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NILPOTENT MATRICES, INTEGRAL CURVES AND JACOBIAN CONJECTURE

JEAN-YVES CHARBONNEL

Abstract. Following the results of L.M. Drużkowski, we are interested in the Jacobian Conjecture.
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1. Introduction

In this note, we are interested in the jacobian conjecture, that is: for n positive integer, an étale

polynomial endomorphism of Cn is a polynomial automorphism. Some results are known for a

long time. For example, an étale polynomial endomorphism is an automorphism if it is proper or

birational [Bass 82, Theorem 2.1]. According to the results of L.M. Drużkowski, it is sufficient

to prove that the following conjecture is true.

Conjecture 1.1. Let n be a positive integer and F1, . . . ,Fn in the dual of Cn. Denote by Φ the

polynomial endomorphism of Cn:

C
n Φ

// C
n , x = (x1, . . . , xn) 7−→ (x1 + F1(x)3, . . . , xn + Fn(x)3).

If Φ is an étale morphism, then Φ is a polynomial automorphism.

As a result, we are interested in the proof of conjecture 1.1.
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1.1. Sketch of proof. Let n be a positive integer and F1, . . . ,Fn,Φ as in Conjecture 1.1. Suppose

that Φ is étale. For x in Cn, let Xx be the vector field on Cn,

y 7−→ Φ′(y)−1(x)

with Φ′(y) the differential of Φ at y. If γ is an integral curve of Xx with initial datum γ(0) = y,

then for all t in the interval of definition of γ,

Φ◦γ(t) = Φ(y) + tx.

The key step of the proof is the following proposition:

Proposition 1.2. Let x be in Cn and γx the maximal integral curve of Xx with initial datum

γx(0) = 0. Then R is the interval of definition of γx.

For x in Cn, let ϕx be the map from C to Cn such that

ϕx(0) := 0 and ϕx(t) := γux(|t|) with u :=
t

|t|
,

for all t in C∗. The second step is the following result:

Proposition 1.3. For all x in Cn, ϕx is a polynomial map such that Φ◦ϕx(t) = tx for all t in C.

We deduce from this proposition that the map x 7→ ϕx(1) is a polynomial endomorphism.

Then Φ is a polynomial automorphism and its inverse is the map x 7→ ϕx(1).

1.2. Notations and Definition. • As usual, for k positive integer and for i = (i1, . . . , ik) in Nk,

|i| := i1+ · · ·+ ik.

For j nonnegative integer, denote by Nk
j
, the subset of elements i of Nk such that |i| = j.

• For E subset, |E| is its cardinality when it is finite and +∞ when it is not finite.

• The topology on Cn is the usual topology and ‖.‖ is an euclidean norm on Cn. Let d be the

distance on Cn such that d(x, y) := ‖x − y‖.

• For Φ a holomorphic endomorphism of Cn and x in Cn, its differential at x is denoted by

Φ
′(x).

• For n positive integer and x, y in Cn, set:

xy := (x1y1, . . . , xnyn) with x = (x1, . . . , xn) and y = (y1, . . . , yn).

As a result, by induction on k, for v1, . . . , vk in Cn, v1· · · vk is a well defined element of Cn. For F

a map from Cn to Cn and k positive integer, denote by F(k) the map

C
n F(k)

// C
n , x 7−→ F(x)k.

• As usual, for n positive integer, Mn(C) is the algebra of square matrices of order n with

complex coefficients. Denote by 1n the identity element of Mn(C). For A in Mn(C) and 1 ≤

i, j ≤ n, Ai, j is the coefficient of A at its i-row and j-column. The matrix A is identified with the

endomorphism of Cn,

(x1, . . . , xn) 7−→ (Ai,1x1 + · · · + Ai,nxn, i = 1, . . . , n).
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• Let A be in Cn. Denote by F the linear endomorphism of Cn identified with A and Φ the

polynomial endomorphism of Cn,

C
n Φ

// C
n , x 7−→ x + F(3)(x).

For i = 1, . . . , n, let Fi be the i-th coordinate of F and for x in Cn, denote by Dx the diagonal

matrix whose entries are F1(x)2, . . . ,Fn(x)2.

Definition 1.4. The matrix A is said AJC (adapted to Jacobian conjecture) if DxA is a nilpotent

matrix for all x in Cn.

By [Dru83, Proposition 2], A is AJC if and only if Φ is an étale morphism.

Lemma 1.5. Suppose that Φ is étale. Then Φ−1(v) = {v} for all v in the kernel of F.

Proof. As v is in the kernel of F, Φ(v) = v. Let x be in Cn such that Φ(x) = v. Then v is the image

of x by 1n + DxA. As Φ is étale, for some positif integer m, (DxA)m
= 0, whence

(1n + DxA)−1
=

m−1∑

i=0

(−1)i(DxA)i.

Since v is in the kernel of F, for i positive integer, (DxA)i(v) = 0, whence

x = (1n + DxA)−1(v) = v,

and the lemma. �

In this note, A is an AJC matrix different from 0. As Φ is an étale morphism, for all x in Cn,

there exists an open neighborhood ω of x in Cn such that the restiction of Φ to ω is a holomorhic

isomorphism onto the open neighborhood Φ(ω) of Φ(x) in Cn. Denote by ψ the inverse of the

restriction of Φ to ω and call the pair (ω, ψ) an adapted pair to x.

2. Semialgebraic sets and maps

We recall some results of semialgebraic geometry (see [Cos02]). Let E and F be finite dimen-

sional real vector spaces. A subset of E is semialgebraic if it is a finite union of subsets defined

by a system of a finite number of equalities and inequalities of polynomials. Denoting by S(E)

the set of semialgebraic subsets of E, S(E) is stable under finite union and finite intersection.

For S in S(E), its closure in E, its interior and E \ S are in S(E).

For X subset of E and ϕ a map from X to F, ϕ is a semialgebraic map if its graph is a

semialgebraic subset of E × F. By Tarski-Seidenberg’s theorem, X is a semialgebraic subset of

E and the image of ϕ is a semialgebraic subset of F.

Lemma 2.1. Let X be a subset of E, Y a subset of F and G a real vector space of finite dimension.

If ϕ is a semialgebraic map from X to Y and ψ a semialgebraic map from Y to G then ψ◦ϕ is a

semialgebraic map fom X to G.
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Proof. Let Γϕ be the graph of ϕ and Γψ the graph of ψ. Denote by Γ the intersection of Γϕ × G

and E × Γψ. Then the graph of ψ◦ϕ is the image of Γ by the projection

E × F ×G // E ×G , (x, y, z) 7−→ (x, z).

By hypothesis, Γ is a semialgebraic subset of E × F × G and by Tarski-Seidenberg’s theorem,

ψ◦ϕ is a semialgebraic map. �

2.1. Some results on semialgebraic sets. According to [Cos02, Secion 2], a semialgebraic

subset S of Rn has a decomposition into a finite disjoint union of semialgebraic subsets semialge-

braically homeomorphic to open hypercubes ]0, 1[d (by convention ]0, 1[0 is a point). By [Cos02,

Proposition 3.15], the dimension of S is the maximum of these d and is independent of the de-

composition. Moreover, by [Cos02, Theorem 2.23], S has a finite number of connected compo-

nents and its connected components are semialgebraic.

Lemma 2.2. Let S be in S(Rn) and S its closure in Rn.

(i) The sets S and S have the same dimension.

(ii) The dimension of S \ S is smaller than dim S .

(iii) The set S has an empty interior if and only if dimS ≤ n − 1.

(iv) If S is a Zariski closed subset of Rn, then dim S is the dimension of S as an algebraic

subset.

(v) For m positive integer and ϕ semialgebraic map from S to Rm, dimϕ(S ) ≤ dimS .

Proof. Assertions (i) and (ii) are given by [Cos02, Proposition 3.16], Assertion (iv) is given

by [Cos02, Theorem 3.20] and Assertion (v) is given by [Cos02, Theorem 3.18].

(iii) By definition, a nonempty semialgebraic open subset of Rn has dimension n. For T semi-

algebraic subset T of S , dim T ≤ dim S by [Cos02, Corollary 3.8]. Then S has an empty interior

if dim S ≤ n − 1. Conversely if dimS = n, it contains a semialgebraic subset homoeomorphic to

]0, 1[n. Hence S has a nonempty interior.

�

Proposition 2.3. Let Y be a semialgebraic subset of Rn, containing 0 and having an empty

interior. Then there exists a continuous semialgebraic arc θ,

[0, 1]
θ

// R
n , t 7−→ θ(t)

such that θ(0) = 0 and θ(t) < Y for all t in ]0, 1].

Proof. As Y has an empty interior, Rn \ Y is a dense semialgebraic open subset of Rn, not con-

taining 0, whence the proposition by the Curve selection lemma [Cos02, Theorem 3.13]. �

2.2. A result on a semialgebraic function. Let Ω be a connected semialgebraic open subset of

C
n and a a continuous semialgebraic function on Ω with real values.

Lemma 2.4. Let Ω′ be the subset of elements x of Ω such that a is constant in a neighborhood

of x. Then Ω′ is a semialgebraic open subset of Cn.
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Proof. By definition Ω′ is a union of open subsets of Cn. Hence it is open. Let Z be the subset

of elements (x, x1, x2, ε) of Ω ×Ω × Ω × R∗
+

such that

d(x, x1) ≤ ε, d(x, x2) ≤ ε, a(x1) , a(x2).

Since Ω, a, d are semialgebraic, Z is a semialgebraic subset of Cn × Cn × Cn × R. Denote by Z

the closure of Z inΩ×Ω×Ω×R+ and Z0 the intersection of Z and Ω×Ω×Ω× {0}. Then Ω \Ω′

is the image of Z0 by the first projection. As a result, Ω \Ω′ and Ω′ are semialgebraic subsets of

C
n, whence the lemma. �

Corollary 2.5. Suppose that the interior of Ω \Ω′ is empty. Then the function a is constant.

Proof. By hypothesis and Lemma 2.4, Ω′ is a dense semialgebraic open subset of Ω. Then,

by [Cos02, Theorem 2.23], Ω′ has a finite number of connected components. Denote them by

O1, . . . ,Om. For i = 1, . . . ,m, a is constant on Oi since a is continuous. Denote by ai its value.

As O \ O′ has an empty interior, for x in O \ O′, for some i, x is in the closure of Oi so that

a(x) = ai. As a result, the image of a is equal to {a1, . . . , am}. Hence a is constant since a is

continuous and O is connected. �

2.3. On semialgebraic curves. In this subsection we give some results on continuous semial-

gebraic curves.

Lemma 2.6. Let γ be a continuous semialgebraic function from the interval ]a, b] to R.

(i) Suppose that γ has a boundary value when t goes to a. Then γ has a continuous extension

to [a, b].

(ii) If γ is not bounded, then for some positive rational number r and a continuous semialge-

braic function γ0 on [a, b] such that γ0(a) , 0, γ(t) = (t − a)−rγ0(t) for all t in ]a, b].

Proof. (i) Let Γ be the graph of the function γ and Γ its closure in [a, b]×R. By hypothesis, Γ \Γ

is not empty and contained in {a} × R since γ is continuous. Let x be in R such that (a, x) is in

Γ and ε a positive real number. The intersection of Γ and [a, b]×]x − ε, x + ε[ is a semialgebraic

subset of R2. Then it has a finite number of connected components by [Cos02, Theorem 2.23].

Denote them by C1, . . . ,Cm. Since (a, x) is in Γ, for some positive number η and for some i in

{1, . . . ,m}, ]a, a + η] is contained in the image of Ci by the first projection since a semialgebraic

subset of R is a finite union of intervals and isolated points. As a result, for all t in ]a, a + η[,

|γ(t) − x| < ε. Hence the extension γ of γ to [a, b] such that γ(a) = x is continuous.

(ii) Suppose that γ is not bounded. By (i),

lim
t→a
|γ(t)| = +∞.

Moreover, the function t 7→ |γ(t)| is a semialgebraic function. Let P1, . . . ,Pm be the polynomials

corresponding to the equalities of a system defining the graph of the function |γ|. Denote by Q

the polynomial

Q(t, s) :=

m∏

i=1

Pi(t + a, s).
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Then, for some prime divisor Q∗ of Q, Q∗(t, γ(t + a)) = 0 for all t, different from 0, in a neigh-

borhood of 0 in ]0, b− a]. So, by a Puiseux’s expansion, for some positive rational number r and

positive real number c,

lim
t→a

(t − a)r |γ(t)| = c.

Setting:

γ0(t) = (t − a)rγ(t)

for t in ]a, b], the function γ0 on ]a, b] is bounded, continuous and semialgebraic. Then, by (i),

γ0 has a continuous expansion to [a, b] such that γ0(a) , 0. �

Corollary 2.7. Let E be a finite dimensional real vector space and γ a continuous semialgebraic

map from the interval [a, b] to E. For k nonnegative integer, there exist an increasing sequence

r1< · · · < rk+1 of positive rational numbers and x1, . . . , xk in E such that the map

]a, b] // E , t 7−→ (t − a)−rk+1(γ(t) − (γ(a) + (t − a)r1 x1 + · · · + (t − a)rk xk))

is bounded, continuous and semialgebraic.

Proof. Considering the coordinates of γ in a basis of E, it is sufficient to prove the corollary for

E = R. The map t 7→ γ(t) − γ(a) has a zero at a. Moreover, the set of zeros of this map in [a, b]

is a closed semialgebraic subset of [a, b]. As a result, it is a union of a finite number of closed

intervals and isolated points. Hence γ(t) − γ(a) = 0 for all t in a neighborhood of a in [a, b] or

γ(t) − γ(a) , 0 for all t different from a in a neighborhood of a in [a, b]. In the first case, there

is nothing to prove. Suppose that the second case is satisfied. For some positive number η such

that a + η ≤ b, the function

t 7−→
1

γ(t) − γ(a)

on ]a, a+η] is a continuous semialgebraic function and it is not bounded. Hence, by Lemma 2.6(ii),

for some positive rational number r1 and for some continuous semialgebraic function γ1 on [a, b]

such that γ1(a) , 0,

γ(t) = γ(a) + (t − a)r1γ1(t)

for all t in [a, b], whence the corollary by induction on k. �

Remark 2.8. By Corollary 2.7 and an induction argument, we can find an increasing sequence

r1< r2 < · · · of positive rational numbers and a sequence x1, x2, . . . in E \ {0} satisfying one of

the two following conditions:

(1) if the sequences are finite of cardinality k, then the function

t 7−→ γ(t) − (γ(a) + (t − a)r1 x1 + · · · + (t − a)rk xk)

is equal to 0 in a neighborhood of a in [a, b],

(2) if the first sequence is not finite so is the second one and for all positive integer k, the map

t 7−→ (t − a)−rk+1(γ(t) − (γ(a) + (t − a)r1 x1 + · · · + (t − a)rk xk))

is bounded and semialgebraic.
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In the second case, by [Duv89], as the rational numbers r1, r2, . . . are the exponents of a Puiseux’s

serie, for some positive integer m, mr1,mr2, . . . are positive integers so that the sequence r1, r2, . . .

is not bounded.

3. Vector fields and integral curves

For x in Cn, denote by Xx the polynomial vector field on Cn,

y 7−→ Xx(y) := Φ′(y)−1(x).

Definition 3.1. An integral curve of the vector field Xx is a derivable map γ from an open interval

I of R to Cn such that its derative γ′ satisfies the equality

γ′(t) = Xx(γ(t))

for all t in I.

3.1. Elementary properties. Let x be in Cn.

Lemma 3.2. Denote by γ a continuous map from an open interval I of R to Cn. Then γ is an

integral curve of Xx if and only if for some t0 in I

Φ◦γ(t) = Φ◦γ(t0) + (t − t0)x

for all t in I.

Proof. Suppose that γ is an integral curve of Xx. Then Φ◦γ is an integral curve of the vector field

z 7→ Φ′(z)(Xx(z)). By definition, Φ′(z)(Xx(z)) = x for all z in Cn. As a result, by the unicity of the

integral curves with a given initial datum,

Φ◦γ(t) = Φ◦γ(t0) + (t − t0)x

for all (t, t0) in I × I. Conversely, suppose that γ is a continuous map from I to Cn such that for

some t0 in I,

Φ◦γ(t) = Φ◦γ(t0) + (t − t0)x ∀t ∈ I.

Let s be in I and (ω, ψ) an adapted pair to γ(s). Then, for all t in γ−1(ω),

γ(t) = ψ(Φ◦γ(t0) + (t − t0)x).

As a result, γ is a derivable map and Φ′(γ(t))(γ′(t)) = x for all t in I, whence the assertion by

definition of Xx. �

Denote by Cx the set of integral curves of Xx whose interval of definition contains 0. For γ

and δ in Cx, we say that γ is smaller than δ if the interval of definition of γ is contained in the

interval of definition δ and if δ is an expansion of γ. This order is inductive so that any element

of Cx is smaller than a maximal one.
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3.2. On the integral curves. Denote by Ψ the map

C
n × C × Cn Ψ

// C
n × C × Cn , (x, t, z) 7−→ (x, t,Φ(z)).

As Φ is étale so is Ψ. Let ∆ be the graph of the map

C
n × C // C

n , (x, t) 7−→ tx.

Lemma 3.3. Denote by Γ the inverse image of ∆ by Ψ and for x in Cn denote by Γx the intersec-

tion of Γ with {x} × C × Cn.

(i) The subset Γ of Cn × C × Cn is a smooth algebraic variety of dimension n + 1, containing

C
n × {0, 0}.

(ii) For x in Cn, Γx is a smooth algebraic variety of dimension 1, containing (x, 0, 0).

Proof. (i) As Ψ(x, 0, 0) = (x, 0, 0), (x, 0, 0) is in Γ for all x in Cn. Let (x, t, y) be in Γ. Since Ψ

is étale and ∆ is smooth of dimension n + 1, the tangent space of Γ at (x, t, y) has dimension at

most n + 1. Moreover, the image of some open neighborhood of (x, t, y) in Cn × C × Cn by Ψ is

an open neighborhood of (x, t,Φ(y)) in Cn × C × Cn. As a result, Γ has dimension n + 1. Hence

Γ is a smooth algebraic variety, equidimensional of dimension n + 1.

(ii) Let x be in Cn. By definition, Γx is the inverse image by Ψ of the graph ∆x of the map

{x} × C × Cn
// C

n , (x, t) 7−→ tx.

As the restriction of Ψ to {x} × C × Cn is an étale endomorphism of {x} × C × Cn, Γx is a smooth

algebraic variety of dimension 1 since so is ∆x. Moreover, (x, 0, 0) is in Γx. �

Proposition 3.4. Let y be in Cn and γ in Cx such that γ(0) = y. Then γ is a semialgebraic map

from an interval of R to Cn.

Proof. Let I be the interval of definition of γ. According to Lemma 3.2,

Φ◦γ(t) = Φ(y) + tx

for all t in I. Denote by ∆γ the graph of γ and set:

∆I := {(t, z) ∈ I × Cn |Φ(z) = Φ(y) + tx}.

SinceΦ is a polynomial map, ∆I is a semialgebraic subset of R×Cn. Moreover, ∆γ is a connected

closed subset of ∆I. For all t in I, denote by (ωt, ψt) an adapted pair to γ(t). Let δt be the inverse

image of ωt by γ. Then, for (s, z) in the intersection of δt × ωt and ∆I,

Φ(z) = Φ(y) + sx and Φ◦γ(s) = Φ(y) + sx,

whence z = γ(s). As a result, ∆γ is an open subset of ∆I. Then ∆γ is a connected component of

∆I . So, by [Cos02, Theorem 2.23], ∆γ is a semialgebraic subset of R × Cn since so is ∆I. �

Corollary 3.5. Let y be in Cn and γ in Cx such that γ(0) = y. Suppose that γ is defined over the

relatively compact interval ]a, b[ of R. If ‖γ‖ is bounded then there exists δ in Cx, bigger than γ

and such that its domain of definition contains [a, b].
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Proof. By Proposition 3.4 and Lemma 2.6(i), γ has a continuous extension to [a, b]. Denote

again by γ this extension. For some positive real number η, there exists an integral curve γa

of Xx defined over ]a − η, a + η[ and such that γa(a) = γ(a). Let (ω, ψ) be an adapted pair to

γ(a). For some positive real number η′, smaller than η, for all t in ]a, a + η′[, γ(t) is in ω and

Φ◦γ(t) = Φ(y) + tx, whence

Φ◦γ(a) = Φ(y) + ax and Φ◦γ(t) = Φ◦γ(a) + (t − a)x.

By Lemma 3.2, for all t in [a, a + η[,

Φ◦γa(t) = Φ◦γ(a) + (t − a)x.

As a result, for some t in ]a, a + η′[, γ(t) = γa(t). So, by the unicity of the integral curve with

initial datum, γa and γ have the same restriction to [a, a + η[. As a result, there exists an integral

curve of Xx, extending γ and such that its interval of definition is ]a − η, b[. In the same way, we

prove that for some positive real number η′′, there exists an integral curve of Xx, extending γ and

such that its interval of definition is ]a, b + η′′[, whence the corollary. �

4. Special integral curves

For x in Cn, denote by γx the maximal element of Cx such that γx(0) = 0. The goal of the

section is the following proposition:

Proposition 4.1. For all x in Cn, the interval of definition of γx is equal to R.

4.1. Intervals of definition. For x in Cn, we denote by Ix the interval of definition of γx.

Lemma 4.2. Let x be in Cn.

(i) The interval Ix is invariant under the homeomorphism t 7→ −t. In particular, for some a(x)

in R∗
+
∪ {+∞}, Ix =] − a(x), a(x)[.

(ii) For s in R∗, γsx(t) = γx(st). Moreover, Isx = s−1Ix and a(sx) = |s|−1a(x).

Proof. (i) By the maximality of γx and the unicity of an integral curve with initial datum it is

sufficient to prove that the map δx,

−I
δx

// C
n , t 7−→ −γx(−t)

is an integral curve of Xx since 0 is in I and γx(0) = 0. By definition, for all t in −I,

δ′x(t) = γ
′
x(−t) = Xx(γx(−t)) = Φ′(γx(−t))−1(x).

As Φ is an odd map, Φ′(y) = Φ′(−y) for all y in Cn. As a result, δx is an integral curve of Xx,

whence the assertion.

(ii) Denote by δ the map

s−1Ix
δ

// C
n , t 7−→ γx(st).

Then

δ′(t) = sγ′x(st) = sΦ′(γx(st))−1(x) = Xsx(δ(t)).
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As a result, δ is an integral curve of the vector field Xsx such that δ(0) = 0. So by the unicity

of the integral curve with initial datum, s−1Ix is contained in Isx and δ is the restriction of γsx to

s−1Ix. Considering the map

sIsx
τ

// C
n , t 7−→ γsx(s−1t),

sIsx is contained in Ix by the same argument, whence Isx = s−1Ix and the assertion. �

According to Lemma 4.2(i), a map a from Cn to R∗
+
∪ {+∞} is well defined. Let Ω be the

subset of elements (x, t) of Cn × R such that −a(x) < t < a(x) and G the graph of the map

Ω
γ

// C
n , (x, t) 7−→ γ(x, t) := γx(t).

Lemma 4.3. Let (x, t) be in Ω and t′ a positive real number such that |t| < t′ < a(x). Then for

some open neighborhood ω of x in Cn, ω × [−t′, t′] is contained in Ω and the restriction of γ to

ω × [−t′, t′] is continuous.

Proof. Since [−t′, t′] is a compact interval contained in Ix and the map (y, z) 7→ Xz(y) is polyno-

mial, for some open neighborhood ω of x in Cn, ω× [−t′, t′] is contained in Ω and the restriction

of γ to ω × [−t′, t′] is continuous by [Car67, Théorème 3.6.1]. �

Corollary 4.4. (i) The subset Ω of Cn × R is open and the map γ is continuous.

(ii) The function a is continuous. In particular, a−1({+∞}) is a closed subset of Cn. Moreover

a−1({+∞}) contains the kernel of F.

Proof. (i) By Lemma 4.3, Ω is the union of open subsets of Cn × R at which the restriction of γ

is continuous, whence the assertion.

(ii) By (i), the function a is lower continuous. Hence a−1({+∞}) is a closed subset of Cn. By

Lemma 4.3, a is upper continuous. Hence a is continuous. By Lemma 1.5 and Lemma 3.2, for x

in the kernel of F, γx(t) = tx for all t in R, whence the assertion. �

4.2. Properties of the maps γ and a. Let Γ be as in Subsection 3.2 and ΓR its intersection with

C
n × R × Cn.

Lemma 4.5. Let Γ0 be the connected component of ΓR containing Cn × {0, 0}.

(i) The subset Γ0 of Cn × R × Cn is closed and semialgebraic. Moreover, it contains G.

(ii) The subset G of Γ0 is open.

Proof. (i) As Cn×{(0, 0)} is contained in Γ, it is contained in a connected component of ΓR. Since

ΓR is a semialgebraic closed subset of Cn × R × Cn, Γ0 is semialgebraic by [Cos02, Theorem

2.23]. The set G is contained in ΓR since for all (x, t) in Ω, Φ◦γx(t) = tx by Lemma 3.2. As Ω is

a connected subset of Cn ×R, G is a connected subset of Cn ×R×Cn by Corollary 4.4(i). Hence

G is contained in Γ0 since Cn × {(0, 0)} is contained in G.

(ii) Let (x, t, y) be in G and (ω, ψ) an adapted pair to y. As γ is continous, γ−1(ω) × ω is an

open subset of Cn × R × Cn. Its intersection with ΓR is the graph of the map

γ−1(ω) // C
n , (z, s) 7−→ ψ(sz).
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Since for all (z, s) in γ−1(ω), γ(z, s) is in ω and Φ◦γ(z, s) = sz, γ−1(ω)×ω∩ ΓR is contained in G,

whence the assertion. �

Proposition 4.6. (i) The graph G is equal to Γ0.

(ii) The map γ is continuous and semialgebraic.

(iii) The function a is continuous and semialgebraic. In particular, a−1({+∞}) is a closed

semialgebraic subset of Cn.

Proof. (i) Let G be the closure of G in Cn×R×Cn. Then G is contained in Γ0 since Γ0 is a closed

subset of Cn × R × Cn. By Lemma 4.5(ii), G is an open subset of Γ0. Hence it remains to prove

G = G since Γ0 is connected by definition.

Suppose that G is strictly contained in G. A contradiction is expected. Let (x, t, y) be in

G \ G. As γ is continuous by Corollary 4.4(i), G is a closed subset of Ω × Cn. Hence t =

±a(x) since a is continous by Corollary 4.4(ii). By Lemma 4.2(i), G and G are invariant under

the homeomorphism (x, t, y) 7→ (x,−t, y). So we can suppose t = a(x). For some sequence

(xm, tm), m = 1, 2, . . . in Ω,

lim
m→+∞

γ(xm, tm) = y.

Let (ω, ψ) be an adapted pair to y. For z in ω, denote by τz the integral curve of the vector field

Xa(x)−1Φ(z) such that τz(a(x)) = z. In particular, τy is the integral curve of the vector field Xx such

that τy(a(x)) = y and by Lemma 3.2, for all z in ω and for all t in the interval of definition of τz,

Φ◦τz(t) = Φ(z) + (t − a(x))a(x)−1
Φ(z) = ta(x)−1

Φ(z).

For some positive real number η, [a(x)−η, a(x)+η] is contained in the interval of definition of τy.

Then, by [Car67, Théorème 3.6.1], for some open neighborhood ω′ of y in ω, [a(x)−η, a(x)+η]

is contained in the interval of definition of τz for all z in ω′ since the map (y, z) 7→ Xa(x)−1Φ(z)(y) is

polynomial. Moreover, the map

ω′ × [a(x) − η, a(x) + η]
τ

// C
n , (z, t) 7−→ τz(t)

is continuous. Hence we can suppose that the image of τ is contained in ω.

For some positive integer M and for m bigger than M, γ(xm, tm) is in ω′ and for s positive real

number smaller than η/2, tm − s is in [a(x) − η, a(x) + η]. Since Φ(ω′) is a neighborhood of Φ(y)

and Φ◦γ(xm, tm) = tmxm, we can suppose that for m bigger than M, a(x)xm is in Φ(ω′). Setting

zm := ψ(a(x)xm), τzm
is an integral curve of Xxm

and τzm
(tm) = γ(zm, tm) since

Φ◦τzm
(tm) = Φ◦γ(zm, tm) = tmzm.

So, by the unicity of the integral curve with initial datum, τzm
(t) = γzm

(t) for all t in [a(x) −

η, a(x) + η]. As a result, for s positive real number smaller than η/2,

γ(x, a(x) − s) = lim
m→+∞

γ(xm, tm − s) = lim
m→+∞

τzm
(tm − s) = τy(a(x) − s)

by continuity of γ and τ, whence the contradiction since

lim
s→0
‖γ(x, a(x) − s)‖ = +∞
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by Corollary 3.5.

(ii) By Lemma 4.5(i), Γ0 is semialgebraic. So, by (i), γ is a semialgebraic map, whence the

assertion since γ is continuous.

(iii) By (i), Ω is the image of Γ0 by the projection

C
n × R × Cn

// C
n × R , (x, t, y) 7−→ (x, t).

HenceΩ andΩ are semialgebraic subsets ofCn×R. By Corollary 4.4(ii), a is continuous. Hence,

Ω is the disjoint union of Ω and the graphs of the restrictions of a and −a to Cn \a−1({+∞}) since

a−1({+∞}) × R is contained in Ω. In particular, a−1({+∞}) is the complement in Cn to the image

of Ω \Ω by the projection

C
n × R // C

n , (x, t) 7−→ x

and the graph of the restriction of a to Cn \ a−1({+∞}) is the intersection of Ω \ Ω and (Cn \

a−1({+∞})) × R+. Hence a−1({+∞}) is a semialgebraic subset of Cn and the restriction of a to

C
n \ a−1({+∞}) is semialgebraic. �

4.3. Etale covering. Let K be the field of rational fractions C(x1, . . . , xn) and K′ the subfield

C(x1 + F3
1
, . . . , xn + F3

n) of K. Denote by d the degree of the extension K of K′.

Lemma 4.7. Let X and Y be two irreducible complex algebraic varieties and ψ a morphism from

X to Y. For i nonnegative integer, denote by Yi the subset of elements y such that |ψ−1(y)| = i.

Then, for all nonnegative integer i, Yi is an algebraic constructible subset of Y.

Proof. Let Y ′n be the subset of elements y of Y such that |ψ−1(y)| ≥ n. Denote by Zn the subset of

elements (y, x1, . . . , xn) of Y × Xn such that y = ψ(x1)= · · · =ψ(xn). Then Zn is a closed subset

of Y × Xn. Let Z′n be the open subset of elements (y, x1, . . . , xn) of Zn such that xi , x j for i , j.

Then Y ′n is an algebraic constructible subset of Y as the image of Z′n by the projection

(y, x1, . . . , xn) 7−→ y.

By definition, Yn = Y ′n \ Y ′
n+1. Hence Yn is an algebraic constructible subset of Y . �

Corollary 4.8. Suppose that ψ is a quasi-finite dominant morphism. Let j be the degree of the

field extension C(Y) ⊂ C(X). Then Y j contains a dense Zariski open subset of Y.

Proof. As j is the degree of the separable field extension C(Y) ⊂ C(X), Y j contains the generic

point of Y . So, by Lemma 4.7, Y j contains a dense Zariski open subset of Y . �

Proposition 4.9. For some nonempty Zariski open subset U of Cn, the restriction of Φ to Φ−1(U)

is a covering map of degree d. In particular, it is a finite morphism.

Proof. As Φ is étale, Φ is a quasi finite morphism. So, by Corollary 4.8, for some nonempty

Zariski open subset U of Cn, Φ−1({x}) has cardinality d for all x in U. Let x be in U and x1, . . . , xd

the elements of Φ−1(x). For i = 1, . . . , d, denote by (ωi, ψi) an adapted pair to xi. Since x1, . . . , xd

are pairwise different, we can choose ω1, . . . , ωd pairwise disjoint. Let ω be the intersection of

Φ(ω1), . . . ,Φ(ωd). Then ω is an open neighborhood of x and Φ−1(ω) is the disjoint union of the
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open subsets ω1∩Φ
−1(ω), . . . , ωd∩Φ

−1(ω). As a result, the restriction of Φ to Φ−1(U) is an étale

covering of degree d of U, whence the proposition. �

4.4. At the neighborhood of an element of Cn \ a−1({+∞}). Let x be in Cn \ a−1({+∞} and θ a

contiuous semialgebraic arc,

[0, 1]
θ

// C
n ,

such that θ(0) = x and a(θ(t)) > a(x) for all t in ]0, 1].

Lemma 4.10. For some positive rational number r and a continuous semialgebraic map ψ from

[0, 1] to Cn,

ψ(0) , 0 and γ(θ(t), a(x)) = t−rψ(t)

for all t in ]0, 1].

Proof. By Proposition 4.6(ii), the map t 7→ γ(θ(t), a(x)) from ]0, 1] to Cn is continuous and

semialgebraic. Moreover, by Lemma 3.2,

γ(θ(t), a(x)) + F(3)(γ(θ(t), a(x))) = a(x)θ(t)(1)

for all t in ]0, 1]. By Lemma 2.6(i), if the map t 7→ ‖γ(θ(t), a(x))‖ is bounded, then for some y in

C
n,

lim
t→0

γ(θ(t), a(x)) = y

so that (x, a, y) is in G and (x, a(x)) is in Ω by Proposition 4.6(i). By definition, (x, a(x)) is

not in Ω. As a result, the map t 7→ ‖γ(θ(t), a(x))‖ is not bounded, whence the assertion by

Lemma 2.6(ii), �

4.5. Proof of Proposition 4.1. Let U be the Zariski open subset of Cn as in Proposition 4.9 and

Y its complement in Cn.

Lemma 4.11. Let Z be the closure in Cn of the union of tY, t ∈ R∗
+

and O := Cn \ Z.

(i) The subsets Z and O of Cn are semialgebraic. In particular, the connected components of

O are finitely many and semialgebraic.

(ii) The open subset O of Cn is dense in Cn.

(iii) Let O∗ be a connected component of O and O′∗ the subset of elements x of O∗ such that a

is constant on a neighborhood of x. Then tO∗ = O∗ and tO′∗ = O′∗ for all t in R∗
+
.

Proof. (i) Let Z∗ be the union of tY, t ∈ R∗
+
. As the map

R
∗
+
× Cn

// C
n , (t, x) 7−→ tx

is semialgebraic and Y is an algebraic subvariety of Cn, Z∗ is a semialgebraic subset of Cn. Hence

Z and O are semialgebraic subsets of Cn, whence the assertion by [Cos02, Theorem 2.23].

(ii) By definition, Y is an algebraic subvariety of dimension smaller than n of Cn. Hence its

dimension as a semialgebraic subset of Cn is at most 2n − 2 by Lemma 2.2(iv). As a result, Z∗
and Z have dimension at most 2n− 1 by Lemma 2.2, (i) and (v). Hence O is a dense open subset

of Cn by Lemma 2.2(iii).
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(iii) By definition, tO = O for all t in R∗
+
. Hence the group R∗

+
permutes the connected

components of O and the stabilizers are open subgroups of R∗
+
. Hence tO∗ = O∗ for all t in R∗

+
.

By Lemma 4.2(ii), for x in O∗ and t in R∗
+
, a(tx) = t−1a(x). Hence O′∗ is invariant under the action

of R∗
+
. �

For O∗ a connected component of O, denote by O′′∗ the interior of the complement to O′∗ in O∗.

Then O′′∗ is an open subset of U, invariant under the action of R∗
+

by Lemma 4.11(iii).

Lemma 4.12. Let O∗ be a connected component of O. Then O′′∗ is empty.

Proof. Suppose that O′′∗ is nonempty. A contradiction is expected. Let x be in O′′∗ and V a

semialgebraic compact neighborhood of x in O′′∗ . As a is continuous, for some y in V , a(y) ≤ a(z)

for all z in V . Moreover, since a is semialgebraic and V is contained in O′′∗ , a−1({y}) ∩ V is a

semialgebraic subset whose interior is empty. Then, by Proposition 2.3, for some continuous

semialgebraic arc θ,

[0, 1]
θ

// V ,

θ(0) = y and a(θ(t)) > a(y) for all t in ]0, 1]. By Lemma 4.10,

lim
t→0
‖γ(θ(t), a(y))‖ = +∞.

Moreover, for all t in ]0, 1], Φ◦γ(θ(t), a(y)) = a(y)θ(t). As O′′∗ is invariant under R∗
+
, a(y)θ(t) is in

O′′∗ for all t in [0, 1]. Let V ′ be a compact neighborhood of a(y)y in O′′∗ . As O′′∗ is contained in

U, Φ−1(V ′) is compact by Proposition 4.9. Moreover, for some positive real number η, a(y)θ(t)

is in V ′ and γ(θ(t), a(y)) is in Φ−1(V ′) for all t in ]0, η], whence the contradiction. �

By Lemma 4.12 and Corollary 2.5, a is constant on each connected connected of O. By

Lemma 4.2(ii), for x in O and t in R∗
+
, a(tx) = t−1a(x). Hence O is contained in a−1({+∞}) since

the connected components of O are invariant under R∗
+
. As a result a−1({+∞}) = Cn since a is

continuous and O is dense in Cn by Lemma 4.12(ii), whence Proposition 4.1.

5. Some polynomial maps

Let p0, p1, . . . be the sequence of polynomial endomorphisms of Cn defined by the induction

relations:

p0 = 0, p1(x) = x, p j = −
∑

(i1,i2,i3)∈N3
j

F(pi1)F(pi2 )F(pi3),

for j ≥ 2. By induction, for j = 0, 1, . . ., p j is homogeneous of degree j.

5.1. Some power series and polynomial maps. For x in Cn, we denote by S x the formal power

serie of the variable t:

S x(t) := p0(x) + tp1(x) + t2 p2(x) + · · · .

Let rx be the radius of convergence of S x. As in Section 4, γx is the maximal element of Cx such

that γx(0) = 0.



JACOBIAN CONJECTURE 15

Lemma 5.1. Let x be in Cn.

(i) Let S be in Cn[[t]]. Then S = S x if and only if Φ◦S (t) = tx.

(ii) The radius of convergence rx is different from 0 and for t in ] − rx, rx[,

γx(t) =

∞∑

j=0

t j p j(x).

(iii) For j even integer, p j(x) = 0.

Proof. (i) Let a0, a1, . . . the coefficients of S . By Lemma 1.5, Φ−1(0) = {0}. Hence a0 = 0 if

Φ◦S (t) = tx. For j = 0, 1, . . ., the coefficient of t j in the expansion of F(3)(S (t)) is equal to
∑

(i1 ,i2,i3)∈N3
j

F(ai1)F(ai2 )F(ai3).

As a result, Φ◦S (t) = tx if and only if

a0 = 0, a1 = x, a j = −
∑

(i1,i2,i3)∈N3
j

F(ai1)F(ai2)F(ai3),

for j ≥ 2, whence the assertion.

(ii) Let (ω, ψ) be an adapted pair to 0. Then ψ is a holomorphic map from Φ(ω) to Cn. For

some positive real number r, for t in C such that |t| < r, tx is in Φ(ω) and ψ(tx) is the sum of a

power serie

ψ(tx) =

∞∑

j=0

t ja j.

By (i), since Φ◦ψ(tx) = tx, a j = p j(x). In particular, rx , 0. Moreover, by Lemma 3.2, the map

] − rx, rx[ // C
n , t 7−→

∞∑

j=0

t j p j(x)

is an integral curve of the vector field Xx. By the unicity of the integral curve with initial datum,

it is the restriction of γx to ] − rx, rx[, whence the assertion.

(iii) By Lemma 4.2(i), γx(t) = −γx(−t) for all t in ] − rx, rx[. Hence by (ii), p2 j(x) = 0 for all j

in N. �

For x in Cn, let ϕx be the map from C to Cn defined by the following relations: ϕx(0) = 0 and

for t in C∗,

ϕx(t) = γux(|t|) with u :=
t

|t|
.

As the domain of definition of γy is R for all y in Cn, ϕx is well defined.

Lemma 5.2. Let x be in Cn.

(i) For all t in C, Φ◦ϕx(t) = tx.

(ii) The map ϕx is continuous and for all t in C such that |t| < rx, ϕx(t) = S x(t).
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Proof. (i) By definition Φ◦ϕx(0) = 0. By Lemma 3.2, for t in C∗ and u = t/|t|,

Φ◦ϕx(t) = Φ◦γux(|t|) = u|t|x = tx,

whence the assertion.

(ii) Let U be the subset of complex numbers of module 1. Since the polynomial maps

p0, p1, . . . are homogeneous, rx is the radius of convergence of S ux for all u in U. Moreover,

by Lemma 5.1(ii),

ϕx(t) =

∞∑

j=0

t j p j(x)

for all t in C such that |t| < rx. In particular, ϕx is continuous in a neighborhood of 0.

Let ψx be the map

U × R∗
+

ψx
// C

n , (u, t) 7−→ ϕx(tu).

With the notations of Subsection 4.1, ψx(u, t) = γ(ux, t). Hence, by Corollary 4.4(i), the map ψx

is continuous. As a result, the restriction of ϕx to C∗ is continuous since the map

U × R∗
+

// C
∗ , (u, t) 7−→ tu

is a homeomorphism, whence the assertion. �

Proposition 5.3. Let x be in Cn. Then ϕx is a polynomial map and for some positive integer j,

pi(x) = 0 for all positive integer bigger than j.

Proof. Let Γx be as in Subsection 3.2 and Γ′x the subset of C×Cn such that Γx = {x} ×Γ
′
x. Denote

by G the graph of ϕx. By Lemma 5.2,(i) and (ii), G is a closed connected subset of Γ′x. Let t be

in C and (ω, ψ) and adapted pair to ϕx(t). Then ϕ−1
x (ω) × ω is an open subset of C × Cn and its

intersection with Γ′x is the graph of the map

ϕ−1
x (ω) // ω , s 7−→ ψ(sx).

As a result, ϕ−1
x (ω) × ω ∩ Γ′x is contained in G since ϕx(s) is in ω for all s in ϕ−1

x (ω). Hence G

is an irreducible component of Γ′x by Lemma 3.3(ii). Moreover, the canonical projection from G

to C is birational and injective. So, by Zariski’s Main theorem [Mu88, §9], it is an isomorphism

of algebraic varieties. Hence ϕx is a polynomial map. As a result, by Lemma 5.2(ii), for some

positive integer j, pi(x) = 0 for j < i. �

5.2. Polynomial automorphism. For i positive integer, set:

Xi := {x ∈ Cn | 0 = pi(x)= pi+1(x) = · · · }.

Lemma 5.4. For some positive integer j, pi = 0 for i > j.

Proof. According to Propostion 5.3, Cn is the union of X1,X2, . . .. By definition, for all i, Xi is a

Zariski closed subset. By Baire’s property, for some positive integer j, X j contains a nonempty

open subset of Cn. Hence, X j = C
n and pi = 0 for i ≥ j. �
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Let j be the biggest integer such that p j , 0 and set:

P := p1 + · · · + p j.

Theorem 5.5. The polynomial endomorphism Φ is a polynomial automorphism and P is its

inverse.

Proof. By Proposition 5.3 and Lemma 5.1(ii), ϕx(1) = P(x) for all x in Cn. So, by Lemma 5.1(i),

Φ◦P(x) = x. As a result, P is an étale morphism since so isΦ. In particular, for some open subset

ω of Cn, the restriction of P to ω is an isomorphism onto the open subset P(ω) of Cn. Denoting

by ψ the inverse of this isomorphism,

Φ◦P(x) = x and P◦ψ(y) = y

for all (x, y) in ω × P(ω), whence

Φ(y) = ψ(y) and P◦Φ(y) = y

for all y in P(ω). Then

Φ◦P(x) = P◦Φ(x) = x

for all x in Cn since P and Φ are polynomial endomorphisms, whence the theorem. �

6. Conclusion

By Theorem 5.5 and [Dru83, Theorem 3], Keller’s Jacobian Conjecture is true in any dimen-

sion:

Theorem 6.1. Let n be a positive integer. Then any étale polynomial endomorphism of Cn is a

polynomial automorphism.

From Theorem 6.1 and [Bass 82, Section I], we deduce the following theorem:

Theorem 6.2. Let k be an integral ring of characteristic 0 and n a positive integer. Then any

polynomial endomorphism of kn whose Jacobian matrix has a constant invertible determinant is

a polynomial automorphism.

From Theorem 6.2 and [Ka, Theorem 1], we deduce the following theorem:

Theorem 6.3. Let k be a field of characteristic zero and n a positive integer. Denote by An,k the

n-th Weyl algebra over k. Then any endomorphism of An,k is an automorphism.
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