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A B S T R A C T   

It remains unclear how soil microbes respond to labile organic carbon (LOC) inputs and how temperature 
sensitivity (Q10) of soil organic matter (SOM) decomposition is affected by LOC inputs in a short-term. In this 
study, 13C-labeled glucose was added to a pristine grassland soil at four temperatures (10, 15, 20, and 25 ◦C), and 
the immediate utilization of LOC and native SOM by microbes was measured minutely in a short-term. We found 
that the LOC addition stimulated the native SOM decomposition, and elevated temperature enhanced the in-
tensity of microbial response to LOC addition. The ratio between microbial respiration derived from LOC and 
native SOM increased with higher temperature, and more LOC for respiration. Additionally, LOC addition 
increased the Q10 of SOM decomposition, and the Q10 of LOC decomposition is higher than that of native SOM. 
Overall, these findings emphasize the important role of temperature and LOC inputs in soil C cycles.   

Pulsed or continuous labile organic carbon (LOC) inputs into the soil 
is prevalent and generally induce priming effect on the native SOM 
(Kuzyakov, 2010; Li et al., 2021), With global change, temperature will 
increase and LOC input into the soil will increase due to higher plant 
productivity increases (Wu et al., 2011; Xu et al., 2012). Numerous 
studies have investigated how temperature affects the priming effect but 
so far, no clear pattern has emerged (Ghee et al., 2013). In particular, the 
short-term processes involved in the microbial response to LOC inputs 
and how this process is affected by temperature are still unclear. 

The temperature sensitivity of SOM decomposition is often quanti-
fied using Q10, which is defined as the proportional increased in CO2 
emission rate for a 10 ◦C increase in temperature (Davidson and Jans-
sens, 2006). The Q10 is often considered as an intrinsic property of a 
given pool independent from the environmental conditions and this how 
this is classically represented in models (Davidson and Janssens, 2006). 
Nevertheless, recent studies showed that the Q10 value is influenced by 
multiple environmental factors (Delgado-Baquerizo et al., 2017; Li et al., 
2017; Liu et al., 2017), but also by the input of organic matter (Fissore 
et al., 2013; Liu et al., 2021). We therefore assume that the inconsistent 
results on priming effect response to temperature might be due to a 

significant modification of the Q10 of SOM when LOC is added compared 
to control without LOC. Moreover, the C quality-temperature (CQT) 
hypothesis suggest that more biochemically complex and recalcitrant 
substrates have a higher Q10 (Craine et al., 2010). We therefore assume 
that the Q10 of LOC decomposition is lower than that of native SOM 
decomposition. 

In this study, we sampled soils from a temperate steppe and con-
ducted a laboratory incubation experiment. Specifically, 13C-labeled 
glucose was added to the soils incubated at four temperature treatments 
(10, 15, 20, and 25 ◦C), and a fully automated soil microbial respiration 
sampling measurement system was used to measure the microbial 
respiration rate derived from LOC and SOM at a minute scale during a 
53-h period. Detailed information on soil sampling, incubation experi-
ment, and data analysis was described in Supplementary materials. 

The soil microbe response to LOC addition was rapid (Fig. 1A), 
higher temperatures enhanced the response intensity (Fig. S3) and 
increased CO2 emissions from both LOC and native SOM (Fig. 1D–F). 
This observation confirmed our hypothesis and was in line with theo-
retical consideration. Generally, microbes are mainly limited by the 
availability of C substrates (Blagodatskaya and Kuzyakov, 2013), a large 
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proportion of microbes are inactive without an addition of labile sub-
strates, but maintain ‘physiological alertness’ and are ready in case of 
occasional input of substrate (De Nobili et al., 2001; Blagodatskaya and 
Kuzyakov, 2013). Thus, LOC addition promoted the decomposition of 
native SOM (Fig. 1B), due to the enhanced microbial activity (De Nobili 
et al., 2001). There is also a potential reason that could be that the LOC 
increases the availability of C substrate to microbes, microbial growth 
and metabolism will be limited by N (Dilly, 1999). Therefore, microbes 
need to decompose more native SOM to obtain nutrients to meet growth 
requirements, thus promoting the decomposition of native SOM (Craine 
et al., 2007; Chen et al., 2014). The temperature-promoting effects on 
LOC and native SOM decomposition are consistent, because of higher 
temperatures can provide a more suitable environment for microbes to 
accelerate chemical reaction rates, enzyme activity, and result in the 
promotion of microbial utilization for different C sources (Fang and 

Moncrieff, 2001). However, this challenging the previous studies which 
suggested that the glucose catabolism by microorganisms is insensitive 
to temperature (Frey et al., 2013; Hagerty et al., 2014), and attributed 
this to the different enzymatic requirements of different substrate 
catabolic processes. Differences in microbial community structure may 
be responsible for the different results, the reasons for which need 
further investigation. 

The ratio between LOC and native SOM respired increased with 
higher temperature and more LOC was mineralized (Fig. 2, Fig. S4). 
Higher temperature accelerates microbial activity and biochemical re-
actions, but elevated temperature also affects carbon use efficiency and 
the respiration increase observed when temperature increase might be 
also partially due to a modification of microbial physiology (Manzoni 
et al., 2008). Furthermore, according to the microbial stoichiometry 
theory, microorganisms have a relatively stable stoichiometric require-
ment, and resources in excess of their requirements would be wasted in 
the form of respiration (Chen et al., 2014; Buchkowski et al., 2015). The 
findings indicated that the elevated temperature not only promotes the 
decomposition of SOM, but also is detrimental to the stabilization of LOC 
input to the soil through multiple pathways. 

Q10-SOM was significantly larger than Q10-ck at phases I and II (Fig. 3D 
and E), and gradually decreased with the prolongation of incubation 
time (Fig. 3B), confirming our first assumption suggesting Q10 of SOM 
when LOC is added is scaled with Q10 of LOC. It is mainly because the 
addition of LOC increased the availability of labile substrates (Fissore 
et al., 2013; Liu et al., 2021). Theoretically, the Michaelis-Menten ki-
netics (Rs = Vmax × C/(Km + C)) provides a more appropriate model to 
interpret this phenomenon—increasing the SOM availability to micro-
organisms after LOC additions may increase the difference between C 
and Km. Therefore, the relative importance of Km in the calculation of Rs 
reduced when LOC is added. It has been shown that both Vmax and Km 
increase when temperature increase leading to some cancelling effect of 

Abbreviations 

RTotal total microbial respiration rate 
RLOC microbial respiration rate from LOC 
RSOM microbial respiration rate from native SOM under LOC 

addition treatment 
Q10-Total temperature sensitivity of total microbial respiration 
Q10-LOC temperature sensitivity of microbial respiration from 

LOC 
Q10-SOM temperature sensitivity of microbial respiration from 

native SOM under LOC addition treatment 
Q10-ck temperature sensitivity of microbial respiration from 

native SOM under control treatment  

Fig. 1. Changes in soil microbial respiration rates and cumulative CO2 emissions under different temperature treatments after LOC addition. A–C: soil microbial 
respiration rates derived from LOC, native SOM, and the total respiration rate, respectively, under different temperature treatments; D–F: the cumulative CO2 
emissions derived from LOC, native SOM, and the total, respectively, over 53-h. P values and different letters indicate significant differences among the different 
temperature treatments (n = 4, mean ± SE). Black lines indicate the fitted curves of the corresponding parameters versus temperature. R2 and * denote the goodness 
of fit and significance level, respectively. The level of significant was set at P < 0.05. 
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Fig. 2. Changes in the ratio of microbial respiration 
derived from LOC and SOM at different tempera-
tures. (A) Trends in the proportion of LOC and SOM 
used by microbial respiration (RLOC/RSOM) over 53- 
h; (B–C) comparison of RLOC/RSOM at phases I and II 
under different temperatures. (D) Comparison of the 
percentage of LOC and SOM mineralized by micro-
organisms at different temperatures during 53h. In 
the box-whisker plot, horizontal line inside each box 
represents the mean values, top and bottom of the 
box represent the first and third quartiles, respec-
tively, and vertical lines represent 1.5 times the 
interquartile range. Hollow dots represent outliers. 
The *, **, and *** in the figures indicate statistical 
difference levels of P < 0.05, P < 0.01, and P <
0.001, respectively, and NS indicates no significant 
difference.   

Fig. 3. Temperature sensitivity changes of LOC and native SOM decomposition over time. A–C: the comparison of Q10-LOC, Q10-SOM, and Q10-Total at three different 
stages, respectively; D–F: the comparison of Q10-ck, Q10-LOC, Q10-SOM, and Q10-Total at three identical stages, respectively. Significant differences were detected using 
Wilcoxon test. The *, **, and *** in the figures indicate statistical difference levels of P < 0.05, P < 0.01, and P < 0.001, respectively, and NS indicates no sig-
nificant difference. 
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temperature increase but Vmax seems more sensitive than Km (Razavi 
et al., 2015). Thus, the reduced relative importance of Km with LOC 
addition induce a higher Q10-SOM compared to Q10-ck. Nevertheless, we 
found that Q10-LOC was significantly higher than Q10-SOM in phases I and 
II (Fig. 3D and E), contrary to our hypothesis and to the CQT theory. An 
alternative explanation might be due a differential effect of temperature 
on the carbon use efficiency of the glucose compared to the SOM. 
Indeed, carbon use efficiency is controlled by different factors including 
temperature and substrate quality (Manzoni et al., 2012) but to our 
knowledge an interaction between both drivers has not been reported 
yet in the literature. Nevertheless, substrate supply capacity is also an 
important factor that affects Q10 (Fissore et al., 2013; Liu et al., 2021). 
Hence, prolongation of incubation time gradually depleted glucose, 
which leads to a decrease in Q10-LOC and is lower than Q10-SOM in phase 
III. Currently, there are only a few studies on the Q10 of LOC decom-
position, which should be emphasized in future studies, especially in the 
context of climate change that will lead to more plant-C input to the soil 
(Wu et al., 2011; Xu et al., 2012). 

In summary, we found that soil microorganisms responded rapidly to 
LOC addition and that the addition of LOC stimulated the native SOM 
decomposition. Additionally, elevated temperature enhanced the in-
tensity of microbial response to added LOC and resulted in more LOC for 
respiration. More importantly, the input of LOC increased the Q10 of 
native SOM decomposition. These results highlight the importance of 
temperature on microbial utilization of LOC and native SOM for soil C 
formation and stabilization under conditions of climate change and 
increased C inputs. 
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