly check that the chart was accurately ex-
tracted, identify mistakes (if any), and correct them.

5 CHARTDETECTIVE

ChartDetective is a system to extract underlying data from vector
charts by leveraging the vector information. A live version of Chart-
Detective is accessible online: http://ns.inria.fr/loki/chartdetective.
Below, we detail ChartDetective’s interface and functionalities. The
functionalities try to tackle each challenge and design goal identi-
fied in 4. As such, direct references are added in parenthesis when-
ever a functionality responds to a challenge or design goal.

5.1 Interface

ChartDetective has two interfaces: one to upload a file or docu-
ment and select a chart to extract, and one to extract data from
a chart. The data extraction interface (Figure 3) consists of three
main views: 1) The Data Table displaying the data extracted from
the charts so far; 2) The Chart View showing the chart undergoing
data extraction; and 3) the Reconstructed Chart which recreates
portion of the original chart using data extracted so far. The inter-
face deliberately presents the information in multiple views [81];
all views are showing at all times, side-by-side, and the interface
can be re-arranged by dragging and resizing the three views to
adapt to different screen resolutions.

5.2 Selection of Chart Elements

The selection of an element in the chart initiates the extraction pro-
cess. ChartDetective proposes several ways to perform a selection
even when the targets are small or occluded (C2, C3).

Simple Selection – Using the Chart View, a user selects
shapes composing the chart by either clicking on them
one-by-one or by using a marquee selection through
a mouse-dragging motion for multiple selection and

small hard-to-select objects. As is common with vector software,
users can also add and remove elements from their selection by
holding the shift key.

Shapes under the cursor or included in the marquee selection,
are highlighted to preview the selection. A blue animated dashed
outline highlights shapes because it is salient for shapes of different
sizes and colours. Once selected, shapes are grouped, surrounded
by a blue rectangle, and become draggable.

http://ns.inria.fr/loki/chartdetective
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Data Table Chart View

Reconstructed Chart

Figure 3: ChartDetective is composed of three views: the Chart View showing the chart being extracted; the Data Table with

the tables for X and Y axes and the extracted values; the interactive Reconstructed Chart.

Fine-grained Selection – While simple selections work
well for basic charts, selecting elements becomes te-
dious and slow as the number of data points increases
or their size decreases. In a worst-case scenario, selec-

tion may be impossible for overlapping elements (C3). There are
two mechanisms to help in these situations.
• Users can zoom-in using the mouse wheel and pan by dragging

while holding the space bar . This helps when small elements
are hard to select or distinguish when the full chart is viewed.
• There are also two view filtering mechanisms: a colour filter

(Figure 4b) and a shape filter (Figure 4c). When a chart is loaded,
all unique colours and shapes used by the chart are identified and
displayed as filter buttons. The user can toggle these colours and
shapes to remove or add associated shapes from the rendered
chart. This helps particularly with dense charts. For example,
users can isolate a specific series in a scatter plot by filtering
per shape (e.g., only keeping circle-shaped markers or green-
coloured dots). Filters can be combined like a logical “AND” (e.g.,

to select only red circle-shaped markers, see Figure 4d). Once
only the elements of interest are left, selection is easier and can
be done with a quick marquee selection (D3).

5.3 Extraction of Data

To extract data, ChartDetective relies on drag-and-drop interactions
where elements selected in the Chart View are dropped in the
appropriate area of the Data Table. Depending on the drop zone,
different algorithms are used to extract and analyze the shapes (D3).

0 1 2 3

Extract Axes – Extracting an axis is accomplished by
selecting at least two tick marks in the chart, then drop-
ping them on the corresponding horizontal or vertical
axis of the Data Table . Typically, extracting both the X

and Y axis requires two drag-and-drop interactions. Extracting the
axis title requires another drag-and-drop by first selecting the title
in the chart view, then dropping it on the title of the data table.
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Figure 4: (a) Shapes in the can be filtered (b) by colour or (c) by shape. (d) Filters can also be combined.
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Extract Data Points – To add a new series shapes are
dropped on one of four zones indicated by a title, an
icon, and a colour: line , bar , box plot , scatter

. Each drop zone corresponds to a unique encoding
of the data. ChartDetective supports four types of data visualization
used by the four most common chart types in CHI publications: bar
charts, line charts, box plots, and scatter plots (C1). Supporting other
visualizations is a matter of writing the corresponding algorithm
which takes a vector shape as input and outputs data points.

Once the data is extracted, a new row is added to the table using
the colour of the series to be easily identifiable (D4). The correspond-
ing shapes in the Chart View become translucent and unselectable
to allow the selection of shapes potentially hidden behind. These
translucent shapes also act as a visual guide to immediately see
what remains to be selected.

Whenever possible, ChartDetective automatically mines the
name of the extracted series by searching for a legend in the figure.
The algorithm works in two steps: 1) find another shape with the
same colour as the one extracted; and 2) extract the text at the
right of the shape and use it as the name of the series. While this
algorithm has obvious failure cases (e.g., black-and-white charts), in
practice this high-level assumption is more often correct. Errors can
be corrected by dropping the legend directly in the cell indicating
the series name.

Extract Error Bars – ChartDetective supports the extrac-
tion of error values represented as bars or “whiskers”.
In ChartDetective, error bars are always linked to an
existing series. As such, after extracting a series and

adding a new row to the Data Table , the user can select error bars
in the chart and drop them on a zone at the left of the corresponding
series row. The error bars are matched to series data points based
on order and the upper and lower bounds are calculated.

Modify Extracted Values – Extracted series and axes
in the Data Table can be modified or removed. The
Data Table is editable like a spreadsheet: clicking a cell
edits a value. Data points can also be added to an exist-

ing series by first selecting the shapes on the Chart View and then
dropping them directly on the row of an existing series. The added
shapes and extracted data points are incorporated into the series.

Similarly, the title of all tables and the name of all rows can be
edited manually (C4) or updated by dropping text selected from
the Chart View. The selected letters are merged to form words and
sentences when dropped into the Data Table . If no text glyphs are
found in the selection, the text is recovered using an Optical Char-
acter Recognizer (C4). This is done by first rendering the selected
shapes on a blank canvas before passing it to the recognizer.

5.4 Verify Results

Mistakes can happen when extracting the data from charts, for
example: data points can be missed, elements may be incorrectly
interpreted as data, and legends might be mismatching. In addition
to providing a view of the data table and an option to export it as a
CSV file, ChartDetective provides passive and active mechanisms
to verify the success of the extraction (D1, D4).

Reconstructed Overlay – Users can actively check that
the data cells match their expectation by examining a
data point overlay updated when positioning the mouse
cursor above cells in the Data Table . Two different over-

lays are shown: 1) when hovering over axis values, a vertical or
horizontal bar shows the extent of the axis where ticks were ex-
tracted; 2) when hovering over a data point from a series, a blue
cross is rendered at the corresponding position in the chart. This
allows the user to verify that a data point is correctly extracted and
inspect the mapping between series shown in the chart and series
in the data table (D1, D4). For example, to find and fix a potential
mismatch in the legend.

(2.5, 6)

Reconstructed Interactive Chart – As data is extracted,
a second chart is progressively reconstructed in the
Reconstructed Chart view. To make verification eas-
ier, the reconstructed chart shares the same visualiza-

tion and style such as colours and marker shapes. This allows the
user to glance at the Reconstructed Chart and compare it with the
Chart View: a perfect extraction creates a perfect match between
the two views (D1, D4). The reconstructed chart is interactive; users
can get information on hover (e.g., exact values), hide series, and
zoom in on a particular area of the chart. Additionally, the chart can
be exported to an HTML file, allowing the generation of interactive
charts directly after extracting a static chart.

5.5 Getting Started and Interacting

ChartDetective supports traditional and advanced interaction mech-
anisms in terms of signifiers, feedback, and feed-forward to support
exploratory behaviours and help users get started.

5.5.1 Discoverability. ChartDetective follows common guidelines
to promote discovery such as limiting the number of commands
available at any given time, making commands distinguishable, and
providing continuous feedback [55]. Because interactions relying
on drag-and-drop can be hard to discover [51], we took special care
to inform users when they could initiate a drag-and-drop interaction
and where they could drop their selection. New users unaware of
the drag-and-drop interface are likely to click one of the icons
below the Data Table. Doing so opens a ToolClip [27] showing a
brief explanation and animation of the drag-and-drop interaction to
extract new series. Additionally, when a drag-and-drop interaction
is initiated, possible drop zones are highlighted based on the shapes
being dragged (Figure 5). For example, a drag selection of text
elements causes an overlay over all zones accepting text like the
table title and series’ names (Figure 5B). Conversely, a drag selection
containing shapes will only highlight zones accepting shapes, and
hovering over a zone accepting only text turns the zone red and
the pointer becomes a “prohibition sign” (Figure 5C) to mark the
zone as invalid.

5.5.2 Safe Exploration. The interface is designed so that users
understand the consequence of their actions and that all actions
can be undone. All commands provide detailed feedback after being
executed through notifications at the bottom of the screen. For
example, when the data extraction fails, a message is shown to
indicate what might be the reason (e.g., “too few shapes in the
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Figure 5: During drag-and-drop interactions, (A) drop zones

compatible with the selection are highlighted to indicate

where elements can be dropped. (B) The drop zone turns blue

if hovered with a selection of the proper type, and (C) red

otherwise.

selection.”). Additionally, there is a complete undo/redo mechanism
to recover from any action.

5.6 Implementation

ChartDetective is implemented in TypeScript using React4 for the
interface, Ploty.js5 to reconstruct an interactive version of the chart,
Tesseract.js6 to recover rendered text, and PDF.js7 to parse and
render PDFs. While there are multiple vector formats, internally,
we use the PDF representation as it is the most low-level and any
vector format can be trivially converted to PDF. As such, ChartDe-
tective supports all PDF documents conforming to the ISO-32000
(PDF) specification, and also natively support the SVG format using
svg2pdf8. All modern web browsers are supported. The full source
code is available online: http://ns.inria.fr/loki/chartdetective.

5.6.1 Access to Vector Specifications. We modified PDF.js to store
and provide low-level vector graphics commands after parsing the
PDF. This includes retrieving the full list of shapes forming each
page of a PDF and determining their final location and size after
processing all transformations, group positioning, clipping, and
buffered rendering. This allows the selection of a sub-part of the
PDF by only keeping shapes completely within a defined area.

5.6.2 Pixel-Perfect Selection. Because shapes can take complex
forms, we implemented selection using a “hit-test buffer” for pixel-
perfect selection with little computational cost. This means charts
are rendered twice: once to show a preview and once in an off-
screen buffer in which each shape is assigned a unique colour.
Shape selection is achieved by retrieving the colour of the pixel
underneath the pointer. The hit-test buffer is only redrawn when
absolutely necessary such as a change of zoom or when a shape
filter changes.

5.6.3 Shape Filtering. The colour filter is relatively straightforward
to implement: create a list of colours to filter then hide shapes
with any of those colours. The shape filter requires computing a
form descriptor: a vector of numbers describing a shape. To create
effective shape filters, the form descriptor must not be too specific

4https://reactjs.org/
5https://plotly.com/javascript/
6https://tesseract.projectnaptha.com/
7https://mozilla.github.io/pdf.js/
8https://github.com/yWorks/svg2pdf.js/

while also not too general that all shapes would match. We use
a normalized Freeman chain-code with 8 connectivity [22]; this
descriptor is invariant in translation, scale, and rotation, and is
robust against slight variations of aspect ratios.

5.6.4 Shape Alignment and Attributes. While ChartDetective makes
no assumptions on the style of the charts, it relies on attributes
which are fundamental to the way information is visualized. The
pseudo-code is provided in Appendix A.1. All shape selections are
first sub-divided to recover a consistent specification (C2) before
passed to the extractors.
(1) Alignment: The centroid of shapes such as axis ticks, line se-

ries, scatter plot markers is used to recover their position. For
example, it is assumed that lines go over the centre of the data
points. In a vertical bar chart, the top of a bar is used to get the
associated value.

(2) Grid line: If a grid line is found close to the tick, its position is
used instead, because we found it to be slightly more accurate.

(3) Box plot: It is assumed that box plots use the original and widely
used representation first introduced by Tukey [78]: The inner
quartiles are represented as a rectangle including any stroke
outline when calculating values. The median is a line inside this
rectangle, and any stroke outline is ignored when calculating
the value.

6 USABILITY STUDY

We conducted a user study to see if the current implementation
of ChartDetective fulfills our design goals in terms of supporting
diversity (D1) and minimizing user interaction (D3). This study
focuses on usability, answering the question: can participants use
ChartDetective? A follow-up study measures the quality of the
extracted data when compared to other tools (Section 7).

6.1 Participants

We recruited 13 participants (22 to 34 age range, mean = 27.8, 7
identified as male and 6 identified as female)9. We screened partici-
pants for basic knowledge of charts: all participants were familiar
with bar charts, line charts, box plots, scatter plots and error bars
(self-assessed on a 5-point scale). Remuneration was $15 CAD.

6.2 Dataset of Charts to Extract

We extracted 12 charts from the proceedings of CHI from 2015 to
2021. We consider the four most popular chart types at CHI: line
charts, bar charts, scatter plots, and box plots. Further, we collected
three charts per type, according to complexity:
• Simple: Few series and few data points that all use the same

encoding.
• Compound: Two or more encodings are combined to represent

data points. For example, a bar chart with lines, or a box plot
with scatter points.
• Dense: Large number of series and data points, but all data

points use the same encoding.
Compound and Dense charts have been notoriously difficult to
extract using existing systems [16, 37] and thus pose a real challenge.

9Our study was reviewed and approved by our institutional research ethics board.
Consent was collected from all participants.

http://ns.inria.fr/loki/chartdetective
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Figure 6: Charts that participants had to extract during the usability study. Charts were extracted from the following CHI

proceedings (left-to-right, top-to-bottom): [49] [83] [46] [23] [9] [79] [14] [4] [21] [38] [56] [34]

Note that using our categories above, previous work has exclusively
been tested on Simple charts. We chose charts randomly amongst
those fitting these criteria to maximize diversity while remaining
ecologically valid (see selected charts in Figure 6). All charts were
used by participants unaltered from the original paper; as a result,
some are missing titles or legends, have overlapping or hidden
elements, and some have grouped or separated shapes.

6.3 Procedure and Design

Participants took part remotely. After watching a two-minute video
tutorial demonstrating the use of ChartDetective, participants were
asked to extract the underlying data of 12 charts as accurately as
possible and to think-aloud while doing so. The experimenter only
intervened during the first four Simple charts to answer questions
and guide participants if necessary; participants worked indepen-
dently for the remaining eight Compound and Dense charts. Par-
ticipants advanced to the next chart by pressing a “Done” button or
after five minutes, whichever came first. After each Simple chart,
the experimenter asked participants to identify 1) what was dif-
ficult; 2) what was easy; 3) what was tedious; 4) what was fast;
and 5) what was slow. For each answer, participants also rated its
importance on a 5-point scale.

We recorded the participant’s screen and microphone, as well a
log of interactions with ChartDetective and the final extracted data.
After the session, participants completed a questionnaire includ-
ing a System Usability Scale (SUS) [35]. Finally, the experimenter
conducted a semi-structured interview.

The order of the charts varied across participants: The four Sim-
ple charts were always first, followed by the eight remaining charts.
The the charts order was counter-balanced within these two groups.

Overall, each participant extracted data from 4 (Chart Type) ×
3 (Chart Complexity) = 12.

6.4 Results

6.4.1 Success Rate. To test the success rate in terms of usability,
we compare participants’ data to data extracted by one author
before the experiment. The reasoning is twofold: first, we want to
isolate the usability aspect and are not concerned by the fidelity
of the data extracted by our tool at this stage, only by how well
can participants use ChartDetective; second, the success rate can
be directly interpreted as a measure of how close participants were
to using the tool like an expert user, represented by the author
who extracted the data. As such a series from the participant data
is matched with a series from the author data (using a best-fit
approach). We then classify each data point (i.e., cell in the data
table) of each series in one of the following four categories.
• Correct (✓), for a data point that is expected (i.e., present in

ground-truth data) and that is strictly equal to the ground-truth
value.
• Incorrect (x), for a data point that is expected but is not equal

to the ground-truth value.
• Missing (-), for a data point that is expected but was not ex-

tracted (i.e., present in ground-truth but not in the participants’).
• Unwanted (+), for a data point that was not expected (i.e.,

present in participant data but not in ground-truth).
We measure success rate by calculating the rates of these four cat-

egories. For the Correct and Incorrect rate, we divide the count
by the minimum between the number of data points in ground-
truth and the number of data points in the participant data. For
the Missing rate, we divide the count by the number of points in
ground-truth. For the Unwanted rate, we divide the count by the
number of points in the participant data.

Overall Success Rate – Overall, participants extracted charts

with high success: 99% (SD=5.9) of the extracted data were

Correct, with only 0.2% (SD=1.5) Incorrectdata points (D1).
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Complexity

Bar Chart Line Chart Scatter Plot Box Plot Total

✓ x - + ✓ x - + ✓ x - + ✓ x - + ✓ x - +
Simple 100 0 0 1.3 100 0 0 0 100 0 0 1 100 0 0.4 0 100 0 0.1 0.6
Compound 100 0 0 1.5 100 0 0 0.1 89.6 1.5 12.3 9.2 99.8 0.1 0.2 0 97.4 0.4 3.1 2.7
Dense 100 0 0 0 100 0 0.7 0 100 0 0 0 98.6 0.4 1.8 3.9 99.7 0.1 0.6 1
Total 100 0 0 0.9 100 0 0.2 0 96.5 0.5 4.1 3.4 99.5 0.2 0.8 1.3 99 0.2 1.3 1.4

Table 1: Breakdown of the success rate when comparing the series extracted by participants to the series of the ground-truth

data. All values are percentages. Correct (✓), Incorrect (x),Missing (-), and Unwanted (+).

Table 1 presents the breakdown of the results. In fact, participants
achieved perfect success rate in terms of Correct data for all bar
charts and line charts, and above 98% for all other charts. The
only exception being the Compound scatter plot with only 89.6%
(SD=17.7) of Correct data. Below, we further investigate the cause
of some of these results.

Confusion for Compound Scatter Plot – We found that the lower
scores for the Compound scatter plot were due to participants
misunderstanding the chart. In fact, the data points extracted by
participants were Correct, but not separated in series as it should
have been. Both P1 and P5 interpreted different series as one single
series (e.g., grouping all yellow dots as one single series, instead of
distinguishing between crosses and circles). Because we calculate
success rate by matching one series to another, if a series is missing,
its data points count as Incorrect. Similarly, the extra data points
merged within the same series count as Unwanted data. If, instead,
we look for data points independent of series, the percentage of
Correct data for the Compound scatter plot reaches 99%.

Filtering CausingUnwantedData – Participants sometimes selected
the legend as part of a series. For example, with the Simple scatter
plot, all participants made the selection of series easier using colour-
filtering. However, doing so isolates the data points making the
legend appear as part of the series. As a result, three participants
selected circles from the legend, creating Unwanted data.

Selection Difficulties with Box Plots – Box plots required a precise
selection of the whole element at once. However, when the boxes
were close to other elements (e.g., the axis in the Compound box
plot), some participants inadvertently included other elements as
part of the box, creating an Incorrect data point.

6.4.2 Time. Onaverage, participants extracted charts in 3min

6s (SD=1min 18s) (D3) Only 2 participants were not able to com-
plete extractions within 5 minutes: P4 could not extract all error
bars for the Dense bar chart and P10 did not have time to select the
last two blue lines in the Compound scatter plot. The most dense
charts were not necessarily the slowest to extract. For instance,
extracting the Dense scatter plot and its 2,000 data points took
only 1min 58s (SD=23s). But overall, Dense charts were the slow-
est (M=3min 17s, SD=1min 22s), followed by Simple charts (M=3min
12s, SD=1min 10s) and Compound charts (M=2min 50s, SD=1min 19s).
Still, all average times were well under 4 minutes, confirming that
ChartDetective minimizes user interaction enough to allow the
extraction of charts in reasonable time (D3).

6.4.3 Error Bars and Series’ Names. Participants correctly ex-

tracted 98.4% (SD=11) of the error bars and 82.8% (SD=34.1) of

series names. These results were calculated on a subset of charts
considering that not all charts had error bars or legends. It is un-
clear why the series names score is lower; some participants did
not extract the series names for no apparent reasons, even though
they were aware of the feature as they all did it for Simple charts.

6.4.4 Usability. On average, the System Usability Score was

90 (Mdn=90, SD=4.2). For reference, a System Usability score above
85 is considered excellent [3].

On a 5-point scale, participants rated all features of Chart-

Detective as useful (4 or above): participants “strongly agree” on
the usefulness of the colour filter (Mdn=5, SD=0, ), the shape
filter (Mdn=5, SD=0.7, ), the selection system (Mdn=5, SD=0.3,

) and the reconstructed chart (Mdn=5, SD=0.7, ). Addi-
tionally, participants “agree” that the overlay was useful (Mdn=4,
SD=1.5, ).

Regarding participants self-assessed performance with Chart-
Detective, they all agreed that they could extract and reconstruct
charts accurately (Mdn=5, SD=0.5, ) and that they were in con-
trol of what they wanted to extract (Mdn=5, SD=0.6, ). Finally,
they all agreed that they would like to use the system again (Mdn=5,
SD=0.4, ).

6.4.5 Strategies. While the tasks were identical across participants,
they sometimes adopted different strategies to extract the data.

Filter to Isolate, to Declutter, or to Guide? – All 13 participants
used the filters but we observed three distinct strategies: filtering
to isolate only the element to select (i.e., only one active filter);
filtering to declutter the image by removing the few elements that
were preventing a selection; filtering to guide the selection by going
through each colour one-by-one (sometimes multiple times) to be
sure not to miss any series. Participants using the declutter strategy
had the advantage of preserving visual context. For example, it
made it easier to distinguish marks that are part of the legend and
would have looked like data had the isolate strategy been used.

Step Order – The order in which to perform the extraction was
often a trade-off between speed and cognitive load. Some partic-
ipants extracted all series (e.g., bars, lines) before moving on to
error bars or legends, making the selection process easier by repeat-
ing the same task and reusing the same filters. Others preferred
to extract the error bars and the legend right after extracting the
corresponding series, making it easier to match a series with its
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meta-data. Participants would often decide on a strategy based on
chart complexity.

Selection Strategy – Participants either selected elements pre-
cisely, often one-by-one, using the zoom-in function if necessary,
or they made a first rough selection then refining it by using SHIFT
to add to or remove elements. Some participants also relied on the
ghost shape mechanism to speed up the selection of the last series:
once a series is extracted, its shapes become unselectable, meaning
that when only one series is left, the shapes that are selectable will
necessarily belong to the last series.

6.4.6 Comments. Overall, participants were positive about Chart-
Detective and its functionality. Below, we group participant com-
ments from the interview and during the study around a set of
themes that were frequently mentioned. Due to the use of semi-
structured interviews, some of these themes were only mentionned
by a subset of participants.

Learnability – A few participants commented on learnability. All
agreed that the tool was quick to learn.

P6 – "I liked that the cognitive load was pretty low,

like, it was super fast to learn... I got markedly better

after like 2, 3 tries. I really liked that it had a lot of the

traditional settings and feel to it."

P12 – "I’ve been using it for less than an hour and I

already feel at ease"

Specifically, P7, P11, and P13 commented about the drag and drop
interface saying it made the interaction easy due to the visual
feedback of what is being dragged and where it can be dropped.

P7 – "That is actually quite useful that it shows you

the... sort of see-through thing you’re dragging."

P11 – "Drag’n’drop is truly useful. It’s super clean, like

you can easily select and then you immediately see

where you can drop."

P13 – "I liked how it was was organized, how you could...

like it was easy to have that one navigation bar on the

side and pull everything over and see it appear on the

[Reconstructed] chart below."

Most appreciated features – An overwhelming majority of partic-
ipants commented about the colour and shape filters, most cited
them as one of their favourite features.

P8 – "Filters are super useful. Really facilitate the task.

Some [charts] would even be impossible [to extract]

without."

P12 – "The filters, I really thought it was a killer-feature.

Your chart is super crowded, you ask yourself: «Wow,

how am I gonna do that, it’s too difficult», I do two

clicks, then it becomes super easy."

Other features were less often mentioned by participants as some-
thing they liked: the reconstructed chart (P2, P11 P13), the ghost
shapes (P3, P7, P8), the overlay (P8), how the legend is sometimes
automatically matched with series (P2), and the coloured table (P12).

What was tedious, difficult or slow? – After each Simple chart,
participants were asked what they found tedious, difficult or slow
and how much using a 5-point scale. The most frequently mentioned

difficulty was the selection of elements (P5, P6, P7, P10, P12, P13),
although they still rated it as relatively easy on average (from very
hard to very easy: Mdn=4, SD=.83, ). Specifically, the selection of
error bars were most often mentioned as moderately tedious (from
extremely to not at all: Mdn=4, SD=.71, ) and slow (from very fast
to very slow: Mdn=3, SD=.75, ).

P1 – "Selecting error bars. That was difficult, just be-

cause they were overlapping."

P8 – "Selecting error bars [was slow] because you have

to select them a bit like... one-by-one to [...] distinguish

them between series."

What was easy or fast? – Similarly, we asked participants what
they found easy and fast. The drag-and-drop interface was most
commonly cited as being easy (from very hard to very easy: Mdn=5,
SD=0, ). The selection after applying filters was most often
mentioned as fast (from very fast to very slow: Mdn=1, SD=.37, ).

P3 – "The drag and drop... that tool is easy to understand

and use. And it is easy to isolate the data you want to

collect [using the filters]."

P2 – "Selecting the points, thanks to the filtering, it was

really fast".

Accuracy perception – While participants were highly accurate
overall, P7 mentioned that the artificiality of the task might have
had an impact on the quality of the data extracted.

P7 – "I’m not sure how accurately I actually covered...

copied the charts, I have to say. Because the image [Re-

constructed chart] was relatively small, and I did not

spend a lot of time looking at data points if they were

correct or not. It was more like a «meh» roughly looks

the same, fine, cool. [...] Obviously because it is not data

that I am invested in so I don’t care if it is accurate or

not."

7 DATA QUALITY STUDY

The goal of this study is to measure the quality of the data obtained
from vector charts and ChartDetective relative to what could be
obtained using rasterized images and existing tools (D1). Quality
is defined as how similar the extracted data is compared to the
original data that was used to create the chart.

7.1 Dataset

We create a new dataset of charts for which we know the exact

underlying data. To cover a wide diversity of chart styles and chart
generators, we mix generated charts with charts from CHI papers:
• Generated Charts: We generated four different charts (1 bar

chart, 1 line chart, 1 scatterplot and 1 boxplot) with four different
chart generators: Microsoft Excel for Mac version 16.61, Python
matplotlib version 3.5.1, Javascript plotly version 4.10.0 and R
ggplot2 version 3.3.6. All 16 generated charts use a dataset on life
expectancy and GDP per country obtained from GapMinder10.
Each chart visualization presented different information: line
charts show the evolution of the life expectancy over the years
for four regions of the world and with error bars; scatter plots

10https://www.gapminder.org/data/
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show the life expectancy depending on a country’s GDP; and
box plots show the life expectancy per region and for male and
female). Generators used the default style parameters.
• Extracted Charts: Using our dataset of papers with charts pub-

lished at CHI between 2015-2020, we used a script to find those
with vector charts and with data available on Open Science Frame-
work11 (OSF). Only 23 papers fulfilled this criteria (74 papers had
an OSF link, but 44 of those did not contain qualifying vector
charts, and 7 had no data in their OSF repository). Using rea-
sonable effort, we cleaned and recreated the data used by charts
in 14 different papers and extracted between 1 and 3 different
charts per paper. The final study dataset counted 26 charts (13
bar charts, 6 scatter plots, 5 line charts, and 2 box plots).

7.2 Baseline

Like ChartSense [37], we use WebPlotDigitizer as our baseline.
Other tools either do not provide their source code12 or a work-
ing implementation [37], do not provide a full pipeline to obtain
the data from charts [12, 13, 63], or are limited in the styles and
types of charts that they support [13]. Moreover, our comparison
here focuses on the best achievable results using vector graphics
compared to raster images. In that regard, the result obtained with
raster images should be comparable across tools. Thus, in the rest
of this section we use “rasterized charts” to refer to charts extracted
using WebPlotDigitizer.

7.3 Procedure

One author with hours of experience with both ChartDetective and
WebPlotDigitizer extracted all charts from our dataset as accurately
as possible using both tools. The author had no time limitation and
ensured the data was as accurate as possible. To use WebPlotDig-
itizer, extracted charts were rasterized at 300 dot-per-inch (DPI)
which is considered high-resolution and recommended by IEEE [33].
Generated charts were obtained from chart generators and directly
outputted as PNGs for WebPlotDigitizer (300DPI), and PDFs for
ChartDetective.

7.4 Results

Dataset n Vector Charts Raster Charts

Generated
excel 4 0.24% (0.19) 0.37% (0.21)
matplotlib 4 0% (0) 0.16% (0.08)
ggplot2 4 0% (0) 0.13% (0.12)
plotly 4 0% (0) 0.13% (0.09)

Extracted 26 0.13% (0.27) 0.68% (0.69)
Total 42 0.11% (0.23) 0.50% (0.60)

Table 2: Average relative error of the values obtained from

vector or raster charts. Standard deviation shown between

parenthesis.

11https://osf.io/
12On request, authors of ChartSense could not provide their source code due to pro-
prietary reasons.
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Figure 7:Minimal example of a chart generated byMicrosoft

Excel and forwhich the data is imprecisely depicted. Despite

the bars representing exact values (10 and 20), they do not

consistently line up with corresponding grid lines: the grid

line is either below (blue bar) or above (orange bar).

Like ChartSense [37], relative error measures how close the
extracted data is to ground-truth:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑣𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ − 𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝑣𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ
|

We assume the chart represents the data precisely and accurately,
so relative error is solely attributed to the extraction tool. Note that
the expert always made sure no data points were missing. Thus,
the ground truth data and extracted data had the same number of
points and in the same order. We calculated the relative error of
each pair of data points from the ground truth and extracted data,
and then aggregated them using the mean of all the relative errors.
This measure corresponds to how close the extracted data is to the
ground truth.

Overall, data extracted from vector charts using ChartDe-

tective had a significantly lower relative error than data ex-

tracted from rasterized charts using WebPlotDigitizer (0.11%

vs 0.5%, Student’s t-test p<.05). This is more than 4 times lower, cor-
responding to a factor of 78%. Table 2 breaks down the relative
error for tool and dataset.

Effect of Generator – The data obtained with ChartDetective

from generated vector charts was identical to the ground-

truth with the exception of Excel charts (relative error mat-
plotlib: 0% SD=0, ggplot2: 0% SD=0, plotly: 0% SD=0, excel: 0.24%
SD=0.19). After further investigation, it appears that charts gener-
ated with Excel are using some approximations and do not perfectly
represent data. While the problem exists with all types of charts
such as line, box plots and scatter, the issue becomes obvious by
generating bar charts with exact real values. Examining the SVG
description of bar charts generated by Excel, positions of bar tops is
inconsistent even when data is a series of real and regularly spaced
values (e.g., 50, 60, 70). This is demonstrated by zooming into a bar
chart to see how bars do not line up consistently with correspond-
ing grid lines (Figure 7). We verified this behaviour with macOS
Excel (version 16.61) and Windows Excel (version 2205).

https://osf.io/
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8 DISCUSSION

Despite the importance of extracting high-fidelity data, approaches
to chart reverse-engineering predominantly focus on rasterized
formats, limiting the accuracy of the data obtained. We provide
theoretical and empirical evidence showing that extracting charts
using their vector representation has advantages that can lead to
an improved quality of the extracted data. We also detail the design
and implementation of the ChartDetective system demonstrating
how vector information can be used to provide new features, and
how it can be processed to obtain underlying data. Through a
usability study, participants found the system highly usable and
were capable of extracting even the most challenging charts. A
second study demonstrated that extracting a chart using its vector
representation lead to higher accuracy of data than when extracting
the same chart in raster format and using existing tools.

Comparison to ChartSense. Jung et al. also use the relative error to
compare their ChartSense system to WebPlotDigitizer [37]: their
system achieved 0.7% whereas WebPlotDigitizer achieved 0.81%. For
comparison, we found a relative error of 0.11% with ChartDetective
and of 0.5% with WebPlotDigitizer. Differences in our methodol-
ogy likely explain different results for WebPlotDigitizer: Jung et
al. obtained their result from a user study with 16 participants
whereas our results were obtained by an expert user. Furthermore,
our dataset was different: Jung et al. used line and bar charts found
on Google Images with at most two series and nine marks per series.
In contrast, we used a dataset of generated charts and charts pub-
lished at CHI, including charts with hundreds of marks. Regardless,
both studies suggest that relative error below 0.5% may be out of
reach for raster chart data extraction using existing approaches and
that ChartDetective fulfills its goal of maximizing accuracy (D1).

Control of Anchor Points. ChartDetective differs from other manual
and semi-automatic tools in that users select whole shapes and
let the system decide how to handle them to extract the data (D3).
In contrast, other systems often rely on users directly specifying
anchor points to define the exact point depicted by a marker, even
if this marker takes various forms and sizes. One advantage of our
system generated anchor points is reduced standard deviation (D1):
the same shape selection always results in the same value. In con-
trast, giving users control over anchor points inevitably results in
lower precision due to selection errors or simply because users have
to “guess” the centroid of shapes. This can vary greatly depending
on the style (e.g., thick lines or large markers) and the forms of
the shapes [28, 69]. We advocate for a shape-selection approach
because users can reliably select shapes (see Study 1) and that our
assumptions regarding anchor points were valid across a diverse
set of charts (see Study 2).

Open Science at CHI. Corroborating the findings of previous work [1,
80], and further motivating the need for chart extraction methods,
we experienced first-hand the difficulty of obtaining data related to
CHI papers. Of the 3,673 papers published at CHI from 2015 to 2020,
only 74 papers contained an OSF link (2%). Our automatic mining
approach likely missed data published using other methods like
custom webpages. But more importantly, even within these papers,
we could not always reproduce the charts. This was sometimes due
to missing data (the OSF link contained other material) or because

only raw data was provided without guidance to reproduce pro-
cessed data used in charts. For example, the cleaning procedure,
aggregation method, and formulas applied were missing. Addition-
ally, there was often a mismatch between the data names in the
chart and labels in the raw data.

8.1 Limitations and Future Work

8.1.1 Support For Raster Charts. A large portion of charts remain
embedded as raster graphics and cannot leverage the benefits pro-
vided by ChartDetective. A tempting alternative to using tools such
as WebPlotDigitizer [68] could be to vectorize raster charts so that
they can be used with ChartDetective. New state-of-the-art vec-
torization algorithms [48] might provide the best approximation
for the location of shapes representing chart elements and possi-
bly help disentangle overlapping shapes. However, many benefits
provided by “original” vector charts would be lost and the qual-
ity of the input raster image will limit the vectorization process.
While a vectorization approach can extend our system to rasterized
charts, it seems unlikely to provide substantial benefits over using
raster-based extraction tools.

8.1.2 Optical Character Recognition of Rendered Text. When the
user study was conducted, participants had an earlier version of
ChartDetective where rendered text could not be automatically
retrieved, and required participants to enter it manually. While we
found rendered text in vector charts to be relatively rare in practise,
we added OCR support in ChartDetective (C4). Preliminary tests
suggest excellent performance: we rendered all text in the charts
used in the usability study, and the OCR engine was able to recover
97.5% of all characters correctly. A more extensive evaluation is
needed to make definitive conclusions.

8.1.3 Diversity of Chart Styles. The many ways in which charts
represent and encode data is one of the main difficulties faced by
reverse-engineering approaches [15–17, 37]. We choose to evaluate
our tool on real charts published at CHI that exhibited challenging
properties like high density, overlapping shapes and mixing encod-
ing (C1, D2). We encourage other work to do so as well, considering
such charts are abundant in practice. Of course, our dataset is not
universally representative. First, we only examine charts in the HCI
research community, but others communities might have different
practices regarding charts. Second, the HCI community is arguably
more aware of good data visualization practices. This is both a
strength of our dataset because HCI charts may be more creative in
their use of marks and visual channels, but also a weakness because
charts may be clearer and exhibit fewer flaws [10].

Further, we cannot guarantee that our tool is general enough to
handle all charts. ChartDetective relies on fundamental attributes
of charts and on the structure of the vector representation. We ver-
ified these were reasonable and applied to major chart generators,
but charts could use different encoding structures. Moreover, our
system focused on the four most common data visualizations (bar,
line, scatter, and box plots), but more work is needed to implement
extractors for other types such as stacked bar, violin, and pie charts.

8.1.4 Automatic Selections Through Suggestions. Considering the
limitations of previous work, a goal of ChartDetective was to pre-
serve some user-control to allow the selection of specific data, the
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support of complex and diverse charts (D2), and the verification
of the results (D4). While the time it took participants to extract
charts was under 4 minutes, this could be further shortened by
automating some tasks (D3). For example, participants often men-
tion the selection of error bars as the most tedious. We believe this
could be improved through suggestions generated by continuously
learning from user actions: after selecting the error bars for one
series, the system could learn to recognize the characteristic shapes
composing error bars and suggest repeating the action for other
series. General selection suggestions could also be learned from
the community and be offered prior to the user first selection, only
based on the shapes identified in the chart. We believe this active
learning approach with suggestions is the best compromise between
incorporating automation while preserving high controllability [70]

8.2 Applications of ChartDetective

ChartDetective can power several downstream tasks that require
access to accurate data when only the charts are readily available.
Specifically, readers interested in re-analyzing the results presented
in a chart can use ChartDetective to extract underlying data and
then use it as input to their analysis, or to compare their results
against. Other applications include the use of ChartDetective as
an intermediate step to re-design existing charts: a chart found
online or in a document might benefit from being redesigned if it
is poorly structured or deceptive [10, 53, 61], uses a representation
ineffective to support users’ task [58, 66], is overblown and shows
too many data points [77], or is not accessible because of its colour
palette and style [41, 82]. For all these scenarios, the chart can be
loaded in ChartDetective to let users select only the data of interest.
Users can then export the underlying data to be visualized in an
authoring tool, or, they can use the automatically reconstructed
interactive chart and tweak its specification such as changing its
aspect ratio to avoid deceptive charts that exaggerate or undermine
slopes [61], its scale to remove truncated axes [10], its colour to
make it print- and colorblind-safe [41], and its encodings to make
it align with the user’s task [58, 66].

8.3 Takeaway for Chart Authors

Through this work, we hope to encourage authors to share their
figures as vector graphics. Besides facilitating data extraction, vector
graphics have numerous advantages: high quality at any resolution;
more accessible; easily modifiable; and typically smaller in size. All
major chart generators have an option to export charts as vector
graphics which can then be directly imported into documents such
as LATEX, MS Word documents, or web pages. We also recommend
authors carefully choose chart generators because they can differ
in how well they represent data. For example, we found that MS
Excel generated less accurate charts than either matplotlib, ggplot2,
or plotly. Although these differences are invisible to the naked-eye
(Figure 7) they are a concern in the context of chart extraction.

9 CONCLUSION

We presented ChartDetective, a tool within the pipeline to extract
data from charts using their vector representation. Through theo-
retical and experimental evidence, we showed the benefits of using
vector graphics to extract data compared to using raster images. We

identified the challenges associated with building such a system,
demonstrated opportunities for novel features, and evaluated its
usability and quality of the extracted data. Recovering complete
and accurate data is the first step to tackle downstream tasks such
as redesigning existing charts or making them dynamic, interactive,
and accessible. Besides helping users recover this data, we hope
our system serves as a building block to leverage the wealth of
information currently locked inside static visualizations.
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A APPENDIX

A.1 Extraction Algorithms

All the extraction algorithms work by taking as input a user selec-
tion (i.e., a list of shapes) and outputting an array of coordinates that
should be added to the extracted data. A shape is defined by a list
of points (corners). To give consistent specifications to extractors,
all shapes are pre-processed to be subdivided into smaller units
everytime they use the “moveto” feature (C2), see Algorithm 6. For
clarity reasons, the pseudo-code focuses on one specific orientation:
vertical bars, box plots, and axes and horizontal lines.

Algorithm 1: Extraction of bars
Input: A user selection of shapes 𝑠ℎ𝑎𝑝𝑒𝑠
Output: An array of 2D coordinates
𝑝𝑜𝑖𝑛𝑡𝑠 ← []
foreach 𝑠 ∈ 𝑠ℎ𝑎𝑝𝑒𝑠 do

add (middle of 𝑠 , top of 𝑠) to 𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑝𝑜𝑖𝑛𝑡𝑠

Algorithm 2: Extraction of scatters
Input: A user selection of shapes 𝑠ℎ𝑎𝑝𝑒𝑠
Output: An array of 2D coordinates
𝑝𝑜𝑖𝑛𝑡𝑠 ← []
foreach 𝑠 ∈ 𝑠ℎ𝑎𝑝𝑒𝑠 do

add centre of 𝑠 to 𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑝𝑜𝑖𝑛𝑡𝑠
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Algorithm 3: Extraction of axis
Input: A user selection of shapes 𝑠ℎ𝑎𝑝𝑒𝑠
Output: An array of 2D coordinates
𝑝𝑜𝑖𝑛𝑡𝑠 ← []
foreach 𝑠 ∈ 𝑠ℎ𝑎𝑝𝑒𝑠 do

if 𝑠 is text then
add (text of 𝑠 , centre of 𝑠) to 𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑝𝑜𝑖𝑛𝑡𝑠

Algorithm 4: Extraction of lines
Input: A user selection of shapes 𝑠ℎ𝑎𝑝𝑒𝑠
Output: An array of 2D coordinates
𝑝𝑜𝑖𝑛𝑡𝑠 ← []
foreach 𝑠 ∈ 𝑠ℎ𝑎𝑝𝑒𝑠 do

foreach 𝑝𝑡 ∈ 𝑠 do
add 𝑝𝑡 to 𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑝𝑜𝑖𝑛𝑡𝑠

Algorithm 5: Extraction of box plots
Input: A user selection of shapes 𝑠ℎ𝑎𝑝𝑒𝑠
Output: An array of 2D coordinates
𝑝𝑜𝑖𝑛𝑡𝑠 ← []
𝑔𝑟𝑜𝑢𝑝𝑠 ← group 𝑠ℎ𝑎𝑝𝑒𝑠 with equal horizontal positions
foreach 𝑔𝑟𝑜𝑢𝑝 ∈ 𝑔𝑟𝑜𝑢𝑝𝑠 do

𝑚𝑖𝑛 ← y of 𝑔𝑟𝑜𝑢𝑝 [0]
𝑚𝑎𝑥 ← top of 𝑔𝑟𝑜𝑢𝑝 [0]
𝑞1←𝑚𝑖𝑛

𝑞3←𝑚𝑎𝑥

𝑚𝑒𝑑𝑖𝑎𝑛𝑠 ← []
foreach 𝑠ℎ𝑎𝑝𝑒 ∈ 𝑔𝑟𝑜𝑢𝑝 do

if 𝑠ℎ𝑎𝑝𝑒 is horizontal line then

add vertical centre of 𝑠ℎ𝑎𝑝𝑒 to𝑚𝑒𝑑𝑖𝑎𝑛𝑠

if 𝑠ℎ𝑎𝑝𝑒 is rectangle then

𝑞1← y of 𝑠ℎ𝑎𝑝𝑒
𝑞3← top of 𝑠ℎ𝑎𝑝𝑒

foreach𝑚𝑒𝑑𝑖𝑎𝑛 ∈𝑚𝑒𝑑𝑖𝑎𝑛𝑠 do

if 𝑚𝑒𝑑𝑖𝑎𝑛 > 𝑞1 and𝑚𝑒𝑑𝑖𝑎𝑛 < 𝑞3 then

add (middle of 𝑔𝑟𝑜𝑢𝑝 ,𝑚𝑒𝑑𝑖𝑎𝑛) to 𝑝𝑜𝑖𝑛𝑡𝑠

add (middle of 𝑔𝑟𝑜𝑢𝑝 ,𝑚𝑖𝑛) to 𝑝𝑜𝑖𝑛𝑡𝑠

add (middle of 𝑔𝑟𝑜𝑢𝑝 ,𝑚𝑎𝑥 ) to 𝑝𝑜𝑖𝑛𝑡𝑠

add (middle of 𝑔𝑟𝑜𝑢𝑝 , 𝑞1) to 𝑝𝑜𝑖𝑛𝑡𝑠

add (middle of 𝑔𝑟𝑜𝑢𝑝 , 𝑞3) to 𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑝𝑜𝑖𝑛𝑡𝑠

Algorithm 6: Split a compound shape
Input: A shape 𝑠
Output: An array of shapes
𝑠ℎ𝑎𝑝𝑒𝑠 ← []
𝑝𝑎𝑡ℎ ← []
foreach 𝑜𝑝𝑒 ∈ path of 𝑠 do

if 𝑜𝑝𝑒 is moveto then

add shape formed from 𝑝𝑎𝑡ℎ to 𝑠ℎ𝑎𝑝𝑒𝑠

𝑝𝑎𝑡ℎ ← []
add 𝑜𝑝𝑒 to 𝑝𝑎𝑡ℎ

return 𝑠ℎ𝑎𝑝𝑒𝑠
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