Supporting Information: How does bending the uranyl unit influence its spectroscopy and luminescence

Hanna Oher,[†] André Severo Pereira Gomes,[‡] Richard E. Wilson,^{*,¶} David D. Schnaars,[¶] and Valérie Vallet^{*,‡}

† Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France

‡Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France

¶Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

E-mail: rewilson@anl.gov; valerie.vallet@univ-lille.fr

List of Tables

S1	Symmetric (ν_s) and asymmetric (ν_{as}) vibrational modes of the uranyl ions	
	(cm ⁻¹), bond length (Å) and angles (°) for $UO_2Cl_2(phen)_2$ optimized at the	
	DFT-PBE0-D3 level of theory in the gas-phase and in a CPCM water solvent.	S-4
S2	ΔE (in kJ mol ⁻¹) electronic energy difference between the linear and bent	
	structures optimized at the DFT-PBE0-D3 level of theory, computed with	
	different XC functionals.	S-5
S3	Binding energies ΔE (in kJ mol ⁻¹) to the UO ₂ Cl ₂ complex of the phen ligand	
	in axial or equatorial position, computed at the PBE0-D3 level of theory	S-6
S4	Natural population analysis of the uranium 6d and 5f orbitals, taken as the	
	difference to the \mathbf{U}^{VI} oxidation state; atomic charges; QTAIM characteristics	
	in atomic units of the U \equiv O, U–Cl, and U–N $_{\rm ax},$ U–N $_{\rm eq}$ Bond Critical Points,	
	and QTAIM delocalization indices $\delta(U-L)$; Wiberg bond orders WBO(U - L)	
	in $UO_2Cl_2(Phen)_2$ PBE0-D3 gas-phase structures with bent and linear con-	
	formations.	S-7
S5	SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in $\rm cm^{-1})$ in	
	linear and bent $\mathrm{UO_2}^{2+}$ computed at the $\mathrm{UO_2Cl_2(phen)_2}$ PBE0-D3 geometries.	S-8
S6	SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in $\rm cm^{-1})$ in	
	$\mathrm{UO_2Cl_4}^{2-}$ computed at the $\mathrm{Cs_2UO_2Cl_4}$ geometry. ^{S1}	S-9
S7	SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in $\rm cm^{-1})$ in	
	$\mathrm{UO}_2\mathrm{Cl}_2$ computed at the gas-phase PBE0-D3 geometry	S-9
S8	Vertical transition energies (in $\rm cm^{-1})$ computed at the spin-orbit level (SO-	
	ZORA) (CAM-B3LYP) for in UO_2Cl_2 (TDDFT and TDA approximation),	
	and $UO_2Cl_2Ar_2$ (TDDFT), all computed at the optimized gas-phase PBE0-	
	D3 geometries.	S-9

S9	SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in cm^{-1}) in	
	$\rm UO_2Cl_2(phen)_2$ computed at PBE0-D3 gas-phase geometry in the gas-phase	
	and in the COSMO solvent.	S-10

- S10 Assignments of the UO_2Cl_2 and $UO_2Cl_2(phen)_2$ theoretical luminescence spectra computed in the gas phase. The energies of the spectra were adjusted to the theoretical vertical emission energy of the first electron transition. S-11

List of Figures

S1	FT-IR spectrum of crystals of $UO_2Cl_2(phen)_2$ in KBr after isotope exchange	
	of the terminal oxo-units of the uranyl	S-13
S2	Raman spectrum of crystals of $UO_2Cl_2(phen)_2$ after isotope exchange of the	
	terminal oxo-units of the uranyl	S-14

Note that the data (input/output) corresponding to the QC calculations of this paper are available at the Zenodo repository.^{S3}

1 Justification for performing all the calculations in the gas phase

We detail here the reasons justifying that all calculations have been performed in the gas phase. The first reason is to be consistent with experimental data, as we aim at comparing single crystal data to our theoretical calculations. A solid medium may be represented by a dielectric medium of infinite permittivity, which cannot be set in the two quantum chemistry programs we used, namely Gaussian 16^{S4} and ADF.^{S5} However, to quantify longrange effects, we have optimized the geometry of UO₂Cl₂(phen)₂ immersed in a water solvent with $\varepsilon_r = 80$ described by the continuum polarizable conductor model (CPCM).^{S6,S7} The obtained geometries and frequencies are reported in Table S1 together with the gas-phase values. We can note that long-range solvent effects change by few hundreds of Å the uraniumligand bond distances and by at most 21 cm^{-1} the internal uranyl stretching frequencies, thus making calculations in the gas-phase fully suitable.

Table S1: Symmetric (ν_s) and asymmetric (ν_{as}) vibrational modes of the uranyl ions (cm⁻¹), bond length (Å) and angles (°) for UO₂Cl₂(phen)₂ optimized at the DFT-PBE0-D3 level of theory in the gas-phase and in a CPCM water solvent.

XC func	Method	ν_s	ν_{as}	$U\!\equiv\!O$	$O\!\equiv\!U\!\equiv\!O$	U-Cl	$U\!-\!N_{ax}$	$U\!-\!N_{eq}$
PBE0 PBE0-D3 PBE0-D3	GP GP CPCM	898 896 891	961 957 936	$1.753 \\ 1.754 \\ 1.754$	$163.4 \\ 162.7 \\ 163.3$	2.662 2.660 2.697	2.816 2.789 2.794	2.699 2.680 2.648

The comparison of transition energies computed at the scalar relativistic level in the gas-phase and with a conductor-like screening model (COSMO)^{S8–S10} for the water solvent reported in Table S9 further illustrates that long-range interactions have a negligible effects on excitation energies, shifting them up by at most 474 cm^{-1} .

2 Comparison of several exchange-correlation functionals on the uranyl bending energy of $UO_2Cl_2(phen)_2$

In Table S2, we compare the bending energy ΔE of the UO₂Cl₂(phen)₂ complex as computed with several exchange correlation (XC) functionals, such as PBE,^{S11} generalized gradient approximation (GGA), several hybrids PBE0,^{S11,S12} B3LYP,^{S13–S15} BHLYP^{S16} with varying amounts of Hartree-Fock Exchange, two range-separated functionals, CAM-B3LYP^{S17} and HSE06^{S18} and two methods with exact Hartree-Fock exchange, M06HF.^{S19,S20}

Table S2: ΔE (in kJ mol⁻¹) electronic energy difference between the linear and bent structures optimized at the DFT-PBE0-D3 level of theory, computed with different XC functionals.

Functional	Type	ΔE
PBE	GGA	26.6
B3LYP	Hybrid	20.6
BHLYP	Hybrid	15.9
PBE0	Hybrid	22.0
PBE0+D3	Hybrid + D3	25.3
CAM-B3LYP	RSE	21.0
HSE06	RSE	22.5
M06HF	eX	27.6
HF	eХ	4.4

^{*a*} Type refers to the placement of the given functional into the hierarchy of density functional approximations outlined in Ref. S21: generalized gradient approximation (GGA), hybrid, range-separated (SE), exact exchange (eX).

3 Binding energy of phen ligands in $UO_2Cl_2(phen)_2$

The binding energies of axial and equatorial phen ligands to the UO_2Cl_2 complex are reported in Table S3.

Table S3: Binding energies ΔE (in kJ mol⁻¹) to the UO₂Cl₂ complex of the phen ligand in axial or equatorial position, computed at the PBE0-D3 level of theory.

Reaction	ΔE
$\begin{array}{l} UO_2Cl_2 + phen \longrightarrow UO_2Cl_2(phen)_{ax} \\ UO_2Cl_2 + phen \longrightarrow UO_2Cl_2(phen)_{eq} \end{array}$	$-167.5 \\ -250.2$

4 QTAIM and NBO analysis

Table S4: Natural population analysis of the uranium 6d and 5f orbitals, taken as the difference to the U^{VI} oxidation state; atomic charges; QTAIM characteristics in atomic units of the U = O, U–Cl, and U–N_{ax}, U–N_{eq} Bond Critical Points, and QTAIM delocalization indices δ (U–L); Wiberg bond orders WBO(U – L) in UO₂Cl₂(Phen)₂ PBE0-D3 gas-phase structures with bent and linear conformations.

Bond	$ ho_b$	$ abla^2 ho_b$	H_b	V /G	$\delta(U,L)$	WBO(U-L)
	be	ent-UC	$O_2Cl_2(ph)$	$en)_2$		
$U \equiv O$	0.32	0.28	-0.31	1.81	1.91	2.07
U-Cl	0.07	0.14	-0.01	1.28	0.59	0.92
$U-N_{ax}$	0.03	0.09	0.00	1.09	0.20	0.28
$U - N_{eq}$	0.04	0.11	0.00	1.11	0.24	0.30
n(d)	1.68					
n(f)	2.67					
q(U)	1.22					
$q(O_{yl})$ -	-0.53					
q(Cl) -	-0.41					
$q(N_{ax})$ -	-0.35					
$q(N_{eq})$ -	-0.38					
		liı	near-U($D_2Cl_2(ph)$	$(en)_2$	
$U\!\equiv\!O$	0.33	0.27	-0.32	1.83	1.92	2.05
U-Cl	0.07	0.14	-0.02	1.29	0.61	0.92
$U - N_{ax}$	0.02	0.06	0.00	1.00	0.12	0.19
$U - N_{eq}$	0.04	0.12	0.00	1.12	0.26	0.30
n(d)	1.65					
n(f)	2.65					
q(U)	1.32					
$q(O_{yl})$ -	-0.51					
q(Cl) -	-0.41					
$q(N_{ax})$ -	-0.36					
$q(N_{eq})$ -	-0.40					

5 Supplementary tables

linear UC	D_2^{2+}	bent UO	22+
State Conf.	ΔE	State Conf.	ΔE
$3\sigma_u\phi$	17676	$^{3}\sigma_{u}\phi$	16 983
		$^{3}\sigma_{u}\phi$	17066
$^{3}\sigma_{u}\delta$	19110	$^{3}\sigma_{u}\delta$	18726
		$^{3}\sigma_{u}\delta$	18734
$^{1}\sigma_{u}\phi$	22555	$^{1}\sigma_{u}\phi$	21640
		$^{1}\sigma_{u}\phi$	21726
$^{1}\sigma_{u}\delta$	27812	$^{1}\sigma_{u}\delta \times 2$	27171
$^{3}\pi_{u}\phi$	31545	$^{3}\pi_{u}\phi$	30173
		$^{3}\pi_{u}\phi$	30252
$^{3}\pi_{u}\phi$	31696	$^{3}\pi_{u}\phi$	30676
		$^{3}\pi_{u}\phi$	30757
$^{1}\pi_{u}\phi$	33898	$^{1}\pi_{u}\phi$	32682
		$^{1}\pi_{u}\phi$	32691
$^{3}\pi_{u}\delta$	35539	$^{3}\pi_{u}\delta$	33373
		$^{3}\pi_{u}\delta$	33459

Table S5: SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in cm⁻¹) in linear and bent UO_2^{2+} computed at the $UO_2Cl_2(phen)_2$ PBE0-D3 geometries.

Table S6: SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in cm⁻¹) in $UO_2Cl_4^{2-}$ computed at the $Cs_2UO_2Cl_4$ geometry.^{S1}

Trans.	ΔE
Tripl. $\sigma_u(51\%) + \operatorname{Cl}(47\%) \to \delta$	21985
Tripl. $\sigma_u(48\%) + \operatorname{Cl}(47\%) \to \delta$	22810
Tripl. $\sigma_u(45\%) + \operatorname{Cl}(52\%) \to \phi$	25079
Tripl. $\sigma_u(45\%) + \operatorname{Cl}(52\%) \to \phi$	25292
Sing. $\sigma_u(38\%) + \operatorname{Cl}(59\%) \rightarrow \phi$	29006
Sing. $\sigma_u(37\%) + \operatorname{Cl}(58\%) \to \phi$	29186
Sing. $\sigma_u(34\%) + \operatorname{Cl}(61\%) \rightarrow \delta$	30024
Sing. $\sigma_u(33\%) + \operatorname{Cl}(57\%) \to \delta$	30744

Table S7: SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in cm^{-1}) in UO₂Cl₂ computed at the gas-phase PBE0-D3 geometry.

Trans.	ΔE
Trip. $\sigma_u(42\%) + \operatorname{Cl}(57\%) \to \delta$	20170
Trip. $\sigma_u(38\%) + \operatorname{Cl}(61\%) \to \delta$	20863
Trip. $\sigma_u(34\%) + \operatorname{Cl}(63\%) \to \phi$	21223
Trip. $\sigma_u(34\%) + \operatorname{Cl}(63\%) \to \phi$	21506
Sing. $\sigma_u(22\%) + \operatorname{Cl}(76\%) \to \phi$	24250
Sing. $\sigma_u(22\%) + \operatorname{Cl}(76\%) \to \phi$	24610
Sing. $\sigma_u(16\%) + \operatorname{Cl}(82\%) \to \delta$	26618
Sing. $\sigma_u(17\%) + \operatorname{Cl}(76\%) \to \delta$	27630

Table S8: Vertical transition energies (in cm^{-1}) computed at the spin-orbit level (SO-ZORA) (CAM-B3LYP) for in UO₂Cl₂ (TDDFT and TDA approximation), and UO₂Cl₂Ar₂ (TDDFT), all computed at the optimized gas-phase PBE0-D3 geometries.

UO_2Cl_2			$\mathrm{UO}_2\mathrm{Cl}_2\mathrm{Ar}_2$
	ΔI	Ŧ	ΔE
Trans.	TDDFT	TDA	TDDFT
$\sigma_u(32\%) + \text{Cl}(62\%) \to \phi(87\%) + \delta(9\%)$	17303	17703	17714
$\sigma_u(31\%) + \text{Cl}(63\%) \to \phi(93\%) + \delta(3\%)$	17466	17845	17916
$\sigma_u(35\%) + \text{Cl}(59\%) \rightarrow \delta(77\%) + \phi(18\%)$	17979	18478	18243
$\sigma_u(33\%) + \text{Cl}(58\%) \rightarrow \delta(77\%) + \phi(18\%)$	17990	18513	18256
$\sigma_u(28\%) + \text{Cl}(63\%) \rightarrow \phi(62\%) + \delta(29\%)$	18374	18820	18787
$\sigma_u(29\%) + \text{Cl}(64\%) \rightarrow \phi(71\%) + \delta(19\%)$	18475	18897	18938
$\sigma_u(33\%) + \text{Cl}(59\%) \rightarrow \delta(69\%) + \phi(7\%)$	19814	20374	20161
$\sigma_u(30\%) + Cl(63\%) \rightarrow \delta(77\%) + \delta(2\%)$	20159	20760	20398

TDDFT/GP		TDDFT/COSMO	
Trans.	ΔE	Trans.	ΔE
Trip. $\pi_{(phen)_{ax}}(57\%) + Cl(11\%) \to \pi^*_{(phen)_{ax}}$	21 978	Trip. $\sigma_u(40\%) + \pi_{(phen)_{ax}}(31\%) + \text{Cl}(22\%) \to \delta$	22 178
Trip. $\sigma_u(36\%) + \pi_{(phen)_{ax}}(23\%) + \text{Cl}(22\%) \rightarrow \delta$	21989	Trip. $\pi_{(phen)_{ax}}(86\%) + Cl(10\%) \rightarrow \pi_{(phen)_{ax}}^{*}$	22406
Trip. $\pi_{(phen)_{eq}} \rightarrow \pi^*_{(phen)_{eq}}$	22362	Trip. $\pi_{(phen)_{eq}} \to \pi^*_{(phen)_{eq}}$	22665
Trip. $\sigma_u(38\%) + \pi_{(phen)_{ax}}(26\%) + \text{Cl}(23\%) \rightarrow \delta$	22933	Trip. $\sigma_u(39\%) + \pi_{(phen)_{ax}}(32\%) + \text{Cl}(22\%) \to \delta$	23159
Trip. $\sigma_u(36\%) + \pi_{(phen)ax}(25\%) + \text{Cl}(27\%) \to \phi$	23635	Trip. $\sigma_u(39\%) + \pi_{(phen)_{ax}}(34\%) + \text{Cl}(24\%) \rightarrow \phi$	24015
Trip. $\sigma_u(27\%) + \pi_{(phen)_{ax}}(18\%) + \text{Cl}(20\%) \to \phi + \pi^*_{(phen)_{ax}}$	24175	Trip. $\sigma_u(38\%) + \pi_{(phen)_{ax}}(31\%) + \text{Cl}(24\%) \rightarrow \phi$	24460
Sing. $\sigma_u(30\%) + \pi_{(phen)_{ax}}(24\%) + \text{Cl}(34\%) \to \phi$	27439	Sing. $\sigma_u(33\%) + \pi_{(phen)_{ax}}(35\%) + \text{Cl}(27\%) \to \phi$	27913
Sing. $\sigma_u(22\%) + \pi_{(phen)_{ax}}(18\%) + \text{Cl}(24\%) \to \phi + \pi_{(phen)_{ax}}^*$	28051	Trip. $\pi_{(phen)_{eq}} \to \pi_{(phen)_{eq}}^{*}$	28060

Table S9: SR-ZORA-TDDFT (CAM-B3LYP) vertical transition energies (in cm^{-1}) in $\text{UO}_2\text{Cl}_2(\text{phen})_2$ computed at PBE0-D3 gas-phase geometry in the gas-phase and in the COSMO solvent.

$E [\mathrm{cm}^{-1}]$	$\Delta E \ [\mathrm{cm}^{-1}]$	I [au]	Identification					
16529		$5.23 imes 10^{-1}$	$0'(0) \rightarrow 1(0)$					
16476	52	1.73×10^{-1}	$0'(0) \to 1(1\nu_0)$					
16310	219	$5.67 imes 10^{-2}$	$0'(0) \rightarrow 1(1\nu_3)$					
16257	271	1.45×10^{-2}	$0'(0) \rightarrow 1(1\nu_0, 1\nu_3)$					
16186	343	2.15×10^{-3}	$0'(0) \to 1(1\nu_6)$					
15579	949	1.22×10^{-1}	$0'(0) \to 1(1\nu_7)$					
15527	52	3.84×10^{-2}	$0'(0) \rightarrow 1(1\nu_0, 1\nu_7)$					
15361	219	9.77×10^{-3}	$0'(0) \rightarrow 1(1\nu_3, 1\nu_7)$					
15308	271	2.24×10^{-3}	$0'(0) \rightarrow 1(1\nu_0, 1\nu_3, 1\nu_7)$					
14630	949	1.92×10^{-2}	$0'(0) \to 1(2\nu_7)$					
14577	52	5.84×10^{-3}	$0'(0) \rightarrow 1(1\nu_0, 2\nu_7)$					
13681	949	2.44×10^{-3}	$0'(0) \to 1(3\nu_7)$					
ν_0 - Cl-U-Cl scissoring, ν_3 - O_{yl} -U- O_{yl} bending ,								
	0,	ν_6 - O_{yl} -U- O_{yl} bending + U-Cl stretching						
$ u_6$ - $\mathrm{O}_{\mathrm{yl}} - \mathrm{U}_{\mathrm{yl}}$	U-O _{yl} bending	g + U-Cl stret	tching					
$ u_6$ - $\mathrm{O}_{\mathrm{yl}}-\mathrm{U}_7$ $ u_7$ - symm	U-O _{yl} bending tetrical O _{yl} -U	g + U-Cl stret $-O_{yl}$ stretching	ng					
$ \nu_6 - O_{yl} - U \\ \nu_7 - symm \\ U O_2 Cl_2 (p) $	$U-O_{yl}$ bending tetrical $O_{yl}-U$ hen) ₂	g + U-Cl stret -O _{yl} stretchin	ng					
$ \begin{array}{l} \nu_6 - O_{yl} - U \\ \nu_7 - symm \\ \overline{UO_2 Cl_2(p)} \\ \overline{E \ [cm^{-1}]} \end{array} $	$\frac{U-O_{yl} \text{ bending}}{\text{herrical } O_{yl}-U}$ $\frac{hen)_2}{\Delta E \ [cm^{-1}]}$	g + U-Cl stret $I - O_{yl}$ stretchin I [au]	Identification					
$ \frac{\nu_6 - O_{yl} - U}{\nu_7 - symm} $ $ \frac{UO_2Cl_2(p)}{E \ [cm^{-1}]} $ $ \frac{18464}{18464} $	$\frac{U-O_{yl} \text{ bending}}{(detrical O_{yl}-U)}$ $\frac{(detrical O_{yl}-U)}{\Delta E \ [\text{cm}^{-1}]}$	g + U-Cl stree $I = O_{y1}$ stretchin I [au] 3.75×10^{-1}	tching ng Identification $0'(0) \rightarrow 1(0)$					
$ \begin{array}{r} \nu_6 - O_{yl} - U \\ \nu_7 - symm \\ UO_2 Cl_2(p) \\ \hline E \ [cm^{-1}] \\ \hline 18464 \\ 18380 \end{array} $	$\frac{U-O_{yl} \text{ bending}}{(\text{hern})_2}$ $\frac{\Delta E \ [\text{cm}^{-1}]}{84}$	$\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$					
$ \begin{array}{r} \nu_{6} - O_{yl} - U \\ \nu_{7} - symm \\ \hline UO_{2}Cl_{2}(p) \\ \hline E \ [cm^{-1}] \\ \hline 18\ 464 \\ 18\ 380 \\ 18\ 337 \end{array} $	$\frac{U-O_{yl} \text{ bending}}{(\Delta E \text{ [cm}^{-1}))^2}$ $\frac{V-O_{yl} \text{ bending}}{\Delta E \text{ [cm}^{-1})}$ $\frac{84}{127}$	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{1.83 \times 10^{-1}}$ 2.94×10^{-2}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$					
$ \begin{array}{r} \nu_6 - O_{yl} - U \\ \nu_7 - symm \\ UO_2 Cl_2 (p) \\ \hline E \ [cm^{-1}] \\ \hline 18\ 464 \\ 18\ 380 \\ 18\ 337 \\ 18\ 216 \\ \end{array} $	$\frac{U-O_{yl} \text{ bending}}{(\text{tetrical } O_{yl}-U)}$ $\frac{\Delta E \ [\text{cm}^{-1}]}{84}$ $\frac{84}{127}$ 248	$\frac{I \text{ [au]}}{1.83 \times 10^{-1}}$ $\frac{I \text{ [au]}}{2.94 \times 10^{-2}}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$					
$ \begin{array}{r} \nu_{6} - O_{yl} - U \\ \nu_{7} - symm \\ \overline{UO_{2}Cl_{2}(p)} \\ \hline E \ [cm^{-1}] \\ \hline 18\ 464 \\ 18\ 380 \\ 18\ 337 \\ 18\ 216 \\ 18\ 183 \\ \end{array} $	$\frac{U-O_{yl} \text{ bending}}{\Delta E \text{ [cm}^{-1]}}$ $\frac{84}{127}$ 248 281	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$ 1.83×10^{-1} 2.94×10^{-2} 1.55×10^{-2} 2.05×10^{-3}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$					
$ \begin{array}{r} \nu_{6} - O_{yl} - U \\ \nu_{7} - symm \\ UO_{2}Cl_{2}(p) \\ \hline E \ [cm^{-1}] \\ \hline 18\ 464 \\ 18\ 380 \\ 18\ 337 \\ 18\ 216 \\ 18\ 183 \\ 17\ 569 \end{array} $	$\begin{array}{c} \text{U-O_{yl} bending} \\ \text{aetrical } \text{O}_{yl} - \text{U} \\ \hline \text{hen})_2 \\ \hline \Delta E \ [\text{cm}^{-1}] \\ \hline 84 \\ 127 \\ 248 \\ 281 \\ 895 \end{array}$	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$ 1.83×10^{-1} 2.94×10^{-2} 1.55×10^{-2} 2.05×10^{-3} 1.10×10^{-1}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$					
$ \begin{array}{r} \nu_6 - O_{yl} - U_{yl} - U_{yl} - U_{yl} - U_{yl} - U_{yl} \\ \hline UO_2 Cl_2(p) \\ \hline E \ [cm^{-1}] \\ \hline 18\ 464 \\ 18\ 380 \\ 18\ 337 \\ 18\ 216 \\ 18\ 183 \\ 17\ 569 \\ 17\ 485 \end{array} $	$\begin{array}{c} \text{U-O_{yl} bending}\\ \text{(atrical O_{yl}-U)}\\ \hline \text{(ben)}_2 \\ \hline \Delta E \ [\text{cm}^{-1}] \\ \hline 84 \\ 127 \\ 248 \\ 281 \\ 895 \\ 84 \\ \end{array}$	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$ 1.83×10^{-1} 2.94×10^{-2} 1.55×10^{-2} 2.05×10^{-3} 1.10×10^{-1} 5.40×10^{-2}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{65})$					
$ \begin{array}{r} \nu_6 - O_{yl} - U_{yl} - U_{yl} - U_{yl} - U_{yl} - U_{yl} \\ \hline UO_2 Cl_2(p) \\ \hline E \ [cm^{-1}] \\ \hline 18 \ 464 \\ 18 \ 380 \\ 18 \ 337 \\ 18 \ 216 \\ 18 \ 183 \\ 17 \ 569 \\ 17 \ 485 \\ 17 \ 442 \\ \end{array} $	$\begin{array}{c} J-O_{\rm yl} \ {\rm bending}\\ {\rm detrical} \ O_{\rm yl}-U\\ \hline {\rm hen})_2\\ \hline \hline \Delta E \ [{\rm cm}^{-1}]\\ \hline 84\\ 127\\ 248\\ 281\\ 895\\ 84\\ 127\\ \end{array}$	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$ 1.83×10^{-1} 2.94×10^{-2} 1.55×10^{-2} 2.05×10^{-3} 1.10×10^{-1} 5.40×10^{-2} 7.45×10^{-3}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{6}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$					
$\nu_{6} - O_{yl} - U_{7} - symm$ $UO_{2}Cl_{2}(p)$ $E \ [cm^{-1}]$ $18\ 464$ $18\ 380$ $18\ 337$ $18\ 216$ $18\ 183$ $17\ 569$ $17\ 485$ $17\ 442$ $17\ 320$	$\begin{array}{c} J-O_{\rm yl} \ {\rm bending}\\ {\rm (etrical} \ O_{\rm yl}-U\\ \hline {\rm hen})_2\\ \hline \Delta E \ [{\rm cm}^{-1}]\\ \hline 84\\ 127\\ 248\\ 281\\ 895\\ 84\\ 127\\ 248\\ \end{array}$	$\frac{I \text{ [au]}}{I \text{ [au]}}$ $\frac{I \text{ [au]}}{3.75 \times 10^{-1}}$ 1.83×10^{-1} 2.94×10^{-2} 1.55×10^{-2} 2.05×10^{-3} 1.10×10^{-1} 5.40×10^{-2} 7.45×10^{-3} 5.95×10^{-3}	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$					
$\nu_{6} - O_{yl} - U_{7} - symm$ $UO_{2}Cl_{2}(p)$ $E \ [cm^{-1}]$ $18\ 464$ $18\ 380$ $18\ 337$ $18\ 216$ $18\ 183$ $17\ 569$ $17\ 485$ $17\ 442$ $17\ 320$ $16\ 673$	$\begin{array}{c} U-O_{\rm yl} \ {\rm bending}\\ {\rm detrical} \ O_{\rm yl}-U\\ \hline {\rm hen})_2\\ \hline \hline \Delta E \ [{\rm cm}^{-1}]\\ \hline \\ 84\\ 127\\ 248\\ 281\\ 895\\ 84\\ 127\\ 248\\ 896\\ \end{array}$	$\begin{array}{c} \mathrm{g} + \mathrm{U}\text{-}\mathrm{Cl \ stret}\\ \mathrm{I} & \mathrm{O}_{\mathrm{y1}} \ \mathrm{stret}\mathrm{chin}\\ \hline \\ I \ \mathrm{[au]}\\ \hline \\ 3.75 \times 10^{-1}\\ 1.83 \times 10^{-1}\\ 2.94 \times 10^{-2}\\ 1.55 \times 10^{-2}\\ 2.05 \times 10^{-3}\\ 1.10 \times 10^{-1}\\ 5.40 \times 10^{-2}\\ 7.45 \times 10^{-3}\\ 5.95 \times 10^{-3}\\ 2.13 \times 10^{-2}\\ \end{array}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$ $0'(0) \rightarrow 1(2\nu_{65})$					
$\nu_{6} - O_{yl} - U_{7} - symm$ $UO_{2}Cl_{2}(p)$ $E \ [cm^{-1}]$ $18\ 464$ $18\ 380$ $18\ 337$ $18\ 216$ $18\ 183$ $17\ 569$ $17\ 485$ $17\ 442$ $17\ 320$ $16\ 673$ $16\ 589$	$\begin{array}{c} \text{U-O_{yl} bending} \\ \text{(etrical O_{yl} - U)} \\ \hline \text{(hen)}_2 \\ \hline \Delta E \ [\text{cm}^{-1}] \\ \hline \end{array} \\ \hline \begin{array}{c} 84 \\ 127 \\ 248 \\ 281 \\ 895 \\ 84 \\ 127 \\ 248 \\ 896 \\ 84 \\ \end{array} \end{array}$	$\begin{array}{c} F = 1.5 \\ F = 0_{y1} \text{ stretchin} \\ \hline I \text{ [au]} \\ \hline 3.75 \times 10^{-1} \\ 1.83 \times 10^{-1} \\ 2.94 \times 10^{-2} \\ 1.55 \times 10^{-2} \\ 2.05 \times 10^{-3} \\ 1.10 \times 10^{-1} \\ 5.40 \times 10^{-2} \\ 7.45 \times 10^{-3} \\ 5.95 \times 10^{-3} \\ 2.13 \times 10^{-2} \\ 1.05 \times 10^{-2} \end{array}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$ $0'(0) \rightarrow 1(2\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{6}, 2\nu_{65})$					
$\nu_{6} - O_{yl} - U_{7} - symm$ $UO_{2}Cl_{2}(p)$ $E \ [cm^{-1}]$ $18\ 464$ $18\ 380$ $18\ 337$ $18\ 216$ $18\ 183$ $17\ 569$ $17\ 485$ $17\ 442$ $17\ 320$ $16\ 673$ $16\ 589$ $16\ 546$	$\begin{array}{c} J-O_{\rm yl} \ {\rm bending}\\ {\rm (etrical} \ O_{\rm yl}-U\\ {\rm hen})_2\\ \hline \Delta E \ [{\rm cm}^{-1}]\\ \hline 84\\ 127\\ 248\\ 281\\ 895\\ 84\\ 127\\ 248\\ 896\\ 84\\ 127\\ \end{array}$	$\begin{array}{c} \mathrm{g} + \mathrm{U}\text{-}\mathrm{Cl \ stret}\\ \mathrm{I} \mathrm{[au]}\\ \hline \\ 1.83 \times 10^{-1}\\ 2.94 \times 10^{-2}\\ 1.55 \times 10^{-2}\\ 2.05 \times 10^{-3}\\ 1.10 \times 10^{-1}\\ 5.40 \times 10^{-2}\\ 7.45 \times 10^{-3}\\ 5.95 \times 10^{-3}\\ 2.13 \times 10^{-2}\\ 1.05 \times 10^{-2}\\ 1.28 \times 10^{-3}\\ \end{array}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{6}, 2\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 2\nu_{65})$					
$\begin{array}{c} \nu_6 - O_{yl} - U_{yl} -$	$\begin{array}{c} J-O_{\rm yl} \ {\rm bending}\\ {\rm detrical} \ O_{\rm yl}-U\\ \hline {\rm hen})_2\\ \hline \hline \Delta E \ [{\rm cm}^{-1}]\\ \hline \\ 84\\ 127\\ 248\\ 281\\ 895\\ 84\\ 127\\ 248\\ 896\\ 84\\ 127\\ 248\\ \end{array}$	$\begin{array}{c} I \; [\mathrm{au}] \\ \hline I \; [\mathrm{au}] \\ \hline 3.75 \times 10^{-1} \\ 1.83 \times 10^{-1} \\ 2.94 \times 10^{-2} \\ 1.55 \times 10^{-2} \\ 2.05 \times 10^{-3} \\ 1.10 \times 10^{-1} \\ 5.40 \times 10^{-2} \\ 7.45 \times 10^{-3} \\ 5.95 \times 10^{-3} \\ 2.13 \times 10^{-2} \\ 1.05 \times 10^{-2} \\ 1.28 \times 10^{-3} \\ 1.37 \times 10^{-3} \end{array}$	tching ng Identification $0'(0) \rightarrow 1(0)$ $0'(0) \rightarrow 1(1\nu_6)$ $0'(0) \rightarrow 1(1\nu_{10})$ $0'(0) \rightarrow 1(1\nu_{21})$ $0'(0) \rightarrow 1(1\nu_{26})$ $0'(0) \rightarrow 1(1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 1\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{20}, 2\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{10}, 2\nu_{65})$ $0'(0) \rightarrow 1(1\nu_{21}, 2\nu_{65})$					

Table S10: Assignments of the UO_2Cl_2 and $UO_2Cl_2(phen)_2$ theoretical luminescence spectra computed in the gas phase. The energies of the spectra were adjusted to the theoretical vertical emission energy of the first electron transition.

 ν_{6}, ν_{10} - $O_{yl}-U-O_{yl}$ bending + U-phen stretching , ν_{21} - Cl-U-Cl stretching , ν_{26} - $O_{yl}-U-O_{yl}$ + U-phen bending, ν_{65} - symmetrical $O_{yl}-U-O_{yl}$ stretching

value	of Cs_2UO_2C	Cl_4 complex.		
	$E [cm^{-1}]$	$\Delta \nu \ [\mathrm{cm}^{-1}]$	I [a.u.]	Identification
	19155		6.50×10^{-1}	0'(0) -> 1(0)
	18918	237.1	1.43×10^{-2}	$0'(0) > 1(1\nu_{11})$
	18761	394.4	1.72×10^{-3}	$0'(0) > 1(2\nu_7)$

Table S11: Assignment of the $UO_2Cl_4^{2-}$ theoretical luminescence spectrum (taken from Table S4 in Ref. S2). The energy of the spectrum was adjusted to the experimental bandorigin value of $Cs_2UO_2Cl_4$ complex.

19155		6.50×10^{-1}	0'(0) -> 1(0)				
18918	237.1	1.43×10^{-2}	$0'(0) > 1(1\nu_{11})$				
18761	394.4	1.72×10^{-3}	$0'(0) -> 1(2\nu_7)$				
18261	474.2	3.29×10^{-4}	$0'(0) > 1(2\nu_{11})$				
18024	894.4	2.46×10^{-1}	$0'(0) -> 1(1\nu_{14})$				
18024	237.1	7.21×10^{-3}	$0'(0) \rightarrow 1(1\nu_{11}, 1\nu_{14})$				
17866	394.4	6.52×10^{-4}	$0'(0) \rightarrow 1(2\nu_7, 1\nu_{14})$				
17786	475.0	1.84×10^{-4}	$0'(0) \rightarrow 1(2\nu_{11}, 1\nu_{14})$				
17366	894.4	5.91×10^{-2}	$0'(0) -> 1(2\nu_{14})$				
17129	237.1	2.11×10^{-3}	$0'(0) \rightarrow 1(1\nu_{11}, 2\nu_{14})$				
16972	394.4	1.56×10^{-4}	$0'(0) \rightarrow 1(2\nu_7, 2\nu_{14})$				
16891	475.0	5.94×10^{-5}	$0'(0) \rightarrow 1(2\nu_{11}, 2\nu_{14})$				
16472	894.4	1.11×10^{-2}	$0'(0) -> 1(3\nu_{14})$				
16235	237.1	4.66×10^{-4}	$0'(0) \rightarrow 1(1\nu_{11}, 3\nu_{14})$				
16077	394.4	2.95×10^{-5}	$0'(0) -> 1(2\nu_7, 3\nu_{14})$				
15997	475.0	1.44×10^{-5}	$0'(0) \rightarrow 1(2\nu_{11}, 3\nu_{14})$				
15577	894.4	1.80×10^{-3}	$0'(0) -> 1(4\nu_{14})$				
ν_7 - $O_{yl}-U-O_{yl}$ rocking, ν_{11} - symmetrical Cl-U-Cl stretching ,							
ν_{14} - symmetrical $O_{yl}-U-O_{yl}$ stretching							

Figure S1: FT-IR spectrum of crystals of $UO_2Cl_2(phen)_2$ in KBr after isotope exchange of the terminal oxo-units of the uranyl.

Figure S2: Raman spectrum of crystals of $UO_2Cl_2(phen)_2$ after isotope exchange of the terminal oxo-units of the uranyl.

References

- (S1) Schnaars, D. D.; Wilson, R. E. Structural and vibrational properties of U(VI)O₂Cl₄²⁻ and Pu(VI)O₂Cl₄²⁻ Complexes. *Inorg. Chem.* 2013, 52, 14138–14147, DOI: 10.1021/ic401991n.
- (S2) Oher, H.; Réal, F.; Vercouter, T.; Vallet, V. Investigation of the Luminescence of [UO₂X₄]²⁻ (X = Cl, Br) Complexes in the Organic Phase Using Time-Resolved Laser-Induced Fluorescence Spectroscopy and Quantum Chemical Simulations. *Inorg. Chem.* 2020, 59, 5896–5906, DOI: 10.1021/acs.inorgchem.9b03614.
- (S3) Oher, H.; Gomes, A. S. P.; Wilson, R. E.; Schnaars, D.; Vallet, V. Dataset: How does bending the uranyl unit influence its spectroscopy and luminescence. DOI: 10.5281/zenodo.7702590.
- (S4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian~16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.

- (S5) ADF2021.106. http://www.scm.com.
- (S6) Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001, DOI: 10.1021/jp9716997.
- (S7) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681, DOI: 10.1002/jcc.10189.
- (S8) Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805, DOI: 10.1039/P29930000799.
- (S9) Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 1995, 99, 2224–2235, DOI: 10.1021/j100007a062.
- (S10) Klamt, A.; Jonas, V. Treatment of the outlying charge in continuum solvation models.
 J. Chem. Phys. 1996, 105, 9972–9981, DOI: 10.1063/1.472829.
- (S11) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868, DOI: 10.1103/PhysRevLett.77.3865.
- (S12) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170, DOI: 10.1063/1.478522.
- (S13) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648, DOI: 10.1063/1.464913.
- (S14) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy

formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789, DOI: 10.1103/PhysRevB.37.785.

- (S15) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations - A critical analysis. *Can. J. Phys.* 1980, 58, 1200–1211, DOI: 10.1139/p80–159.
- (S16) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652, DOI: 10.1063/1.464913.
- (S17) Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* 2004, 393, 51-57, DOI: 10.1016/j.cplett.2004.06.011.
- (S18) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106, DOI: 10.1063/1.2404663.
- (S19) Zhao, Y.; Truhlar, D. G. Comparative DFT Study of van der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers. J. Phys. Chem. A 2006, 110, 5121–5129, DOI: 10.1021/jp060231d.
- (S20) Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126–13130, DOI: 10.1021/jp066479k.
- (S21) Perdew, J. P.; Schmidt, K. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 2001, 577, 1–20, DOI: 10.1063/1.1390175.