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A B S T R A C T   

Phasing, and in particular polyploid phasing, have been challenging problems held back by the limited read 
length of high-throughput short read sequencing methods which can’t overcome the distance between hetero
zygous sites and labor high cost of alternative methods such as the physical separation of chromosomes for 
example. Recently developed single molecule long-read sequencing methods provide much longer reads which 
overcome this previous limitation. Here we review the alignment-based methods of polyploid phasing that rely 
on four main strategies: population inference methods, which leverage the genetic information of several in
dividuals to phase a sample; objective function minimization methods, which minimize a function such as the 
Minimum Error Correction (MEC); graph partitioning methods, which represent the read data as a graph and 
split it into k haplotype subgraphs; cluster building methods, which iteratively grow clusters of similar reads into 
a final set of clusters that represent the haplotypes. We discuss the advantages and limitations of these methods 
and the metrics used to assess their performance, proposing that accuracy and contiguity are the most mean
ingful metrics. Finally, we propose the field of alignment-based polyploid phasing would greatly benefit from the 
use of a well-designed benchmarking dataset with appropriate evaluation metrics. We consider that there are still 
significant improvements which can be achieved to obtain more accurate and contiguous polyploid phasing 
results which reflect the complexity of polyploid genome architectures.   

1. Introduction 

An organism’s genome is the haploid (1n) set of its chromosomes. An 
organism is diploid (2n) if it has two copies of its genome, and polyploid 
if it has more than two (>2n). Many yeasts such as the model organism 
Saccharomyces cerevisiae can survive as haploids, humans are a well- 
known diploid species and important crops such as Solanum tuberosum 
(4n) are polyploid. The current processes to sequence a genome all 
involve a step which fragments the DNA molecules. To obtain an accu
rate and complete view of the genome, these DNA fragments, also called 
“reads”, must then be pieced back together into the original chromo
somes. For heterozygous organisms, this fragmentation makes it difficult 
to know which SNPs (Single Nucleotide Polymorphisms) co-occur on the 
same chromosome. Obtaining accurate haplotype information is bio
logically relevant, as it can provide more accurate reference genomes 
[1], uncover allele-specific functions such as heterosis [2,3], allele- 
specific expression [4] and compound heterozygosity [5]. Haplotype 
information can also be leveraged in GWAS studies [6], or used to 

dissect the evolution of polyploids [7,8], and the origins of hybrids [9]. 
The challenge of determining the original sequences of the chromo
somes, known as haplotypes, is the phasing problem. For a heterozygous 
diploid, solutions to the problem can exploit an obvious symmetry: 
finding the sequence of one haplotype necessarily leads to knowing the 
sequence of the other. The polyploid phasing problem, however, does 
not display this symmetry, which greatly increases its complexity. 
Knowing the sequence of one haplotype still leaves uncertainty over the 
two or more remaining haplotypes. 

Solutions to the polyploid phasing problem can be categorized into 
three main strategies: Physical separation methods, de novo haplotype 
assembly, and alignment-based phasing. Briefly, physical separation 
methods attempt to only sequence one chromosome at a time, side- 
stepping the polyploid phasing problem by sequencing individual 
chromosomes [10]. De novo haplotype assembly methods ambitiously 
attempt to simultaneously recreate the different haplotypes and resolve 
the structure of the genome, typically relying on long-range sequencing 
methods such as Hi-C [11]. Alignment-based phasing methods map the 
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sequencing reads to a reference sequence and identify variable positions, 
which are then used as input to a phasing algorithm that outputs pre
dicted haplotypes. 

In this review, we discuss the different paradigms in the field of 
alignment-based polyploid phasing methods and how the performance 
of these methods is evaluated. We also propose that it would greatly 
benefit the field to standardize the performance metrics used to evaluate 
proposed methods, including the generation of gold standard datasets to 
systematically benchmark against. 

2. Trends in polyploid phasing solutions 

All alignment-based phasing methods share the same pre-processing 
steps. First, a reference sequence must be chosen or assembled de novo, 
to serve as a guide. Then, the sequenced reads are mapped to this 
reference sequence and variable positions are identified. Finally, the 
dataset of reads, reduced to their variable, phase-informative positions, 
is used as input for the phasing method (Fig. 1). The methods proposed 
as solutions to the polyploid phasing problem are highly varied in their 
approaches and mathematical and conceptual underpinnings. To pro
vide a coherent framework for this review, we delineate the develop
ment and usage of different strategies, identifying four major trends: 

Population inference methods, which leverage mapped reads of 
known genotypes in related individuals or in a population to infer the 
haplotypes in a sample. 

Objective function optimization methods, which typically repre
sent the mapped reads as a matrix and seek to minimize an objective 
function which typically represents the amount of discrepancies be
tween the predicted haplotypes and the observed sequencing data. 

Graph partitioning methods, which convert the mapped reads to a 
graph and seek to split the graph into subgraphs that correspond to the 
haplotype predictions. 

Cluster building methods, which rely on the similarity between 
mapped reads to group them into clusters that correspond to predicted 
haplotypes. 

We discuss these four paradigms, their implementations and 
limitations. 

2.1. Population inference 

To solve the polyploid phasing problem, population inference 
methods rely on the availability of significant amounts of genomic data. 
Rather than attempt to phase each genome individually, these methods 
leverage the genetic information of several individuals to inform the 
phasing (Fig. 2). The choice of population is important to the strategy, 
and can range from large, non-specific populations of individuals of the 
same species [12–16], to highly specific, smaller populations such as 
parents or siblings [17–19]. 

The first such methods, SATlotyper [12] and polyHap [13], used 
large populations of unrelated individuals, while later methods such as 
TriPoly [17], PopPoly [18] and mapPoly [19] exploit pedigree infor
mation to inform their predictions. The methods employed to leverage 

population data for phasing are highly varied: SATlotyper casts the 
polyploid phasing problem as a boolean satisfiability problem [12], 
polyHap [13] and mapPoly [19] both use Hidden Markov Models to 
leverage the statistical information in populations of individuals, 
superMASSA [14] frames it as a graphical Bayesian problem, SHEsisPlus 
[15] developed a formulation of the Expectation Maximization algo
rithm to predict the most likely haplotypes, and TriPoly [17] and 
PopPoly [18] both leverage pedigree information and Mendelian laws of 
inheritance to phase haplotypes. Finally, while Poly-Harsh [16] is not 
fully a population inference algorithm, its authors describe a clustering 
algorithm using population inference to connect fragmented phase 
blocks, improving the contiguity of phasing. 

Population inference methods are particularly powerful when it 
comes to extending the reach of short read sequencing using statistical 
information. This has a significant effect on contiguity without requiring 
the use of other sequencing methods. The public availability of a sig
nificant amount of sequencing data for various organisms is an invalu
able resource for this method, though applying it to less studied 
organisms can prove more costly than other strategies presented here. 
One of the notable limitations inherent to population inference methods 
is the requirement of a sequenced population. For the methods which 
require large populations, the material and labor cost of obtaining and 
sequencing a large number of individuals can be a significant limiting 
factor. For those which require fewer but related individuals, the diffi
culty can lay in the existence or availability of such individuals. This 
renders these methods inappropriate for situations with limited re
sources, such as any study of a single individual, particularly if it is an 
individual of a species which is not extensively studied and sequenced. 

The choice of the reference sequence against which to map the 
population is also a crucial one for these methods. The mapping and 
variant calling operations can be computationally expensive, and their 
quality is dependent on the quality of the reference sequence in use. 
Here, a seemingly intractable problem is apparent for some applications 
of population inference methods. Any species with a propensity for 
structural variation would be difficult to phase with these methods, as 
the architecture of their genomes does not lend itself well to using the 
same reference for all individuals of the population. This makes it 
impossible to pick a reference sequence which accurately represents the 
population, and difficult to obtain sufficiently many distinct individuals 
with the same genomic architecture. Not all organisms have extensive 
structural variations within their population, however, and for pop
ulations which maintain highly similar genomic architectures, this 
strategy remains appropriate. 

2.2. Objective function optimization 

The objective function optimization strategy seeks to solve the 
phasing problem for single individuals. This method defines an objective 
function, which it then seeks to minimize algorithmically (Fig. 3). The 
objective function is typically a measurement of how well the predicted 
haplotypes correspond to the reads in the dataset. For example, for MEC 
(Minimum Error Correction) optimization, the objective function counts 

Fig. 1. Alignment-based phasing. 
Alignment-based phasing methods invariably require the 
following steps: DNA sequencing of the sample, which frag
ments the DNA into sequenced reads. The reads are then 
mapped to a reference sequence and heterozygous sites are 
identified by variant calling. The dataset of reads associated 
with their variable positions is then input to a phasing method 
and predicted haplotypes are output. These predicted haplo
types therefore conform to the structure of the reference 
sequence that was aligned to initially.   
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how many mismatches there are between the predicted haplotypes and 
the set of mapped reads. The intuition is that a low MEC score implies a 
highly accurate phasing. Another variant of this method is the MFR 
(Minimum Fragment Removal) method, in which the objective function 
is minimized when the predicted haplotypes and the set of mapped reads 
are in perfect agreement after the removal of as few reads as possible. 
Typically, but not always, objective function optimization methods cast 
the dataset of reads as a matrix, and implement known or novel algo
rithms and heuristics intended to minimize the chosen objective func
tion in the matrix. 

Objective function optimization methods showcase a variety of 
heuristics and statistical methods. The first full application of the 
objective function optimization method for higher ploidies is found in 
HapTree [20], which uses a relative likelihood function to phase poly
ploid genomes. However, the most common objective function is the 
MEC [16,21–26]. The first polyploid application which optimizes the 
MEC function, GTIHR [21], uses a genetic algorithm which only applies 
to triploids. It was followed by SDhaP [22], whose authors developed a 
novel convex optimization method to minimize the MEC for higher 
ploidies. SCGDhap [23], BFBP [24], AltHap [25] and Poly-Harsh [16] all 
also use the MEC function and attempt to optimize it using various ap
proaches, such as BFBP’s belief propagation algorithm derived from 
communication theory and Poly-Harsh’s Gibbs sampling method. 
EHTLD [26] extends the MEC function by applying additional genetic 
constraints, naming it the MEC with Genotype Information (MEC/GI), 
but it only applies to triploids. Finally, HaplotypeAssembler [27] uses 

the MFR objective function and optimizes it using integer linear 
programming. 

The approach of objective function optimization is dominated by the 
MEC function, yet remains varied in the methods implemented to solve 
it. In contrast with the preceding population inference strategy, these 
methods aim to phase individual genomes, relying solely on the mapped 
reads to inform the reconstruction of the haplotypes. This, however, puts 
the objective function optimization and other strategies at a disadvan
tage when the sequencing data is not sufficiently informative to over
come low levels of phasing information. This would be the case of 
genomes with particularly low levels of heterozygosity (<0.1%, or an 
average of 1 heterozygous SNP per kb) or datasets in which the 
sequencing data consists of reads that are shorter than the distance be
tween heterozygous positions, inevitably leading to fragmented haplo
types. Long reads are particularly interesting for phasing applications 
due to how phase-informative they are. Each long read can contain 
significantly more heterozygous positions than its short read counter
parts. However, none of the objective function optimization methods 
cited here take long reads into account. The intuition behind the opti
mization of an objective function is typically guided by the notion that 
the predicted haplotypes must conform in some way to the information 
present in the set of mapped reads. This assumption holds fairly well 
only if the read dataset is known to be of high quality and not error- 
prone. These methods are more appropriate for relatively error-free 
reads. 

Objective function minimization strategies, like the graph 

Fig. 2. Population inference strategy. 
Population inference methods typically cast the 
mapped reads to a matrix and compare them to a 
panel composed of haplotype information obtained 
from sequencing either a large population of in
dividuals, or a smaller group of individuals related 
to the sample. Haplotypes are predicted through 
statistical inference based on the frequency of 
jointly observed genotypes.   

Fig. 3. Objective function optimization strategy. 
Objective function minimization strategies define a func
tion which has a high score when the sample is not phased, 
and an increasingly lower score as the phasing improves. In 
theory such a function should lead to increasingly accurate 
haplotypes, until finally reaching a good haplotype pre
diction when minimized. In this figure we used the domi
nant MEC function as an example, though other functions 
can be used in this strategy. The objective function mini
mization strategy treats the polyploid phasing problem as 
an optimization problem which splits the matrix into k 
submatrices and applies various optimization methods to 
solve it. Each submatrix is then converted to a haplotype 
prediction through consensus of the reads.   
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partitioning and cluster building strategies presented below, do not rely 
on population data and therefore don’t suffer from the same issues with 
complex genomic architectures as the population inference methods. 
However, they all coerce the reads into a selectable ploidy k, which is 
incompatible with the biological reality that a polyploid genome of 
ploidy n does not necessarily have n haplotypes throughout its genome. 
For example, it may have an extra copy of one of its chromosomes, with 
its own unique haplotype. Alternatively, it may have the exact same 
haplotype for a large region of two of its chromosomes, effectively 
presenting only n-1 haplotypes for that region. An algorithm that coerces 
exactly k haplotypes on the entire genome will provide erroneous results 
if these edge cases are not considered and explicitly handled in some 
way. For polyploid genomes with simpler genomic architectures, where 
the ploidy and number of haplotypes remain stable, these methods 
remain appropriate. 

2.3. Graph partitioning 

The graph partitioning strategy casts the dataset of mapped reads as 
a graph. Typically, each mapped read is a node and each edge represents 
how similar two nodes are. The goal is then to determine the optimal 
way to split the graph into subgraphs that represent the different pre
dicted haplotypes (Fig. 4). It departs from the objective function strategy 
by seeking to group similar mapped reads together, away from dissim
ilar mapped reads, rather than seeking to optimize for coherence of the 
predicted haplotypes with the set of mapped reads. It achieves this 
through the use of the graph model and its associated mathematical 
tools and algorithms. To this end, graph partitioning algorithms are 
implemented or developed and applied, outputting subgraphs which are 
then converted to haplotype sequences, usually through majority voting. 

Typical graph partitioning solutions to the polyploid phasing prob
lem cast the mapped reads as nodes, and give weights to overlapping 
nodes which penalize differences between them. Then a graph parti
tioning algorithm is applied to the graph in order to obtain the sub
graphs which correspond to the haplotype predictions. In HapColor 
[28], the weight between mapped reads corresponds to the number of 
mismatches between them. It then applies the DSatur (Degree of satu
ration) algorithm, obtaining a high number of subgraphs, which it then 
iteratively merges until only k subgraphs remain. For PolyCluster [29], 

Hap10 [30], ComHapDet [31] and WhatsHap Polyphase [32], the nodes 
are also mapped reads, and the weights are negative if there are many 
mismatches between reads, and positive if there are many matches. This 
then encourages their respective graph partitioning algorithm to cut the 
graph along the lines of negatively weighted disagreement. Hap10 and 
WhatsHap Polyphase distinguish themselves through their use of long 
reads. Hap10 uses 10× linked reads and applies a max-k-cut algorithm, 
while WhatsHap Polyphase uses PacBio and Oxford Nanopore long reads 
and applies heuristics to solve the cluster editing problem. Notably, the 
initial cluster editing step of WhatsHap Polyphase is ploidy agnostic, 
meaning it is not biased towards a specific ploidy. However, WhatsHap 
Polyphase still coerces a specific ploidy, but it does so while explicitly 
taking into account the edge case of local regions of similarity between 
haplotypes in a process it terms haplotype threading. Finally, the 
recently published flopp [33] uses Uniform Tree Partitioning to partition 
reads by similarity into k subgraphs based on their newly defined 
objective function, the UPEM (uniform probabilistic error minimization) 
score. 

There have been two other graph partitioning methods which cast 
the mapped reads to a graph in a different way. The first application of 
graph partitioning methods to the polyploid phasing problem was an 
extension to HapCompass [34] which made it applicable to polyploids. 
Under the HapCompass model, each node is a SNP, and the mapped 
reads are edges. The use of SNPs as nodes is uncommon, but observed 
again recently with HRCH [35], another non-standard example of a 
graph partitioning method. HRCH uses a weighted SNP hypergraph, 
which it then partitions into predicted haplotypes using the hypergraph 
partitioning algorithm hMETIS. 

The graph partitioning strategy relies on the notion that reads which 
derive from the same haplotype will be similar to each other, and dis
similar to reads derived from other haplotypes. They should then 
naturally form tightly connected graphs if attributed weights which 
correspond to their similarity (or dissimilarity). This strategy leverages 
well-established algorithms which efficiently split graphs into well- 
connected components. WhatsHap Polyphase’s application of a graph 
partitioning strategy to long read datasets and its handling of part of the 
complexity brought on by the variability in genomic architectures is 
encouraging for the handling of the more complex problems of polyploid 
phasing. However, most graph partitioning algorithms, and all methods 

Fig. 4. Graph partitioning strategy. 
Graph partitioning strategies cast the mapped reads to a 
graph in which typically the reads are nodes and the 
edges between them correspond to a measure of how 
similar or dissimilar the reads are to each other based 
on the variants they carry. The goal is to identify k 
subgraphs of reads derived from the same haplotype, 
and to that end various graph partitioning methods are 
applied. Each subgraph is then converted to a haplotype 
prediction through consensus of the reads.   
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presented here, coerce the graph into k subgraphs. This leads to the same 
pitfalls as discussed for the objective function strategy, notably with 
structural variants and aneuploidies. While it may be possible to handle 
all edge cases in post-processing steps, careful consideration should be 
placed upon the sample being studied and the limitations and biases 
inherent to the phasing algorithm being used. There may be an existing 
or yet to be developed graph partitioning method which is intrinsically 
capable of resolving complex genomes containing aneuploidies, struc
tural variants and a variable number of local haplotypes, however this 
has not yet been shown. This strategy may prove to be the model of 
choice for resolving complex polyploid genomes, particularly when 
combined with long reads. 

2.4. Cluster building 

The cluster building strategy groups methods which do not appear to 
have a favored way of representing the data. Instead, these methods 
iteratively create and extend clusters of similar reads using heuristics 
(Fig. 5). These methods are related to the graph partitioning methods in 
that they establish a way to cluster similar reads together, and dissimilar 
reads apart. However, they either do not explicitly cast the mapped 
reads to a graph, or they do not use graph partitioning algorithms. 
Another notable aspect of the methods in this strategy is the interest 
displayed in leveraging long reads to improve phasing quality. 

H-Pop and H-PopG [36] represent the read data as a matrix and seek 
to split the matrix into k parts, with each part corresponding to a group 
of reads with maximal similarity. Each group then represents a different 
haplotype, and it therefore introduces a diversity measure, which seeks 
to maximize the difference between the k groups, or predicted haplo
types. Similarly, Ranbow [37] uses a seed and extend paradigm to 
locally, iteratively cluster reads together based on similarity and 
dissimilarity measures. While it does coerce k haplotypes, it also handles 
the edge case where the number of haplotypes is less than k. While 
Ranbow is described only for short reads, its authors express interest in 
extending it to use long reads. 

All of the cluster building methods which do use long reads are 
ploidy agnostic, meaning they do not coerce a specific ploidy. Ploidy 
agnostic methods seek to cluster similar reads together and prevent 
dissimilar clusters from merging, which naturally results in n’ clusters 
which are ideally equal to the n haplotypes present in the data. Chaisson 
et al., 2018 propose a correlation clustering method to solve the poly
ploid phasing problem using long reads, however it is designed to only 
phase parts of the genome, intended to resolve multicopy duplications, 
and no tool was released [38]. This is the first ploidy agnostic phasing 
method applied to part of a genome. In an unnamed method [9], Fay 
et al., 2019 describe a custom phasing algorithm they developed in order 

to analyze admixed polyploid yeasts. Using mapped long reads, they 
score similar reads positively, and dissimilar ones negatively, then 
proceed to iteratively merge long reads together for three rounds. This is 
the first example of a ploidy agnostic method applied to entire genomes, 
though it is not compared to other methods or released as a tool for the 
community to use. Finally, nPhase [39], a method we recently devel
oped, solves the polyploid phasing problem by iteratively clustering 
similar reads together until only unique haplotypes remain. It is the first 
ploidy agnostic phasing method applicable to entire genomes to be 
released as a tool. 

The cluster building strategy shares the same intuition that drives the 
graph partitioning strategy. Reads derived from the same haplotype will 
resemble each other and be different from reads derived from another 
haplotype. However, in contrast with the graph partitioning strategy, 
these methods do not cast the set of mapped reads to a graph. Instead, 
the cluster building methods are defined by the strategy of iteratively 
growing clusters of reads while maintaining the diversity of the clusters. 
Interestingly, this strategy has led to three ploidy agnostic phasing 
methods, all of which leverage long reads. Ranbow handles the edge 
case where the number of haplotypes is locally lower than the ploidy, 
and the ploidy agnostic methods in theory adapt to the shape of the 
genomic architecture. While it should be expected that ploidy agnostic 
methods are capable of handling aneuploidies and local changes in the 
number of haplotypes, they do not provide any handling of other 
structural variants such as heterozygous inversions and translocations. 
This is partly a consequence of the nature of all of these strategies as 
alignment-based phasing methods, since they are limited to the genomic 
architecture imposed by the haploid reference sequence. However, long 
reads can provide a significant amount of information about structural 
variants, notably through the analysis of individual reads which map to 
distant genomic regions, sometimes on different chromosomes, known 
as split reads. No method of polyploid phasing attempts to use split reads 
to resolve heterozygous structural variation. The development of such a 
method would be a significant step towards complete polyploid phasing 
methods. For complex genomes, cluster building methods, and in 
particular ploidy agnostic phasing methods are appropriate. However, 
one major drawback of ploidy agnostic methods is the interpretability of 
the results. It is less straight-forward to handle ploidy agnostic phasing 
results than phasing results which neatly fit an expectation of k 
haplotypes. 

3. Overview 

The four strategies we described attempt to solve the same problem, 
and there are large interfaces between them. The way a problem is 
modeled influences the solution space that is intuitive and the 

Fig. 5. Cluster building strategy. 
Cluster building strategies do not appear to have a 
favored model to which to cast the set of mapped reads. 
These methods typically score the similarity and dissim
ilarity between overlapping reads and iteratively build 
local clusters from the most similar pairs of reads. This 
strategy has led to ploidy agnostic methods, which cluster 
reads until the remaining clusters are too dissimilar rather 
than cluster them until the remaining clusters fit k 
haplotype predictions.   
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mathematical tools which are at our disposal to solve it. We find that the 
field of alignment-based polyploid phasing algorithms has evolved to 
tackle increasingly complex formulations of the problem, using 
increasingly sophisticated strategies and tools, yet still has significant 
room for improvement. In particular, long reads are under-exploited 
despite representing a significant tool to obtain large amounts of 
phase information. The polyploid phasing problem also needs to 
explicitly tackle and resolve the problems of heterozygous structural 
variants, aneuploidies and local variations in the number of haplotypes. 
The ploidy agnostic methods tackle some of the complexity of genomic 
architecture, but not all. For brevity, we did not discuss whether or not 
each method phases only biallelic SNPs, or also phases indels and mul
tiallelic SNPs. However, it is clear that the majority of methods limit 
themselves to only phasing biallelic SNPs, sometimes also multiallelic 
SNPs, and indels seem to only be phased by Ranbow. We also discussed 
the importance of the chosen reference sequence, and it may become 
common practice to perform a collapsed de novo assembly to generate an 
appropriate reference for each sample prior to alignment-based phasing. 
However, this also entails having to generate a new genome annotation 
for downstream analyses and can unnecessarily complicate comparisons 
between samples. Overall, there is still room for improvement in the 
field of polyploid phasing algorithms and recommended practices. 

4. Validation datasets and performance metrics 

Once a polyploid phasing method has been developed, its perfor
mance must be evaluated. To that end, a validation dataset which cor
responds to a set of reads obtained from a polyploid must be given as 
input to the phasing method, and the output haplotype predictions must 
be evaluated by performance metrics. 

The validation dataset can be simulated or real. In the case of 
simulated datasets, it is possible to know the optimal phasing result, 
which allows for the use of detailed metrics to better understand the 
performance of the polyploid phasing algorithm. A validation dataset 
can be fully simulated, such as in Haptree [20], which randomly gen
erates haplotypes and simulates reads derived from these haplotypes. 
Validation datasets can also be partially simulated, or reconstructed. 
This is the case for WhatsHap Polyphase and nPhase, which both merge 
real sequencing reads of organisms with known haplotypes. WhatsHap 
Polyphase combines human datasets with known haplotypes, while 
nPhase combines S. cerevisiae datasets of haploid and homozygous 
diploid individuals. Fully simulated datasets have a high degree of 
control over all characteristics of the genome, which allows them to test 
the effects of different ploidy levels, heterozygosity levels, genome ar
chitectures, coverage levels. However, these methods are highly 
dependent on the accuracy of their simulations of genomes and 
sequencing results. Partially simulated datasets are more faithful simu
lations of real haplotype phasing scenarios as they use real genomes, 
with real SNPs and real sequencing reads. However, these genomes are 
still artificially produced, typically presenting relatively uniform dis
tance between haplotypes, and there is less control over their charac
teristics, which limits the testing space. Some parameters, such as the 
effects of coverage level and heterozygosity rate, can still be queried by 
downsampling the number of reads or the variable positions input to the 
phasing algorithm, however this process is less straight-forward than it 
is for a fully simulated dataset. 

For all simulated datasets, the ground truth is known and can be used 
to evaluate the predicted haplotypes. A variety of metrics have been 
implemented, here we discuss those most commonly used in the field. 

The MEC score is not only an objective function used in a number of 
phasing methods, but also a metric which has been routinely used as 
evidence of good phasing. Individual reads are, barring sequencing er
rors, considered to be naturally phased sequences. It can therefore 
appear intuitive that comparing the phases of predicted haplotypes with 
the phases of individual reads can be a useful proxy for phasing quality. 
Another desirable property of the MEC score as a performance metric is 

that it can be calculated even when the true phase is unknown, 
bypassing any need for a more complex validation process. Despite these 
qualities, this metric has received some criticism in the context of the 
polyploid phasing problem. In their paper on Ranbow, Moeinzadeh et al. 
note that the MEC metric is incomplete, only considering sequencing 
errors [37], while in their paper for WhatsHap Polyphase, Schrinner 
et al. point out that MEC scores can be lowered by strategies which lead 
to objectively worse phasing results [32]. This is because in polyploids, 
some haplotypes can be identical over large regions, which they term 
“collapsed regions”. The MEC score can be lowered in these collapsed 
regions by clustering the reads of identical haplotypes together, as one 
haplotype, and create a new haplotype which contains noisy reads, 
which will then no longer cause an increase of the MEC score. It is also 
trivial to obtain a perfect MEC score by not clustering reads together at 
all, and simply comparing the input set of reads to itself. Due to the 
significantly higher error rate of long read sequencing, any method 
relying on these reads will necessarily obtain worse MEC scores despite 
the obvious advantages of long reads, further limiting the usefulness of 
this metric for the evaluation of polyploid phasing methods, which 
exploit different input read types (such as comparisons between short 
read and long read methods). Finally, the MEC score is necessarily 
dependent on the error rate of the sequencing and base-calling tech
nology, the read coverage used, and therefore gives no direct, quanti
tative indication on the trustworthiness of a prediction. It can only 
qualitatively be used to compare different datasets to each other. On its 
own, the MEC score is not a straight-forward metric for phasing quality 
and should be interpreted carefully in conjunction with other metrics, 
such as the average phasing block length and number of haplotype 
blocks predicted. 

Due to these flaws in the MEC as a performance metric, it does not 
appear optimal (when the ground truth is known) to use the MEC score 
to validate a phasing method, or to compare it to other methods, instead 
of assessing phasing quality directly by calculating the exact accuracy of 
the predictions made. 

The Switch Error Rate (SWER), also described as the Vector Error 
Rate (VER), measures how frequently the predicted haplotype switches 
between true phases (Fig. 6A). Optimization of this metric does not 
necessarily lead to improved phasing accuracy, as a single vector error 
can reduce the accuracy by half. In a real use case, the presence of a 
switch error has a much more significant consequence than the presence 
of a few point errors. As we argued in our paper on nPhase [39], the 
interpretability of the SWER is further complicated by the fact that the 
presence of more switch errors is not incompatible with significantly 
better phasing results, rendering the metric fundamentally unpredict
able. The use of this metric is no doubt motivated by the observation that 
it is possible to phase several SNPs correctly, yet a single switch error can 
reduce the accuracy by up to 50%. Hence methods which produce longer 
phase blocks, more susceptible to switch errors, may appear to have 
worse accuracy despite having large stretches of correctly phased 
blocks. However, this metric remains flawed and does not behave pre
dictably. Some possible replacement metrics would be to report the 
mean length of unbroken phase blocks, or the minimal unbroken phased 
block length to cover 90% of the SNPs. 

The accuracy, also described as the Reconstruction Rate or Hamming 
distance measures how accurate the phasing is globally. Accuracy can be 
defined in two forms. The first is the prediction accuracy, which at 99% 
can state that for every 100 SNP predictions it makes, on average 1 SNP 
will be in the wrong phase. The second is the reconstruction accuracy, 
which at 99% states that for every 100 SNPs in the genome, on average 1 
SNP will be in the wrong phase or not phased. The latter is more strin
gent by taking the missing rate into account. In both cases, the accuracy 
metric gives an important notion of how accurate the predictions are, 
making it a crucial performance metric to evaluate. By contrast with the 
MEC and SWER, accuracy metrics provide users and developers of 
polyploid phasing methods with a clear indication of how closely they 
came to reconstructing the original haplotypes. It also provides them 
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with the information of how reliable the results are. The expectation 
when phasing using a method which reliably phases similar samples 
with 90% accuracy is that only around 1 in 10 SNPs won’t be in the 
correct phase. There is no straight-forward or useful expectation when 
phasing using a method which reliably phases similar samples with a 
SWER of 0.1% or an MEC score of 2000. 

Accuracy on its own, however, is not a sufficient marker of how 
informative a phasing result is. Without an indication of how contiguous 
the results are, the accuracy metric (like the MEC or SWER) can also be 
highly misleading (Fig. 6B). It is trivial to obtain very good results by 
making highly fragmented predictions which avoid making any pre
dictions about distant SNPs, therefore a good haplotype prediction must 
be both accurate and contiguous. However, the definition of contiguity 
is not straight-forward. Definitions based on the number of phased 
blocks per chromosome can be used to compare methods to each other, 
but due to the variability of genome sizes they do not provide an intu
itive understanding of how good the phasing is. Taking inspiration from 
the metrics used to assess the contiguity of genome assemblies, conti
guity could be defined as the minimum number or length of haplotype 
blocks to cover 50% or 90% of the SNPs. This is done by some methods, 
such as Hap10 which determined the N50 haplotype block length [30]. 

Another option is to represent contiguity with the following formula, 
where the number of haplotigs is the number of predictions made, and 
the number of haplotypes is the true number of distinct sequences in the 
sample (a triploid with four chromosomes would therefore have a total 
of twelve haplotypes): 

Contiguity = 1/(Number of haplotigs/Number of haplotypes). 
With this definition of contiguity, in the optimal case that there are 

exactly as many predictions as there are haplotypes the score will be 
exactly 1, and more fragmented predictions will have lower scores. 
However, this definition would necessarily be highly organism- and 
technology-dependent. Highly different standards of what constitutes a 
good contiguity should be expected when comparing performance on 
organisms with different genome sizes due to the difficulty of phasing 
long sequences, or when comparing short and long read methods due to 
the ability of long reads to phase distant SNPs. 

These metrics are all applicable when the ground truth is known, 
which is the case for simulated datasets. However, it is less straight- 
forward to evaluate the performance of these methods with real poly
ploid data due the absence of a ground truth. A few proxies have been 
developed to tackle this problem. We have already discussed the MEC 
metric, which is one of the main metrics used to evaluate performance 
on real polyploids. Ranbow [37] phases the sweet potato, Ipomoea 
batatas, and uses long, accurate Roche 454 reads to validate its haplo
type predictions. WhatsHap Polyphase and nPhase both phase the 
autotetraploid potato plant, S. tuberosum, and show qualitatively that its 
genes appear well-phased [32,39]. 

In their paper [40], Motazedi et al. develop haplosim, a simulation 
pipeline which can generate simulated haplotypes and associated reads. 
This tool has been used by several polyploid phasing methods for their 
validation steps, such as Hap10 [30] and Ranbow [37]. However, there 
is no widely used benchmarking dataset which can systematically be 
compared against, and haplosim does not appear to have been updated 
in the past three years to reflect the significant improvements in quality 
achieved in long read sequencing methods. A well-maintained gold 
standard benchmark would be of benefit to the field of polyploid 
phasing. It would be interesting for such a resource to carefully consider 
the performance metrics to evaluate, the diversity of read sequencing 
methods and the effects of variable ploidy, genome architecture, het
erozygosity level, genome size, structural variation, indels, polyallelic 
sites and local variations in the number of haplotypes. 

One prevalent set of metrics which we do not discuss here is that of 
the technical, computational aspects of the methods used, such as the 
total amount of memory and computational time used by the algorithm. 

5. Call for a community benchmarking project 

Alignment-based polyploid phasing algorithms have significantly 
evolved since their inception. We consider the graph partitioning and 
cluster building strategies to be the most promising for future methods, 
in particular for the relative ease with which long reads can be lever
aged. More nuanced understanding of the wide variety in the genome 
architectures of polyploids will have to be considered and taken into 
account in the design of future strategies. Additionally, it will be 
important not to ignore indels and polyallelic sites, and to seek to obtain 
accurate and contiguous phasing results. 

We believe that the polyploid phasing field would greatly benefit 
from the development of a common gold standard dataset of simulated, 
partially simulated, or real polyploids, with carefully selected perfor
mance metrics. Systematic benchmarks against the same well-designed 
datasets would be beneficial in several ways by reducing the effort 
required to demonstrate the performance of a new phasing method and 
standardizing the metrics being used, allowing a user to more easily 
compare two polyploid phasing methods. It would also help show the 
conditions under which some algorithms perform highly, or meet their 
limitations. 

In the interest of furthering this goal, we developed a toolkit to 

Fig. 6. Behavior of the SWER and contiguity performance metrics. 
A We illustrate the unpredictable nature of the SWitch Error Rate (SWER) 
metric with two examples. In both cases we suppose we have a haplotype 
prediction of 100 variants. In the first, top case, two consecutive switch errors 
lead to a 2% SWER, but due to being consecutive the accuracy is at a very high 
99%. In the second, lower case, there is only one switch error, giving a better 
SWER score of 1%, however the accuracy is reduced by half to 50% due to it 
occurring in the middle of the prediction. This behavior of the SWER metric 
makes it unpredictable and unreliable. B We illustrate the importance of con
tiguity to the interpretation of accuracy results with two examples. In both 
cases we show haplotype predictions for a diploid sequence. In the first, low 
contiguity example, we illustrate how it can be trivial to obtain extremely ac
curate predictions if they are sufficiently fragmented. Through the second, high 
contiguity example, we show how the accuracy of the previous example could 
dramatically decrease by increasing contiguity. 
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benchmark alignment-based polyploid phasing strategies and tested it 
on a previously described dataset. We hope that this can serve as a 
starting point for the community to develop into a robust gold standard 
benchmarking process and associated datasets. 

This Phasing Toolkit is a series of scripts which perform all of the 
necessary steps for polyploid benchmarking (Fig. 7). It is an open source 
project which welcomes contributions and strives to become a useful 
resource first for benchmarking but also potentially for real use cases of 
phasing tools and subsequent analysis of the results. We will present 
here the current state of the toolkit and how we have used it to generate 
an initial example benchmark of three tools on one dataset: flopp, 
nPhase and WhatsHap polyphase. 

The first step of the benchmarking process is to obtain the data we 
will be testing different phasing methods on. For simplicity, we reused 
the virtual polyploid dataset described in the nPhase paper [39]. We 
provide the downloadData.py script with the names and NCBI accession 
codes of the sequencing datasets we want to download. In this case, we 
provide the accession codes for the short and long read sequencing data 
of four strains of S. cerevisiae which are either haploid or homozygous 
diploid. We also need to download the reference sequence of S. cerevisiae 
by providing the downloadData.py script with its taxid and taxonomic 
group according to the ncbi (559,292, fungi). 

The downloadData.py script uses sra-downloader (https://github. 
com/s-andrews/sradownloader) to download sequencing data and 
ncbi-genome-download (https://github.com/kblin/ncbi-genome-down 
load) to download reference sequences. 

In the second step, we launch the processReads.py script and the 

short reads are mapped to the reference with bwa-mem [41], sorted with 
samtools [42] and variant called using GATK [43]. This provides us with 
a ground truth dataset which will later be used in the performance 
evaluation. 

For the third step, we use the hybridGenerator.py script to generate 
virtual polyploids, in this case a 2n, 3n and 4n dataset of short and long 
reads. These datasets are obtained by merging the reads of individual 
samples and can be set to a custom coverage level (set to 20× in our 
example). 

We can then run the processReads.py script to process the short reads 
as described before to obtain variant calls for the short reads. In order to 
evaluate the effect of heterozygosity rate on the performance of phasing 
tools, we can also automatically subset these variants to obtain specific 
heterozygosity rates. In our example we subset the variants to 1%, 0.5%, 
0.1% and 0.05% heterozygosity rate. We also indicate that we want to 
obtain variant calling results with and without indels, to be able to 
evaluate how well indels are phased. Finally, this script will also process 
the long reads by mapping them to the reference using NGM-LR [44]. 

We now have a dataset of a 2n, 3n and 4n sample, each at 1%, 0.5%, 
0.1% and 0.05% heterozygosity rate, with and without indels, for a total 
of 3*4*2 = 24 datasets ready to be phased, and the corresponding 
ground truth. We then run the phaseToolRunner.py script on each 
dataset and select the tools we want to test. For this initial release of the 
Phasing Toolkit we have only implemented flopp, nPhase and Whatshap 
polyphase, which we all test on our benchmarking dataset. The phase
ToolRunner.py script will keep track of runtime and memory usage for 
each tool and phase each dataset with every tool selected. 

Fig. 7. Phasing toolkit benchmarking strategy. 
The benchmarking strategy we describe here consists in obtaining long and short read data of individual haploids of the same species and using them to construct 
virtual polyploids which, once phased, will be compared to the ground truth obtained from the original samples. 
A We generate a virtual polyploid’s long and short read datasets by combining the long and short read datasets of n haploid individuals. At this step we can subsample 
the reads to reach a coverage level of X to evaluate their effects on phasing quality. We then map and variant call these reads. Once variant called, we can subsample 
the variants to a heterozygosity level of x% to evaluate its effect on phasing quality and choose to include or exclude indels for the same reason. The final dataset is 
then phased using the available phasing algorithms. 
B In parallel, we use the accurate short read sequencing data of the original individuals to generate a ground truth dataset by mapping and variant calling to the same 
reference. We can then compare this ground truth to the predictions of different phasing algorithms obtained in A, and calculate various performance metrics in order 
to then evaluate and compare phasing tools. 
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Finally, the results are analyzed by the accuracyCalculator.py script 
which will output, for each test, the true positive rate, false positive rate, 
completeness, number of haplotigs, and contiguity. 

The true positive rate is the number of correctly phased elements 
divided by the best possible score (all elements phased perfectly). The 
false positive rate is the rate of incorrectly phased elements. 
Completeness is the number of phased elements divided by the total 
number of elements to phase. Contiguity is 1/(Number of haplotigs/ 
Number of haplotypes). We expect that the Phasing Toolkit will evolve 
to provide different, more informative and precise performance metrics. 

With this initial benchmarking test, we were able to show that on this 
dataset, flopp performs very well, demonstrating that for higher het
erozygosity rates it is capable of delivering very high accuracy and 
perfect contiguity, while using very little resources. Deeper analysis of 
the results of this initial benchmark would warrant a thorough and 
detailed analysis which falls outside the scope of this review, however 
the full results, including runtime and memory usage, are available in 
Supplementary Table S1. 

The Phasing Toolkit is available on github (https://github.com/Om 
arOakheart/Phasing-Toolkit). 

6. Perspectives 

We look forward to more extensive benchmarking being made 
convenient and straight-forward with the Phasing Toolkit and granting 
us a better understanding of how flopp and other tools perform on 
different datasets, such as individuals with more complex genomic ar
chitectures such as aneuploidy, large regions of highly similar sequences 
between haplotypes, or simply much larger genomes. We believe that 
indels are an important and still overlooked source of heterozygosity 
with non-negligible genetic impacts and anticipate their explicit 
handling by future polyploid phasing methods. Finally, we hope that the 
Phasing Toolkit will be a useful platform for the community to discuss, 
develop and implement gold standard polyploid phasing benchmarking 
datasets, performance metrics, and generate actionable information on 
the strengths and limitations of available methods. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2022.110369. 
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