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Abstract

This work is devoted to formal reasoning on relational properties of probabilistic imperative
programs. Relational properties are properties which relate the execution of two programs (possibly
the same one) on two initial memories. We aim at extending the algebraic approach of Kleene
Algebras with Tests (KAT) to relational properties of probabilistic programs. For that we consider
the approach of Guarded Kleene Algebras with Tests (GKAT), which can be used for representing
probabilistic programs, and define a relational version of it, called Bi-guarded Kleene Algebras with
Tests (BiIGKAT). We show that the setting of BIGKAT is expressive enough to interpret probabilistic
Relational Hoare Logic (pRHL), a program logic that has been introduced in the literature for the
verification of relational properties of probabilistic programs.

keywords:Kleene algebra with tests, Relational reasoning, probabilistic programs, Hoare logic

1 Introduction

Formal verification of program properties has triggered a variety of methods, among which the algebraic
approach of Kleene Algebra with Tests (KAT) stands out as an elegant, simple and automatizable frame-
work [12, [10]. It is closely related to modeling with finite automata and has stimulated the development
of techniques from coalgebra for reasoning about program behavior, for instance based on bisimulation
checking [9]. Tt has also been implemented in a library for the Coq proof-assistant [I3]. Among the
properties one might want to check on programs, some important ones are expressed by relating the exe-
cution of two programs on two initial states, or of the same program on two initial states. They are called
relational properties or 2-properties. One can think for instance of simulation properties, refinements,
or extensional equivalence. Another example is non-interference: assume the variables are divided into
public ones and private ones, a program satisfies non-interference if the final value of public variables
after an execution only depends on the initial value of public variables (and not on private ones).

Actually in a large number of situations the software systems one wants to verify are not deterministic
but admit a probabilistic behaviour. Think for instance of randomized algorithms, cryptography, network
programming or differential privacy. In those scenarios many crucial properties are also relational ones.
For instance in cryptography one can express the fact that a randomized encryption scheme is safe as
a probabilistic non-interference property: a public variable is assigned a ciphered value, obtained from
a private variable, and we want to ensure that one cannot distinguish between two ciphered values
computed from the same private initial state. Similarly in differential privacy (see e.g. [5]), in order to
protect private data one might want to verify that two executions of a given program on two databases
that differ only by one individual give indistinguishable result.

In order to express and prove relational properties on imperative programs some specific methods
have been introduced. First in the deterministic case let us mention Relational Hoare Logic [g], that
extends the classic Floyd-Hoare logic approach to reason on pairs of programs. This approach has been
upgraded to the setting of probabilistic relational Hoare Logic (pRHL) by Barthe and coauthors [6]. It



Property nature Unary Relational deterministic | Relational probabilistic
Hoare logic HL RHL pRHL
Algebra KAT BiKAT BiGKAT
Examples of properties | Partial correctness | Validation of program Probabilistic
transformations non-interference

Figure 1: Program logics and algebras

has then been extensively applied to the verification of cryptographic schemes, in particular through the
development of the Certicrypt [7] and Easycrypt [2] tools.

However one would still benefit from additional techniques for the automation and the understand-
ability of such reasoning methods. In particular one difficulty with (probabilistic) relational Hoare Logic
is to find a suitable alignment of the two programs in order to be able, in a second step, to find the
intermediate properties needed for the proof (see [I]). Algebraic methods coming from Kleene algebra
with tests are promising in these respects. In particular they facilitate the reasoning on simple program
transformations.

Our goal is thus to introduce a KAT approach to reason on relational properties of probabilistic pro-
grams. An important step has already been made in the non-probabilistic setting with the introduction
of BiKAT [I], allowing to apply the KAT approach to reasoning on pairs of programs. Unfortunately
standard KAT techniques cannot be applied directly to probabilistic programs, since there is no known
probabilistic interpretation for KAT. To handle this question, recent progress was made by the introduc-
tion of Guarded Kleene Algebra with tests (GKAT) [15], in which non-deterministic union and iteration
are replaced by guarded union and iteration. The main motivation for the introduction of GKAT was to
design a more efficient version of KAT where the complexity of the decision procedure is reduced, but
it was also shown that GKAT admits a probabilistic model that can be used to interpret probabilistic
programs.

Our strategy is thus to adapt the relational extension BiKAT to the setting of GKAT, in order to
apply this relational approach to pairs of probabilistic programs. We want to apply such framework to
probabilistic programs as those from the imperative programming language defined in Table

functional terms
predicate terms

tu=k| x| f(tr,..., )
pu=p(t,....ta) | 70| PL AD2 | P1V D2

cu=skip |z t|z & d|c-c|if p then ¢ else ¢ | while p do ¢ compound programs

Table 1: Syntax of PZ

where:
e x € X are variables;

e f € F are function symbols. (F,)nen, C F denotes sets of function symbols with arity n. Symbols
k € Fy are called constants. Function symbols are interpreted in F as f : Z" — Z (e.g. +, \/),

e p € P are predicate symbols. (Pp)nen, € P denotes sets of predicate symbols with arity n.
Predicate symbols are interpreted in P as p : Z" — {0,1} (e.g. =, >);

d are sub-distributions on Z, i.e. maps d : Z — [0,1] such that > d(z) < 1;
Z€EL

e The command z < t assigns the value of ¢ to z, and z &4 samples from distribution d and
assigns the result to x.

Additionally, notation T'(X) stands for the set of terms with variables in X, and Tr(X) (respectively,
Tp(X)) represents its restriction to functional (respectively, predicate) terms.

In order to demonstrate the expressivity of our framework we want to show how probabilistic relational
Hoare Logic reasoning can be interpreted in it, in a similar way as (standard) Hoare logic can be
interpreted in KAT [II] and Relational Hoare Logic in BiKAT [I], filling in this way the middle-right
square in Fig[l] This will raise some specific difficulties, in particular for proving the validity of the rule
dealing with the while construct, and the addition of a new axiom for GKAT. Finally we will illustrate
the benefits of our framework on some examples, including a random walk in dimension 1.



Outline of the paper. In Sect. [2] we recall GKAT and its probabilistic model, then define the
variant we consider, including an additional theory for assignments and probabilistic sampling. Then
in Sect. [3] we introduce the relational extension BiIGKAT of GKAT, define the interpretation of pRHL
judgments in BIGKAT and prove our main theorem, the soundness of this interpretation. Sect. [4]is then
devoted to the study of two examples. The proofs omitted in the paper can be found in the Appendix.

2 Guarded Kleene algebra with tests

This section recalls the language and the semantics of Guarded Kleene Algebra with Tests (GKAT) [15], an
abstraction of imperative programs where conditionals (¢j +. ¢2) and loops (c(e)) are guarded by Boolean
predicates e. As explained before, the structure is a restriction of KAT in which we are not allowed to
freely use operators 4+ and * to build terms, i.e. GKAT does not allow nondeterminism. Although
less expressive that KAT, GKAT offers two advantages: decidability in (almost) linear time (compared
to PSPACE complexity of decidability in KAT), and better foundation for probabilistic applications.
Although the first one was the main motivation to introduce the structure [15], we are more interested
in the second advantage for the purpose of this paper.

2.1 Syntax

The language of GKAT, that we present below, encodes the probabilistic programming language PZ .
Consider a set of actions ¥ and predicates P, where ¥ and P are nonempty and disjoint. Elements of
encode either assignments x < ¢ or samplings z & d , and elements of P, denoted as p, encode predicate
terms p € P. The grammar of an arbitrary Boolean expression and GKAT expression are constructed,
respectively, as follows:

e,er,ea €EBExpu=0|1|p|—e|er-ex|er+e]|er — e

0761702€EXP51=G|€\01'62\01+e02|0(e)

where a € X, for any e, e, es € BExp, operators -, + and — denote conjunction, disjunction and
negation, respectively, and, for any c, ¢, co € Exp, operator - denotes sequential composition. The
Boolean expression 1, by being also an element of Exp, encodes command skip, and the conditional

and iteration imperative programming constructs can be abbreviated as GKAT terms, respectively as
€1 +e Co = if ¢ then ¢ else ¢y and ¢(®) = while ¢ do c.

The precedence of the operators is the usual one. To simplify the writing, we often omit the operator -
by writing c¢; ¢o for the expression ¢ - ¢z, for any ¢y, co € Exp.

2.2 Semantics

We now present the semantic interpretation of GKAT that we will be using, the Probabilistic model
[15]. Note that more interpretations of GKAT are presented in [I5], namely a relational model and
a language model. We first revise some basic concepts needed for the semantics. Given a countable
set S, D(S) is the set of probability sub-distributions over S, i.e. the set of functions f : S — [0,1]

summing up to at most 1, i.e. > f(s) < 1. In particular, the Dirac distribution §; € D(S) is the map
ses

1, if w=s

w— [w=s]= .
0, otherwise

In general terms, the Iverson bracket [p], for p a predicate term, is the function taking value 1 if p is true

and 0 otherwise. Typical models of probabilistic imperative programming languages interpret programs

as Markov kernels, i.e. maps from S to probability distributions. The semantic model defined below

interprets programs as sub-Markov kernels, i.e. Markov kernels over probability sub-distributions.

Definition 2.1 (Probabilistic model). Let i = (State, eval, sat) be a triple where:
e State is a set of states,
o for each action a € X, eval(a) : State — D(State) is a sub-Markov kernel,

e for each predicate p € P, sat(p) C State is a set of states.



The probabilistic interpretation of an expression e with relation to i is the sub-Markov kernel P;[c] :
State — D(State) defined as follows:

1. P;la] = eval(a)

2. Pile](o) := [0 € satT(e)] x I,

3. Piler - e2)(0)(0") := 2 Pile](0)(a") x Pilea] (0”)(o")

4. Piler +e 2] (o) == [0 € satT(e)] x Pi[e1] (o) + [0 € sat’ (= €)] x Pi[ea] (o)
5. Pile@](0)(o") = lim P[(c+e )" el (0)(0)

where sat! : BExp — 25tat ig the lifting of sat : P — 25%¢ to an arbitrary Boolean expression over P.
The interpretation of actions a € ¥ as sub-Markov Kernels is given as

eval(z 4 t)(0) = 0[p4) and eval(z & d)(o):= 3 d(t)- Oofzet]-
tez,

2.3 Axioms

The theory of GKAT introduced in [I5] is given by the axioms from Fig. Note in particular for the

cH+ec = ¢ (1) c-0 = 0 (8)

C1FteCo = C2t-cC1 (2) l-c = ¢ (9)

(et+of)+eg = etpe(f+eg) (3) c-l1 = ¢ (10)

ClteCa = eC]+ecC (4) o = c.c® 41 (11)

c1e3 e cac3 = (c1+ec2)-c3 (5) (cHe, 1)) = (ey-c)®) (12)

(c1-¢ca)-¢c5 = ¢1-(ca-c3) (6) €3 =C1C3+e C2 it E(ca)=0 (13)
O-¢c = 0 (7) c3 = c%e) - o

Figure 2: Axiomatisation of Guarded Kleene algebra with tests

fixpoint axiom . Intuitively, it says that if expression ¢z chooses (using guard e) between executing
c1 and looping again, and executing co, then c3 is a e-guarded loop followed by c;. However, the
rule is not sound in general (see [I5] for more details). In order to overcome such limitation, the side
condition E(c¢;) = 0 is introduced, ensuring that command ¢; is productive, i.e. that it performs
some action. To this end, the function F is inductively defined as follows: E(e) := e, E(a) := 0,
E(ci+ec):=e-E(c))+-e-E(c), E(c1-c2):= E(c1)-E(ca), BE(c'®)) := = e. We can see E(c) as the
weakest test that guarantees that command c¢ terminates successfully but does not perform any action.

Moreover, note particularly the following observation: in KAT the encoding
c1; (e; ca+ ey ¢3) = ¢1;5 €; ca+ ¢1; — e; cg is not an if-then-else statement; it is rather a
nondeterministic choice between executing c1, then testing e and executing cs, and executing ¢y, then
testing — e and executing c3. That is why left distributivity does not hold in GKAT for any ¢ € Exp; it
only holds for the particular case of e € BExp, i.e. if e is a test.

In the Appendix we list additional derivable equations in GKAT, also given in [I5].

We already mentioned that GKAT does not allow to construct an arbitrary program by using freely
the nondeterministic choice operator +, allowing only guarded choice +., for any e € BExp. However,
the + operator is included in the grammar of BExp, representing the Boolean disjunction. Nevertheless,
the grammar also allows to write expressions as e; +. ez, for any e € BExp. We thus add the following
new axiom

el +ea=¢€-e1+e- ey (14)
to the theory of GKAT which expresses the guarded sum +., for any e € BExp, in terms of the disjunction
+ on tests. This axiom is valid in the probabilistic model. By Boolean reasoning, we can observe that
e-e+ - e-—e=1. Such property will be useful later to prove the soundness of R-Case rule .

Additionally, we propose in the Appendix an equational theory for GKAT which includes additional
axioms to deal with the effects of assignments and samplings in the course of execution of a program in
language PZ. In any GKAT, in general two actions aj, as € ¥ are not commutable, however they can
commute for the particular case in which they don’t share variables. Those facts will be useful to deal
with examples later in the paper.



3 Bi-guarded Kleene algebra with tests

To handle relational reasoning on probabilistic programs, we introduce in this section Bi-guarded Kleene
algebra with tests, an algebraic structure inspired by Bi Kleene algebra with tests [I], which we define
over a GKAT.

Definition 3.1. A Bi-guarded Kleene algebra with tests (BiGKAT) over a GKAT
(A4, B, 4¢,-(9 =, +,1,0) is a GKAT

(Auv Ev @Ev ;7(E) 7?7 697 j.a 0)

such that E € B, B C A, the operator & is applied only to elements of B, and (]:A— A, [Y:A— A
are homomorphisms satisfying

Ve, e €A, <Cl|;‘62>:|02>3<61| (15)
We call A the underlying GKAT, and elements of B are called bi-tests.

We define notation (_|_) as (c|¢’) = (c| 5 |¢’), with the following consequences: (c|1) = (c| and

(1|c) = |¢) since |1) =1 is the identity of 3. Another property that arrives naturally from the definition
of (_]-) is (0]¢) = 0 = (|0}, for any c € A.

The fact that { | is an homomophism means that, for any e, e, e € B, ¢1, ¢a, ¢ € A, the properties
(e1+ €| = (e1|® (ea], (c1-ca| = (c1]|3{cal, (c14e ca| = (1| @E (c2] and (c(®)] = (¢|F hold, where E stands
for (e| € B. Similarly for | ). The operators have the same precedence as in GKAT. For readability we
use interchangeably the same notation for operators in GKAT and BiGKAT, i.e. operators -, — and
+, for any e € B, and constants 1 and 0 in GKAT stand for §, =, ©| ( D)), 1 and 0, respectively.
Often we go even further and omit the operator - and we write (¢1|(c2| (|c1)|e2)) for (c1]- {ca| (Je1) - |ca))-

3.1 Encoding pRHL in BiGKAT

In this section we want to prove that probabilistic relational Hoare logic (pRHL) [6] can be soundly
encoded in BIGKAT. For that goal let us briefly recall probabilistic relational Hoare logic (pRHL ), which
can be understood as an extension of Benton’s Relational Hoare Logic [8] to probabilistic programs. In
Relational Hoare Logic a judgement has the form:

Fe~cd o=

where ¢, ¢’ are deterministic programs and ¢, ¢ (resp. pre- and postcondition) are relations on states.
It means that for any memories my, my such that mj¢ms, if the evaluation of ¢ on m; and ¢’ on my
terminate with memories m; and mj, then m{ym} holds.

In the probabilistic scenario, however, the evaluation of a program on a memory gives a subdistribu-
tion (Definition [2.1]). The system pRHL thus lifts relations over memories to relations over distributions,
which we restrict, in our setting, to subdistributions. To define that, following [6], we use a monadic

def

semantics. The measure monad M (X) is defined as M(X) = (X — [0,1]) — [0, 1] and its operators are:
wnit: X = M(X) =Xz Af.fx
bind : M(X) = (X — M(Y)) = M(Y)ZEXdAM.\f.d(Az. M z f)

Intuitively, the value of a subdistribution d of M (X) on an element s of X is given by d(J5). The liftings

to subdistributions of a unary predicate P and of a binary relation ¢ are defined as follows:

def

range Pd = Vf.(Va.Pa=0=fa=0)=df=0)
di~yp dy = 3Fd.m(d)=di Nma(d)=dy Nrange d

def

where the projections 7 (d) and mo(d) are defined as m(d) = bind d (A(z,y).unit z) and my(d) =
bind d (A(z, y).unit y).

Now that these definitions have been set we can describe the judgements in pRHL.
Definition 3.2. Given two probabilistic programs c, ¢’ and ¢, 1 relations on states, the pRHL judgement
Fcn~c: ¢ =1 stands for the following property:

Vmy, mg, my ¢ mg = [c]my ~y [¢']ms.

We say in this case that programs ¢ and ¢’ are equivalent with respect to precondition ¢ and postcondition

.



Following this interpretation, we encode such judgment in BIGKAT as the equation
@ (clc’) =@ (c[c) -

where ¢, ¢ € B, and ¢, ¢ € A. Let us make a few comments to compare this encoding to other ones in
the literature:

e Note that we do not use the encoding ¢ - (¢c|¢’) < ¢ - {¢|c) - ¢ since in GKAT and BiGKAT there
is no natural notion of order < as in KAT [12] [10)] ;

e We do not use either the encoding ¢ - (c|c¢’) - =1 = 0. In KAT, ¢ - ¢ = ¢ - ¢ -1 is equivalent to
@-c-— 1 =0, but this cannot be proved in the same way in GKAT and we suspect the equivalence
does not hold. We only have the implication (¢-c=¢-c-1¥) = (p-c-— 1 =0), and we choose
as encoding the stronger property.

We now display on Figure [3| the rules of pRHL defined in [6], with a restriction on the rule for While
(Weak R-WhI rule) which we will explain below. The support supp{d} of a distribution d is defined by:
(s € supp{d}) iff d(d,) # 0.

o R-Assign rule:

o R-Seq rule:

v~ v plv/z v/ =

e R-Rand assign rule: g~ ip=1Y ca~chip=¢E
cprea~c)-chip=¢

h < (d,d") NV v € supp([d]) Plv/z, h(v)/']
& drma Ed o=

e R-Cond rule:

p=>ez2e cg~cfidN(e|AN|e) =Y ca~chidN(me|A|me)y=
if e then ¢; else ¢c; ~ if ¢/ then ¢] else ¢} : ¢ = ¢

o R-Sub rule: e R-Case rule:

P =¢c~c:p=Y p=9 c~ce QNP = e~ P NTY =
c~c g =Y c~cdip=

o Weak R-WHhI rule:

p=eze c~c:dpN(e|]N|e/)=¢ E(c)=E()=0
while e do ¢ ~ while e’ do ¢’ : p = P A (—e| A|—¢€)

Figure 3: Probabilistic Relational Hoare Logic rules (pRHL)

There are also one-sided versions of some of these rules, which are just particular cases, and so we
list them in the Appendix. We use different notation for pre and post conditions (p, ¢) and for guards
((el, |€’)). Note in particular the side condition ¢ = eze’ in rules R-Cond and Weak R-Whl, where the
right-hand side eze’ is equivalent to (e|e’) + (= e|— €’) so the following holds

plel~e) =0 ¢(-ele’) =0 (16)

These equalities assure that the predicates e and e’ are evaluated to the same value on both left and right
programs. In particular, for the R-Cond rule it means that the same branch is executed for right-hand
side and left-hand side programs. One difference from rules in [0] is the additional premise condition
(E(c) = E(c’) = 0) in the Weak R-WHhI rule: ours is weaker, since we impose that two commands c,
¢’ are guaranteed to perform some action, property that we will use to prove the soundness of the rule.



More precisely we use this condition in the proof of the intermediary Lemma This rule is actually
expressive enough for many examples. Note also for the R-Assign, R-Assign left and R-Rand rules, which
are axioms: the first one derives a valid Hoare triple with the substitution of variables z, 2’ by expressions
v, v, respectively; the second One derives an assignment on the left-hand side, while the right-hand side
is a skip instruction; the third one derives a valid triple with samplings over distributions d,d’. The
coupling function h : supp{d} — supp{d’} is essential to relate the two samplings over distributions
d, d’, and must satisfy the following conditions:

e h is bijective;
e for every v € supp{d}, h(v) € supp{d'};
® Proglz =v] = Ponalz = h(v)]

If such a function exists, i.e. there exists a coupling between distributions d, d’, we write h <1 (d, d’).
For more details on coupling see reference [6].

Now, to show that the rules of Figure [3| are sound in BiGKAT, we interprete them as follows, by
using the encoding of pRHL judgements as BiGKAT equations defined previously:

o R-Assign rule:

olv/z, v /3" (x + v|a' + ') = p[v/x, 0" /3 | (x + v]z' + V') (17)

R-Rand assign rule:

h<(d,d) AV e supp([d]).p[v/z, h(v)/z'] = ol & dla’ & d') = p(z & dlz’ & dyp (18)

e R-Seq rule:
.
¢larler) = ¢larlen)y A Wlealer) = ¥(ea|es)e = ler - ealct - ca) = ler - ealcl - )€ (19)
e R-Cond rule:
o
pZeze’ A g (ele)(aler) = (ele)) - (calcz) - A
¢ (nelne) lele) = (melne)(ala) v
= ¢ (a1 te el +er c3) = @ (1 +e calc] o ) - (20)
o Weak R-Whl rule: we can apply it only if E(c) = E(c') =0,

¢ < ez A G- (ele)(c|c) = - (e|e) |y - p = - (D)) =g ()9 (21)
o R-Sub rule:
¢ <o A dleld)=dlelyp A <y = ¢leld) = ¢ {eld) (22)

R-Case rule:
¢ (cly =0 ¢ A{clV Ng-=¢ c]c) =92 ¢ (c| V= ¢ (c]c)) = ¢ (c|')d (23)
Note that the encoding of the one-sided rules are listed in the Appendix. Our goal is now to prove

that these rules are valid in any BiIGKAT. To prove some of these rules, namely R-Cond and Weak
R-WhI, we need to establish some auxiliary results.

Lemma 3.1. In any BiGKAT the following two equalities hold:

(el - {erler) =(e| - (c1 +e calcq) (24)
(= el (ealcg) =(el - {c1 +e c2|ch) (25)

Lemma 3.2. For any BiGKAT,
¢-(etenele +ene) =0 ((ele) +e (meln¢€)) (26)



Now we state the invariance result, adapted from the standard result on KAT and the equivalent one
for GKAT, which was proved in [I5]. It will be useful for the R-WhI rule.

Lemma 3.3 (Invariance). Let ¢,¢’ € A and ¢,e € B. If pe(c|c’) = pelc|c )¢ then ¢(c|c!)(©) =
(é(clc'))o.

Proof. Since a BIGKAT is a GKAT (Definition [3.1)), it holds by the invariance lemma (Lemma 3.11) of
GKAT [I5]. o

Now we establish a GKAT property that will be used in the proofs ahead.
Proposition 3.1. For any e, ¢ in GKAT, ecc(®) = ec(®).

The following result is useful for reasoning about two while loops. Based on a property defined for
BiKAT [I], we state a similar one for BiGKAT:

Lemma 3.4 (Expansion). The following property holds in any BiGKAT. Assume E(c) = E(c') =0,
then we have: ) , )
(1) = (e ) (e )Ty (= ele) ) (27)

The intuitive meaning of this equation is that executing two while loops in parallel (c(e) and ¢’ (e,))
is equal to loop ¢ and ¢’ guarded by (e|e’), assuring that if one of them stops, i.e. either e or ¢’ is false,
the other loop continues to execute (until its guard is also false). Note that our proof of Lemma
differs from the proof of the analogous lemma in BiKAT [I] and uses the the fixpoint axiom (see
Appendix). Now we establish the following lemma that it is useful to prove the soundness of the Weak

R-WHhI rule .
Lemma 3.5. In any BiGKAT, if ¢ < e=e’ then we have:

$((c! )= €) 4y (7 el )) = (me= €)o (28)
Finally we obtain the main result on the soundness of pRHL rules in BiIGKAT.

Theorem 3.1 (Soundness of pRHL in BiGKAT). The rules of probabilistic Relational Hoare Logic, that
is to say - and -, are sound in any BiGKAT.

4 Examples

In this section we use the framework presented before to reason about invariance features of probabilistic
programs. We take two executions of one program containing random assignments, which produces
probabilistic distributions of states. That means that two executions may lead to different outputs, due
to the random nature of the assignments. In the following examples we prove the invariance of certain
variables of probabilistic programs in the output relatively to the input, by relational reasoning on two
executions of those programs. We explain the examples an give the main ideas of the proofs, leaving the
complete details for appendix.

Example 4.1. Consider the following program:

var & : mybool; war y : mybool; war b : mybool; // z private wvariable, y public
vartable
if (z = tt) {
b <-§ dmybool;
if (b = tt) {
y <- y zor tt;

}
}
else {

b <- ff;
g

y <- y zor b;

Abbreviate the above program as c, and one copy of it as ¢’. We prove the invariance of variables
y,y', relational predicate [y = y'], over executions of c,c’, which corresponds to the following pRHL
Judgment = c ~ ¢’ : [y = y'] = [y = y'], which is translated into the BiGKAT equation [y = y']{c|c’) =
[y = y'lcl)y =¥'].



Program c is encoded as the BiGKAT term
(b < dbool - ((y « y zor tt) Fio=tt] 1) Homte) (b fF)) - (y < y zor b)

In order to simplify the writing we denote dy = b <~ dbool; (y < y zor tt), do = b ff and ¢y = (y
y zor b). We then use some equational reasoning to obtain

ly = y'J{(dy +o=u) d2) - c2|(d] +[or=u) d3) - €3)

= { appendiz }

ly = y']lz = 2'|((d1 - €2) +(o=pg) (d2 - 2)[(di - €3) +iar=sr) (d3 - €3))
which we subdivide into four subgoals, since as guarded sums, they depend on the evaluation of [x = it]
and [z' = tt]: (1)[z = tt][z" = tt], (2)[z # tt][z’ = tt], (3)[x = tt][z’ # tt] and (4)[z # tt][x" # tt].

We present here the proof of subgoal (2) to illustrate the use of equational reasoning on BiGKAT,

leaving the proofs of the other cases in appendizx.

subgoal (2):
[y =y]lz # t][z" = tt]((da - c2)|(d1 - c2)) = [y = y/'][z # t][2" = tt]((da - c2)[(d1 - e2))[y = /]

On one side, pogram (dy - c2) yields y := y zor ff, while on the other side, program (d] - c}) yields
di; ¢
= { defn}
b & dbool; ((y' « y' zor tt) Frmy 1) -y <y wor v

- i

b & dbool - ((y <y wor tt -y’ + y' zor V') e (y <y zor b))

= { and ,H)}

b <& dbool - ([b = tt] - (v « y' wor tt -y <y zor ')
+[b’:tt][b/ =1y <y zor b/))

= { instantiation of b’}

b <& dbool - ([b' = tt] - (v « y' wor tt -y <y zor tt)

tr=mlb = FI(y' v’ zor ff))
= {BA}

b < dbool - ([b' = tt] - (y' <y wor tt) +p—s [b' = H](y' + y' zor [f))
= {H}ande—i—eﬁe:l}

b <& dbool -y’ vy zor ff

Since variable b’ does not interfere in the assignment y' < y' zor [f, we derive the post condition
ly =1y

Example 4.2. Consider the following program, corresponding to the classic example of Random walk in
dimension 1, a path which describes a succession of random steps (see [3]). That means that, starting in
an initial position, at each step we toss a fair coin. If heads, we move one step to the right, otherwise
we move one step to the left. The variable H records the history of coin flips.
pos<- start; H<- []; %<-0;
while (i<k) do{
b<-${0,1};
H<-b:: H;
if b then pos++ else pos--;
1<-93+1;

return pos;



The goal of this example is to prove that, by taking two executions of the program above, the corresponding
paths converge as the number of steps increases. Let us denote by

¢ := pos + start; H < —[]; i + 0; (b £ {0,1}; H < b :: H; ((pos++) +b (pos ——)); i+ i+ 1)<k

the encoding of the program in BiGKAT, and by ¢’ one copy.

We follow the approach of [3], Sect. 3.1. Consider two processes that start at locations start and
start’ such that start’ — start = 2n > 0. We define X(H) as the number of 1 in H minus the number of
0 (so the net change of position of a process with history H). Then P(H) is the predicate which holds
when H contains a prefic Hy such that X(Hy) = n.

Formally, we want to prove the pRHL judgment - ¢ ~ ¢ : [start + 2n = start’]| = [P(H) —
pos = pos’], which corresponds in BiGKAT to the equation [start + 2n = start’|{c|c’) = [start + 2n =
start’){c|")[P(H) — (pos = pos’)].

In order to simplify the writing, we also abbreviate the loop body

d=0b<&0,1; H b H; (pos++) 45 (pos ——)); i+ i+1

A way to relate the while loops of ¢ and ¢’ is through an invariant. The idea to obtain an invariant
follows the reasomning: before the two points meet their trajectories are mirrored and after they meet they
coincide forever. Thus, the invariant we present is

» = ((pos # pos’) — (pos = i+ Z(H) A pos’ =4’ —S(H')) A (P(H) — (pos = pos’)) A (i =4') A (k=k')

To relate the loop bodies we perform a case distinction analysis on pos, pos’: if they are different,

their moves are mirrored, otherwise they move together. In that sense, we need one coupling function h
for each case: if pos = pos’, h o id, if pos # pos’, h “ . We also know that as long as we are “inside”

the loop body, the predicate [i < k A i’ < k'] always holds. Hence we reason using the R-case rule
to do the case analysis as follows:

A (i <kAi <E')A (pos=pos){d|d')=[p A (G <kAi <k')A (pos=pos)](d|ld)e
AN AGE<kAi <E')A(pos#pos)|(d|d) =] A (i <kAi <E) A (pos=pos)|{d|d)e
SleAG<kAT <KDY =[eoA(G<kAi <kD(dd)e

The proof of this BiIGKAT judgment relies on the proof of the two distinct cases, i.e. pos = pos’ and
pos # pos’, and as a final step on the application of the Weak Whi rule . The details of the proof
are in the appendiz.

5 Related work

The GKAT system was introduced in [15], which also introduced its probabilistic model with sub-
Markov kernels. It was investigated further in [14], which in particular provides a semantics for which
the equational theory is complete.

Relational Hoare logic was introduced in [§]. Probabilistic relational Hoare logic (pRHL) is due to
Barthe and coauthors in [6], where it was motivated by the certification of cryptographic proofs.

The relational extension BiKAT of KAT was introduced in [I]. It is shown in this paper that the
rules of relational Hoare logic [8] can be interpreted in BiKAT.

6 Conclusion and perspectives

In this work we have introduced a variant of KAT allowing to reason on relational properties of proba-
bilistic programs, based on GKAT. This has in particular led us to introduce an additional axiom
to the theory of GKAT. We have illustrated the expressivity of our system, BIGKAT, by proving how
probabilistic relational Hoare logic [6] (up to a restriction on the while rule) can be soundly interpreted
in it. In future work we would like to explore if this soundness theorem can be extended to the logic with
the general form of while rule, without side condition (E(c¢) = E(c’) = 0). We would also be interested
in exploring the application of GKAT to unary (non-relational) properties of probabilistic programs, and
for that to investigate the relationships with the probabilistic Hoare logic aHL of [4].

Acknowledgements The first and second authors were partially supported for this work by the
french Program “Investissements d’avenir” (I-ULNE SITE / ANR-16-IDEX-0004 ULNE) managed by
the National Research Agency.
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Appendix

e (Gte i) = (a+e o) tarees  (29) = o (35)
Cl+eC = cCl4ecm e 0y (30) e = (e- C)(e) (36)
e1-(C1+ey, C2) = € ¢ +te, €12 (31) =1 (37)
c+.0 = e-c (32) Vo= 0 (38)

ci+oc = e (33) e{ez) = ey (39)
e-(c1+ec) = eq (34) cle2)  —  lerez) | (e2) (40)

Figure 4: Derivable GKAT facts

Equational theory for effects

The equational theory of GKAT that we will resort on ads to the base theory the following additional

axioms:

— o[t cxp 4ty if d FV(t
Bt m ety = 2 2t/ 1] .»’51 1 if 1 # 23 and 13 ¢ (t) (41)
$1<—t2[t1/:131} 1f£l?1=(l32
$ $ .
—do-xy +— dy if
I <id1~$2<$;d2 = 2 $ > .11 Lo 7&:1:2 (42)
Il(—dg 1fx1::r2
$ .
—d- -zt if
x1<—t-x2<id = 2 $ .Il ! -'1317£IQ (43)
T —d ify =2
.Til(id'l'z(—t = <+t ify=ux (44)

Proposition .1. The azrioms - are valid in the Probabilistic model of Definition .

Proof.

To prove this proposition we use the interpretation of assignment and samplings in the probabilistic

model (Definition 2.1)). We give the proof of axiom (2.I), the remaining ones are proved analogously.
Given a probabilistic model ¢,
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,Pz'[[ilh — 1 a9 — tQH(U)(U/)

= { Definition [2.1]}
> Pilz tlﬂ(go") x Pilwy < 2] (c")(0”)
= ’ { Deﬁnition
Z; eval(zy < t1)(0”) x eval(zy + t2)(0")
= ’ { Definition of eval}
2 Oorareti] X O/ [zyeta]
= 0 { commutativity of x }
Z;%H[zzetz] X O [gy 1]
= ’ { Definition of eval}
Z; eval(my < t3)(0") x eval(xy + t1)(0")

g

= { Dcﬁnition

2 Pillaz + ©2](0)(0") x Pi[z1 + ](0”")(0")
= ’ { Definition |

Pillzs + to - < 1] (0)(0”)

“One-sided” probabilistic relational Hoare logic rules.

o R-Assign left rule:

T 4—v ~ skip:p[v/z] = @

e R-Cond left rule:

ca~clioN{e|=Y ca~clipA(me| =

ifethen ¢y else co ~c¢j :p =9

e R-Cond right rule:

ar~ciidNle)=Y a~gidnne) =

c1 ~ife’ thencjelsecd, :¢=1
Encodings of the rules above in BIGKAT.

o R-Assign left rule:
plv/z](z < v|skip) = ¢[v/z](z < v|skip)y
o R-Cond-left rule:

¢- (el (cler) = ¢ (e|-(calc)) -0 N b~ (me|-(caler) = -
= ¢ (c1+e 2|c1) =@ (c1 +e c2|c]) -

e R-Cond-right rule:

¢-ley-(ciler) = -le) - (ciler) - A ¢- |=e)-(cley) =¢-
= ¢-(ciler +e c2) = ¢ (ci|er +e c2) -

13
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Proof of Lemma [3.71
To prove the first equality, reason

(el - {er]e1)

{ homomorﬁsm}

(e ciler)
= { ws)}
(e (c1+e c2)ler)
{ homomorﬁsm}

(el - {e1 +e ealcr)

For the second equality, we reason analogously

(mel-(calcs)
= { homomorﬁsm}
(— e calcs)
= { (s)}
(me-(ca+-car)le)
= { (2}
(e (a+e e)lcg)
= { homomorﬁsm}
(=€l (e1 +e cafcs)

Proof of Lemma [3.2
To prove the equality, first note that

eteele 4o e
e-et—e-mele e+ -¢)
1]1)

(
(

=1

by axiom and Boolean algebra.
Using this observation, we reason for

b letemele +, = e)
= { homomorﬁsm}

¢-(eteel ¢+ ¢)

= { (us}

¢-((e+eel-|e) +e (e+ee|ne)
= { (Us)}

o (((el-[e) +e (mel-[e) + e ({e] - |m€) +e(mel-[m€)))
= { (us}

(@-(el-le) +ed-(nel-[e)+e(o-(e|-|m€)+ecg- (el [m¢))
= { (side Condition)}

plele’) + e'p(-el- €)
= { (s}

p((efe’) + €' (melm€))

Proof of Proposition [3.1
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= (P

e(cc'® +,1)

= { fact ud’ and }

eccl® 4+, e

= { (@ and u

eccl®) 4+, e e
= {BA}
ecc® 4+, 0
= { fact u6 and B.A.}

ecc(®)

Proof of Lemma [3.4]

()] /)y

ey

(cel®) 40 1]y

= { (|is homomorphism}
((ect®| 4o (1D( )

=

(cc(e)|c’(€’)> el <1|CI(6')>

=

(‘cl(e’)> . <cc(e)|) +<e‘ <].‘C/(el)>

= (P

(‘clcl( >+|e/> |1>)<Cc(e)|—|—<e‘ <1|C/(e)>

=

((Cc(e)|c/cl(e/)> Flery <cc(e)|1>) e <1|c'(e/)>

=

<cc(e)|c/c/(e')> +eler) ((Cc(e)|1> el (1\0'(6/)»

= { homomorphism}
<C|Cl><C(e)|C/(E )> +<e|6’> (<CC(€)‘1> +<e| <1|C/(e )>)

= { (H) and 2}

{ele) (el IC’(E ) Helery (el 1)+ (= e]e))

— { Lemma H and (H)}

(el el D) Hegeny (D11) +ef (= el D))

= {and(EI)}

(ele) (e D) +egeny (el + 7 €N D[1) 4o (el ))

15



{ fact u5’}
(el YD)+ orery (el + = NN 4o (- el + |- €)) (el )
- (P

(el (DN D) +orery (el ({7 el + = N L) +op (- el + 7 €)= e /D))
— {Ba}

(el DN D) +ogeny (e el + (el €N (elND) 4o (7 e + | €)) (= el D))
— {Ba}

(el ) (D) +(efery ((0+ (e|= (1) 4o (7 €] + = )~ e]'))
= (H»

(el ) (e ) +ojery (17 €N N) +(of (7 el + = ) (- e]))
= { homomorphism}

(el ) (e ) +ejery (e8] €) +(of (= €] + = &) (- €] )
= { , , (fact u5’) and B.A.}

(el ) (1) +ejery (= el + = (D] &) +of (= el + = &) (= e])))
= { (fact u5")}

(el YD) ooy (el + = €Nl )+ (= e] /D))
= { and (H)}
<c|c’><c<e>|c’<e/>> Helery ({0 €) iep (= el D))

By the fixpoint axiom , considering g = (¢(®|¢/(¢)), e = (c|¢/), b = (e|e’) and f = (c(©)] ') Fiel
(= e|c/(¢)), we conclude

(1) = (e| ) ) +ejery (D] ') Hop (€] )
= (el]e") = (e ) AID (] ef) g (- €] /)

which proves (27)).
Proof of Lemma [3.5]

(=€) +ief (= elc/(¢)))
= { homomorfism and (H)}
d((el= &) | +e) (= el))

= { fact u5’}

Blel= ) ()] 4o (- €|
= { and (H}}

0 +4(e O~ e ¢
= { lj and fact u6}

(= elop( ele')
= {BA}

B ele')
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L
d(= e|c'c’(e/) +e 1)
_ { , H) and 1»
¢(=ele’c' ) +o (= )
= { fact u5’ and homomorfism}
$((- ele’d ) 10y (€| €))

= { homomorfism and (fact u5’)}
(= ele) /D) Hiery (el )
=
0+ ¢ |- €)
= { lj and fact u6}
[ ) el e
= {BA.}
(melmehe

Proof of Theorem [3.1]
R-Seq rule:

¢-{er- eafer - cp)

= { homomorﬁsm}

¢ - (aler) - {cal ca)
= { premises}
¢ (arler) -9 - (el 3)¢
= {premise}
¢-{arler) - {calez) - €

= { homomorﬁsm}
¢ {c1-ealef - ep) - €

R-Cond rule:

©-

“(c1 +e ca|c] e c2)

= { B.A. and 1l

“({ele’) +e (me|m e)) - {c1 e ca|c] +er ca)

= { (Us,us")}

(ele’) - (cL+e calc] +er ca) Fer - (el e’) - (1 +e cale] +er c2)

¢ - (ele’) - {cifer) +er @ (m e[ €) - (el ez)

= {premises}
(ele)) - {alct) b +e b (me[m€) - (ealcg) -0
= { 1i }
¢ (ele’) - (c1+e calc] e c2) h+er @ (me|me) - (1 +e cale] +er c2) -
= { (Us, U5}
((ele]) +e (me[m€)) ({c1 +e c2ler +er ) - ¢
= { 1i
G- (c1 +e ca|c] +er c2) -

©-

©-

©-

<
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R-Cond right rule:

¢{erfer +e c2')

L

d(le) +iey [= €)){er]er +e €2')

L

ple)(ciler +e €2') +iey ¢l e)(ciley +e ¢2')

{ ﬂ) and 1i

p{crlecy) +iey d(ci|— ecy)

{ premises}

<Cl|6c1 (0 +\ C1|_‘ 602
and reverse steps}
¢(|€> Iﬁ 6>)<61IC1 +e c2')y
{ B.A.}
Pleile) +e 2y

R-Cond left rule: symetrical to R-Cond right rule.

R-Wh rule:

R-Sub rule:

p(cl)|e

{ Lemma H .}

(el (U= e) 4 (el 1))

{ premise and Lemma

O{el YD) ) (e (= el 1)

{ Lemma ()

Blele) ) (- el )

{BA.}

dlclc) el (= e]= €)oo

{ Lemma §| reverse direction}

(el ) AV o((UD|= ¢) (g (= el D))o

{ Lemma a (reverse direction)}

¢<C|C/><e\e')(<c( e|)|_| €/> +< el <_\ 6| /(|e'))>)¢

{ Lemma |3 ] reverse dlrectlon}

Be( )

{ (fact W4)}

(el eV e)g

{ Def.

$(c D) (= €| €Yo
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¢’ (c[c)

= {ax Ii
¢’ - ¢ (clc

= {premise}
¢ ¢ {clc) -9

= {ax Il
¢ ¢ (c|c) - ¥y

= {premise}
¢ ¢ {clc) -

= {ax Il
¢’ (cld) - ¢

R-Case rule:

<

~{ele)

= {B.A., ax (14)}

(@ +¢ @) - {c|c)

= { (U5), (US) of GKAT}

. ¢/ . <C|C/> +¢/ ¢ - (b/ . <C|Cl>

= { premises}

@ Aele) Yty 6 m g (dle)
= { (U5") of GKAT}

(@' (el Wty =@ (elc!) )

= { (U5) of GKAT}

<

<

-

<

¢-((¢' +¢ = ') - (c]) - )
- { (B.A), ax }
¢ (clc) - ¥
Example 1.
ly = y'[{(ds Fz=tt] dy) - co| (dy Tl =tt] dy) - ¢3) (48)
= {et+te—e=1}

ly = y’]([m = x/} +or= zl])«dl Flz=tt] dz) - C2|(d{ Far=tt] dé) : Cé>

= (P
ly = y][lz = 2"((d1 +1a=s) d2) - 2| (d] +(o=re) &) - €3)
=
ly = y][lz = 2")((d1 - €2) +o=u] (d2 - 2)(d] - &) +iamr) (d5 - €3))

e subgoal (1): To prove this subgoal, we introduce a coupling in order to apply the R-Rand rule,

to assure the invariance of variable b in the sampling b & dmybool. For this example, we chose as
coupling the function h, defined such that b = h(b). Hence we use rule (R-Rand) in BiGKAT to
obtain

[y = y'](b & dmybool|b’ & dmybool’)
=[y = y'|(b & dmybool|b’ & dmybool' )|y = y'][b = V']
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rule R-Assign to obtain

ly = v'Ky < y or ttly" <y zor tt) = [y = y'[{y’ <y’ zor ity « y' zor tt)[y = y]

which, by ’adding’ [b = tt][b’ = ¢t] on both sides yields,

y = y'|[b = tt][b" = tt]{y « y zor tt|y’ < y' zor tt)
=ly = y'1[b = ][t = tt](y < y zor tt|y’ < y' wor tt)[y = ']

to form the premise of the conditional rule .
By rule and the equations above we obtain

ly = y/][b = tt][b/ = tt){(y < y wor tt) +b=tt] 1|(y/ — y' zor tt) + b =tt] 1)
=y = y'][b = tt][b" = tt){(y < y zor tt) +pp—p) L|(y" ¢ zor tt) 414y )]y = ¥/']

and finally for (y < y zor bly’ < y' zor b’) we reason with R-Rand to obtain

y =y'l[b=b"[(y < y zor bly' < y' zor b’)
=ly = y'][b = 0"y =y zor bly" <y wor v')[y = y]

and the main proof of subgoal (1) proceeds by proving the invariance of [y = y'] as follows:

ly = y'[(d1 - ca|d] - c3)
= { abbreviation and homomorﬁsm}
[y = y'](b & dbool|b" & dbool’)(y + y zor tt =) 1y <y mor tt 4y 1)
(y < y zor by’ <y’ zor b’)
= { R-Rand}
y = y'|{b < dbool|b’ < dbool’)[y = y'][b =
"1(b & dbool|b' & dbool’ b =10’
bihomy < y zor tt +p,—y) 1y y' zor tt +1p—y) 1bihomy < y zor by’ « y' zor b’
y = y']{b < dbool|b’ < dbool’)[y = y'][b =
"1(b & dbool|b" & dbool’ b =v
(y <y wor tt +pp=p 1y <y zor tt +ppr—s) D]y = y'][b = V']
(y < y zor by’ < y' zor b')
= { R—Assign}
[y = y'](b & dbool|b" & dbool)y = y'][b = b]
(y <y zor tt +p—p) 1y <y @or tt +(pr— 1)y = y'][b =]
(y =y wor by’ « y' zor V')[y = y']
[y = y'](b & dbool |V’ & dbool) (y < y wor tt +1p—u) 1|y y' zor tt +1p—4y) 1)
(y <y zor bly" <y zor b')[y = y/]

= { homomorfism and abbreviation}
ly = y'[{d1 - ealdy - h)[y =y

e subgoal (3): symmetrical to the previous one relatively to variables z, z’.
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e subgoal (4):
[y =y'][z = tt][z" # tt](d> - c2dy - c3)
= { Abbreviations}
[y =4[z = tt][z" # tt](b + ff -y < y zor b|b' <+ ff -y <y wor V')
= { homomorfism}
ly = o/llz = te][z" # 1] (b « fFIV" < f)(y = y wor bly" < y" zor V')
= { R-Assign}

ly = y'|[z = tt][z" # tt](b  [F|b < fF)ly = ¢'][b =]
(y <y zor bly' « y' wor b')[y = ¥]

= ({4
ly = y'llz = tt][a’ # (b V" < f){y  y zor bly'  y' zor b')[y = y/]
= { homomorfism}
ly = o)z = tt][2" # t2](b « [f - y <=y wor b|Y « [ -y <y wor V)[y = y/]
Example 2
Regarding the invariant
0= ((pos # pos’) — (pos = i + S(H) A pos’ = i' — S(H')) A (P(H) — (pos = pos')) A (s = i') A (k = k)
we use the additional abbreviations ¢, = pos # pos’ — (pos = i + S(H) A pos’ = i’ — X(H')) and

o = P(H) — (pos = pos’), to facilitate the writing of the proof.
The first step is to prove the two distinct cases pos = pos’ and pos # pos’:

e 1st case:
(oA (i <kAi <E)A (pos=pos")|{d|d")

= { homomorﬁsm}

oA (i <kANi <k)A (pos=pos’)(b< {0,130 & {0,1})
(H <« b:H|H «< b H){(pos ++ +p pos — —)|(pos’ + + +p pos’ ——))
(i« i+ 17" i +1)

=
oA (i <kAi' <E)A (pos = pos)|(b & {0,1}b" & {0,1})[b = V']

(H <« b:: HH < b H){(pos ++ +p pos — —)|(pos’ + + +p pos’ ——))
(i i+ 17" i +1)

= (e

oA (i <kAi' <k)A (pos=pos)|(b< {0,1}b & {0,1})
(H <« b HH «+ b H){(pos ++ +p pos — —)|(pos’ + + +p pos’ — —))
(i < i+ 1|7 + i’ + 1)[pos = pos’]

= {}

oA (i <kAi" <k)A (pos=pos)(b< {0,1}b & {0,1})
(H <« b HH < b H){(pos ++ +p pos — —)|(pos’ + + +p pos’ — —))
(i i+ 1" i+ 1)W1 A)(i=i ANk=k)

= { notation}

oA (i <kAi' <k)A (pos=pos)](b< {0,1}b & {0,1})
(H <« b HH < b H){(pos ++ +p pos ——)|(pos’ + + +u pos’ — —))
(i i+1i" i +1)p
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e 2nd case:
(oA (i <kANi <E)A (pos # pos")|{d|d")
= { homomophism}
[ A (i <kANi" <E) A (pos # pos’)](b & {0,1}b" & {0,1})
(H <« b:HH <V H){(pos++ +p» pos ——)|(pos’ ++ +p pos’ ——))
(i i+ 1+ +1)
=
[ A (i <kAi" <E)A (pos # pos')|(b & {o 1}y & {0,1})
[pos = start + X(H)pos' = start’ + S(H) A — P(H)][b # ']
(H <« b HH b H){(pos++ +p pos ——)|(pos’ + + +p pos’ ——))
(i i+ 1" +i'"+1)
- {eew)
oA (i <kAi" <k)A (pos# pos)|(b & {0 1}y & {0,1})
[
(H <« b H|H < b H){(pos ++ +p pos — —)|(pos’ + + +4 pos’ — —))
(i i+ 17" i +1)
Let us analyse the two following subcases:

— case [b =1t A b = ff]: program on the left:

pos = start + X(H)pos' = start’ + S(H) A= P(H)][b=tt ANV =ffVb=f ANb =t
|

[- P(H)][pos = start + X(H)][b = tt](H < b :: H|{pos ++ +p pos — —|(i + i + 1]
=[- P(H)|[pos = start + Z(H)][b = tt](H + b :: H|(pos + + +p pos — —|(i < i + 1|

[pos = start + X(H) A (- P(H)) V [E(H) = n]]

and analogously for the program on the right. We can obsevre that = P(H) = 5 and
(S(H) = n A start’ — start = 2n A pos = start + X(H) A pos’ = start’ — S(H)) = 1) and by

Boolean algebra

[~ P(H)] + [2(H) = n][start’ — start = 2n][pos = start + X(H)|[pos’ = start’ — L(H)]
[

=[~ P(H)tbs + [X(H) = n][start’ — start = 2n][pos = start + X(H)][pos’ = start’ — Z(H
=([~ P(H)] + [Z(H) = n][start’ — start = 2n][pos = start + S(H)][pos’ = start’ — S(H)])tbs

— case [b = ff AV = tt]: symmetric
Hence, we conclude [p A (i < k A" < EN(d|d") =[p A (1 <k Ni' <E){d]d")e.

The next step is to apply the Weak Whl rule (21)), for which we observe that the three premises hold:

e first premise: p = [(i < k)] = [(i' < k)]
e second premise: proven above
e third premise: expressions d and d’ start with an action, hence E(d) = E(d') =0

Now we can apply the R-Weak Whl rule and obtain
PRI = pld OB N[ i < k)
and then we reason for programs c, ¢’:

[start’ — start = 2n]{c|c’)

{ (g

[start’ — start = 2n){c|c")o[— (i < k)]

= { arithmetic}

[start’ — start = 2n]{c|c')[P(Hy) — (pos = pos’)]
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