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This work is devoted to formal reasoning on relational properties of probabilistic imperative programs. Relational properties are properties which relate the execution of two programs (possibly the same one) on two initial memories. We aim at extending the algebraic approach of Kleene Algebras with Tests (KAT) to relational properties of probabilistic programs. For that we consider the approach of Guarded Kleene Algebras with Tests (GKAT), which can be used for representing probabilistic programs, and define a relational version of it, called Bi-guarded Kleene Algebras with Tests (BiGKAT). We show that the setting of BiGKAT is expressive enough to interpret probabilistic Relational Hoare Logic (pRHL), a program logic that has been introduced in the literature for the verification of relational properties of probabilistic programs.

Introduction

Formal verification of program properties has triggered a variety of methods, among which the algebraic approach of Kleene Algebra with Tests (KAT) stands out as an elegant, simple and automatizable framework [START_REF] Kozen | Kleene algebra with tests and commutativity conditions[END_REF][START_REF] Kozen | Kleene algebra with tests[END_REF]. It is closely related to modeling with finite automata and has stimulated the development of techniques from coalgebra for reasoning about program behavior, for instance based on bisimulation checking [START_REF] Bonchi | Checking NFA equivalence with bisimulations up to congruence[END_REF]. It has also been implemented in a library for the Coq proof-assistant [START_REF] Pous | Kleene algebra with tests and coq tools for while programs[END_REF]. Among the properties one might want to check on programs, some important ones are expressed by relating the execution of two programs on two initial states, or of the same program on two initial states. They are called relational properties or 2-properties. One can think for instance of simulation properties, refinements, or extensional equivalence. Another example is non-interference: assume the variables are divided into public ones and private ones, a program satisfies non-interference if the final value of public variables after an execution only depends on the initial value of public variables (and not on private ones).

Actually in a large number of situations the software systems one wants to verify are not deterministic but admit a probabilistic behaviour. Think for instance of randomized algorithms, cryptography, network programming or differential privacy. In those scenarios many crucial properties are also relational ones.

For instance in cryptography one can express the fact that a randomized encryption scheme is safe as a probabilistic non-interference property: a public variable is assigned a ciphered value, obtained from a private variable, and we want to ensure that one cannot distinguish between two ciphered values computed from the same private initial state. Similarly in differential privacy (see e.g. [START_REF] Barthe | Programming language techniques for differential privacy[END_REF]), in order to protect private data one might want to verify that two executions of a given program on two databases that differ only by one individual give indistinguishable result.

In order to express and prove relational properties on imperative programs some specific methods have been introduced. First in the deterministic case let us mention Relational Hoare Logic [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF], that extends the classic Floyd-Hoare logic approach to reason on pairs of programs. This approach has been upgraded to the setting of probabilistic relational Hoare Logic (pRHL) by Barthe and coauthors [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF] has then been extensively applied to the verification of cryptographic schemes, in particular through the development of the Certicrypt [START_REF] Santiago Zanella Béguelin | Formally certifying the security of digital signature schemes[END_REF] and Easycrypt [START_REF] Barthe | Easycrypt: A tutorial[END_REF] tools. However one would still benefit from additional techniques for the automation and the understandability of such reasoning methods. In particular one difficulty with (probabilistic) relational Hoare Logic is to find a suitable alignment of the two programs in order to be able, in a second step, to find the intermediate properties needed for the proof (see [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF]). Algebraic methods coming from Kleene algebra with tests are promising in these respects. In particular they facilitate the reasoning on simple program transformations.

Our goal is thus to introduce a KAT approach to reason on relational properties of probabilistic programs. An important step has already been made in the non-probabilistic setting with the introduction of BiKAT [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF], allowing to apply the KAT approach to reasoning on pairs of programs. Unfortunately standard KAT techniques cannot be applied directly to probabilistic programs, since there is no known probabilistic interpretation for KAT. To handle this question, recent progress was made by the introduction of Guarded Kleene Algebra with tests (GKAT) [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF], in which non-deterministic union and iteration are replaced by guarded union and iteration. The main motivation for the introduction of GKAT was to design a more efficient version of KAT where the complexity of the decision procedure is reduced, but it was also shown that GKAT admits a probabilistic model that can be used to interpret probabilistic programs.

Our strategy is thus to adapt the relational extension BiKAT to the setting of GKAT, in order to apply this relational approach to pairs of probabilistic programs. We want to apply such framework to probabilistic programs as those from the imperative programming language defined in Table 1. 

t ::= k | x | f(t 1 , . . . , t n ) functional terms p ::= p(t 1 , . . . , t n ) | ¬ p | p 1 ∧ p 2 | p 1 ∨ p 2 predicate terms c ::= skip | x ← t | x $ ← d | c • c | if p then c else c | while p do c compound programs
• d are sub-distributions on Z, i.e. maps d : Z → [0, 1] such that z ∈Z d (z ) ≤ 1;
• The command x ← t assigns the value of t to x , and x $ ← d samples from distribution d and assigns the result to x .

Additionally, notation T (X ) stands for the set of terms with variables in X , and T F (X ) (respectively, T P (X )) represents its restriction to functional (respectively, predicate) terms.

In order to demonstrate the expressivity of our framework we want to show how probabilistic relational Hoare Logic reasoning can be interpreted in it, in a similar way as (standard) Hoare logic can be interpreted in KAT [START_REF] Kozen | On Hoare logic and Kleene algebra with tests[END_REF] and Relational Hoare Logic in BiKAT [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF], filling in this way the middle-right square in Fig. 1. This will raise some specific difficulties, in particular for proving the validity of the rule dealing with the while construct, and the addition of a new axiom for GKAT. Finally we will illustrate the benefits of our framework on some examples, including a random walk in dimension 1.

Outline of the paper. In Sect. 2 we recall GKAT and its probabilistic model, then define the variant we consider, including an additional theory for assignments and probabilistic sampling. Then in Sect. 3 we introduce the relational extension BiGKAT of GKAT, define the interpretation of pRHL judgments in BiGKAT and prove our main theorem, the soundness of this interpretation. Sect. 4 is then devoted to the study of two examples. The proofs omitted in the paper can be found in the Appendix.

Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra with Tests (GKAT) [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF], an abstraction of imperative programs where conditionals (c 1 + e c 2 ) and loops (c (e) ) are guarded by Boolean predicates e. As explained before, the structure is a restriction of KAT in which we are not allowed to freely use operators + and * to build terms, i.e. GKAT does not allow nondeterminism. Although less expressive that KAT, GKAT offers two advantages: decidability in (almost) linear time (compared to PSPACE complexity of decidability in KAT), and better foundation for probabilistic applications. Although the first one was the main motivation to introduce the structure [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF], we are more interested in the second advantage for the purpose of this paper.

Syntax

The language of GKAT, that we present below, encodes the probabilistic programming language PI (1). Consider a set of actions Σ and predicates P , where Σ and P are nonempty and disjoint. Elements of Σ encode either assignments x ← t or samplings x $ ← d , and elements of P , denoted as ρ, encode predicate terms p ∈ P. The grammar of an arbitrary Boolean expression and GKAT expression are constructed, respectively, as follows:

e, e 1 , e 2 ∈ BExp :

:= 0 | 1 | ρ | ¬ e | e 1 • e 2 | e 1 + e 2 | e 1 → e 2 c, c 1 , c 2 ∈ Exp ::= a | e | c 1 • c 2 | c 1 + e c 2 | c (e)
where a ∈ Σ, for any e, e 1 , e 2 ∈ BExp, operators •, + and ¬ denote conjunction, disjunction and negation, respectively, and, for any c, c 1 , c 2 ∈ Exp, operator • denotes sequential composition. The Boolean expression 1, by being also an element of Exp, encodes command skip, and the conditional and iteration imperative programming constructs can be abbreviated as GKAT terms, respectively as c 1 + e c 2 def ≡ if e then c 1 else c 2 and c (e) def ≡ while e do c. The precedence of the operators is the usual one. To simplify the writing, we often omit the operator • by writing c 1 c 2 for the expression c 1 • c 2 , for any c 1 , c 2 ∈ Exp.

Semantics

We now present the semantic interpretation of GKAT that we will be using, the Probabilistic model [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF]. Note that more interpretations of GKAT are presented in [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF], namely a relational model and a language model. We first revise some basic concepts needed for the semantics. Given a countable set S , D(S ) is the set of probability sub-distributions over S , i.e. the set of functions f : S → [0, 1] summing up to at most 1, i.e. s∈S f (s) ≤ 1. In particular, the Dirac distribution δ s ∈ D(S ) is the map

w → [w = s] =
1, if w=s 0, otherwise In general terms, the Iverson bracket [p], for p a predicate term, is the function taking value 1 if p is true and 0 otherwise. Typical models of probabilistic imperative programming languages interpret programs as Markov kernels, i.e. maps from S to probability distributions. The semantic model defined below interprets programs as sub-Markov kernels, i.e. Markov kernels over probability sub-distributions. Definition 2.1 (Probabilistic model). Let i = (State, eval , sat) be a triple where:

• State is a set of states, • for each action a ∈ Σ, eval (a) : State → D(State) is a sub-Markov kernel,
• for each predicate ρ ∈ P , sat(ρ) ⊆ State is a set of states.

The probabilistic interpretation of an expression e with relation to i is the sub-Markov kernel P i c : State → D(State) defined as follows:

1. P i a := eval (a)

2. P i e (σ) := [σ ∈ sat † (e)] × δ σ 3. P i c 1 • c 2 (σ)(σ ′ ) := σ ′′ P i c 1 (σ)(σ ′′ ) × P i c 2 (σ ′′ )(σ ′ ) 4. P i c 1 + e c 2 (σ) := [σ ∈ sat † (e)] × P i c 1 (σ) + [σ ∈ sat † (¬ e)] × P i c 2 (σ) 5. P i c (e) (σ)(σ ′ ) := lim n→∞ P i (c + e 1) n • ¬ e (σ)(σ ′ )
where sat † : BExp → 2 State is the lifting of sat : P → 2 State to an arbitrary Boolean expression over P . The interpretation of actions a ∈ Σ as sub-Markov Kernels is given as

eval (x ← t)(σ) := δ σ[x ←t] and eval (x $ ← d )(σ) := t∈Z d (t) • δ σ[x ←t] .

Axioms

The theory of GKAT introduced in [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF] is given by the axioms from Fig. 2. Note in particular for the

c + e c = c (1) 
c 1 + e c 2 = c 2 + ¬ e c 1 (2) 
(e + b f ) + c g = e + bc (f + c g) (3 
)

c 1 + e c 2 = ec 1 + e c 2 (4) 
c 1 c 3 + e c 2 c 3 = (c 1 + e c 2 ) • c 3 (5) (c 1 • c 2 ) • c 3 = c 1 • (c 2 • c 3 ) (6) 0 • c = 0 (7) c • 0 = 0 (8) 1 • c = c (9) c • 1 = c (10) c (e) = c • c (e) + e 1 (11) 
(c + e2 1) (e1) = (e 2 • c) (e1) (12) c 3 = c 1 • c 3 + e c 2 c 3 = c (e) 1 • c 2 if E (c 1 ) = 0 (13) 
Figure 2: Axiomatisation of Guarded Kleene algebra with tests fixpoint axiom [START_REF] Pous | Kleene algebra with tests and coq tools for while programs[END_REF]. Intuitively, it says that if expression c 3 chooses (using guard e) between executing c 1 and looping again, and executing c 2 , then c 3 is a e-guarded loop followed by c 2 . However, the rule is not sound in general (see [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF] for more details). In order to overcome such limitation, the side condition E (c 1 ) = 0 is introduced, ensuring that command c 1 is productive, i.e. that it performs some action. To this end, the function E is inductively defined as follows: E (e) := e, E (a) := 0,

E (c 1 + e c 2 ) := e • E (c 1 ) + ¬ e • E (c 2 ), E (c 1 • c 2 ) := E (c 1 ) • E (c 2 ), E (c (e) ) := ¬ e.
We can see E (c) as the weakest test that guarantees that command c terminates successfully but does not perform any action. Moreover, note particularly the following observation: in KAT the encoding c 1 ; (e; c 2 + ¬ e; c 3 ) = c 1 ; e; c 2 + c 1 ; ¬ e; c 3 is not an if-then-else statement; it is rather a nondeterministic choice between executing c 1 , then testing e and executing c 2 , and executing c 1 , then testing ¬ e and executing c 3 . That is why left distributivity does not hold in GKAT for any c ∈ Exp; it only holds for the particular case of e ∈ BExp, i.e. if e is a test.

In the Appendix we list additional derivable equations in GKAT, also given in [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF]. We already mentioned that GKAT does not allow to construct an arbitrary program by using freely the nondeterministic choice operator +, allowing only guarded choice + e , for any e ∈ BExp. However, the + operator is included in the grammar of BExp, representing the Boolean disjunction. Nevertheless, the grammar also allows to write expressions as e 1 + e e 2 , for any e ∈ BExp. We thus add the following new axiom e 1 + e e 2 = e • e 1 + ¬ e • e 2 [START_REF] Schmid | Guarded Kleene algebra with tests: Coequations, coinduction, and completeness[END_REF] to the theory of GKAT which expresses the guarded sum + e , for any e ∈ BExp, in terms of the disjunction + on tests. This axiom is valid in the probabilistic model. By Boolean reasoning, we can observe that e • e + ¬ e • ¬ e = 1. Such property will be useful later to prove the soundness of R-Case rule (23). Additionally, we propose in the Appendix an equational theory for GKAT which includes additional axioms to deal with the effects of assignments and samplings in the course of execution of a program in language PI. In any GKAT, in general two actions a 1 , a 2 ∈ Σ are not commutable, however they can commute for the particular case in which they don't share variables. Those facts will be useful to deal with examples later in the paper.

Bi-guarded Kleene algebra with tests

To handle relational reasoning on probabilistic programs, we introduce in this section Bi-guarded Kleene algebra with tests, an algebraic structure inspired by Bi Kleene algebra with tests [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF], which we define over a GKAT. Definition 3.1. A Bi-guarded Kleene algebra with tests (BiGKAT) over a GKAT (A, B, + e , •, (e) , ¬ , +, 1, 0) is a GKAT

( Ä, B, ⊕ E , , (E ) , ¬, ⊕, 1, 0)
such that E ∈ B, B ⊆ Ä, the operator ⊕ is applied only to elements of B , and

⟨ | : A → Ä, | ⟩ : A → Ä are homomorphisms satisfying ∀ c 1 , c 2 ∈ A, ⟨c 1 | |c 2 ⟩ = |c 2 ⟩ ⟨c 1 | (15) 
We call Ä the underlying GKAT, and elements of B are called bi-tests.

We define notation ⟨ | ⟩ as ⟨c|c ′ ⟩ def = ⟨c| |c ′ ⟩, with the following consequences: ⟨c|1⟩ = ⟨c| and ⟨1|c⟩ = |c⟩ since |1⟩ = 1 is the identity of . Another property that arrives naturally from the definition of ⟨ | ⟩ is ⟨0|c⟩ = 0 = ⟨c|0⟩, for any c ∈ A.

The fact that ⟨ | is an homomophism means that, for any e 1 , e 2 , e ∈ B , c 1 , c 2 , c ∈ A, the properties

⟨e 1 + e 2 | = ⟨e 1 | ⊕ ⟨e 2 |, ⟨c 1 • c 2 | = ⟨c 1 | ⟨c 2 |, ⟨c 1 + e c 2 | = ⟨c 1 | ⊕ E ⟨c 2 |
and ⟨c (e) | = ⟨c| E hold, where E stands for ⟨e| ∈ B. Similarly for | ⟩. The operators have the same precedence as in GKAT. For readability we use interchangeably the same notation for operators in GKAT and BiGKAT, i.e. operators •, ¬ and + e , for any e ∈ B , and constants 1 and 0 in GKAT stand for , ¬, ⊕ ⟨e| ( ⊕ |e⟩ ), 1 and 0 , respectively. Often we go even further and omit the operator • and we write ⟨c

1 |⟨c 2 | (|c 1 ⟩|c 2 ⟩) for ⟨c 1 | • ⟨c 2 | (|c 1 ⟩ • |c 2 ⟩).

Encoding pRHL in BiGKAT

In this section we want to prove that probabilistic relational Hoare logic (pRHL) [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF] can be soundly encoded in BiGKAT. For that goal let us briefly recall probabilistic relational Hoare logic (pRHL), which can be understood as an extension of Benton's Relational Hoare Logic [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF] to probabilistic programs. In Relational Hoare Logic a judgement has the form:

⊢ c ∼ c ′ : ϕ ⇒ ψ
where c, c ′ are deterministic programs and ϕ, ψ (resp. pre-and postcondition) are relations on states. It means that for any memories m 1 , m 2 such that m 1 ϕm 2 , if the evaluation of c on m 1 and c ′ on m 2 terminate with memories m ′ 1 and m ′ 2 , then m ′ 1 ψm ′ 2 holds. In the probabilistic scenario, however, the evaluation of a program on a memory gives a subdistribution (Definition 2.1). The system pRHL thus lifts relations over memories to relations over distributions, which we restrict, in our setting, to subdistributions. To define that, following [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF], we use a monadic semantics. The measure monad M (X ) is defined as M (X ) def = (X → [0, 1]) → [0, 1] and its operators are:

unit : X → M (X ) def = λ x . λ f .f x bind : M (X ) → (X → M (Y )) → M (Y ) def = λ d . λ M . λ f .d (λ x .M x f )
Intuitively, the value of a subdistribution d of M (X ) on an element s of X is given by d (δ s ). The liftings to subdistributions of a unary predicate P and of a binary relation ϕ are defined as follows: Now that these definitions have been set we can describe the judgements in pRHL.

range P d def = ∀ f .(∀ a. P a = 0 ⇒ f a = 0) ⇒ d f = 0) d 1 ∼ ψ d 2 def = ∃ d . π 1 (d ) = d 1 ∧ π 2 (d ) = d 2 ∧
Definition 3.2. Given two probabilistic programs c, c ′ and ϕ, ψ relations on states, the pRHL judgement ⊢ c ∼ c ′ : ϕ ⇒ ψ stands for the following property:

∀ m 1 , m 2 , m 1 ϕ m 2 ⇒ c m 1 ∼ ψ c ′ m 2 .
We say in this case that programs c and c ′ are equivalent with respect to precondition ϕ and postcondition ψ.

Following this interpretation, we encode such judgment in BiGKAT as the equation

φ • ⟨c|c ′ ⟩ = φ • ⟨c|c ′ ⟩ • ψ
where φ, ψ ∈ B, and c, c ′ ∈ A. Let us make a few comments to compare this encoding to other ones in the literature:

• Note that we do not use the encoding φ • ⟨c|c ′ ⟩ ≤ φ • ⟨c|c ′ ⟩ • ψ since in GKAT and BiGKAT there is no natural notion of order ≤ as in KAT [START_REF] Kozen | Kleene algebra with tests and commutativity conditions[END_REF][START_REF] Kozen | Kleene algebra with tests[END_REF] ;

• We do not use either the encoding φ

• ⟨c|c ′ ⟩ • ¬ ψ = 0. In KAT, φ • c = φ • c • ψ is equivalent to φ • c • ¬ ψ = 0
, but this cannot be proved in the same way in GKAT and we suspect the equivalence does not hold. We only have the implication (φ

• c = φ • c • ψ) ⇒ (φ • c • ¬ ψ = 0
), and we choose as encoding the stronger property.

We now display on Figure 3 the rules of pRHL defined in [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF], with a restriction on the rule for While (Weak R-Whl rule) which we will explain below. The support supp{d } of a distribution d is defined by: (s ∈ supp{d }) iff d (δ s ) ̸ = 0.

• R-Assign rule: There are also one-sided versions of some of these rules, which are just particular cases, and so we list them in the Appendix. We use different notation for pre and post conditions (φ, ψ) and for guards (⟨e|, |e ′ ⟩). Note in particular the side condition ϕ ⇒ e=e ′ in rules R-Cond and Weak R-Whl, where the right-hand side e=e ′ is equivalent to ⟨e|e ′ ⟩ + ⟨¬ e|¬ e ′ ⟩ so the following holds ϕ⟨e|¬ e ′ ⟩ = 0 ϕ⟨¬ e|e ′ ⟩ = 0 (16)

x ← v ∼ x ′ ← v ′ : φ[v /x , v ′ /x ′ ] ⇒ φ • R-Rand assign rule: h ◁ (d , d ′ ) ∧ ∀ v ∈ supp( d ).ψ[v /x , h(v )/x ′ ] x $ ← d ∼ x ′ $ ← d ′ : φ ⇒ ψ • R-Seq rule: c 1 ∼ c ′ 1 : ϕ ⇒ ψ c 2 ∼ c ′ 2 : ψ ⇒ ξ c 1 • c 2 ∼ c ′ 1 • c ′ 2 : ϕ ⇒ ξ • R-Cond rule: ϕ ⇒ e=e ′ c 1 ∼ c ′ 1 : ϕ ∧ ⟨e| ∧ |e ′ ⟩ ⇒ ψ c 2 ∼ c ′ 2 : ϕ ∧ ⟨¬ e| ∧ |¬ e ′ ⟩ ⇒ ψ if e then c 1 else c 2 ∼ if e ′ then c ′ 1 else c ′ 2 : ϕ ⇒ ψ • R-Sub rule: ϕ ′ ⇒ ϕ c ∼ c ′ : ϕ ⇒ ψ ψ ⇒ ψ ′ c ∼ c ′ : ϕ ′ ⇒ ψ ′ • R-Case rule: c ∼ c ′ : ϕ ∧ ϕ ′ ⇒ ψ c ∼ c ′ : ϕ ∧ ¬ϕ ′ ⇒ ψ c ∼ c ′ : ϕ ⇒ ψ • Weak R-Whl rule: ϕ ⇒ e=e ′ c ∼ c ′ : ϕ ∧ ⟨e| ∧ |e ′ ⟩ ⇒ ϕ E (c) = E (c ′ ) = 0 while e do c ∼ while e ′ do c ′ : ϕ ⇒ ϕ ∧ ⟨¬ e| ∧ |¬ e ′ ⟩
These equalities assure that the predicates e and e ′ are evaluated to the same value on both left and right programs. In particular, for the R-Cond rule it means that the same branch is executed for right-hand side and left-hand side programs. One difference from rules in [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF] is the additional premise condition (E (c) = E (c ′ ) = 0) in the Weak R-Whl rule: ours is weaker, since we impose that two commands c, c ′ are guaranteed to perform some action, property that we will use to prove the soundness of the rule.

More precisely we use this condition in the proof of the intermediary Lemma 3.4. This rule is actually expressive enough for many examples. Note also for the R-Assign, R-Assign left and R-Rand rules, which are axioms: the first one derives a valid Hoare triple with the substitution of variables x , x ′ by expressions v , v ′ , respectively; the second One derives an assignment on the left-hand side, while the right-hand side is a skip instruction; the third one derives a valid triple with samplings over distributions d , d ′ . The coupling function h : supp{d } → supp{d ′ } is essential to relate the two samplings over distributions d , d ′ , and must satisfy the following conditions:

• h is bijective;

• for every v ∈ supp{d }, h(v ) ∈ supp{d ′ };

• P x ∼d [x = v ] = P x ∼d ′ [x = h(v )]
If such a function exists, i.e. there exists a coupling between distributions d , d ′ , we write h ◁ (d , d ′ ).

For more details on coupling see reference [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF]. Now, to show that the rules of Figure 3 are sound in BiGKAT, we interprete them as follows, by using the encoding of pRHL judgements as BiGKAT equations defined previously:

• R-Assign rule:

φ[v /x , v ′ /x ′ ]⟨x ← v |x ′ ← v ′ ⟩ = φ[v /x , v ′ /x ′ ]⟨x ← v |x ′ ← v ′ ⟩φ (17) 
• R-Rand assign rule:

h ◁ (d , d ′ ) ∧ ∀ v ∈ supp( d ).ψ[v /x , h(v )/x ′ ] ⇒ φ⟨x $ ← d |x ′ $ ← d ′ ⟩ = φ⟨x $ ← d |x ′ $ ← d ′ ⟩ψ (18) 
• R-Seq rule:

• ϕ⟨c1|c ′ 1 ⟩ = ϕ⟨c1|c ′ 1 ⟩ψ ∧ ψ⟨c2|c ′ 2 ⟩ = ψ⟨c2|c ′ 2 ⟩ξ ⇒ ϕ⟨c1 • c2|c ′ 1 • c ′ 2 ⟩ = ϕ⟨c1 • c2|c ′ 1 • c ′ 2 ⟩ξ (19) 
• R-Cond rule:

• ϕ ≤ e=e ′ ∧ ϕ • ⟨e|e ′ ⟩ • ⟨c1|c ′ 1 ⟩ = ϕ • ⟨e|e ′ ⟩ • ⟨c2|c ′ 2 ⟩ • ψ ∧ ϕ • ⟨¬ e|¬ e ′ ⟩ • ⟨e|e ′ ⟩ = ϕ • ⟨¬ e|¬ e ′ ⟩ • ⟨c1|c ′ 1 ⟩ • ψ ⇒ ϕ • ⟨c1 +e c2|c ′ 1 + e ′ c ′ 2 ⟩ = ϕ • ⟨c1 +e c2|c ′ 1 + e ′ c ′ 2 ⟩ • ψ (20) 
• Weak R-Whl rule: we can apply it only if

E (c) = E (c ′ ) = 0, ϕ ≤ e=e ′ ∧ ϕ • ⟨e|e ′ ⟩⟨c|c ′ ⟩ = ϕ • ⟨e|e ′ ⟩⟨c|c ′ ⟩ • ϕ ⇒ ϕ • ⟨c (e) |e ′(e ′ ) ⟩ = ϕ • ⟨c (e) |c ′(e ′ ) ⟩ • ϕ (21) 
• R-Sub rule:

ϕ ′ ≤ ϕ ∧ ϕ⟨c|c ′ ⟩ = ϕ⟨c|c ′ ⟩ψ ∧ ψ ≤ ψ ′ ⇒ ϕ ′ ⟨c|c ′ ⟩ = ϕ ′ ⟨c|c ′ ⟩ψ ′ (22) 
• R-Case rule:

ϕ • ϕ ′ • ⟨c|c ′ ⟩ = ϕ • ϕ ′ • ⟨c|c ′ ⟩ψ ∧ ϕ • ¬ ϕ ′ • ⟨c|c ′ ⟩ = ϕ • ¬ ϕ ′ • ⟨c|c ′ ⟩ψ ⇒ ϕ • ⟨c|c ′ ⟩ = ϕ • ⟨c|c ′ ⟩ψ (23)
Note that the encoding of the one-sided rules are listed in the Appendix. Our goal is now to prove that these rules are valid in any BiGKAT. To prove some of these rules, namely R-Cond and Weak R-Whl, we need to establish some auxiliary results. Lemma 3.1. In any BiGKAT the following two equalities hold:

⟨e| • ⟨c 1 |c ′ 1 ⟩ =⟨e| • ⟨c 1 + e c 2 |c ′ 1 ⟩ (24) ⟨¬ e| • ⟨c 2 |c ′ 2 ⟩ =⟨e| • ⟨c 1 + e c 2 |c ′ 2 ⟩ ( 25 
)
Lemma 3.2. For any BiGKAT,

ϕ • ⟨e + e ¬ e|e ′ + e ′ ¬ e ′ ⟩ = ϕ • (⟨e|e ′ ⟩ + e ′ ⟨¬ e|¬ e ′ ⟩) (26) 
Now we state the invariance result, adapted from the standard result on KAT and the equivalent one for GKAT, which was proved in [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF]. It will be useful for the R-Whl rule.

Lemma 3.3 (Invariance). Let c, c ′ ∈ A and ϕ, e ∈ B. If ϕe⟨c|c ′ ⟩ = ϕe⟨c|c ′ ⟩ϕ then ϕ⟨c|c ′ ⟩ (e) = (ϕ⟨c|c ′ ⟩) (e) ϕ.
Proof. Since a BiGKAT is a GKAT (Definition 3.1), it holds by the invariance lemma (Lemma 3.11) of GKAT [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF].

2

Now we establish a GKAT property that will be used in the proofs ahead. Proposition 3.1. For any e, c in GKAT, ecc (e) = ec (e) .

The following result is useful for reasoning about two while loops. Based on a property defined for BiKAT [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF], we state a similar one for BiGKAT: Lemma 3.4 (Expansion). The following property holds in any BiGKAT. Assume E (c) = E (c ′ ) = 0, then we have:

⟨c (e) |c ′(e ′ ) ⟩ = ⟨c|c ′ ⟩ ⟨e|e ′ ⟩ (⟨c|¬ e ′ ⟩ ⟨e| + ⟨e| ⟨¬ e|c ′ ⟩ |e ′ ⟩ ) (27) 
The intuitive meaning of this equation is that executing two while loops in parallel (c (e) and c ′(e ′ ) ) is equal to loop c and c ′ guarded by ⟨e|e ′ ⟩, assuring that if one of them stops, i.e. either e or e ′ is false, the other loop continues to execute (until its guard is also false). Note that our proof of Lemma 3.4 differs from the proof of the analogous lemma in BiKAT [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF] and uses the the fixpoint axiom (13) (see Appendix). Now we establish the following lemma that it is useful to prove the soundness of the Weak R-Whl rule (21). Lemma 3.5. In any BiGKAT, if ϕ ≤ e=e ′ then we have:

ϕ(⟨c (e) |¬ e ′ ⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩) = ⟨¬ e|¬ e ′ ⟩ϕ (28) 
Finally we obtain the main result on the soundness of pRHL rules in BiGKAT.

Theorem 3.1 (Soundness of pRHL in BiGKAT). The rules of probabilistic Relational Hoare Logic, that is to say (17)-( 23) and ( 45)-(47), are sound in any BiGKAT.

Examples

In this section we use the framework presented before to reason about invariance features of probabilistic programs. We take two executions of one program containing random assignments, which produces probabilistic distributions of states. That means that two executions may lead to different outputs, due to the random nature of the assignments. In the following examples we prove the invariance of certain variables of probabilistic programs in the output relatively to the input, by relational reasoning on two executions of those programs. We explain the examples an give the main ideas of the proofs, leaving the complete details for appendix. Abbreviate the above program as c, and one copy of it as c ′ . We prove the invariance of variables y, y ′ , relational predicate [y = y ′ ], over executions of c, c ′ , which corresponds to the following pRHL judgment 

⊢ c ∼ c ′ : [y = y ′ ] ⇒ [y = y ′ ], which is translated into the BiGKAT equation [y = y ′ ]⟨c|c ′ ⟩ = [y = y ′ ]⟨c|c ′ ⟩[y = y ′ ].
[y = y ′ ]⟨(d 1 + [x =tt] d 2 ) • c 2 |(d ′ 1 + [x ′ =tt] d ′ 2 ) • c ′ 2 ⟩ = { appendix (48)} [y = y ′ ][x = x ′ ]⟨(d 1 • c 2 ) + [x =tt] (d 2 • c 2 )|(d ′ 1 • c ′ 2 ) + [x ′ =tt] (d ′ 2 • c ′ 2 )⟩
which we subdivide into four subgoals, since as guarded sums, they depend on the evaluation of

[x = tt] and [x ′ = tt]: (1)[x = tt][x ′ = tt], (2)[x ̸ = tt][x ′ = tt], (3) 
[x = tt][x ′ ̸ = tt] and (4)[x ̸ = tt][x ′ ̸ = tt].
We present here the proof of subgoal (2) to illustrate the use of equational reasoning on BiGKAT, leaving the proofs of the other cases in appendix.

subgoal (2):

[y = y ′ ][x ̸ = tt][x ′ = tt]⟨(d2 • c2)|(d ′ 1 • c ′ 2 )⟩ = [y = y ′ ][x ̸ = tt][x ′ = tt]⟨(d2 • c2)|(d ′ 1 • c ′ 2 )⟩[y = y ′ ]
On one side, pogram (d 2 • c 2 ) yields y := y xor ff , while on the other side, program Example 4.2. Consider the following program, corresponding to the classic example of Random walk in dimension 1, a path which describes a succession of random steps (see [START_REF] Barthe | Relational reasoning via probabilistic coupling[END_REF]). That means that, starting in an initial position, at each step we toss a fair coin. If heads, we move one step to the right, otherwise we move one step to the left. The variable H records the history of coin flips. the encoding of the program in BiGKAT, and by c ′ one copy. We follow the approach of [START_REF] Barthe | Relational reasoning via probabilistic coupling[END_REF], Sect. 3.1. Consider two processes that start at locations start and start ′ such that start ′ -start = 2n ≥ 0. We define Σ(H ) as the number of 1 in H minus the number of 0 (so the net change of position of a process with history H ). Then P (H ) is the predicate which holds when H contains a prefix H 0 such that Σ(H 0 ) = n. A way to relate the while loops of c and c ′ is through an invariant. The idea to obtain an invariant follows the reasoning: before the two points meet their trajectories are mirrored and after they meet they coincide forever. Thus, the invariant we present is

(d ′ 1 • c ′ 2 ) yields d ′ 1 ; c ′ 2 = { defn} b ′ $ ← dbool ; ((y ′ ← y ′ xor tt) + [b ′ =tt] 1) • y ′ ← y ′ xor b ′ = { (5)} b ′ $ ← dbool • ((y ′ ← y ′ xor tt • y ′ ← y ′ xor b ′ ) + [b ′ =tt] (y ′ ← y ′ xor b ′ )) = { (4) and (2)} b ′ $ ← dbool • ([b ′ = tt] • (y ′ ← y ′ xor tt • y ′ ← y ′ xor b ′ ) + [b ′ =tt] [b ′ = ff ](y ′ ← y ′ xor b ′ )) = { instantiation of b ′ } b ′ $ ← dbool • ([b ′ = tt] • (y ′ ← y ′ xor tt • y ′ ← y ′ xor tt) + [b ′ =tt] [b ′ = ff ](y ′ ← y ′ xor ff )) = { B.A.} b ′ $ ← dbool • ([b ′ = tt] • (y ′ ← y ′ xor tt) + [b ′ =tt] [b ′ = ff ](y ′ ← y ′ xor ff )) = { ( 
φ = ((pos ̸ = pos ′ ) → (pos = i + Σ(H ) ∧ pos ′ = i ′ -Σ(H ′ )) ∧ (P(H ) → (pos = pos ′ )) ∧ (i = i ′ ) ∧ (k = k ′ )
To relate the loop bodies we perform a case distinction analysis on pos, pos ′ : if they are different, their moves are mirrored, otherwise they move together. In that sense, we need one coupling function h for each case: if pos = pos ′ , h def = id , if pos ̸ = pos ′ , h def = ¬ . We also know that as long as we are "inside" the loop body, the predicate [i < k ∧ i ′ < k ′ ] always holds. Hence we reason using the R-case rule (23) to do the case analysis as follows:

[φ ∧ (i < k ∧ i ′ < k ′ ) ∧ (pos = pos ′ )]⟨d|d ′ ⟩ = [φ ∧ (i < k ∧ i ′ < k ′ ) ∧ (pos = pos ′ )]⟨d|d ′ ⟩φ ∧[φ ∧ (i < k ∧ i ′ < k ′ ) ∧ (pos ̸ = pos ′ )]⟨d|d ′ ⟩ = [φ ∧ (i < k ∧ i ′ < k ′ ) ∧ (pos = pos ′ )]⟨d|d ′ ⟩φ ⇒[φ ∧ (i < k ∧ i ′ < k ′ )]⟨d|d ′ ⟩ = [φ ∧ (i < k ∧ i ′ < k ′ )]⟨d|d ′ ⟩φ
The proof of this BiGKAT judgment relies on the proof of the two distinct cases, i.e. pos = pos ′ and pos ̸ = pos ′ , and as a final step on the application of the Weak Whl rule (21). The details of the proof are in the appendix.

Related work

The GKAT system was introduced in [START_REF] Smolka | Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time[END_REF], which also introduced its probabilistic model with sub-Markov kernels. It was investigated further in [START_REF] Schmid | Guarded Kleene algebra with tests: Coequations, coinduction, and completeness[END_REF], which in particular provides a semantics for which the equational theory is complete.

Relational Hoare logic was introduced in [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF]. Probabilistic relational Hoare logic (pRHL) is due to Barthe and coauthors in [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF], where it was motivated by the certification of cryptographic proofs.

The relational extension BiKAT of KAT was introduced in [START_REF] Antonopoulos | An algebra of alignment for relational verification[END_REF]. It is shown in this paper that the rules of relational Hoare logic [START_REF] Benton | Simple relational correctness proofs for static analyses and program transformations[END_REF] can be interpreted in BiKAT.

Conclusion and perspectives

In this work we have introduced a variant of KAT allowing to reason on relational properties of probabilistic programs, based on GKAT. This has in particular led us to introduce an additional axiom [START_REF] Schmid | Guarded Kleene algebra with tests: Coequations, coinduction, and completeness[END_REF] to the theory of GKAT. We have illustrated the expressivity of our system, BiGKAT, by proving how probabilistic relational Hoare logic [START_REF] Barthe | Formal certification of code-based cryptographic proofs[END_REF] (up to a restriction on the while rule) can be soundly interpreted in it. In future work we would like to explore if this soundness theorem can be extended to the logic with the general form of while rule, without side condition (E (c) = E (c ′ ) = 0). We would also be interested in exploring the application of GKAT to unary (non-relational) properties of probabilistic programs, and for that to investigate the relationships with the probabilistic Hoare logic aHL of [START_REF] Barthe | A program logic for union bounds[END_REF].

= ¬ e 2 (39)

c (e2) = c (e1e2) • c (e2) (40) 
Figure 4: Derivable GKAT facts

Equational theory for effects

The equational theory of GKAT that we will resort on ads to the base theory the following additional axioms: 

x 1 ← t 1 • x 2 ← t 2 = x 2 ← t 2 [t 1 /x 1 ] • x 1 ← t 1 if x 1 ̸ = x 2 and x 2 ̸ ∈ FV (t 1 ) x 1 ← t 2 [t 1 /x 1 ] if x 1 = x 2 (41) x 1 $ ← d 1 • x 2 $ ← d 2 = x 2 $ ← d 2 • x 1 $ ← d 1 if x 1 ̸ = x 2 x 1 $ ← d 2 if x 1 = x 2 (42) x 1 ← t • x 2 $ ← d = x 2 $ ← d • x 1 ← t if x 1 ̸ = x 2 x 1 $ ← d if x 1 = x 2 (43) x 1 $ ← d • x 2 ← t = x 1 ← t if x 1 = x 2 ( 

Proof.

To prove this proposition we use the interpretation of assignment and samplings in the probabilistic model (Definition 2.1). We give the proof of axiom (2.1), the remaining ones are proved analogously. Given a probabilistic model i , 

  range ψ d where the projections π 1 (d ) and π 2 (d ) are defined as π 1 (d ) def = bind d (λ(x , y).unit x ) and π 2 (d ) def = bind d (λ(x , y).unit y).

Figure 3 :

 3 Figure 3: Probabilistic Relational Hoare Logic rules (pRHL)

Example 4 . 1 .

 41 Consider the following program: var x : mybool ; var y : mybool ; var b : mybool ; // x private variable , y xor b ;

  Program c is encoded as the BiGKAT term (b $ ← dbool • ((y ← y xor tt) + [b=tt] 1) + [x =tt] (b ← ff )) • (y ← y xor b) In order to simplify the writing we denote d 1 = b $ ← dbool ; (y ← y xor tt), d 2 = b ← ff and c 2 = (y ← y xor b). We then use some equational reasoning to obtain

5 )

 5 and e +e ¬ e = 1} b ′ $ ← dbool • y ′ ← y ′ xor ff Since variable b ′ does not interfere in the assignment y ′ ← y ′ xor ff , we derive the post condition [y = y ′ ].

  pos < -start ; H < -[]; i < -0; while (i < k ) do { b < -$ {0 ,1}; H < -b :: H ; if b then pos ++ else pos --; i < -i +1; } return pos ; The goal of this example is to prove that, by taking two executions of the program above, the corresponding paths converge as the number of steps increases. Let us denote by c := pos ← start; H < -[ ]; i ← 0; (b $ ← {0, 1}; H ← b :: H ; ((pos + +) + b (pos --)); i ← i + 1) (i<k )

  Formally, we want to prove the pRHL judgment ⊢ c ∼ c ′ : [start + 2n = start ′ ] ⇒ [P (H ) → pos = pos ′ ], which corresponds in BiGKAT to the equation [start + 2n = start ′ ]⟨c|c ′ ⟩ = [start + 2n = start ′ ]⟨c|c ′ ⟩[P (H ) → (pos = pos ′ )]. In order to simplify the writing, we also abbreviate the loop body d = b $ ← 0, 1; H ← b :: H ; ((pos + +) + b (pos --)); i ← i + 1

44) Proposition . 1 .

 1 The axioms (41)-(44) are valid in the Probabilistic model of Definition 2.1.

Proof of Lemma 3. 1 . 1 ⟩ 2 ⟩

 112 To prove the first equality, reason⟨e| • ⟨c 1 |c ′ 1 ⟩ = { homomorfism} ⟨e • c 1 |c ′ 1 ⟩ = { (U8)} ⟨e • (c 1 + e c 2 )|c ′ 1 ⟩ = { homomorfism} ⟨e| • ⟨c 1 + e c 2 |c ′For the second equality, we reason analogously⟨¬ e| • ⟨c 2 |c ′ 2 ⟩ = { homomorfism} ⟨¬ e • c 2 |c ′ 2 ⟩ = { (U8)} ⟨¬ e • (c 2 + ¬ e c 1 )|c ′ 2 ⟩ = { (U2)} ⟨¬ e • (c 1 + e c 2 )|c ′ 2 ⟩ = { homomorfism} ⟨¬ e| • ⟨c 1 + e c 2 |c ′ Proof of Lemma 3.2.To prove the equality, first note that⟨e + e ¬ e|e ′ + e ′ ¬ e ′ ⟩ =⟨e • e + ¬ e • ¬ e|e ′ • e ′ + ¬ e ′ • ¬ e ′ ⟩ =⟨1|1⟩ =1by axiom[START_REF] Schmid | Guarded Kleene algebra with tests: Coequations, coinduction, and completeness[END_REF] and Boolean algebra.Using this observation, we reason for (28)ϕ • ⟨e + e ¬ e|e ′ + ′ e ¬ e ′ ⟩ = { homomorfism} ϕ • ⟨e + e ¬ e| • |e ′ + ′ e ¬ e ′ ⟩ = { (U5')} ϕ • (⟨e + e ¬ e| • |e ′ ⟩ + e ′ ⟨e + e ¬ e|¬ e ′ ) = { (U5)} ϕ • ((⟨e| • |e ′ ⟩ + e ⟨¬ e| • |e ′ ⟩) + e ′ (⟨e| • |¬ e ′ ⟩ + e ⟨¬ e| • |¬ e ′ ⟩)) = { (U5')} (ϕ • ⟨e| • |e ′ ⟩ + e ϕ • ⟨¬ e| • |e ′ ⟩) + e ′ (ϕ • ⟨e| • |¬ e ′ ⟩ + e ϕ • ⟨¬ e| • |¬ e ′ ⟩) = { (side condition)} ϕ⟨e|e ′ ⟩ + e ′ ϕ⟨¬ e|¬ e ′ ⟩ = { (U5')} ϕ(⟨e|e ′ ⟩ + e ′ ⟨¬ e|¬ e ′ ⟩)Proof of Proposition 3.1.ec (e) = {(11)} e(cc (e) + e 1) = { fact u5' and (10)} ecc (e) + e e = { (2) and (4)} ecc (e) + e ¬ e • e = { B.A.} ecc (e) + e 0 = { fact u6 and B.A.} ecc (e)Proof of Lemma 3.4.⟨c (e) |c ′(e ′ ) ⟩ = { (11)} ⟨cc (e) + ⟨e| 1|c ′(e ′ ) ⟩ = { ⟨ | is homomorphism} (⟨cc (e) | + ⟨e| ⟨1|)(|c ′(e ′ ) ⟩) = { (5)} ⟨cc (e) |c ′(e ′ ) ⟩ + ⟨e| ⟨1|c ′(e ′ ) ⟩ = { (15)} (|c ′(e ′ ) ⟩ • ⟨cc (e) |) + ⟨e| ⟨1|c ′(e ′ ) ⟩ = { (11)} (|c ′ c ′(e ′ ) ⟩ + |e ′ ⟩ |1⟩)⟨cc (e) | + ⟨e| ⟨1|c ′(e ′ ) ⟩ = { (5)} (⟨cc (e) |c ′ c ′(e ′ ) ⟩ + |e ′ ⟩ ⟨cc (e) |1⟩) + ⟨e| ⟨1|c ′(e ′ ) ⟩ = { (3)} ⟨cc (e) |c ′ c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨cc (e) |1⟩ + ⟨e| ⟨1|c ′(e ′ ) ⟩) = { homomorphism} ⟨c|c ′ ⟩⟨c (e) |c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨cc (e) |1⟩ + ⟨e| ⟨1|c ′(e ′ ) ⟩) = {(4) and (2)} ⟨c|c ′ ⟩⟨c (e) |c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨ecc (e) |1⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩) = { Lemma 3.1 and (4)} ⟨c|c ′ ⟩⟨c (e) |c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨c (e) |1⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩) = { (2) and (4)} ⟨c|c ′ ⟩⟨c (e) |c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨¬ e| + |¬ e ′ ⟩)(⟨c (e) |1⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩)

Table 1 :

 1 Syntax of PI

where:

• x ∈ X are variables;

• f ∈ F are function symbols. (F n ) n∈N0 ⊆ F

denotes sets of function symbols with arity n. Symbols k ∈ F 0 are called constants. Function symbols are interpreted in F as f : Z n → Z (e.g. +, √ ); • p ∈ P are predicate symbols. (P n ) n∈N0 ⊆ P denotes sets of predicate symbols with arity n. Predicate symbols are interpreted in P as p : Z n → {0, 1} (e.g. =, ≥);
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Appendix

c + e 0 = e • c (32)

c (e) = c (e) • ¬ e (35)

"One-sided" probabilistic relational Hoare logic rules.

• R-Assign left rule:

x ← v ∼ skip : φ[v /x ] ⇒ φ

• R-Cond left rule:

Encodings of the rules above in BiGKAT.

• R-Assign left rule:

• R-Cond-left rule:

• R-Cond-right rule: 4), (fact u5') and B.A.}

By the fixpoint axiom [START_REF] Pous | Kleene algebra with tests and coq tools for while programs[END_REF], considering g = ⟨c (e) |c ′(e ′ ) ⟩, e = ⟨c|c ′ ⟩, b = ⟨e|e ′ ⟩ and f = ⟨c (e) |¬ e ′ ⟩+ ⟨e| ⟨¬ e|c ′(e ′ ) ⟩, we conclude ⟨c (e) |c ′(e ′ ) ⟩ = ⟨c|c ′ ⟩⟨c (e) |c ′(e ′ ) ⟩ + ⟨e|e ′ ⟩ (⟨c (e) |¬ e ′ ⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩) ⇒ ⟨c (e) |c ′(e ′ ) ⟩ = ⟨c|c ′ ⟩ (⟨e|e ′ ⟩) (⟨c (e) |¬ e ′ ⟩ + ⟨e| ⟨¬ e|c ′(e ′ ) ⟩) which proves (27).

Proof of Lemma 3.5. 4) and ( 10) 34), ( 5) and ( 14) reverse steps}

ϕ(⟨c

ϕ⟨c (e) |c ′(e ′ ) ⟩⟨¬ e|¬ e ′ ⟩ϕ R-Sub rule:

• subgoal (1): To prove this subgoal, we introduce a coupling in order to apply the R-Rand rule, to assure the invariance of variable b in the sampling b $ ← dmybool . For this example, we chose as coupling the function h, defined such that b = h(b). Hence we use rule (R-Rand ) in BiGKAT to obtain to form the premise of the conditional rule (47).

By rule (20) and the equations above we obtain

and finally for ⟨y ← y xor b|y ′ ← y ′ xor b ′ ⟩ we reason with R-Rand to obtain

and the main proof of subgoal (1) proceeds by proving the invariance of [y = y ′ ] as follows:

• subgoal (3): symmetrical to the previous one relatively to variables x , x ′ .

• subgoal (4):

Regarding the invariant

we use the additional abbreviations

and ψ 2 ˆ= P (H ) → (pos = pos ′ ), to facilitate the writing of the proof. The first step is to prove the two distinct cases pos = pos ′ and pos ̸ = pos ′ :

• 1st case:

Let us analyse the two following subcases:

-

and analogously for the program on the right. We can obsevre that ¬ P (H ) ⇒ ψ 

The next step is to apply the Weak Whl rule (21), for which we observe that the three premises hold:

• second premise: proven above