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Introduction

In the work of Melnikov [1], an innovative technique was developed for obtaining infinite product representations for some elementary functions. The technique was based on the comparison of alternative expressions of Green's functions constructed by two different methods. Some standard boundary value problems were considered posed for two-dimensional Laplace equation on regions of a regular configuration. The study of trigonometric functions spans a wide range of scientific areas such Greens functions [START_REF] Melnikov | New infinite product representations of some elementary functions[END_REF] and the Laplace equation [START_REF] Melnikov | Green's Functions for the Laplace Equation[END_REF] to name a few. Infinite products are studied in the work of Chamberland et al. [START_REF] Chamberland | On gamma quotients and infinite products[END_REF], where convergent infinite products were used in applications involving multiplicative partitions, entries in Ramanujan's notebooks, the Chowla-Selberg formula, and the Thue-Morse sequence.

In this paper the contour integral method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] is applied to the Valean sum listed equation (3.59) in [START_REF] Vȃlean | Almost) impossible integrals, sums, and series[END_REF], to produce analogous sums involving the Hurwitz-Lerch Zeta function. This work's overarching theme is that one may express finite and infinite sums, as well as products involving special functions and their composite functions in terms of special functions. Note that the contrast of a series' infinite form with its partial sum, might have intriguing analysis properties. A definite integral of an infinite product is taken and written down in terms Catalan's constant K.

Our preliminaries comprise three equations starting with a trigonometric sum given by (1.1)

∞ j=0 2 -j sec 2 -j x -2 -j cot 1 4 2 1-j x + π = 1 x -2 cot(2x)
where x ∈ C. Equation (1.1) is derived by looking at the trigonometric difference equation cot(b/2) -cot(b) then replacing b → b + π/2. Next replace x → 2 -j x and taking the sum over j ∈ [0, n] and simplify and then taking the limit as n → ∞ and simplify. The second and third equations involve a contour integral method applied to equation (3.303) in [START_REF] Vȃlean | Almost) impossible integrals, sums, and series[END_REF] and (1.1). Let a, k, m and w be general complex numbers and j ∈ [0, ∞), the contour integral form [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] of the Vȃlean-Cotangent-Secant sum is given by

(1.2) 1 2πi C ∞ j=0 -2 -j a w w -k-1 cot 1 4 π -2 -j (m + w)
+2a w w -k-1 csc 2 -j (m + w) + 2 -j a w w -k-1 sec 2 -j-1 (m + w)

-2a w w -k-1 csch 2 -j (m + w) dw = 1 2πi C 2a w w -k-1 coth(m + w) - 2a w w -k-1 m + w dw and (1.3) 1 2πi C n j=0
2 -j a w w -k-1 -cot 1 4 2 1-j (m + w) + π + sec 2 -j (m + w) + 2 j csc 2 -j (m + w) -csch 2 -j (m + w) dw = 1 2πi C -a w w -k-1 (cot(m + w) + 2 cot(2(m + w)))

+2 -n a w w -k-1 2 n cot 2 -n-1 (m + w) + cot 2 -n (m + w) +a w w -k-1 coth(m + w) -coth 2 -n-1 (m + w) dw

The derivations follow the method used by us in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. This method involves using a form of the generalized Cauchy's integral formula given by (1.4)

y k Γ(k + 1) = 1 2πi C
e wy w k+1 dw, where y, w ∈ C and C is in general an open contour in the complex plane where the bilinear concomitant [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] has the same value at the end points of the contour.

This method involves using a form of equation (1.4) then multiplies both sides by a function, then takes the sum of both sides. This yields a sum in terms of a contour integral. Then multiply both sides of equation (1.4) by another function and take the infinite sum of both sides such that the contour integral of both equations are the same.

The Hurwitz-Lerch Zeta function

Use equation (1.11.3) in [START_REF] Erdéyli | Higher Transcendental Functions[END_REF] where Φ(z, s, v) is the Hurwitz-Lerch Zeta function which is a generalization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions

Li n (z). The Lerch function has a series representation given by

(2.1) Φ(z, s, v) = ∞ n=0 (v + n) -s z n
where |z|< 1, v ̸ = 0, -1, -2, -3, .., and is continued analytically by its integral representation given by

(2.2) Φ(z, s, v) = 1 Γ(s) ∞ 0 t s-1 e -vt 1 -ze -t dt = 1 Γ(s) ∞ 0 t s-1 e -(v-1)t e t -z dt
where Re(v) > 0, and either |z|≤ 1, z ̸ = 1, Re(s) > 0, or z = 1, Re(s) > 1. Almost all Huwitz-Lerch Zeta functions have an asymmetrical zero distribution [START_REF] Laurincikas | The Lerch Zeta-Function[END_REF].

Derivation Of The Infinite Sums Of The Contour Integral

Representation

In this section use the Cauchy integral formula and the stated contour integral method to derive the infinite sum of the Hurwitz-Lerch Zeta functions in terms of its contour integral representation.

3.1. Left-hand side first contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) -i2 -j-1 (y + 1) then multiply both sides by i2 1-j e -i2 -j-1 (y+1)(m-π2 j ) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.1) ∞ j=0 i2 -j+k+1 -i2 -j-2 k e 2i( π 4 -2 -j-2 m) Φ e 2i( π 4 -2 -j-2 m) , -k, i2 j+1 log(a) + 1 Γ(k + 1) = 1 2πi ∞ y=0 ∞ j=0 C 2 1-j a w w -k-1 e 1 2 i(πy-2 -j (y+1)(m+w)) dw = 1 2πi C ∞ j=0 ∞ y=0 2 1-j a w w -k-1 e 1 2 i(πy-2 -j (y+1)(m+w)) dw = - 1 2πi C ∞ j=0 2 -j a w w -k-1 cot π 4 -2 -j-2 (m + w) + i2 -j a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞) × [0, ∞).

3.2.

Left-hand side first additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by -i2 -j and simplify to get

(3.2) - i2 -j log k (a) Γ(k + 1) = - 1 2πi C i2 -j a w w -k-1 dw 3.3.
Left-hand side second contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a)+i2 -j (2y+1) then multiply both sides by -4ie i2 -j m(2y+1) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.3) - ∞ j=0 i2 k+2 i2 -j k e i2 -j m Φ e i2 1-j m , -k, 1 2 1 -i2 j log(a) Γ(k + 1) = - 1 2πi ∞ y=0 ∞ j=0 C 4ia w w -k-1 e i2 -j (2y+1)(m+w) dw = - 1 2πi C ∞ j=0 ∞ y=0 4ia w w -k-1 e i2 -j (2y+1)(m+w) dw = 1 2πi C ∞ j=0 2a w w -k-1 csc 2 -j (m + w) dw
from equation (1.232.3) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞) × [0, ∞).

3.4. Left-hand side third contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2 -j (2y + 1) then multiply both sides by 4e 2 -j m(2y+1) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(3.4) ∞ j=0 2 k+2 2 -j k e 2 -j m Φ e 2 1-j m , -k, 1 2 2 j log(a) + 1 Γ(k + 1) = 1 2πi ∞ y=0 ∞ j=0 C 4a w w -k-1 e 2 -j (2y+1)(m+w) dw = 1 2πi C ∞ j=0 ∞ y=0 4a w w -k-1 e 2 -j (2y+1)(m+w) dw = - 1 2πi C ∞ j=0 2a w w -k-1 csch 2 -j (m + w) dw
from equation (1.232.3) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞) × [0, ∞).

3.5. Left-hand side fourth contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + i2 -j-1 (2y + 1) then multiply both sides by 2 1-j (-1) y e i2 -j-1 m(2y+1) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞) × [0, ∞).

(3.5) - ∞ j=0 2i i2 -j k+1 e i2 -j-1 m Φ -e i2 -j m , -k, 1 2 -i2 j log(a) Γ(k + 1) = - 1 2πi ∞ y=0 ∞ j=0 C 2 1-j a w w -k-1 exp 1 2 i 2 -j (2y + 1)(m + w) + 2πy dw = - 1 2πi C ∞ j=0 ∞ y=0 2 1-j a w w -k-1 exp 1 2 i 2 -j (2y + 1)(m + w) + 2πy dw = 1 2πi C ∞ j=0 2 -j a w w -k-1 sec 2 -j-1 (m + w) dw from equation (1.232.2) in
3.6. Right-hand side first contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + x then multiply both sides by e mx and take the infinite integral over x ∈ [0, ∞) and simplify in terms of the incomplete gamma function to get

(3.6) 2a -m (-m) -k-1 Γ(k + 1, -m log(a)) Γ(k + 1) = - 1 2πi C 2a w w -k-1 m + w dw from equation (3.382.4
) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where |arg log(a)|< π and Re(m + w) < 0.

3.7. Right-hand side second contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2(y + 1) then multiply both sides by -4e 2bm(y+1) and take the infinite sums over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch zeta function to get

(3.7) - 2 k+2 e 2m Φ e 2m , -k, log(a) 2 + 1 Γ(k + 1) = - 1 2πi ∞ y=0 C 4a w w -k-1 e 2(y+1)(m+w) dw = - 1 2πi C ∞ y=0 4a w w -k-1 e 2(y+1)(m+w) dw = 1 2πi C 2a w w -k-1 coth(m + w) + 2a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sum to converge. Apply Fubini's theorem for integrals and sums, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summand is of bounded measure over the space C × [0, ∞).

3.8. Right-hand side second additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by 2 and simplify to get

(3.8) 2 log k (a) Γ(k + 1) = 1 2πi C 2a w w -k-1 dw

Derivation Of The Finite Sums Of The Contour Integral

Representation

In this section the Cauchy integral formula is used and the stated contour integral method to derive the finite sum of the Hurwitz-Lerch Zeta functions in terms of its contour integral representation.

4.1.

Left-hand side first contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + i2 -j (y + 1) then multiply both sides by i2 1-j e i2 -j (y+1)(π2 j-1 +m) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, n] and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.1)

n j=0 i2 -j+k+1 i2 -j-1 k e 2i(2 -j-1 m+ π 4 ) Φ e 2i(2 -j-1 m+ π 4 ) , -k, 1 -i2 j log(a) Γ(k + 1) = 1 2πi n j=0 ∞ y=0 C i2 1-j a w w -k-1 exp i2 -j-1 (y + 1) π2 j + 2(m + w) dw = 1 2πi C n j=0 ∞ y=0 i2 1-j a w w -k-1 exp i2 -j-1 (y + 1) π2 j + 2(m + w) dw = - 1 2πi C n j=0 2 -j a w w -k-1 cot 2 -j-1 (m + w) + π 4 + i2 -j a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, n] × [0, ∞).

4.2.

Left-hand side first additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by -i2 -j and simplify to get

(4.2) - i2 -j log k (a) Γ(k + 1) = - 1 2πi C i2 -j a w w -k-1 dw 4.3.
Left-hand side second contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + i2 -j (y + 1) then multiply both sides by i2 1-j e i2 -j (y+1)(π2 j-1 +m) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, n] and simplify in terms of the Hurwitz-Lerch Zeta function to get [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space

(4.3) - n j=0 i2 k+1 i2 -j k e i2 -j m Φ e i2 1-j m , -k, 1 2 1 -i2 j log(a) Γ(k + 1) = - 1 2πi n j=0 ∞ y=0 C 2ia w w -k-1 e i2 -j (2y+1)(m+w) dw = - 1 2πi C n j=0 ∞ y=0 2ia w w -k-1 e i2 -j (2y+1)(m+w) dw = 1 2πi C a w w -k-1 csc 2 -j (m + w) dw from equation (1.232.3) in
C × [0, n] × [0, ∞).
4.4. Left-hand side third contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2 -j (2y + 1) then multiply both sides by 2e 2 -j m(2y+1) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, n] and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.4)

n j=0 2 k+1 2 -j k e 2 -j m Φ e 2 1-j m , -k, 1 2 2 j log(a) + 1 Γ(k + 1) = 1 2πi n j=0 ∞ y=0 C 2a w w -k-1 e 2 -j (2y+1)(m+w) dw = 1 2πi C n j=0 ∞ y=0 2a w w -k-1 e 2 -j (2y+1)(m+w) dw = - 1 2πi C a w w -k-1 csch 2 -j (m + w) dw
from equation (1.232.3) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, n] × [0, ∞).

4.5. Left-hand side fourth contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a)+i2 -j (2y+1) then multiply both sides by 2 1-j (-1) y e i2 -j m(2y+1) and take the infinite sums over y ∈ [0, ∞) and j ∈ [0, n] and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.5) [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Tonelli's theorem for multiple sums, see page 177 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space

n j=0 2 -j+k+1 i2 -j k e i2 -j m Φ -e i2 1-j m , -k, 1 2 1 -i2 j log(a) Γ(k + 1) = 1 2πi n j=0 ∞ y=0 C 2 1-j a w w -k-1 e i(2 -j (2y+1)(m+w)+πy) dw = 1 2πi C n j=0 ∞ y=0 2 1-j a w w -k-1 e i(2 -j (2y+1)(m+w)+πy) dw = 1 2πi C 2 -j a w w -k-1 sec 2 -j (m + w) dw from equation (1.232.2) in
C × [0, n] × [0, ∞).
4.6. Right-hand side first contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2i(y + 1) then multiply both sides by 2ie 2im(y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

(4.6) n j=0 (2i) k+1 e 2im Φ e 2im , -k, 1 -1 2 i log(a) Γ(k + 1) = 1 2πi ∞ y=0 C 2ia w w -k-1 e 2i(y+1)(m+w) dw = 1 2πi C ∞ y=0 2ia w w -k-1 e 2i(y+1)(m+w) dw = - 1 2πi C a w w -k-1 cot(m + w) + ia w w -k-1 dw from equation (1.232.2) in

4.7.

Right-hand side first additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by -i and simplify to get

(4.7) - i log k (a) Γ(k + 1) = - 1 2πi C ia w w -k-1 dw
4.8. Right-hand side second contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 4iy + 4i then multiply both sides by 4ie 4im(y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.8)

n j=0 i4 k+1 e 1 2 i(πk+8m) Φ e 4im , -k, 1 -1 4 i log(a) Γ(k + 1) = 1 2πi ∞ y=0 C 4ia w w -k-1 e 4i(y+1)(m+w) dw = 1 2πi C ∞ y=0 4ia w w -k-1 e 4i(y+1)(m+w) dw = - 1 2πi C 2a w w -k-1 cot(2(m + w)) + 2ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

4.9. Right-hand side second additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by -2i and simplify to get (4.9)

- 2i log k (a) Γ(k + 1) = - 1 2πi C 2ia w w -k-1 dw
4.10. Right-hand side third contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a)+i2 -n y+i2 -n then multiply both sides by -2ie im2 -n (y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get

(4.10) - n j=0 2i (i2 -n ) k e im2 -n Φ e i2 -n m , -k, 1 -i2 n log(a) Γ(k + 1) = - 1 2πi ∞ y=0 C 2ia w w -k-1 e i2 -n (y+1)(m+w) dw = - 1 2πi C ∞ y=0 2ia w w -k-1 e i2 -n (y+1)(m+w) dw = 1 2πi C a w w -k-1 cot 2 -n-1 (m + w) + ia w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

4.11. Right-hand side third additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by i and simplify to get

(4.11) i log k (a) Γ(k + 1) = 1 2πi C ia w w -k-1 dw 4.
12. Right-hand side fourth contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + i2 1-n y + i2 1-n then multiply both sides by -i2 1-n e im2 1-n (y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.12)

- n j=0 i2 1-n k+1 e im2 1-n Φ e i2 1-n m , -k, 1 -i2 n-1 log(a) Γ(k + 1) = - 1 2πi ∞ y=0 C i2 1-n a w w -k-1 e i2 1-n (y+1)(m+w) dw = - 1 2πi C ∞ y=0 i2 1-n a w w -k-1 e i2 1-n (y+1)(m+w) dw = 1 2πi C 2 -n a w w -k-1 cot 2 -n (m + w) + i2 -n a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

4.13. Right-hand side fourth additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) then multiply both sides by i2 -n and simplify to get

(4.13) i2 -n log k (a) Γ(k + 1) = 1 2πi C i2 -n a w w -k-1 dw
4.14. Right-hand side fifth contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2y + 2 then multiply both sides by -2e 2m(y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get 

Γ(k + 1) = - 1 2πi ∞ y=0 C 2a w w -k-1 e 2(y+1)(m+w) dw = - 1 2πi C ∞ y=0 2a w w -k-1 e 2(y+1)(m+w) dw = 1 2πi C a w w -k-1 coth(m + w) + a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

4.15. Right-hand side fifth additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) and simplify to get

(4.15) log k (a) Γ(k + 1) = 1 2πi C a w w -k-1 dw
4.16. Right-hand side sixth contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) + 2 -n y + 2 -n then multiply both sides by 2e m2 -n (y+1) and take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch Zeta function to get (4.16)

n j=0 2 (2 -n ) k e m2 -n Φ e 2 -n m , -k, 2 n log(a) + 1 Γ(k + 1) = 1 2πi ∞ y=0 C 2a w w -k-1 e 2 -n (y+1)(m+w) dw = 1 2πi C ∞ y=0 2a w w -k-1 e 2 -n (y+1)(m+w) dw = - 1 2πi C a w w -k-1 coth 2 -n-1 (m + w) -a w w -k-1 dw
from equation (1.232.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Re (m + w) > 0 and Im (m + w) > 0 in order for the sums to converge. Apply Fubini's theorem for sums and integrals, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summands are of bounded measure over the space C × [0, ∞).

4.17. Right-hand side sixth additional contour integral. Using a generalization of Cauchy's integral formula (1.4), first replace y → log(a) multiply both sides by -1 and simplify to get

(4.17) - log k (a) Γ(k + 1) = - 1 2πi C a w w -k-1 dw

Infinite and Finite Sum of Hurwitz-Lerch Zeta Functions in Terms

of Incomplete Gamma and Hurwitz-Lerch Zeta Functions Theorem 5.1. For all k, a, m ∈ C then, 

(5.1) ∞ j=0 -2 -j-k+1 -i2 -j k e -i2 -j-1 m Φ ie -i2 -j-1 m , -k, i2 j+1 log(a) + 1 -i2 k+2 i2 -j k e i2 -j m Φ e i2 1-j m , -k, 1 2 1 -i2 j log(a) +2 k+2 2 -j k e 2 -j m Φ e 2 1-j m , -k, 1 2 2 j log(a) + 1 +2 1-j i2 -j k e i2 -j-1 m Φ -e i2 -j m , -k, 1 2 -i2 j log(a) + i2 -j log k (a) = 2a -m (-m) -k-1 Γ(k+1, -m log(a))-2 k+2 e 2m Φ e 2m , -k, log ( 
n j=0 -2 -j+k+1 i2 -j-1 k e i2 -j m Φ ie i2 -j m , -k, 1 -i2 j log(a) +2 -j+k+1 i2 -j k e i2 -j m Φ -e i2 1-j m , -k, 1 2 1 -i2 j log(a) -i2 k+1 i2 -j k e i2 -j m Φ e i2 1-j m , -k, 1 2 1 -i2 j log(a) +2 k+1 2 -j k e 2 -j m Φ e 2 1-j m , -k, 1 2 2 j log(a) + 1 + i2 -j log k (a) = 2 1-n i2 -n k-1 e im2 -n Φ e i2 -n m , -k, 1 -i2 n log(a) -i2 1-n i2 1-n k e im2 1-n Φ e i2 1-n m , -k, 1 -i2 n-1 log(a) + 2 2 -n k e m2 -n Φ e 2 -n m , -k, 2 n log(a) + 1 + i2 k+1 e 1 2 i(πk+4m) Φ e 2im , -k, 1 - 1 2 i log(a) + i2 2k+2 e 1 2 i(πk+8m) Φ e 4im , -k, 1 - 1 4 i log(a) -2 k+1 e 2m Φ e 2m , -k, log(a) 2 + 1 -i2 -n log k (a) + 2i log k (a)
Proof. Since the addition of the right-hand sides of equations ( 4 

∞ j=0 -2 -j-1 tan 2 -j-1 m + csc 2 -j m -csch 2 -j m = coth(m) - 1 m
Proof. Use equation (5.1) and set k = 0 and simplify using entry (2) in Table of Section (64:12) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 6.2. The degenerate case for the finite sum.

(6.2)

n j=0 2 -j tan 2 -j m + csc 2 -j m -csch 2 -j m = cot m2 -n-1 +2 -n cot m2 -n -coth m2 -n-1 +tan(m)-2 cot(m)+coth(m)
Proof. Use equation (5.2) and set k = 0 and simplify using entry (2) in Table of Section (64:12) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □

Extended Melnikov Infinite Product

Melinkov [1], published work involving a technique developed for obtaining infinite product representations for some elementary functions. In his work many infinite products were derived and evaluated. In this section an alternate form for equation (23) in [1] is given where the parameters are general complex numbers, thereby expanding upon the formula derived by Melinkov. In this section the symmetric plots of the right-hand side of equation (7.1) when r → α, m → 1/α for real and complex ranges are produced.

Theorem 7.1. For all m, r ∈ C then,

∞ j=0 cosh 2 -1-j r cosh (2 -1-j m) tan 2 -1-j m tanh 2 -1-j r tan (2 -1-j r) tanh (2 -1-j m) 2 j = m sin(r) r sin(m) (7.1) 
Proof. Use equation (5.1) and form a second equation by replacing m → r take the difference of both these equations then set a = 1 and simplify in terms of the Polylogarithm function using equation (64:12:2) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next apply L'Hopital's rule to the right-hand side as k → -1 and simplify in terms of the logarithmic function using entry (1) in Table of Section (64:12) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the exponential function of both sides and simplify in terms of the cosine, tangent and hyperbolic cosine and tangent functions. Replace m → im, r → ir and simplify. To get the form quoted in [1] 20) and (30) in [1]. These derived formulae are derived by using equation (7.1) replacing m → π/2, m → π/2, r → r -π/2 and m → r + π/2 respectively.

simply replace r → At, m → Bt. □ Table 1. Table of Infinite Products in terms of Constants ∞ j=0 cosh π2 -j-2 sech 1 3 π2 -j-1 tan 1 3 π2 -j-1 cot π2 -j-2 tanh π2 -j-2 coth 1 3 π2 -j-1 2 j 4 3 √ 3 ∞ j=0 cosh π2 -j-3 sech 1 5 π2 -j-1 tan 1 5 π2 -j-1 cot π2 -j-3 tanh π2 -j-3 coth 1 5 π2 -j-1 2 j 4 5 1 + 1 √ 5 ∞ j=0 cosh 1 3 π2 -j-1 sech 1 3 π2 -j-2 tan 1 3 π2 -j-2 cot 1 3 π2 -j-1 tanh 1 3 π2 -j-1 coth 1 3 π2 -j-2 2 j √ 3 2 ∞ j=0 cosh π2 -j-2 sech π2 -j-4 tan π2 -j-4 cot π2 -j-2 tanh π2 -j-2 coth π2 -j-4 2 j 1 2 √ 2- √ 2 ∞ j=0 cosh π2 -j-3 sech 3 5 π2 -j-1 tan 3 5 π2 -j-1 cot π2 -j-3 tanh π2 -j-3 coth 3 5 π2 -j-1 2 j 24 5 √ 5+ √ 5 -3 -2 -1 1 2 3 α 0.5 1.0 1.5 2.0 2.5 3.0 Figure 1. Plot of sinh(α) α 2 sinh( 1 α ) , α ∈ R.
(7.2) 2r π ∞ j=0 cosh 2 -1-j r cosh (2 -2-j π)
tan 2 -2-j π tanh 2 -1-j r tan (2 -1-j r) tanh (2 -2-j π)

2 j
= sin(r)

(7.3) π -2r π ∞ j=0 cosh 2 -2-j (π -2r) cosh (2 -2-j π) tan 2 -2-j π tanh 2 -2-j (π -2r) tan (2 -2-j (π -2r)) tanh (2 -2-j π) 2 j = cos(r) (7.4) 2r (π + 2r) ∞ j=0 cosh 2 -1-j r cosh (2 -2-j (π + 2r)) tan 2 -2-j (π + 2r) tanh 2 -1-j r tan (2 -1-j r) tanh (2 -2-j (π + 2r)) 2 j = tan(r) (7.5) α β ∞ j=0 cosh 2 -1-j zα cosh (2 -1-j zβ) tan 2 -1-j zβ tanh 2 -1-j zα tan (2 -1-j zα) tanh (2 -1-j zβ) 2 j
= sin(zα) sin(zβ) 7.2. Catalan's Constant, K. In this section the derivation of two methods of arriving at Catalan's constant are evaluated using the integration over an infinite product with factors containing the Cosine, Tangent and Hyperbolic Cosine and Tangent functions with Powers of 2. Using equation (7.1), set r = π/2 and take the definite integral of both sides to get

(7.6) π 2 π 2 -π 2 ∞ j=0 cosh 2 -2-j π cosh (2 -1-j m) tan 2 -1-j m tanh 2 -2-j π tan (2 -2-j π) tanh (2 -1-j m) 2 j dm = π 2 π 2 -π 2 cosh π 2 2 cosh m 2 tan m 2 tanh π 2 2 tan π 2 2 tanh m 2 2 0 . cosh π 2 3 cosh m 2 2 tan m 2 2 tanh π 2 3 tan π 2 3 tanh m 2 2 2 1 ...dm = π 2 -π 2 m sin(m) dm = 4K
where the integral representation for Catalan's constant, K is from Glaisher [START_REF] Glaisher | On a Numerical Continued Product[END_REF].

Next applying the limit as r → 0 to equation (7.1) we write

(7.7) lim r→0   ∞ j=0 cos 2 -1-j r cos (2 -1-j m) tan 2 -1-j r tanh 2 -1-j m tan (2 -1-j m) tanh (2 -1-j r) 2 j = m sinh(r) r sinh(m)  
then simplify and taking the definite integral over m ∈ [0, πi/2] and simplify to get (8.1)

(7.8) πi/2 0 ∞ j=0 1 cos (2 -1-j m) tanh 2 -1-j m tan (2 -1-j m)
∞ j=0 exp 2 -j tan 2 -j-1 x -tan 2 -j-1 x β exp -2 -csc 2 -j x β + csch 2 -j x β + csc 2 -j x + 2csch 2 -j x a 2 log e i(β-1)2 -j-1 x β sec(2 -j-1 x) cos 2 -j-1 x β cot(2 -j-1 x) tanh(2 -j-1 x) tan 2 -j-1 x β coth 2 -j-1 x β 2 j - i(β-1)2 -j x β =   cosh   2 β -x coth x β + x coth(x) -1 x   + sinh   -2β + 2x coth x β -2x coth(x) + 2 x     a log(β 2 csch 2 (x) sinh 2 ( x β ))
Proof. Use equation (5.1) and set k = 1, m = x and apply the method in section (8) in [START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF].

□ Example 8.2. (8.2) ∞ j=0 exp 2i csc 2 -2-j π -2i csc 2 -1-j π -2icsch 2 -2-j π exp 2icsch 2 -1-j π -i2 -j tanh 2 -3-j π + i2 -j tanh 2 -2-j π cosh 2 -3-j π cosh (2 -2-j π) 2 tan 2 -2-j π tanh 2 -3-j π tan (2 -3-j π) tanh (2 -2-j π) 2 1+j = 2e -2i(-2+π) π
Proof. Use equation (8.1) and set a = e, β = 2, x = πi 2 and simplify. □

Extended Melnikov Finite Product

In this section the derivation of the finite product formula form for the extended Melnikov form. This formula could be used to as a partail product in the stduy of the infinite form given by equation (7.1).

Example 9.1.

(9.1)

n j=0 cos 2 -j m cos (2 -j r) tan 2 -1-j r tanh 2 -1-j m tan (2 -1-j m) tanh (2 -1-j r) 2 j = cos(m) sin (2 -n r) sin 2 (m) sinh(r) cos(r) sin (2 -n m) sin 2 (r) sinh(m) sin 2 -1-n r sinh 2 -1-n m sin (2 -1-n m) sinh (2 -1-n r) 2 1+n
Proof. Use equation (5.2) and form a second equation by replacing m → r take the difference of both these equations then set a = 1 and simplify in terms of the Polylogarithm function using equation (64:12:2) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next apply L'Hopital's rule to the right-hand side as k → -1 and simplify in terms of the logarithmic function using entry (1) in Table of Section (64:12) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the exponential function of both sides and simplify in terms of the cosine, tangent and hyperbolic cosine and tangent functions. The final form is derived by forming a second equation by replacing m → -m and r → -r and multiplying both and simplifying the trigonometric functions. □

The Infinite Product of Quotient Cosine Functions

In this section the derivation of an infinite product formula involving the ratio of the the product of cosine functions. An equation used in this derivation is In this example we will look at the infinite product of the quotient of trigonometric functions raised to a complex power expressed in terms of the quotient of trigonometric functions raised to a complex power. In section (5.8) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] is a list of very interesting infinite products of involving elementary functions. In particular equation (5.8.5) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] features a generalized infinite product of quotient polynomials expressed in terms of quotient Gamma functions. In this section we will look at a generalized infinite product raised to a complex power whereby expanding upon previous infinite product literature. Note Re(β) > Re(x) in order for the product to converge. = 2e -π/2 π Φ ′ e -π , 0, 1 2 + iΦ ′ -e -π , 0, 1 2

Proof. Use equation (5.2) and set n = 0, a = 1, m = πi/2 and simplify in terms of the polylogarithm function function using entry (4) in Section (64:12) of [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. Next take the first partial derivative with respect to k and use l'Hopital's rule as k → 0 and simplify. □

Conclusion

In this paper, the derivation of new finite and infinite sums and products involving trigonometric functions using contour integration was conducted. The method applied in the derivation of the main theorem may be used to derive other sums and products in future work. Infinite forms were derived involving trigonometric functions and their partial sum counterpart. These types of evaluations allows the analysis of the infinite sum of functions and the partial sums which they are built upon. The results for special cases were summarized in the form of Table (2) and 2D and 3D plots involving a form of an infinite product. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.
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 21 k+1 e 2m Φ e 2m , -k,log(a) 
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 21252 log k (a) Proof. Since the addition of the right-hand sides of equations (3.1), (3.2), (3.3), (3.4) and (3.5) is equivalent to the addition of the right-hand sides of equations (3.6), (3.7) and (3.8), then equate the left-hand sides and apply equations (3.303) in [6] and (1.1) and simplify the Gamma function to yield the stated result. □ For all k, a, m ∈ C then, (5.2)
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 2 Figure 2. Plot of Re sinh(α) α 2 sinh( 1 α ) , α ∈ C.
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 3 Figure 3. Plot of Im sinh(α) α 2 sinh( 1 α ) , α ∈ C.
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 8 Special Case Involving the Exponential of Trigonometric FunctionsIn this section equation (5.1) is evaluated to yield the exponential of trigonometric functions in terms of the exponential of trigonometric functions. A special case is also evaluated in terms of the exponential of the reciprocal of π.Example 8.1.

cos 2

 2 of l'Hopital's rule is used to derive the limit.-1-j r cos 2 -j r cos (2 -1-j m) cos (2 -j m) = m r 2 sin(2r) sin(r) sin(2m) sin(m)Proof. Use the hyperbolic form of equation (7.1) and divide it by equation (9.1) and take the limit as n → ∞ and simplify. □11. Infinite Product Of The Quotient Of Hyperbolic Cosine, Sine AndTangent Functions Raised To A Complex Power

Example 11

 11 Use equation (5.1) and set k = 3, a = 1, m = x and apply the method in section (8) in[START_REF] Reynolds | A Note on the Infinite Sum of the Lerch function[END_REF]. □ 11.1.

  Table Of Infinite Products In Terms Of Constants. In this section we evaluate equation (11.1) for various values of the parameters involved with many other possible since x, β ∈ C. These derivations are left as an exercise for readers.Proof. Use equation (5.2) and set n = 0 set n = 0, m = -α 2 , k = -s, a = e a Φ ie π/2 , 2, 1 -i + 8e -3π/2 Φ e π/2 , 2, 1 -i Proof. Use equation (12.1) and set α = π and simplify in terms of the Hurwitz-Zeta function using entry (4) in Section (64:12) of [12]. Next set s = 2, v = 3/2 and simplify. □ Example 12.3. The Difference of Derivative of Hurwitz-Lerch Zeta Functions in terms of Euler's constant γ and Stieltjes constant γ 1 and generalized Stieltjes constant γ 1 (β) where β ∈ R + . (12.3) π 2 -2Li ′ 0 e -2π + Li ′ 0 ie -π/2 + Li ′ 0 e -π/2 + log

	and simplify.									□
	Example 12.2.							
	(12.2) Φ e 2π , 2, 1 -	i 4 = 8ie -3π/2 -2ie -3π/2 Φ -e π , 2,	1 2	-	i 2	-2e -3π/2 Φ e π , 2,	1 2	-	i 2
										Γ -3 4
										Γ -1 4
	-γ + log	9 128π	+ log(16) coth(π) + log(2) csch	π 2	+ isech	π 2
			-γ 1	1 4	+ γ 1	3 4	

tan( 1 3 2 -2-j π) tanh( 1 3 2 -3-j π) tan( 13 2 -3-j π) tanh( 1 3 2 -2-j π)

Hurwitz-Lerch Zeta Transformation Formula

In this section the derivation of a transformation formula based on the finite sum equation (5.2) and evaluate an example as a special case.

Theorem 12.1. For all α, s, v ∈ C, Re(v) < 1 then,

Φ e -α , s, v = -exp 1 2 i(4α + πs) -