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Introduction

In this note, we are interested in the jacobian conjecture, that is: for n positive integer, an étale polynomial endomorphism of C n is a polynomial automorphism. Some results are known for a long time. For example, an étale polynomial endomorphism is an automorphism if it is proper or birational [Bass 82, Theorem 2.1]. According to the results of L.M. Drużkowski, it is sufficient to prove that the following conjecture is true.

Conjecture 1.1. Let n be a positive integer and F 1 , . . . , F n in the dual of C n . Denote by Φ the polynomial endomorphism of C n :

C n Φ / / C n , x = (x 1 , . . . , x n ) -→ (x 1 + F 1 (x) 3 , . . . , x n + F n (x) 3 ).
If Φ is an étale morphism, then Φ is a polynomial automorphism.

As a result, we are interested in the proof of conjecture 1.1.

1.1. Sketch of proof. Let n be a positive integer and F 1 , . . . , F n , Φ as in Conjecture 1.1. Suppose that Φ is étale. For x in C n , let X x be the vector field on C n , y -→ Φ ′ (y) -1 (x)

with Φ ′ (y) the differential of Φ at y. If γ is an integral curve of X x with initial datum γ(0) = y, then for all t in the interval of definition of γ, Φ•γ(t) = Φ(y) + tx.

The key step of the proof is the following proposition:

Proposition 1.2. Let x be in C n and γ x the maximal integral curve of X x with initial datum γ x (0) = 0. Then R is the interval of definition of γ x .

For x in C n , let ϕ x be the map from C to C n such that ϕ x (0) := 0 and ϕ x (t) := γ ux (|t|) with u := t |t| , for all t in C * . The second step is the following result:

Proposition 1.3. For all x in C n , ϕ x is a polynomial map such that Φ•ϕ x (t) = tx for all t in C.

We deduce from this proposition that the map x → ϕ x (1) is a polynomial endomorphism. Then Φ is a polynomial automorphism and its inverse is the map x → ϕ x (1). 1.2. Notations and Definition. • As usual, for k positive integer and for i = (i 1 , . . . , i k ) in N k ,

|i| := i 1 + • • • + i k .
For j nonnegative integer, denote by N k j , the subset of elements i of N k such that |i| = j. • For E subset, |E| is its cardinality when it is finite and +∞ when it is not finite.

• The topology on C n is the usual topology and . is an euclidean norm on C n . Let d be the distance on C n such that d(x, y) := xy .

• For Φ a holomorphic endomorphism of C n and x in C n , its differential at x is denoted by Φ ′ (x).

• For n positive integer and x, y in C n , set:

xy := (x 1 y 1 , . . . , x n y n ) with x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ).

As a result, by induction on k, for v 1 , . . . , v k in C n , v 1 • • • v k is a well defined element of C n . For F a map from C n to C n and k positive integer, denote by F (k) the map

C n F (k) / / C n , x -→ F(x) k .
• As usual, for n positive integer, M n (C) is the algebra of square matrices of order n with complex coefficients. Denote by 1 n the identity element of M n (C). For A in M n (C) and 1 ≤ i, j ≤ n, A i, j is the coefficient of A at its i-row and j-column. The matrix A is identified with the endomorphism of C n , (x 1 , . . . ,

x n ) -→ (A i,1 x 1 + • • • + A i,n x n , i = 1, . . . , n).
• Let A be in C n . Denote by F the linear endomorphism of C n identified with A and Φ the polynomial endomorphism of C n ,

C n Φ / / C n , x -→ x + F (3) (x).
For i = 1, . . . , n, let F i be the i-th coordinate of F and for x in C n , denote by D x the diagonal matrix whose entries are F 1 (x) 2 , . . . , F n (x) 2 .

Definition 1.4. The matrix A is said AJC (adapted to Jacobian conjecture) if

D x A is a nilpotent matrix for all x in C n . By [Dru83, Proposition 2], A is AJC if and only if Φ is an étale morphism. Lemma 1.5. Suppose that Φ is étale. Then Φ -1 (v) = {v} for all v in the kernel of F. Proof. As v is in the kernel of F, Φ(v) = v. Let x be in C n such that Φ(x) = v. Then v is the image of x by 1 n + D x A. As Φ is étale, for some positif integer m, (D x A) m = 0, whence (1 n + D x A) -1 = m-1 i=0 (-1) i (D x A) i . Since v is in the kernel of F, for i positive integer, (D x A) i (v) = 0, whence x = (1 n + D x A) -1 (v) = v,
and the lemma.

In this note, A is an AJC matrix different from 0. As Φ is an étale morphism, for all x in C n , there exists an open neighborhood ω of x in C n such that the restiction of Φ to ω is a holomorhic isomorphism onto the open neighborhood Φ(ω) of Φ(x) in C n . Denote by ψ the inverse of the restriction of Φ to ω and call the pair (ω, ψ) an adapted pair to x.

Semialgebraic sets and maps

We recall some results of semialgebraic geometry (see [START_REF] Coste | An introducion to semialgebraic geometry[END_REF]). Let E and F be finite dimensional real vector spaces. A subset of E is semialgebraic if it is a finite union of subsets defined by a system of a finite number of equalities and inequalities of polynomials. Denoting by S(E) the set of semialgebraic subsets of E, S(E) is stable under finite union and finite intersection. For S in S(E), its closure in E, its interior and E \ S are in S(E).

For X subset of E and ϕ a map from X to F, ϕ is a semialgebraic map if its graph is a semialgebraic subset of E × F. By Tarski-Seidenberg's theorem, X is a semialgebraic subset of E and the image of ϕ is a semialgebraic subset of F.

Lemma 2.1. Let X be a subset of E, Y a subset of F and G a real vector space of finite dimension. If ϕ is a semialgebraic map from X to Y and ψ a semialgebraic map from Y to G then ψ•ϕ is a semialgebraic map fom X to G.

Proof. Let Γ ϕ be the graph of ϕ and Γ ψ the graph of ψ. Denote by Γ the intersection of Γ ϕ × G and E × Γ ψ . Then the graph of ψ•ϕ is the image of Γ by the projection

E × F × G / / E × G , (x, y, z) -→ (x, z).
By hypothesis, Γ is a semialgebraic subset of E × F × G and by Tarski-Seidenberg's theorem, ψ•ϕ is a semialgebraic map. 

, x 2 , ε) of Ω × Ω × Ω × R * + such that d(x, x 1 ) ≤ ε, d(x, x 2 ) ≤ ε, a(x 1 ) a(x 2 ). Since Ω, a, d are semialgebraic, Z is a semialgebraic subset of C n × C n × C n × R. Denote by Z the closure of Z in Ω × Ω × Ω × R + and Z 0 the intersection of Z and Ω × Ω × Ω × {0}. Then Ω \ Ω ′
is the image of Z 0 by the first projection. As a result, Ω \ Ω ′ and Ω ′ are semialgebraic subsets of C n , whence the lemma.

Corollary 2.5. Suppose that the interior of Ω \ Ω ′ is empty. Then the function a is constant.

Proof. By hypothesis and Lemma 2.4, Ω ′ is a dense semialgebraic open subset of Ω. Then, by [START_REF] Coste | An introducion to semialgebraic geometry[END_REF]Theorem 2.23], Ω ′ has a finite number of connected components. Denote them by O 1 , . . . , O m . For i = 1, . . . , m, a is constant on O i since a is continuous. Denote by a i its value.

As O \ O ′ has an empty interior, for x in O \ O ′ , for some i, x is in the closure of O i so that a(x) = a i . As a result, the image of a is equal to {a 1 , . . . , a m }. Hence a is constant since a is continuous and O is connected.

On semialgebraic curves.

In this subsection we give some results on continuous semialgebraic curves.

Lemma 2.6. Let γ be a continuous semialgebraic function from the interval ]a, b] to R.

(i) Suppose that γ has a boundary value when t goes to a. Then γ has a continuous extension to [a, b].

(ii) If γ is not bounded, then for some positive rational number r and a continuous semialgebraic function

γ 0 on [a, b] such that γ 0 (a) 0, γ(t) = (t -a) -r γ 0 (t) for all t in ]a, b]. Proof. (i) Let Γ be the graph of the function γ and Γ its closure in [a, b] × R. By hypothesis, Γ \ Γ is not empty and contained in {a} × R since γ is continuous. Let x be in R such that (a, x) is in Γ and ε a positive real number. The intersection of Γ and [a, b]×]x -ε, x + ε[ is a semialgebraic subset of R 2 .
Then it has a finite number of connected components by [START_REF] Coste | An introducion to semialgebraic geometry[END_REF]Theorem 2.23]. Denote them by C 1 , . . . , C m . Since (a, x) is in Γ, for some positive number η and for some i in {1, . . . , m}, ]a, a + η] is contained in the image of C i by the first projection since a semialgebraic subset of R is a finite union of intervals and isolated points. As a result, for all t in ]a,

a + η[, |γ(t) -x| < ε. Hence the extension γ of γ to [a, b] such that γ(a) = x is continuous. (ii) Suppose that γ is not bounded. By (i), lim t→a |γ(t)| = +∞.
Moreover, the function t → |γ(t)| is a semialgebraic function. Let P 1 , . . . , P m be the polynomials corresponding to the equalities of a system defining the graph of the function |γ|. Denote by Q the polynomial

Q(t, s) := m i=1 P i (t + a, s).
Then, for some prime divisor

Q * of Q, Q * (t, γ(t + a)) = 0 for all t, different from 0, in a neigh- borhood of 0 in ]0, b -a].
So, by a Puiseux's expansion, for some positive rational number r and positive real number c, lim

t→a (t -a) r |γ(t)| = c.
Setting:

γ 0 (t) = (t -a) r γ(t) for t in ]a, b], the function γ 0 on ]a, b]
is bounded, continuous and semialgebraic. Then, by (i), γ 0 has a continuous expansion to [a, b] such that γ 0 (a) 0.

Corollary 2.7. Let E be a finite dimensional real vector space and γ a continuous semialgebraic map from the interval [a, b] to E. For k nonnegative integer, there exist an increasing sequence r 1 < • • • < r k+1 of positive rational numbers and x 1 , . . . , x k in E such that the map

]a, b] / / E , t -→ (t -a) -r k+1 (γ(t) -(γ(a) + (t -a) r 1 x 1 + • • • + (t -a) r k x k ))
is bounded, continuous and semialgebraic.

Proof. Considering the coordinates of γ in a basis of E, it is sufficient to prove the corollary for In the first case, there is nothing to prove. Suppose that the second case is satisfied. For some positive number η such that a + η ≤ b, the function

E = R. The map t → γ(t) -γ(a)
t -→ 1 γ(t) -γ(a)
on ]a, a+η] is a continuous semialgebraic function and it is not bounded. Hence, by Lemma 2.6(ii), for some positive rational number r 1 and for some continuous semialgebraic function

γ 1 on [a, b] such that γ 1 (a) 0, γ(t) = γ(a) + (t -a) r 1 γ 1 (t) for all t in [a, b],
whence the corollary by induction on k. Remark 2.8. By Corollary 2.7 and an induction argument, we can find an increasing sequence r 1 < r 2 < • • • of positive rational numbers and a sequence x 1 , x 2 , . . . in E \ {0} satisfying one of the two following conditions:

(1) if the sequences are finite of cardinality k, then the function

t -→ γ(t) -(γ(a) + (t -a) r 1 x 1 + • • • + (t -a) r k x k ) is equal to 0 in a neighborhood of a in [a, b],
(2) if the first sequence is not finite so is the second one and for all positive integer k, the map

t -→ (t -a) -r k+1 (γ(t) -(γ(a) + (t -a) r 1 x 1 + • • • + (t -a) r k x k ))
is bounded and semialgebraic.

In the second case, by [START_REF] Duval | Rational Puiseux expansions[END_REF], as the rational numbers r 1 , r 2 , . . . are the exponents of a Puiseux's serie, for some positive integer m, mr 1 , mr 2 , . . . are positive integers so that the sequence r 1 , r 2 , . . . is not bounded.

Vector fields and integral curves

For x in C n , denote by X x the polynomial vector field on C n , y -→ X x (y) := Φ ′ (y) -1 (x).

Definition 3.1. An integral curve of the vector field X x is a derivable map γ from an open interval I of R to C n such that its derative γ ′ satisfies the equality

γ ′ (t) = X x (γ(t))
for all t in I.

3.1. Elementary properties. Let x be in C n . Lemma 3.2. Denote by γ a continuous map from an open interval I of R to C n . Then γ is an integral curve of X x if and only if for some t 0 in I Φ•γ(t) = Φ•γ(t 0 ) + (t -t 0 )
x for all t in I.

Proof. Suppose that γ is an integral curve of X x . Then Φ•γ is an integral curve of the vector field z → Φ ′ (z)(X x (z)). By definition, Φ ′ (z)(X x (z)) = x for all z in C n . As a result, by the unicity of the integral curves with a given initial datum,

Φ•γ(t) = Φ•γ(t 0 ) + (t -t 0 )
x for all (t, t 0 ) in I × I. Conversely, suppose that γ is a continuous map from I to C n such that for some t 0 in I,

Φ•γ(t) = Φ•γ(t 0 ) + (t -t 0 )x ∀t ∈ I.
Let s be in I and (ω, ψ) an adapted pair to γ(s). Then, for all t in γ -1 (ω),

γ(t) = ψ(Φ•γ(t 0 ) + (t -t 0 )x).
As a result, γ is a derivable map and Φ ′ (γ(t))(γ ′ (t)) = x for all t in I, whence the assertion by definition of X x .

Denote by C x the set of integral curves of X x whose interval of definition contains 0. For γ and δ in C x , we say that γ is smaller than δ if the interval of definition of γ is contained in the interval of definition δ and if δ is an expansion of γ. This order is inductive so that any element of C x is smaller than a maximal one.

3.2. On the integral curves. Denote by Ψ the map

C n × C × C n Ψ / / C n × C × C n , (x, t, z) -→ (x, t, Φ(z)).
As Φ is étale so is Ψ. Let ∆ be the graph of the map

C n × C / / C n , (x, t) -→ tx.
Lemma 3.3. Denote by Γ the inverse image of ∆ by Ψ and for x in C n denote by

Γ x the intersec- tion of Γ with {x} × C × C n . (i) The subset Γ of C n × C × C n is a smooth algebraic variety of dimension n + 1, containing C n × {0, 0}.
(ii) For x in C n , Γ x is a smooth algebraic variety of dimension 1, containing (x, 0, 0).

Proof. (i) As Ψ(x, 0, 0) = (x, 0, 0), (x, 0, 0) is in Γ for all x in C n . Let (x, t, y) be in Γ. Since Ψ is étale and ∆ is smooth of dimension n + 1, the tangent space of Γ at (x, t, y) has dimension at most n + 1. Moreover, the image of some open neighborhood of (x, t, y) in

C n × C × C n by Ψ is an open neighborhood of (x, t, Φ(y)) in C n × C × C n . As a result, Γ has dimension n + 1. Hence Γ is a smooth algebraic variety, equidimensional of dimension n + 1. (ii) Let x be in C n . By definition, Γ x is the inverse image by Ψ of the graph ∆ x of the map {x} × C × C n / / C n , (x, t) -→ tx.
As the restriction of Ψ to {x} × C × C n is an étale endomorphism of {x} × C × C n , Γ x is a smooth algebraic variety of dimension 1 since so is ∆ x . Moreover, (x, 0, 0) is in Γ x .

Proposition 3.4. Let y be in C n and γ in C x such that γ(0) = y. Then γ is a semialgebraic map from an interval of R to C n .

Proof. Let I be the interval of definition of γ. According to Lemma 3.2, Φ•γ(t) = Φ(y) + tx for all t in I. Denote by ∆ γ the graph of γ and set:

∆ I := {(t, z) ∈ I × C n | Φ(z) = Φ(y) + tx}.
Since Φ is a polynomial map, ∆ I is a semialgebraic subset of R×C n . Moreover, ∆ γ is a connected closed subset of ∆ I . For all t in I, denote by (ω t , ψ t ) an adapted pair to γ(t). Let δ t be the inverse image of ω t by γ. Then, for (s, z) in the intersection of δ t × ω t and ∆ I , By Lemma 3.2, for all t in [a, a + η[,

Φ(z) = Φ(
Φ•γ a (t) = Φ•γ(a) + (t -a)x.
As a result, for some t in ]a, a + η ′ [, γ(t) = γ a (t). So, by the unicity of the integral curve with initial datum, γ a and γ have the same restriction to [a, a + η[. As a result, there exists an integral curve of X x , extending γ and such that its interval of definition is ]aη, b[. In the same way, we prove that for some positive real number η ′′ , there exists an integral curve of X x , extending γ and such that its interval of definition is ]a, b + η ′′ [, whence the corollary.

Special integral curves

For x in C n , denote by γ x the maximal element of C x such that γ x (0) = 0. The goal of the section is the following proposition: Proposition 4.1. For all x in C n , the interval of definition of γ x is equal to R. (i) The interval I x is invariant under the homeomorphism t → -t. In particular, for some a(x) in R * + ∪ {+∞}, I x =]a(x), a(x)[. (ii) For s in R * , γ sx (t) = γ x (st). Moreover, I sx = s -1 I x and a(sx) = |s| -1 a(x).

Proof. (i) By the maximality of γ x and the unicity of an integral curve with initial datum it is sufficient to prove that the map δ x ,

-I δ x / / C n , t -→ -γ x (-t)
is an integral curve of X x since 0 is in I and γ x (0) = 0. By definition, for all t in -I,

δ ′ x (t) = γ ′ x (-t) = X x (γ x (-t)) = Φ ′ (γ x (-t)) -1 (x).
As Φ is an odd map, Φ ′ (y) = Φ ′ (-y) for all y in C n . As a result, δ x is an integral curve of X x , whence the assertion.

(ii) Denote by δ the map

s -1 I x δ / / C n , t -→ γ x (st). Then δ ′ (t) = sγ ′ x (st) = sΦ ′ (γ x (st)) -1 (x) = X sx (δ(t)).
As a result, δ is an integral curve of the vector field X sx such that δ(0) = 0. So by the unicity of the integral curve with initial datum, s -1 I x is contained in I sx and δ is the restriction of γ sx to s -1 I x . Considering the map

sI sx τ / / C n , t -→ γ sx (s -1 t),
sI sx is contained in I x by the same argument, whence I sx = s -1 I x and the assertion.

According to Lemma 4.2(i), a map a from C n to R * + ∪ {+∞} is well defined. Let Ω be the subset of elements (x, t) of C n × R such that -a(x) < t < a(x) and G the graph of the map

Ω γ / / C n , (x, t) -→ γ(x, t) := γ x (t).
Lemma 4.3. Let (x, t) be in Ω and t ′ a positive real number such that |t| < t ′ < a(x). Then for some open neighborhood ω of x in (ii) By (i), the function a is lower continuous. Hence a -1 ({+∞}) is a closed subset of C n . By Lemma 4.3, a is upper continuous. Hence a is continuous. By Lemma 1.5 and Lemma 3.2, for x in the kernel of F, γ x (t) = tx for all t in R, whence the assertion. 4.2. Properties of the maps γ and a. Let Γ be as in Subsection 3.2 and Γ R its intersection with

C n , ω × [-t ′ , t ′ ] is contained in Ω and the restriction of γ to ω × [-t ′ , t ′ ] is continuous. Proof. Since [-t ′ , t ′ ] is a compact interval contained in I x and the map (y, z) → X z (y) is polyno- mial, for some open neighborhood ω of x in C n , ω × [-t ′ , t ′ ] is contained in Ω and the restriction of γ to ω × [-t ′ , t ′ ] is
C n × R × C n . Lemma 4.5. Let Γ 0 be the connected component of Γ R containing C n × {0, 0}. (i) The subset Γ 0 of C n × R × C n is closed and semialgebraic. Moreover, it contains G. (ii) The subset G of Γ 0 is open. Proof. (i) As C n ×{(0, 0)} is contained in Γ, it is contained in a connected component of Γ R . Since Γ R is a semialgebraic closed subset of C n × R × C n , Γ 0 is semialgebraic by [Cos02, Theorem 2.23]. The set G is contained in Γ R since for all (x, t) in Ω, Φ•γ x (t) = tx by Lemma 3.2. As Ω is a connected subset of C n × R, G is a connected subset of C n × R × C n by Corollary 4.4(i). Hence G is contained in Γ 0 since C n × {(0, 0)} is contained in G.
(ii) Let (x, t, y) be in G and (ω, ψ) an adapted pair to y. As γ is continous,

γ -1 (ω) × ω is an open subset of C n × R × C n . Its intersection with Γ R is the graph of the map γ -1 (ω) / / C n , (z, s) -→ ψ(sz).
Since for all (z, s) in γ

-1 (ω), γ(z, s) is in ω and Φ•γ(z, s) = sz, γ -1 (ω) × ω ∩ Γ R is contained in G,
whence the assertion.

Proposition 4.6. (i) The graph G is equal to Γ 0 .

(ii) The map γ is continuous and semialgebraic.

(iii) The function a is continuous and semialgebraic. In particular, a -1

({+∞}) is a closed semialgebraic subset of C n . Proof. (i) Let G be the closure of G in C n × R × C n . Then G is contained in Γ 0 since Γ 0 is a closed subset of C n × R × C n . By Lemma 4.5(ii), G is an open subset of Γ 0 . Hence it remains to prove G = G since Γ 0 is connected by definition.
Suppose that G is strictly contained in G. A contradiction is expected. Let (x, t, y) be in G \ G. As γ is continuous by Corollary 4.4(i), G is a closed subset of Ω × C n . Hence t = ±a(x) since a is continous by Corollary 4.4(ii). By Lemma 4.2(i), G and G are invariant under the homeomorphism (x, t, y) → (x, -t, y). So we can suppose t = a(x). For some sequence

(x m , t m ), m = 1, 2, . . . in Ω, lim m→+∞ γ(x m , t m ) = y.
Let (ω, ψ) be an adapted pair to y. For z in ω, denote by τ z the integral curve of the vector field X a(x) -1 Φ(z) such that τ z (a(x)) = z. In particular, τ y is the integral curve of the vector field X x such that τ y (a(x)) = y and by Lemma 3.2, for all z in ω and for all t in the interval of definition of τ z ,

Φ•τ z (t) = Φ(z) + (t -a(x))a(x) -1 Φ(z) = ta(x) -1 Φ(z).
For some positive real number η, [a(x)-η, a(x)+η] is contained in the interval of definition of τ y . Then, by [Car67, Théorème 3.6.1], for some open neighborhood ω ′ of y in ω, [a(x)η, a(x) + η] is contained in the interval of definition of τ z for all z in ω ′ since the map (y, z) → X a(x) -1 Φ(z) (y) is polynomial. Moreover, the map

ω ′ × [a(x) -η, a(x) + η] τ / / C n , (z, t) -→ τ z (t)
is continuous. Hence we can suppose that the image of τ is contained in ω.

For some positive integer M and for m bigger than M, γ(x m , t m ) is in ω ′ and for s positive real number smaller than η/2,

t m -s is in [a(x) -η, a(x) + η]. Since Φ(ω ′ ) is a neighborhood of Φ(y) and Φ•γ(x m , t m ) = t m x m , we can suppose that for m bigger than M, a(x)x m is in Φ(ω ′ ). Setting z m := ψ(a(x)x m ), τ z m is an integral curve of X x m and τ z m (t m ) = γ(z m , t m ) since Φ•τ z m (t m ) = Φ•γ(z m , t m ) = t m z m .
So, by the unicity of the integral curve with initial datum, τ z m (t) = γ z m (t) for all t in [a(x)η, a(x) + η]. As a result, for s positive real number smaller than η/2,

γ(x, a(x) -s) = lim m→+∞ γ(x m , t m -s) = lim m→+∞ τ z m (t m -s) = τ y (a(x) -s)
by continuity of γ and τ, whence the contradiction since lim s→0 γ(x, a(x)s) = +∞ by Corollary 3.5.

(ii) By Lemma 4.5(i), Γ 0 is semialgebraic. So, by (i), γ is a semialgebraic map, whence the assertion since γ is continuous.

(iii) By (i), Ω is the image of Γ 0 by the projection

C n × R × C n / / C n × R , (x, t, y) -→ (x, t).
Hence Ω and Ω are semialgebraic subsets of C n ×R. By Corollary 4.4(ii), a is continuous. Hence, Ω is the disjoint union of Ω and the graphs of the restrictions of a and -a to

C n \ a -1 ({+∞}) since a -1 ({+∞}) × R is contained in Ω.
In particular, a -1 ({+∞}) is the complement in C n to the image of Ω \ Ω by the projection

C n × R / / C n , (x, t) -→ x
and the graph of the restriction of a to C n \ a -1 ({+∞}) is the intersection of Ω \ Ω and (C n \ a -1 ({+∞})) × R + . Hence a -1 ({+∞}) is a semialgebraic subset of C n and the restriction of a to C n \ a -1 ({+∞}) is semialgebraic.

4.3. Etale covering. Let K be the field of rational fractions C(x 1 , . . . , x n ) and K ′ the subfield

C(x 1 + F 3 1 , . . . , x n + F 3 n ) of K.
Denote by d the degree of the extension K of K ′ . Lemma 4.7. Let X and Y be two irreducible complex algebraic varieties and ψ a morphism from X to Y. For i nonnegative integer, denote by Y i the subset of elements y such that |ψ -1 (y)| = i. Then, for all nonnegative integer i, Y i is an algebraic constructible subset of Y.

Proof. Let Y ′ n be the subset of elements y of Y such that |ψ -1 (y)| ≥ n. Denote by Z n the subset of elements (y, x 1 , . . . ,

x n ) of Y × X n such that y = ψ(x 1 )= • • • = ψ(x n ). Then Z n is a closed subset of Y × X n . Let Z ′
n be the open subset of elements (y, x 1 , . . . , x n ) of Z n such that x i x j for i j. Then Y ′ n is an algebraic constructible subset of Y as the image of Z ′ n by the projection (y, x 1 , . . . , x n ) -→ y. Proposition 4.9. For some nonempty Zariski open subset U of C n , the restriction of Φ to Φ -1 (U) is a covering map of degree d. In particular, it is a finite morphism.

By definition, Y

n = Y ′ n \ Y ′ n+1 . Hence Y n is
Proof. As Φ is étale, Φ is a quasi finite morphism. So, by Corollary 4.8, for some nonempty Zariski open subset U of C n , Φ -1 ({x}) has cardinality d for all x in U. Let x be in U and x 1 , . . . , x d the elements of Φ -1 (x). For i = 1, . . . , d, denote by (ω i , ψ i ) an adapted pair to x i . Since x 1 , . . . , x d are pairwise different, we can choose ω 1 , . . . , ω d pairwise disjoint. Let ω be the intersection of Φ(ω 1 ), . . . , Φ(ω d ). Then ω is an open neighborhood of x and Φ -1 (ω) is the disjoint union of the open subsets ω 1 ∩ Φ -1 (ω), . . . , ω d ∩ Φ -1 (ω). As a result, the restriction of Φ to Φ -1 (U) is an étale covering of degree d of U, whence the proposition. 4.4. At the neighborhood of an element of C n \ a -1 ({+∞}). Let x be in C n \ a -1 ({+∞} and θ a contiuous semialgebraic arc, [0, 1] θ / / C n , such that θ(0) = x and a(θ(t)) > a(x) for all t in ]0, 1].

Lemma 4.10. For some positive rational number r and a continuous semialgebraic map ψ from [0, 1] to C n , ψ(0) 0 and γ(θ(t), a(x)) = t -r ψ(t) for all t in ]0, 1].

Proof. By Proposition 4.6(ii), the map t → γ(θ(t), a(x)) from ]0, 1] to C n is continuous and semialgebraic. Moreover, by Lemma 3.2, (iii) For j even integer, p j (x) = 0.

γ(θ(t), a(x)) + F (3) (γ(θ(t), a(x))) = a(x)θ(t) (1) for all t in ]0, 1]. By Lemma 2.6(i), if the map t → γ(θ(t), a(x)) is bounded, then for some y in C n , lim t→0 γ(θ(t), a(x)) = y so that (x,
Proof. (i) Let a 0 , a 1 , . . . the coefficients of S . By Lemma 1.5, Φ -1 (0) = {0}. Hence a 0 = 0 if Φ•S (t) = tx. For j = 0, 1, . . ., the coefficient of t j in the expansion of F (3) (S (t)) is equal to

(i 1 ,i 2 ,i 3 )∈N 3 j F(a i 1 )F(a i 2 )F(a i 3 ).
As a result, Φ•S (t) = tx if and only if

a 0 = 0, a 1 = x, a j = - (i 1 ,i 2 ,i 3 )∈N 3 j F(a i 1 )F(a i 2 )F(a i 3 ),
for j ≥ 2, whence the assertion.

(ii) Let (ω, ψ) be an adapted pair to 0. Then ψ is a holomorphic map from Φ(ω) to C n . For some positive real number r, for t in C such that |t| < r, tx is in Φ(ω) and ψ(tx) is the sum of a power serie

ψ(tx) = ∞ j=0 t j a j .
By (i), since Φ•ψ(tx) = tx, a j = p j (x). In particular, r x 0. Moreover, by Lemma 3.2, the map

] -r x , r x [ / / C n , t -→ ∞ j=0 t j p j (x)
is an integral curve of the vector field X x . By the unicity of the integral curve with initial datum, it is the restriction of γ x to ]r x , r x [, whence the assertion. (iii) By Lemma 4.2(i), γ x (t) = -γ x (-t) for all t in ]r x , r x [. Hence by (ii), p 2 j (x) = 0 for all j in N.

For x in C n , let ϕ x be the map from C to C n defined by the following relations: ϕ x (0) = 0 and for t in C * , ϕ x (t) = γ ux (|t|) with u := t |t| .

As the domain of definition of γ y is R for all y in C n , ϕ x is well defined.

Lemma 5.2. Let x be in C n . (i) For all t in C, Φ•ϕ x (t) = tx.

(ii) The map ϕ x is continuous and for all t in C such that |t| < r x , ϕ x (t) = S x (t). (ii) Let U be the subset of complex numbers of module 1. Since the polynomial maps p 0 , p 1 , . . . are homogeneous, r x is the radius of convergence of S ux for all u in U. Moreover, by Lemma 5.1(ii),

ϕ x (t) = ∞ j=0 t j p j (x)
for all t in C such that |t| < r x . In particular, ϕ x is continuous in a neighborhood of 0.

Let ψ x be the map

U × R * + ψ x / / C n , (u, t) -→ ϕ x (tu).
With the notations of Subsection 4.1, ψ x (u, t) = γ(ux, t). Hence, by Corollary 4.4(i), the map ψ x is continuous. As a result, the restriction of ϕ x to C * is continuous since the map

U × R * + / / C * , (u, t) -→ tu
is a homeomorphism, whence the assertion.

Proposition 5.3. Let x be in C n . Then ϕ x is a polynomial map and for some positive integer j, p i (x) = 0 for all positive integer bigger than j.

Proof. Let Γ x be as in Subsection 3.2 and Γ ′ x the subset of C × C n such that Γ x = {x} × Γ ′ x . Denote by G the graph of ϕ x . By Lemma 5.2,(i) and (ii), G is a closed connected subset of Γ ′

x . Let t be in C and (ω, ψ) and adapted pair to ϕ x (t). Then ϕ -1

x (ω) × ω is an open subset of C × C n and its intersection with Γ ′

x is the graph of the map ϕ -1 x (ω) / / ω , s -→ ψ(sx).

As a result, ϕ -1 x (ω) × ω ∩ Γ ′ x is contained in G since ϕ x (s) is in ω for all s in ϕ -1 x (ω). Hence G is an irreducible component of Γ ′

x by Lemma 3.3(ii). Moreover, the canonical projection from G to C is birational and injective. So, by Zariski's Main theorem [START_REF] Mumford | The Red Book of Varieties and Schemes[END_REF]§9], it is an isomorphism of algebraic varieties. Hence ϕ x is a polynomial map. As a result, by Lemma 5.2(ii), for some positive integer j, p i (x) = 0 for j < i. 5.2. Polynomial automorphism. For i positive integer, set:

X i := {x ∈ C n | 0 = p i (x)= p i+1 (x) = • • • }.
Lemma 5.4. For some positive integer j, p i = 0 for i > j.

Proof. According to Propostion 5.3, C n is the union of X 1 , X 2 , . . .. By definition, for all i, X i is a Zariski closed subset. By Baire's property, for some positive integer j, X j contains a nonempty open subset of C n . Hence, X j = C n and p i = 0 for i ≥ j.

  has a zero at a. Moreover, the set of zeros of this map in [a, b] is a closed semialgebraic subset of [a, b]. As a result, it is a union of a finite number of closed intervals and isolated points. Hence γ(t)γ(a) = 0 for all t in a neighborhood of a in [a, b] or γ(t)γ(a) 0 for all t different from a in a neighborhood of a in [a, b].

  y) + sx and Φ•γ(s) = Φ(y) + sx, whence z = γ(s). As a result, ∆ γ is an open subset of ∆ I . Then ∆ γ is a connected component of ∆ I . So, by [Cos02, Theorem 2.23], ∆ γ is a semialgebraic subset of R × C n since so is ∆ I . Corollary 3.5. Let y be in C n and γ in C x such that γ(0) = y. Suppose that γ is defined over the relatively compact interval ]a, b[ of R. If γ is bounded then there exists δ in C x , bigger than γ and such that its domain of definition contains [a, b].Proof. By Proposition 3.4 and Lemma 2.6(i), γ has a continuous extension to[a, b]. Denote again by γ this extension. For some positive real number η, there exists an integral curve γ a of X x defined over ]aη, a + η[ and such that γ a (a) = γ(a). Let (ω, ψ) be an adapted pair to γ(a). For some positive real number η ′ , smaller than η, for all t in ]a, a + η ′ [, γ(t) is in ω and Φ•γ(t) = Φ(y) + tx, whence Φ•γ(a) = Φ(y) + ax and Φ•γ(t) = Φ•γ(a) + (ta)x.

4. 1 .

 1 Intervals of definition. For x in C n , we denote by I x the interval of definition of γ x . Lemma 4.2. Let x be in C n .

  continuous by [Car67, Théorème 3.6.1]. Corollary 4.4. (i) The subset Ω of C n × R is open and the map γ is continuous.(ii) The function a is continuous. In particular, a -1 ({+∞}) is a closed subset of C n . Moreover a -1 ({+∞}) contains the kernel of F.Proof. (i) By Lemma 4.3, Ω is the union of open subsets of C n × R at which the restriction of γ is continuous, whence the assertion.

  an algebraic constructible subset of Y. Corollary 4.8. Suppose that ψ is a quasi-finite dominant morphism. Let j be the degree of the field extension C(Y) ⊂ C(X). Then Y j contains a dense Zariski open subset of Y. Proof. As j is the degree of the separable field extension C(Y) ⊂ C(X), Y j contains the generic point of Y. So, by Lemma 4.7, Y j contains a dense Zariski open subset of Y.

  Proof. (i) By definition Φ•ϕ x (0) = 0. By Lemma 3.2, for t in C * and u = t/|t|,Φ•ϕ x (t) = Φ•γ ux (|t|) = u|t|x = tx,whence the assertion.

  By definition Ω ′ is a union of open subsets of C n . Hence it is open. Let Z be the subset of elements (x, x 1
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  The subsets Z and O of C n are semialgebraic. In particular, the connected components of O are finitely many and semialgebraic.(ii) The open subset O of C n is dense in C n . (iii) Let O * be a connected component of O and O ′ * the subset of elements x of O * such that a is constant on a neighborhood of x. Then tO * = O * and tO ′ * = O ′ * for all t in R * + . Proof. (i) Let Z * be the union of tY, t ∈ R * is an algebraic subvariety of C n , Z * is a semialgebraic subset of C n . Hence Z and O are semialgebraic subsets of C n , whence the assertion by [Cos02, Theorem 2.23]. (ii) By definition, Y is an algebraic subvariety of dimension smaller than n of C n . Hence its dimension as a semialgebraic subset of C n is at most 2n -2 by Lemma 2.2(iv). As a result, Z * and Z have dimension at most 2n -1 by Lemma 2.2, (i) and (v). Hence O is a dense open subset of C n by Lemma 2.2(iii). Let x be in C n . (i) Let S be in C n [[t]]. Then S = S x if and only if Φ•S (t) = tx. (ii) The radius of convergence r x is different from 0 and for t in ]r x , r x [,

	+ . As the map / / C n , ∞ j=0 is semialgebraic and Y Lemma 5.1. γ x (t) = R * + × C n t j p j (x).	(t, x) -→ tx

a, y) is in G and (x, a(x)) is in Ω by Proposition 4.6(i). By definition, (x, a(x)) is not in Ω. As a result, the map t → γ(θ(t), a(x)) is not bounded, whence the assertion by Lemma 2.6(ii), 4.5. Proof of Proposition 4.1. Let U be the Zariski open subset of C n as in Proposition 4.9 and Y its complement in C n . Lemma 4.11. Let Z be the closure in C n of the union of tY, t ∈ R * + and O := C n \ Z. (i)

As a is continuous, for some y in V, a(y) ≤ a(z) for all z in V. Moreover, since a is semialgebraic and V is contained in O ′′ * , a -1 ({y}) ∩ V is a semialgebraic subset whose interior is empty. Then, by Proposition 2.3, for some continuous semialgebraic arc θ,

) is compact by Proposition 4.9. Moreover, for some positive real number η, a(y)θ(t) is in V ′ and γ(θ(t), a(y)) is in Φ -1 (V ′ ) for all t in ]0, η], whence the contradiction. By Lemma 4.12 and Corollary 2.5, a is constant on each connected connected of O. By Lemma 4.2(ii), for x in O and t in R * + , a(tx) = t -1 a(x). Hence O is contained in a -1 ({+∞}) since the connected components of O are invariant under R * + . As a result a -1 ({+∞}) = C n since a is continuous and O is dense in C n by Lemma 4.12(ii), whence Proposition 4.1.

Some polynomial maps

Let p 0 , p 1 , . . . be the sequence of polynomial endomorphisms of C n defined by the induction relations:

for j ≥ 2. By induction, for j = 0, 1, . . ., p j is homogeneous of degree j.

5.1. Some power series and polynomial maps. For x in C n , we denote by S x the formal power serie of the variable t: S x (t) := p 0 (x) + tp 1 (x) + t 2 p 2 (x) + • • • .

Let r x be the radius of convergence of S x . As in Section 4, γ x is the maximal element of C x such that γ x (0) = 0.

Let j be the biggest integer such that p j 0 and set:

Theorem 5.5. The polynomial endomorphism Φ is a polynomial automorphism and P is its inverse.

Proof. By Proposition 5.3 and Lemma 5.1(ii), ϕ x (1) = P(x) for all x in C n . So, by Lemma 5.1(i), Φ•P(x) = x. As a result, P is an étale morphism since so is Φ. In particular, for some open subset From Theorem 6.1 and [Bass 82, Section I], we deduce the following theorem: Theorem 6.2. Let k be an integral ring of characteristic 0 and n a positive integer. Then any polynomial endomorphism of k n whose Jacobian matrix has a constant invertible determinant is a polynomial automorphism.

From Theorem 6.2 and [Ka, Theorem 1], we deduce the following theorem: Theorem 6.3. Let k be a field of characteristic zero and n a positive integer. Denote by A n,k the n-th Weyl algebra over k. Then any endomorphism of A n,k is an automorphism.