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ABSTRACT
Electron microscopy imaging techniques allow biologists

to obtain nanoscale slice volumes of cells in which biologi-
cal structures can be statistically analyzed under the condition
that the tedious task of segmentation can be automated. If a
learned segmentation has good results on images obtained un-
der the same acquisition process, variations in this acquisition
can drastically affect the final image’s features and can lead
to a drop of segmentation performances. To tackle this prob-
lem, we propose an Unsupervised Domain Adaptation (UDA)
framework based on Batch Normalization. Our method tested
on mitochondria segmentation shows better results than state-
of-the art methods and uses few computation resources, al-
lowing a near real-time use. Furthermore, we propose a met-
ric based on the Wasserstein distance to evaluate the effect of
this normalization. We empirically show that this measure is
log-linearly correlated with the drop of performances of the
adapted segmentation and sheds light on the gain obtained by
our UDA framework.

Index Terms— Unsupervised domain adaptation, Cell
mitochondria segmentation, FIB-SEM, quantifying domain
shift.

1. INTRODUCTION

In the context of Focused Ion Beam with Scanning Electron
Miscroscopy (FIB-SEM), an automatic segmentation network
is able to predict segmentation mask when trained on cells im-
aged with a single acquisition process [1, 2]. However huge
domain shifts can appear between two images depending on
the acquisition protocol used. Thus, between chemical fix-
ation (Fig. 1(a)) and cryo-fixation (Fig. 1(c)) processes, mi-
tochondria change severely in terms of shape, contrast and
texture (see segmentation masks Fig. 1(b)(d)), which leads to
a drop of performance when a model trained on a database
acquired with one protocol is applied to databases acquired
with an other protocol. This situation leads either to call on
tedious human segmentation, or to adapt the model in some
way.
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Fig. 1. Example of 256 × 256 patches from our cells stacks
FS1 and FS2 (a,c) as described in Section 4.1, with their mi-
tochondria segmentation ground truth (b,d).

Domain Adaptation (DA) gained a broad interest with the
great expansion of deep learning. In the context of seman-
tic segmentation, most of the work still focus on adapting
Cityscapes, GTA5 and SYNTHIA datasets [3]. Applying the
same frameworks to biomedical images turns out to be very
challenging, due to little datasets, lack of clear structure and
high internal variation in this kind of data. As regards domain
adaptation for cell segmentation, Haq et al. [4] introduced ad-
versarial methods (based on GANs) to overcome domain shift
between histological data, while Li et al. [5] used the same
method. Roels et al. investigated Y-Net architecture for Elec-
tron Microscopy cell segmentation [6] along with Franco et
al. brought in Attention Y-Net [7]. Those methods are hard to
train, time consuming and energy-guzzling. On the other side,
fast and easy domain adaptation based on BatchNorm statis-
tics recomputation caught our attention. As much as this layer
is able to reduce internal covariate shift [8], it can also reduce
inter-domain shift [9]. The effectiveness of this method de-
pends on the statistics estimate quality which requires a huge
amount of data. However, we propose an adaptation frame-
work based on BatchNorm recomputation and show that in
some cases, it works even with small datasets, making it suit-
able for biomedical images. We also introduce a metric to
quantify the quality of the statistics estimate, and show that
it is a good indicator of the performances after adaptation.
Furthermore, this framework is fast, needs few computation
resources, does not need any new network training and can be
run by biologists on their own.



2. RELATED WORK

BatchNorm (BN) Convolutional Neural Networks (CNN)
were introduced by Ioffe et al. [8] in 2015. The idea of using
BatchNorm in a domain adaptation framework came 3 years
later with AdaBN [9]. This work was a baseline to multiple
ideas: DSBN [10] creates a new CNN layer which has sub-
BN layers for each domain. UBNA [11] improves this work
by reweighting the BatchNorm computation according to its
depth in the network. In our work, we simply use the original
idea of AdaBN.

Nisar et al. [12] and Stacke et al. [13] proposed very sim-
ilar metrics to quantify the domain shift. However, they both
make the assumption that such a metric should be symmetric,
which does not fit the observed performances. Moreover, in
order to compute the usually very costly Wasserstein distance,
they rely on a one dimensional case. They take the distribu-
tion of the mean activations of a neural network, which sup-
poses the hypothesis – non validated to our knowledge – that
these activations show very little variance. Schneider and al.
[14] studied the effect of batch normalization, and leveraged
the closed-form of the Wasserstein distance between Gaus-
sian laws, which fits the context of neural networks activa-
tions, and introduced the source normalization to take into
account the asymmetry of the task. However they focus on
input corruptions for image classification.

3. METHODS

In a usual setup of supervised segmentation learning, we con-
sider a training set {(xi, yi)}ni=1 with images xi ∈ Rh×w and
binary segmentation masks yi ∈ {0, 1}h×w. We denote P
the underlying joint data distribution and P̂ = 1

n

∑
i δxi,yi

its empirical counterpart. We aim at learning a function
f : Rh×w 7→ {0, 1}h×w predicting a mask from an image,
through the minimization of the empirical risk R̂(f) =
RP̂(f) = Ex,y∼P̂ [L(y, f(x))], where L measures the dis-
crepancy between the actual and the predicted label. In UDA,
two domains Ds (source) and Dt (target) represented by their
distributions Ps and Pt are considered. The aim is to learn
a function f that works on Pt using only samples and labels
from Ps and samples from Pt.

3.1. Recall: BatchNorm layer

Let X be the input and Y denotes the output of the Batch-
Norm. In a classical deep learning inference scheme, the
BatchNorm layer computes:

Y = γ × X − µ̂√
σ̂2 + ϵ

+ β (1)

where γ and β are learnable parameters while µ̂ and σ̂2 are
mean and variance estimated on the training set. Note that µ̂
and σ̂2 are usually fixed in a classical inference framework.

3.2. BatchNorm for a real time domain adaptation

We propose a two steps procedure:
First step: We train a U-Net [15] in a supervised way on the
source domain using source image-label pairs {(xi, yi)}ni=1,
(xi, yi) ∼ P̂s.
Second step: We freeze all the U-Net layers but BatchNorms.
For each layer, we recompute their statistics µ̂ and σ̂2 using
all the target samples in the following way. Let B be the num-
ber of data batches. Let µ̂s and σ̂2

s be the statistics computed
on source domain as defined in (1). For each batch and at
each BN layer, let zit be the output of the previous convolu-
tional layer, and µ̂i

t, (σ̂
i
t)

2 be the estimated statistics at step
i on target domain. The BN re-computation for one layer is
described in Alg. 1.

Algorithm 1 BatchNorm re-computation for UDA
1: µ̂0

t ← µ̂s ▷ Set initial µ and σ to the one
2: (σ̂0

t )
2 ← (σ̂s)

2 ▷ computed on source data
3: for i ∈ {1, . . . , B} do
4: µi

t ← E[zit]
5: (σi

t)
2 ← Var[zit]

6: µ̂i
t ← (1− α)µ̂i−1

t + αµi
t

7: (σ̂i
t)

2 ← (1− α)(σ̂i−1
t )2 + α(σi

t)
2

8: end for
9: µ̂t ← µ̂B

t

10: (σ̂t)
2 ← (σ̂B

t )2

3.3. Interpreting the effect of batch normalization

Let ps, pt : {0, 1}h×w×Rh×w 7→ R+ be the probability den-
sities of the source and target distributions respectively. We
have ps(y, x) = ps(y|x) ps(x) and pt(y, x) = pt(y|x) pt(x).
Following [16], we define the covariate shift as the two
joint distributions having identical conditional probabili-
ties but different marginals, that is ps(y|x) = pt(y|x) and
ps(x) ̸= pt(x). Let Er and Vr be the true means and vari-
ances of the source (with r = s) and target (with r = t)
distributions, so that f̃r = (f(x)− Er[f(x)]) (Vr[f(x)])

−1/2

with r ∈ {s, t} are the standardized distributions of a neu-
ral network’s activations. If both the source and target ac-
tivation distributions are Gaussian distributions, we have
p(f̃s(x)|x)ps(x) ≈ p(f̃t(x)|x)pt(x) and the covariate shift
is compensated. Our method aims at approximating such a
compensation by estimating the target distribution’s two first
moments. We claim that the risk discrepancy between the
source and target domains is almost entirely due to the qual-
ity of this estimation, up to the Gaussian assumption, which is
usually seen as suitable for neural network’s activations. This
quality can be measured by the squared Wasserstein-2 dis-
tance between the true moments (µt, σ

2
t ) and those estimated

by the adapted network (µ̂t, σ̂
2
t ), which has the following
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Fig. 2. Comparison of our method with other UDA frameworks. U-Net source refers to a U-Net trained on source domain and
tested on the target domain, i.e the case without adaptation. BN refers to our BatchNorm adaptation. U-Net target refers to the
case of supervised training on target domain.

closed form for Gaussian distributions [17]:

W2
2 = σ2

t σ̂
2
t − 2σtσ̂t + (µt − µ̂t)

2 (2)

Without Bessel’s correction, we have (derived from [14])

E
[
W2

2

]
= σ2

tE[σ̂2
t ]− 2σtE[σ̂t] + E[(µt − µ̂t)

2] (3)

= 2σ2
t − 2σtE[σ̂t] (4)

The Wasserstein distance depends on the magnitude of the
target statistics [14], hence the need for a target-normalized
Wasserstein distance:

W̃2
2 =

1

σ2
t

W2
2 = 1 +

σ̂2
t

σt
− 2

σ̂t

σt
+

(µt − µ̂t)
2

σ2
t

(5)

This normalization makes it an asymmetric measure. Be-
cause of the Gaussian assumption, it can easily be extended
to a multivariate case, in order to be computed on features
from a neural network. Unlike the 1D Wasserstein distance,
it measures discrepancy between distributions of features,
rather than distributions of their means. The measure W̃2

2

quantifies the quality of the adaptation through the covariate
shift reduction, rather than the distance between source and
target domains. In that sense, it differs from [14]: instead
of computing the distance on the adapted model between
the source and target data, we compute the distance between
an adapted model and a supervised one, on target data. Of
course, the true target statistics are intractable, but can be
precisely approximated by training a network on the target
domain. In fact, the quality of this estimation itself is char-
acterized by Eq. (4). It only depends on the term E[σ̂t]
which decreases with the size of the target set, guaranteeing
its robustness when the target set is sufficiently big.

Note that this distance requires training on the target do-
main. Indeed, it does not aim to quantify the domain shift
a priori, but rather is an attempt to study the impact of the
ubiquitous batch normalization.

4. EXPERIMENTS AND RESULTS

4.1. Data

We are interested in domain adaptation for mitochondria
segmentation. To evaluate our adaptation framework, we
perform our experiments on two different FIB-SEM im-
ages from HeLa cells. Each image is a stack of 2D slices.
The FS1 image (FIB-SEM-1) was acquired with chemical
fixation and a sample can be seen Fig. 1(a) along with its
ground truth segmentation Fig. 1(b). FS2 was fixed under
high pressure cryofixation (sample Fig 1(c) and its associated
mask Fig 1(d)). Each image represents a domain. We note
FS1 → FS2 the adaptation from domain FS1 to domain FS2
and FS2 → FS1 the reverse adaptation. For training, we
use 250 annotated slices from each stack and extract 4000
patches of size 256×256 pixels. For testing, we use 60 an-
notated slices from each stack. We use IoU score to evaluate
our experiments.

4.2. Unsupervised domain adaptation results

We compare our BatchNorm adaptation with state-of-the-art
methods in the context of domain adaptation for cell segmen-
tation: CellSegUDA [4], an adversarial based domain adapta-
tion framework and the Y-Net [6]. Visual and numeric results
are shown respectively in Figure 2 and Table 1. First, we
observe that adaptation is performing well in one direction
while not working at all in the other one. Indeed, the model
supervised on target performs better on FS2 than on FS1
(Figure 2), reflecting the greater difficulty of the segmentation
task on the latter. Usually, DA framework does not show such
asymmetric behavior, due to the huge and less shifted datasets
they are applied to. It is an important result to point out be-
cause DA is not yet well introduced in the biomedical field.
For the working side of adaptation FS1 → FS2, Y-Net does
not segment connected shapes, while CellSegUDA performs
a less precise prediction, but more enclosing, which could be
caused by the adversarial loss back-propagated through the



Architecture FS1→ FS2 FS2→ FS1
U-Net (source trained) 0.556 0.006

Y-Net ([6]) 0.614 0.014
CellSegUDA ([4]) 0.673 0.041
BatchNorm (ours) 0.736 0.024

U-Net (target trained) 0.881 0.803

Table 1. IoU of each methods. We use the same notations as
in Figure 2.

entire network. Our BatchNorm framework gets the best re-
sults and seems to be the most appropriate for this kind of
domain shift. The next part aims to study this assumption and
gives a more precise elucidation of those results. Finally, note
that our BN method took 30 seconds to run on a CPU, while
CellSegUDA and Y-Net needed respectively 20 and 6 hours
to train on a GPU Nvidia RTX 3080Ti.

4.3. Interpretation of results

To study the relation between the target-normalized Wasser-
stein distance and the risk discrepancy under the Gaussian as-
sumption, we conduct two experiments.

First, we construct a toy binary classification task, so-
called toy UDA, where a Gaussian distribution N1(µ1, σ

2
1)

must be classified, with a circular decision boundary centered
on µ1 and a radius chosen so that the labels are perfectly bal-
anced (to avoid target shift). This distribution is then ”shifted”
into a second one N2(µ2, σ

2
2). A basic neural network com-

posed of a stack of two Linear and BatchNorm layers trained
on N1 tries to classify N2. We then visualize the effect of
BatchNorm adaptation: the decision boundary of the classi-
fier is computed before and after having adapted the Batch-
Norm layers statistics on N2 (Figure 3).

Then, we extend the previous experiment as follows.

(a) Before adaptation (b) After adaptation

Class 0 Class 1 Source Target
Decision boundary

Fig. 3. Decision boundary of a simple neural network for a
binary classification task before (a) and after (b) adaptation.

N1 acts as a reference, and many others 2D Gaussian distri-
butions of increasing discrepancy with N1 are sampled. This
simulates true and estimated targets. We compute the target-
normalized Wasserstein distance between the reference and
every other Gaussian distributions, as well as the relative clas-
sification performance, that is, with P denoting the perfor-
mance metric, Ptarget/Psource. We observe a quasi log-linearity
between the target-normalized distance and the classification
error discrepancy (blue dots in Figure 4).

We compare this log-linearity with the values observed
in our segmentation task. The proposed measure takes larger
values in the direction FS2 → FS1 than FS1 → FS2 for all
methods, following the segmentation results. This empha-
sizes the ability of this metric to capture the asymmetry of
the adaptation task. In the case FS1 → FS2, the relative per-
formance of all the implemented methods fits this empirical
rule. In the other direction, the relative performances remain
far above the curve (Figure 4). As we observed above, this
corresponds to the case where the adaptation is not working.
We suggest that in this direction, the covariate shift alone does
not characterize the domain shift.
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Fig. 4. Relative performance of implemented methods in both
adaptation directions, compared to the toy UDA task.

5. CONCLUSION

We propose a BatchNorm based domain adaptation applied to
small and complex dataset such as biomedical images. How-
ever the experiments show asymmetric behavior, highlighting
the difficulty of the task on this kind of data. Indeed, adapta-
tion works well in one direction and fails in the other one for
all the tested methods. In the successful direction, our method
obtains better results than state-of-the-art UDA methods on
mitochondria segmentation. It is fast, easy to implement and
can be run by biologists themselves, without GPU. To support
our method results, we introduce a Wasserstein based mea-
sure that quantifies the distance between the statistics from a
model adapted to the target and the one supervised on the tar-
get. A toy dataset shows a link between this measure and the
performance of the tested methods. This result paves the way
for a better understanding of domain shift.
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