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A PSEUDODIFFERENTIAL ANALYTIC PERSPECTIVE ON

GETZLER’S RESCALING

GEORGES HABIB AND SYLVIE PAYCHA

Abstract. Inspired by Gilkey’s invariance theory, Getzler’s rescaling method

and Scott’s approach to the index via Wodzicki residues, we give a localisation
formula for the Z2-graded Wodzicki residue of the logarithm of a class of differ-

ential operators acting on sections of a spinor bundle over an even dimensional

manifold. This formula is expressed in terms of another local density built
from the symbol of the logarithm of a limit of rescaled differential operators

acting on differential forms. When applied to complex powers of the square

of a Dirac operator, it amounts to expressing the index of a Dirac operator in
terms of a local density involving the logarithm of the Getzler rescaled limit

of its square.
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Introduction

On a closed Riemannian manifold (Mn, g), the algebra Ψcl(M,E) of classical pseu-
dodifferential operators acting on the smooth sections of a finite rank vector bundle
E over M , admits a unique (up to a multiplicative factor) trace, called the Wodzicki
[W] or the noncommutative residue, built from a residue density defined as follows.
Given Q in Ψcl(M,E), the residue of Q is defined as the integral over M of the
residue density ωRes

Q (x) := res(σ(Q)(x, ·)) dx1 ∧ . . . ∧ dxn defined in (4) with

res(σ(Q)(x, ·)) := 1

(2π)n

∫
|ξ|=1

trE(σ−n(Q)(x, ξ)) dSξ.

Here, n is the dimension of M , trE stands for the fibrewise trace on End(E), (x, ξ)
is an element in T ∗M , and σ−n(Q)(x, ξ) is the (−n)-th homogeneous part of the
symbol at (x, ξ). The Wodzicki residue extends beyond classical pseudodifferential
operators to the logarithm logθ Q of a pseudodifferential operator Q with Agmon
angle θ (see (17)), giving rise to the logarithmic residue ωRes

logθ Q(x). Here the loga-

rithm logθ Q is defined as the derivative with respect to z of the complex power Qz
θ

[Se] at the point z = 0 (see §1.4 for the precise definition) and the Agmon angle θ
gives a determination of the logarithm.

The Wodzicki residue is local in so far as it is expressed as the integral on M of
a volume form involving the (−n)-homogeneous component of the symbol. So it
comes as no surprise that the index of the Dirac operator can be expressed in terms
of the residue. For a Z2-graded vector bundle E = E+⊕E−, the index of an elliptic

odd operator /D
+

: Ψcl(M,E+) → Ψcl(M,E−) with formal adjoint /D
−

= ( /D
+
)∗

can be written [Sc]

Index( /D
+
) = −1

2
sres(logθ( /D

2
)) = −1

2

∫
M

ωsRes
logθ

/D2(x) dx,

where /D := /D
+⊕ /D

−
so that /D

2
= /D

−
/D
+
+ /D

+
/D
−
and θ = π. The graded residue

“sres” is defined in the same way as the residue with the fibrewise trace on End(E)

replaced by the Z2-graded trace and ωsRes
logθ( /D

2)
(x) := sres(σ(logθ( /D

2
))(x, ·)) dx1 ∧

. . . ∧ dxn.

Inspired by the approach adopted in [Sc], we revisit Geztler’s rescaling in the con-
text of index theory in the light of the logarithmic Wodzicki residue. For a class of

differential operators acting on spinors which includes /D
2
, we express the logarith-

mic residue density evaluated at a point p in M in terms of another local density
ω̃sres
logθ P̃lim

(x) (see formula (1)) involving a limit P̃lim as the parameter λ goes to zero

of a family of operators P̃Ge
λ built from the original one by rescaling it at the point

p (see Formula (54)). This new local density is defined on operators acting on dif-
ferential forms and the rescaling defined in terms of a local diffeomorphism fλ along
geodesics (see Formula (6)) composed with a dilation/contraction map Uλ acting on
tensors (see Formula (27)), amounts to pulling back the tensor from the manifold
to its deformation to the normal cone at the point p (see Formula (6)). In this
sense, Formula (3) at the limit as λ tends to zero, can be viewed as a localisation
formula of the logarithmic residue at point p.
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For this purpose, we single out a class of differential operators acting on smooth
sections of a vector bundle E, which we call geometric w.r. to a metric g, that
send geometric sections of the bundle to geometric sections (Definition 4.10). Stalks
of geometric sections at a point p are polynomials in the jets of the vielbeins for the
metric g (Definition 4.5). Inspired by Gilkey [G], we define the Gilkey order (at
a point p) of a geometric section (see (48)) as being the order of those jets. Then
a geometric operator is required to transform a geometric section to one whose
Gilkey order is obtained by adding the order of the operator to the Gilkey order
of the initial section. Geometric differential operators enjoy nice transformation
properties under local dilations (fλ)λ∈[0,1] along local geodesics defined by means
of exponential geodesic normal coordinates (see Equation (6) for the definition).
Indeed a geometric differential operator w.r. to g transforms to one w.r. to gλ
(Proposition 4.15), where gλ = λ−2f∗λg. This transformed metric can be viewed as
the pull-back metric under the canonical projection π̂ : M → M of the deformed
manifold M via a deformation to the normal cone to p, see (41).

We consider the bundle E = ΛT ∗M . From a differential operator P in Ψcl(M,ΛT ∗M)

acting on differential forms, we define a family of operators P̃Ge
λ := λord(P )U ♯

λf
♯
λP

(see (54)) using notations borrowed from [vEY], which are obtained under the com-
bined action of the dilations fλ mentioned previously and the so-called Getzler
map Uλ that acts on tensors, see Definition 2.2. We call a geometric differential

operator P rescalable if P̃Ge
λ admits a limit P̃lim when λ → 0 (Definition 5.1). In

Proposition 5.6, we give a necessary and sufficient condition for the rescalability of
a geometric differential operator in Ψcl(M,ΛT ∗M) and show that the coefficients

of the limit P̃lim are polynomial expressions in the jets of the Riemannian curvature
tensor.

A first result is the localisation formula (2) for a differential operator P acting
on differential forms. It involves a local n-degree form ω̃Res

Q (x), inspired by Scott’s

proof of the index theorem [Sc, §3.5.3]. This local form is actually defined for
more general operators Q in Ψcl(M,ΛT ∗M) (see Section 2 for the definitions),
whose homogeneous symbol σ−n(Q)(x, ξ) of degree −n at (x, ξ) in T ∗M lies in
End(ΛT ∗

xM) so that σ−n(Q)(x, ξ)1x lies in ΛT ∗
xM . It is defined as (see Equation

(31)):

(1) ω̃Res
Q (x) :=

1

(2π)n

∫
S∗
xUp

[σ−n(Q)(x, ξ)1x][n] dSξ,

where Up is a local exponential neighborhood of a point p in M and S∗
xUp is the

unit sphere in the cotangent space T ∗
xUp at point x and α[n] is the n-degree part of

α. This local form differs from the Wodzicki residue density ωRes
Q (x), which involves

the fibrewise trace trE(σ−n(Q)(x, ξ)). In general it does not induce a global form.
Its relevance lies in the fact that it does define a global form on a subclass of
operators in the range of a Clifford map in so far as there, it is proportional to
the Wodzicki residue density (Corollary 2.11). The local form ω̃Res

Q extends to
logarithmic pseudodifferential operators Q = logθ P for a differential operator P
with Agmon angle θ. In Proposition 2.7 we show that the local n-form ω̃Res

logθP
(·) at

the point fλ(x) is the local n-form associated to the pull-back operator U ♯
λf

♯
λ(logθP )
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at the point x. This allows us to show that for small enough positive λ

ω̃Res
logθ(P )(fλ(x)) = ω̃Res

logθ(P̃Ge
λ )

(x), ∀x ∈ Up.

If moreover P is rescalable, taking the limit as λ tends to zero yields the localisa-
tion formula

(2) ω̃Res
logθ(P )(p) = ω̃Res

logθ(P̃lim)
(x), ∀x ∈ Up.

This formula can be applied to the Hodge Laplacian which is a geometric and
rescalable operator (see Example 5.8).

We then consider the case of a spinor module E = ΣM when M is a spin mani-
fold of even dimension. To define rescalability of geometric differential operators in
Ψcl(M,ΣM) we use the identification Cℓ(TM)⊗C ≃ End(ΣM), and the Clifford
map cg : Cℓ(TM) −→ End(ΛT ∗M) (see (25)) which sends an element of the Clif-
ford algebra Cℓ(TM) on the tangent bundle to an endomorphism of ΛT ∗M . We call
a geometric differential operator P in Ψcl(M,ΣM) rescalable if cg(P ) is rescalable
in Ψcl(M,ΛT ∗M). We then give a necessary and sufficient condition for the rescala-
bility of geometric differential operators in Ψcl(M,ΣM), see Proposition 5.9. In this
part of the work, we consider even dimensional spin manifolds, however our study
extends to manifolds with a spinc structure. Indeed the construction relies on the
identification Cℓ(TM)⊗ C ≃ End(ΣM) which can be extended to manifolds with
a spinc structure, in which case we have the identification Cℓ(TM)⊗ C ≃ End(E)
[BHMMM, Thm. 2.13] with E a vector bundle isomorphic to the spinor bundle of
the spinc bundle. For simplicity, we restrict ourselves to spin manifolds.

It follows from Proposition 2.9 that for a differential operator P ∈ Ψcl(M,ΣM) with
Agmon angle θ, the form ω̃Res

logθ cg(P ) defines a global density. In Corollary 5.10, we

infer from the above localisation formula (2) a second localisation formula for
operators in Diff(M,ΣM):

(3) ωsRes
logθ P (p) = (−2i)n/2 ω̃Res

logθ(P̃lim)
(x),

where P is a rescalable geometric differential operator in Diff(M,ΣM) of Agmon
angle θ which is even for the Z2-grading ΣM = Σ+M ⊕ Σ−M . This formula
expresses the residue density ωsRes

logθ P (p) at a point p in terms of a local density

ω̃Res
logθ(P̃lim)

(x) of the limit P̃lim of the rescaled operators P̃Ge
λ .

The localisation formula (3) applied to the square of the Dirac operator (Proposition
6.1), which is proven to be a rescalable geometric differential operator, confirms the
results of [Sc, §3.5.3.3] (identification of (3.5.3.12) and (3.5.3.40)). Although the

limit operator P̃lim is expected to have a simpler form than the original operator
as in the case of the Dirac operator, computing ω̃Res

logθ(P̃lim)
(x) nevertheless remains

a challenge since it involves its (−n)-th homogeneous symbol.

1. The Wodzicki residue density for classical pseudodifferential
operators

In this section, we review the definition of the Wodzicki residue for classical pseu-
dodifferential operators acting on sections of a given vector bundle. We recall the
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covariance property of the Wodzicki residue under local dilations (see Proposition
1.3). We also recall how the Wodzicki residue extends to logarithms of classical
pseudodifferential operators with appropriate spectral properties and refer to this
extension as logarithmic Wodzicki residue. Specialising to the trivial vector bun-
dle, we show a localisation formula for the logarithmic residue of scalar differential
operators. It identifies the logarithmic residue density at the point p of a differ-
ential operator P with the logarithmic residue density at any point x in a small
neighborhood of p of the same operator localised at p (see Proposition 1.5).

1.1. The Wodzicki residue for classical pseudodifferential operators. Let
(E, π,M) be a vector bundle over M of rank k and let Ψcl(M,E) denote the
algebra of classical polyhomogeneous pseudodifferential operators acting on the
space C∞(M,E) of smooth sections of a vector bundle E modelled on a vector
space V , based on an n-dimensional smooth manifold M . These are linear maps
Q : C∞(M,E) → C∞(M,E), which read Q =

∑
i∈I QUi

+ SQ, where given a par-
tition of unity χi, i ∈ I of M subordinated to a finite covering (Ui, i ∈ I) of M
with open subsets, QUi

:= χi Q|Ui
, i ∈ I are localisations of Q in open subsets Ui

of M , and SQ is a smoothing operator–it maps any Sobolev section to a smooth
section. Since we are interested in singular linear forms which vanish on smoothing
operators, we reduce our study to localised operators QU . To simplify notations, we
drop the explicit mention of the localisation and simply write Q. A pseudodifferen-
tial operator (localised on some open subset U of M) acting on C∞(U,E) is called
classical or polyhomogeneous if it is a linear combination of pseudodifferential
operators Q whose (local) symbol σ(Q)–which lies in C∞(T ∗U \U ×{0},End(V )),
in any local trivialisation of E over U–has a polyhomogeneous expansion of the
form

σ(Q) ∼
∞∑
j=0

σm−j(Q),

with m in C, the order of Q. Explicitly, for any N in N, the difference σ(Q) −∑N
j=0 χσm−j(Q) is a smooth pseudodifferential symbol of order ≤ ℜ(m)−N , with

χ a smooth function which vanishes in a neighborhood of zero, and σα(Q) positively
homogeneous of degree α ∈ C, that is,

σα(Q)(x, λ ξ) = λα σα(Q)(x, ξ)

for any (x, ξ) ∈ TU∗ \ U × {0} and λ > 0. For further details, we refer to classical
books on the subject such as [Sh], see also [Sc, Example 1.1.8]. We also consider
the class of logarithmic pseudodifferential operators, namely those whose symbols
have a log polyhomogeneous expansion of the form

σ(Q)(x, ξ) = mlog(|ξ|)Id + σ0(Q)(x, ξ),

where σ0(Q) is a classical symbol of nonpositive order. We define the local residue
density1

1s-densities on an n-dimensional real vector space V are functions µ : V n −→ R such that
µ(Av1, Av2, . . . , Avn) = |det(A)|s µ(v1, . . . , vn) for any linear isomorphism A of V and form a one
dimensional vector space |Λ|s(V ). An s-density on a manifold M is a section of the s-density

bundle |Λ|s(TM) over M whose fibre over x consists of s-densities on the tangent space TxM .
On an n-dimensional manifold M , 1-densities, also called densities, can be canonically identified
with the n-forms on M .
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(4) ωRes
Q (x) := res(σ(Q)(x, ·)) dx1 ∧ . . . ∧ dxn

where dx1 ∧ . . .∧ dxn is the flat volume form in local coordinates on the (oriented)
n-dimensional manifold M and

res(σ(Q)(x, ·)) := 1

(2π)n

∫
|ξ|=1

trE(σ−n(Q)(x, ξ)) dSξ,

where trE stands for the fibrewise trace on End(E), dSξ for the standard density
on the unit sphere Sn−1 obtained as the interior product of the flat volume form

dξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn by the radial vector field R :=
∑n

i=1 ξ
i ∂
∂ξi

dSξ := R⌟
(
dξ1 ∧ . . . ∧ . . . ∧ dξn

)
=

n−1∑
j=1

(−1)n−1 ξj dξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn.

A priori, ωRes
Q (x), which is defined using a localisation of the operator Q around x,

depends on the choice of local coordinates in a neighborhood of x. M. Wodzicki [W]
showed that it actually defines a global n-form, which can be integrated to define
the linear form Res on Ψcl(M,E), called the Wodzicki or noncommutative residue:

Res(Q) :=

∫
M

ωRes
Q (x).

Remark 1.1. (1) If (Mn, g) is a Riemannian manifold, we can equivalently
define

res(σ(Q)(x, ·)) := 1

(2π)n

∫
S∗
xM

trE(σ−n(Q)(x, ξ)) νx(ξ),

as an integral over the cotangent unit sphere S∗
xM := {ξ ∈ T ∗

xM, |ξ| = 1}
endowed with the induced Riemannian volume form νx. As before, n stands
for the dimension of M .

(2) TheWodzicki residue easily extends to a Z2-graded vector bundle E = E+⊕
E− replacing the fibrewise trace trE by a graded trace strE := trE

+ − trE
−
,

in which case we set

sres(σ(Q)(x, ·)) := 1

(2π)n

∫
|ξ|=1

strE(σ−n(Q)(x, ξ)) dSξ,

and

ωsRes
Q (x) := sres(σ(Q)(x, ·)) dx1 ∧ . . . ∧ dxn.

1.2. Local dilations. Throughout the paper, (Mn, g) denotes a smooth Riemann-
ian manifold and p a point in M . The local identification uses the exponential map

(5) expp : TpM ⊃ Br −→ Up ⊂ M

around p which yields a local diffeomorphism from a ball Br of radius r > 0 centered
at 0 to a local geodesic neighborhood Up of p. This exponential map is combined
with a rescaling leading to the map (This is the map exp ◦Tϵ in [F, Formula (4.4.7)])

expp ◦hλ : TpM ⊃ Br/λ −→ Up ⊂ M,
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where

hλ : Br/λ ⊂ TpM −→ Br ⊂ TpM

x 7−→ λx.

For 1 > λ > 0 and r > 0 we set Uλ
p := expp(B r

|λ|
), so that Up ⊂ Uλ

p and

V λ
p := expp(B r

|λ|
)× {λ} ⊂ Mλ := M × {λ} ≃ M.

The map (5) induces local transformations

fp,λ : Uλ
p −→ Up

expp(x) 7−→ expp(λx)(6)

which we shall denote by fλ to simplify notations. As the map λ → expp(λx) is
continuous, we define f0 = lim

λ→0
fλ|Up

. Hence, f0(expp(x)) = p for any x ∈ Br.

Throughout the paper, we use the following notations. From a given orthonormal
basis e1(p), . . . , en(p) of TpM at p ∈ M , we build:

• a local orthonormal frame

(7) Op(x, g) := {e1(x, g), . . . , en(x, g)}, x ∈ Up

of TxM by the parallel transport τc : TpM → TxM along the geodesic
c(t) = expx(tx), with x in Br ⊂ TpM, which takes p to x = c(1) so that
ej(x, g) = τc(ej(p));

• normal geodesic coordinates at any point x ∈ Up, as follows: Let B̃r be the

open ball in Rn of radius r centered at 0 and consider the map B̃r ⊂ Rn →
Up; (x

1, . . . , xn) 7→ x, which is defined via the local exponential map expp
in (5) by

(8) x = expp

(
n∑

i=1

xiei(p)

)
∈ expp(Br).

Unless specified otherwise, throughout the paper, we use normal geodesic coordi-
nates. As usual, we identify any point x ∈ Up with its coordinates X := (x1, . . . , xn).

Composing the map f−1
λ with the normal geodesic coordinates B̃r ⊂ Rn → Up gives

rise to a new coordinate system on Uλ
p

B̃r ⊂ Rn → Uλ
p ; (y

1, . . . , yn) 7→ expp

(
n∑

i=1

λ−1yiei(p)

)
.

Since Up ⊂ Uλ
p for any λ > 0 small enough, there are two coordinate systems

X := (x1, . . . , xn) and

Y :=
(
y1 := λx1, . . . , yn := λxn

)
at any point in Up. A direct computation shows that the coordinate system Y is
indeed the normal geodesic coordinates associated to the metric f∗λg on Uλ

p since

(f∗λg)p = λ2g|p. Hence, for any λ > 0 small enough, we have

(9) f∗λ

(
∂

∂xi

)
=

∂

∂yi
= λ−1 ∂

∂xi
◦ fλ and f∗λdx

i = dyi = λ dxi ◦ fλ.
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In the following, we often identify a point y in Uλ
p with its coordinates Y =

(y1, . . . , yn).

1.3. The behaviour of the Wodzicki residue under local dilations. Let
us now recall the general fact on pull-back of operators. Any local diffeomorphism
f : U → V induces a local transformation on a localised pseudodifferential operators
as follows: Given any Q in Ψcl(V,E) where (E, π,M) is a vector bundle over M ,
we define f♯Q ∈ Ψcl(U, f

∗E) by

(10)
(
f♯Q
)
s := f∗

(
Q
(
(f∗)

−1
(s)
))

= Q
(
s ◦ f−1

)
◦ f,

where s is any local section in f∗E above U . Here, f∗E is the pull-back bundle over
U of the bundle E given by

f∗E = {(x, y) ∈ U × E| f(x) = π(y)}.

The following lemma is an easy consequence of the transformation property of
symbols under the local diffeomorphism fλ defined in (6). We nevertheless provide
an explicit proof.

Lemma 1.2. Given any Q in Ψcl(M,E), we have for small enough positive λ,

(11) σ(f♯λQ)(x, ξ) = σ(Q)
(
fλ(x), (f

∗
λ)

t(ξ)
)
,

at any given point x in Up ⊂ Uλ
p .

Proof. Under a local diffeomorphism f, the symbol σ(Q) of Q transforms as [Sc,
Equation (3.5.3.31)]

(12) σ(f♯Q)(x, ξ) = σ(Q)
(
f(x), (f∗)t(ξ)

)
+ lower order terms.

Here “lower order terms” stands for the push forward by f of the sum∑
|α|>0

1
α! Φα(x, ξ) ∂

α
ξ σ (x, ξ) with

Φα(x, ξ) := Dα
z e

i⟨φf
x(z),ξ⟩|z=x, and φf

x(z) := f(z)− f(x)− df(x)(z − x),

which is a polynomial in ξ of degree ≤ |α|
2 whose coefficients are linear combinations

of products of derivatives
∏

γ ∂
γf(x) of f at x with

∑
|γ| = |α| and |γ| ≥ 2. In the

case of f := fλ, we have ∂i∂jf ≡ 0 for any indices i, j running from 1 to n, so that
the lower order terms vanish leading to (11). □

Proposition 1.3. Let E be a vector bundle over M . For any given Q in Ψcl(M,E),
the n-form ωRes

Q transforms covariantly under dilations fλ as

ωRes
Q ◦ fλ = ωRes

f♯λQ
.
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Proof. Applying the local residue density (4) at the point fλ(x), we have

(2π)nωRes
Q (fλ(x)) =

(∫
|ξ|=1

trE (σ−n(Q) (fλ(x), ξ)) dSξ

)
dy1 ∧ . . . ∧ dyn

=

(∫
|ξ|=1

trE
(
σ−n(Q)

(
fλ(x), λ

−1 ξ
))

dSξ

)
dx1 ∧ . . . ∧ dxn

=

(∫
|ξ|=1

trE
(
σ−n(Q)

(
fλ(x), (f

∗
λ)

t(ξ)
))

dSξ

)
dx1 ∧ . . . ∧ dxn

(11)
= (2π)nωRes

f♯λ(Q)
(x).

This finishes the proof of the lemma.
□

1.4. The Wodzicki residue for logarithmic pseudodifferential operators.
For later purposes, we review here how the Wodzicki residue can be extended to
a class of logarithmic pseudodifferential operators, a notion which we first briefly
recall (we refer the reader to [Sc, §2.6.1.3] for further details). As before, we consider
a vector bundle E over M of rank k. We say that an operator Q in Ψcl(M,E) of
order m has a principal angle θ ∈ [0, 2π) (see [Sc, §1.5.7.1]) if there is a conical
neighbourhood of the ray Lθ := {r eiθ, r ≥ 0} such that its leading symbol matrix
σL(Q)(x, ξ) := σm(Q)(x, ξ) has no eigenvalues in this neighbourhood for every
(x, ξ) ∈ T ∗U \ U × {0}. In particular, the operator is elliptic and, therefore, has
a purely discrete spectrum. A principal angle θ of an operator Q is said to be an
Agmon angle if there are no eigenvalues of Q on the ray Lθ. In this case, Q is
invertible and there exists a solid angle of the ray

Λε,θ = {reiα, r ≥ 0, θ − ε ≤ α ≤ θ + ε},

for some ϵ > 0, that contains no eigenvalue of Q. Now, for any operator Q with
Agmon angle θ and for a holomorphic function φθ : C \ Lθ → C, we define the
Cauchy integral

φθ(Q) :=
i

2π

∫
Γθ

φθ(λ)(Q− λ)−1dλ,

where Γθ is a closed contour along the ray Lθ around the spectrum of Q. For
example, this contour can be taken as follows: Fix 0 < δ < R, we define

Γθ = Γ1
θ ∪ Γ2

θ ∪ Γ3
θ ∪ Γ4

θ,

where

Γ1
θ = {reiθ, δ ≤ r ≤ R}, Γ2

θ = {rei(θ−2π), δ ≤ r ≤ R}

and

Γ3
θ = {δeit, θ − 2π ≤ t ≤ θ}, Γ4

θ = {Reit, θ − 2π ≤ t ≤ θ}.

One can easily check that Qφθ(Q) = φθ(Q)Q. The symbol of φθ(Q) reads as

(13) σ(φθ(Q)) ∼ i

2π

∫
Γθ

φθ(λ) (σ(Q)− λ)∗−1 dλ,
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where σ(Q) is the symbol of Q, the star in ∗−1 stands for the inverse in the symbol
algebra and

(σ(Q)− λ)∗−1 = σL(Q)∗−1 (σ(Q)σL(Q)∗−1 − λσL(Q)∗−1 )∗−1

= σL(Q)−1 (1 + symbol of order < 0)∗−1

is obtained by means of an expansion in ξ. Given a local diffeomorphism f : U → V
and an operator Q ∈ Ψcl(M,E) with Agmon angle θ and order m, the operator f♯Q
defined in (10) is in Ψcl(M, f∗E) with the same Agmon angle θ, since from Equation
(12), we have that

σL(f
♯Q)(x, ξ) = σL(Q)

(
f(x), (f∗)t(ξ)

)
.

Also the relation f♯(Q− λ)−1 = (f♯Q− λ)−1 gives that f♯(φθ(Q)) = φθ(f
♯Q). Now,

we consider the particular case where φθ(λ) = λz
θ = |λ|zeizarg(λ) for ℜ(z) < 0 and

θ ≤ arg(λ) < θ + 2π and define the complex power

Qz
θ = φθ(Q) =

i

2π

∫
Γθ

λz
θ(Q− λ)−1dλ.

In this case, the symbol of Qz
θ has the expansion

σ(Qz
θ)(x, ξ) ∼

∞∑
j=0

σmz−j(Q
z
θ)(x, ξ),

where σmz−j(Q
z
θ)(x, ξ) are the positive homogenous of degree mz− j given by [Sh,

§11.1]

(14) σmz−j(Q
z
θ)(x, ξ) =

i

2π

∫
Γθ

λz
θ σ−m−j

(
(Q− λ)−1

)
(x, ξ)dλ.

The map z 7→ Qz
θ is holomorphic on the complex plane with values in the space

B(Hs(M,E), Hs−mℜ(z)(M,E)) for all s ∈ R. Therefore, we define the logarithm
of Q as:

logθQ := (∂zQ
z
θ)z=0

=
i

2π

(
∂z

∫
Γθ

λz
θ(Q− λ)−1dλ

)
z=0

=
i

2π

∫
Γθ

logθλ (Q− λ)−1dλ.

By construction, one clearly has that (logθQ)Qz
θ = Qz

θ(logθQ). We also have that
f♯(logθQ) = logθ(f

♯Q), since f♯ and Qz
θ both commute. Note that the logarithm

logθ Q of a classical pseudodifferential operator is not classical, it is “nearly” classi-
cal in so far as its local symbol differs from a classical symbol by a logarithm term.
Indeed, it is shown in [Sc, p. 219] that the symbol of the logarithm reads as

(15) σ(logθQ)(x, ξ) = mlog(|ξ|)Id + σcl(logθQ)(x, ξ),

where σcl(logθQ) is a classical symbol of order zero with homogeneous components
σ−j(logθQ) of degree −j, j ≥ 0 given by

(16) σ−j(logθQ)(x, ξ) = |ξ|−j

(
∂z

(
σmz−j(Q

z
θ)(x,

ξ

|ξ|
)

))
z=0

.
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The fact that the logarithmic part of the symbol vanishes on the cotangent unit
sphere underlies the extendibility of the Wodzicki residue to logarithmic pseudodif-
ferential operators (for a detailed discussion, we refer the reader to [Sc, §2.7.1]). We
shall henceforth apply without any further ado, the above constructions to logθ Q
for an operator Q in Ψcl(M,E) with Agmon angle θ. In analogy with (4), we set

res(σ(logθ Q)(x, ·)) :=
1

(2π)n

∫
S∗
xM

trE(σ−n(logθ Q)(x, ξ)) dSξ,

ωRes
logθQ

(x) := res(σ(logθ Q)(x, ·)) dx1 ∧ . . . ∧ dxn,(17)

which we call the logarithmic residue density of Q. On the grounds of (15),
σ−n(logθQ)) = (σcl)−n (logθQ)) so that one can easily adapt the proof of Proposi-
tion 1.3 to show the covariance of the logarithmic residue:

(18) ωRes
logθ Q ◦ fλ = ωRes

logθ f♯λQ
,

where we have used the fact that f♯λ and logθ commute.

Remark 1.4. We shall drop the explicit mention of the principal angle when we
can choose θ = π.

1.5. A localisation formula for the logarithmic residue density of scalar
differential operators. We now focus on logarithms of scalar differential opera-
tors, for which we prove a localisation formula for the Wodzicki residue density. In
the sequel, we use the following notations. For any multiindex γ = {i1, . . . , is}, we
set

(19) Dγ
X :=

∂

∂xi1
. . .

∂

∂xis
,

in the local normal geodesic coordinates X = (x1, . . . , xn) at point x with the usual
identification x ↔ X.

To simplify notations, unless this gives rise to an ambiguity, we henceforth write
Dγ instead of Dγ

X .

Given a vector bundle E → M of rank k, trivialised over an open subset U of M ,

Dγ acts on a local section s|U =
∑k

i=1 αisi|U on U by

(20) Dγs :=

k∑
i=1

Dγ(αi)si.

Here {si}i=1,...,k is a basis of the bundle E|U in the local trivialisation E|U ≃ U×Rk.
A differential operator of order m ∈ Z≥0 reads P =

∑
|γ|≤m Pγ D

γ , which means

that in the local trivialisation E|U ≃ U × Rk of E, it acts as

(21) P

 k∑
j=1

αj sj

 =
∑

|γ|≤m

k∑
i,j=1

(Pγ)ij Dγ(αj) si,

where we have used Equation (20). Differential operators form an algebra Diff(M,E)
and we have the following isomorphism of C∞-modules:

Diff(M,E) ≃ Diff(M)⊗C∞(M) C
∞(M,End(E)),
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where we have set Diff(M) := Diff(M,M ×R). Following [vEY], we define a family
of rescaled differential operators for any P ∈ Diff(M,M × R) by

(22) P := λm P, λ > 0,

and set for any small positive λ:

(23) P̃λ := λmf♯λP.

In local normal geodesic coordinates, we have f♯λD
γ = λ−|γ| Dγ so that the family

of rescaled operators built from a differential operator P =
∑

|γ|≤m

Pγ D
γ , locally

reads (these and the above notations Pλ are borrowed from [vEY])

P̃λ =
∑
γ

λm−|γ| (Pγ ◦ fλ)Dγ .

As λ tends to zero, P̃λ converges to the operator P evaluated at the limit point p:

(24) lim
λ→0

P̃λ|Up
=
∑

|γ|=m

Pγ(p)D
γ |p = P |p,

where Pγ(p) corresponds to Pγ(x) evaluated at the reference point p. In the follow-
ing, we state a localisation formula for the residue of the logarithm of a differential
operator (see [Sc, (3.5.3.33) p.382] for a similar formula)

Proposition 1.5. For any differential operator P in Diff(M,M ×R) with Agmon
angle θ, we have the following localisation formula:

ωRes
logθ P (p) = ωRes

logθ P |p(x),

for all x ∈ Up.

Proof. We first observe that for small positive λ

logθ P̃λ = logθ(λ
mf♯λP ) = (m log λ) Id + logθ

(
f♯λP

)
.

Since the residue density vanishes on differential operators and hence on Id, we
have ωRes

logθ P̃λ
= ωRes

logθ(f
♯
λP)

. Equation (18) implies that ωRes
logθ P̃λ

= ωRes
logθ P ◦ fλ. We

then take the limit as λ → 0, by which P̃λ tends to P |p by (24). The continuity of
the logarithm combined with the continuity of the Wodzicki residue for the Fréchet
topology of (log-)classical operators of constant order then yields the statement of
the proposition. □

2. A local Berezin type n-form on Ψcl(M,ΛT ∗M)

In this section, we define a local n-form ω̃Res on Ψcl(M,ΛT ∗M) (see Eq. (31)),
which unlike the Wodzicki density, is not covariant under dilations defined in the
previous section. We give in Proposition 2.7 the behaviour of this local n-form ω̃Res

under Getzler rescaling map (see Definition 2.2) combined with the local dilations.
When the manifold M is spin and for a differential operator P acting on smooth
sections of its spinor bundle, we use the expression of the super trace in terms of
a Berezin integral (see (26)) to relate the local n-form ω̃Res

logθ cg(P ) of the logarithm

(with spectral cut θ) of cg(P ) (defined in Equation (37)) to its (super-)Wodzicki
residue ωsRes

logθ cg(P ). Much of this section is inspired from Simon Scott’s approach
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to the local Atiyah-Singer index theorem by means of the Wodzicki residue [Sc,
§3.5.3].

2.1. Prequisites: The supertrace versus the Berezin integral and the Get-
zler rescaling. In the sequel, following [BGV, Chap. 3] we review the construction
and properties of the Berezin integral together with its relation with the supertrace
as well as Geztler’s rescaling on differential forms. Let V be a real vector space.
A linear map T : ΛV → R is called a Berezin integral if T vanishes on ΛkV for
k < n = dim(V ). If V is an oriented Euclidean vector space equipped with a scalar
product g, there exist a canonical Berezin integral defined as the projection of any
element in ΛV onto its component on the n-form e1 ∧ . . .∧ en where {e1, . . . , en} is
an orthonormal basis of (V, g). We will denote this Berezin integral by T :

T (e1 ∧ . . . ∧ en) = 1, T (eI) = 0, if |I| < n.

Let us now consider the Clifford algebra Cℓ(V ) of (V, g). The isometry −Id ∈
O(V, g) gives rise to the map

Φ : Cℓ(V ) −→ Cℓ(V )

ei1 ·g . . . ·g eik 7−→ (−1)kei1 ·g . . . ·g eik
with i1 < . . . < ik. Here “·g” denotes the Clifford multiplication with respect to
the metric g. The map Φ clearly satisfies Φ2 = Id. Therefore, we get a splitting of
Cℓ(V ) into

Cℓ(V ) = Cℓ(V )+ ⊕ Cℓ(V )−,

where Cℓ(V )± := {a ∈ Cℓ(V )| Φ(a) = ±a}. Now we have the proposition [BGV,
Prop. 3.19]

Proposition 2.1. Let V be an oriented Euclidean vector space of even dimension
n. There exists a unique Z2-graded Clifford module S = S+ ⊕ S−, such that

Cℓ(V )⊗ C ≃ End(S).

In particular, dimS± = 2
n
2 −1. Also, we have that Cℓ(V )+ ·S± ⊂ S± and Cℓ(V )− ·

S± ⊂ S∓. Therefore, we have the isomorphism

Cℓ(V )+ ⊗ C ≃ End(S±).

Notice that S± are defined as the eigenspaces of S associated with the eigenvalues
±1 of the complex volume form ωC = i

n
2 e1 ·g . . . ·g en with n even. Now, there is a

natural super trace on Cℓ(V )⊗ C, defined by

str(a) :=

{
trS

+

(a)− trS
−
(a), if a ∈ Cℓ(V )+,

0, if a ∈ Cℓ(V )−,

where, as before, trE stands for the fibrewise trace on End(E). In order to relate
this supertrace with the Berezin integral, we assign to any vector v ∈ V ∗ the
endomorphism cg(v) ∈ End(ΛV ) that uniquely extends to a morphism of algebra
bundles

(25) cg : Cℓ(V ) −→ End(ΛV )

defined by
cg(v)• = v ∧ • − v♯g ⌟•,

where v♯g is the vector in V associated to v by the musical isomorphism. The
symbol map sg : Cℓ(V ) → ΛV is the isomorphism given by sg(a) := cg(a)1. Indeed,
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to show sg (as well as cg) is injective, we assume that sg(a) = 0 for some a =∑
i1<...<ik

ai1...ikei1 ·g . . . ·g eik . Then cg(a)1 =
∑

i1<...<ik
ai1...ikei1 ∧ . . . ∧ eik = 0.

Hence, ai1...ik = 0 and, thus, a = 0. The bijectivity of sg comes from the equality of
the dimensions. In [BGV, Prop. 3.21], it is shown that there is a unique supertrace
which is related to the Berezin integral by the following

(26) str(a) = (−2i)
n
2 (T ◦ sg)(a).

for any a ∈ Cℓ(V )⊗ C.

Definition 2.2. The Geztler rescaling map is the tensor bundle morphism defined
for any λ > 0, by

Uλ : ⊗q
rV −→ ⊗q

rV

t 7−→ λq−r t.(27)

The Getzler rescaling map Uλ restricted to ΛV induces a map

U ♯
λ : End(ΛV ) −→ End(ΛV )

Q 7−→ U ♯
λQ : ω 7→ UλQU−1

λ ω,(28)

which satisfies:

(29) U ♯
λ(v ∧ •) = λ−1v ∧ • and U ♯

λ(v
♯g⌟•) = λv♯g⌟ • .

for any v ∈ V ∗. Combining (29) with cg(v)• = v ∧ • − v♯g ⌟• yields the map

U ♯
λ ◦ cg : Cℓ(V ) −→ End(ΛV )

given by (
U ♯
λ ◦ cg

)
(v)• = λ−1v ∧ • − λv♯g⌟ • .

We have the following straightforward lemma that we will use later

Lemma 2.3. Let eI := ei1 ·gei2 . . .·geik for i1 < i2 < . . . < ik with |I| = i1+. . .+ik,
it follows that

(30) lim
λ→0

λ|I|
(
U ♯
λ ◦ cg

)
(eI) = eI∧

where eI := ei1 ∧ . . . ∧ eik .

2.2. A local n-form on Ψcl(M,ΛT ∗M) and Getzler rescaling. In order to de-
fine the local n-form, we fix a normal geodesic neighborhood Up around a point p
in M and for (x, ξ) ∈ T ∗Up and consider the symbol σ(Q)(x, ξ) ∈ End(ΛT ∗

xUp) of
an operator Q in Ψcl(M,ΛT ∗M) in the corresponding coordinate chart. Its homo-
geneous component σ−n(Q)(x, ξ) of degree −n evaluated in 1x yields a differential
form σ−n(Q)(x, ξ)1x ∈ ΛT ∗

xUp. Hence we define

(31) ω̃Res
Q (x) :=

1

(2π)n

∫
|ξ|=1

[σ−n(Q)(x, ξ)1x][n] dSξ,

where α[n] stands for the part of degree n of a form α in ΛT ∗
xM .

Remark 2.4. • Note that this differs from the Wodzicki residue density.
Contrarily to ωRes

Q which is covariant w.r. to the action of fλ, as we shall see

shortly, ω̃Res
Q is not. Getzler’s rescaling map will enable us to compensate

this lack of covariance.
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• The above constructions generalise beyond classical pseudodifferential op-
erators, to logarithmic pseudodifferential operators. For a differential oper-
ator P in Diff(M,ΛT ∗M) with Agmon angle θ, similarly to (31), we define:

ω̃Res
logθ P (x) :=

1

(2π)n

∫
|ξ|=1

[σ−n(logθ P )(x, ξ)1x][n] dSξ.

The maps U ♯
λ defined in (28) induces a transformation on differential operators as

follows: for any P =
∑

|γ|≤m Pγ D
γ in Diff(M,ΛT ∗M) of order m, we define

(32) U ♯
λP :=

∑
|γ|≤m

U ♯
λ(Pγ)D

γ ∈ Diff(M,ΛT ∗M),

A first direct consequence of (32) is that the operator U ♯
λP is also of order m and

of Agmon angle θ. For any (x, ξ) ∈ T ∗U , the symbols of U ♯
λP and P are related by

σm−j(U
♯
λP )(x, ξ) = U ♯

λ(σm−j(P )(x, ξ)),

for all j ≥ 0. To check that the Agmon angle remains unchanged, we observe

that the eigenvalues of σL(U
♯
λP )(x, ξ) are the same as those of σL(P )(x, ξ). The

eigenvectors of σL(U
♯
λP )(x, ξ) are derived from those of σL(P )(x, ξ) by applying Uλ.

Also the eigenvalues of U ♯
λP are the same as the ones of P , since U ♯

λ(P − βId) =

U ♯
λP − βId. We then define

(33) U ♯
λ(φθ(P )) := φθ(U

♯
λP ).

where we recall that φθ : C \Lθ → C is a holomorphic function. As a consequence,
we can prove that

Lemma 2.5. Given any P ∈ Diff(M,ΛT ∗M) of Agmon angle θ and Q := φθ(P )
we have for any λ > 0

(U ♯
λ ◦ f♯)(Q) = (f♯ ◦ U ♯

λ)(Q)

for any local diffeomorphism f : U → V .

Proof. First, we show that Uλ ◦ f∗ = f∗ ◦Uλ, where by definition f∗ω = ω ◦ f for any
differential form ω. Indeed, we compute

(Uλ ◦ f∗)ω = Uλ(ω ◦ f)

=

n∑
i=1

λ−i(ω ◦ f)[i]

=

n∑
i=1

λ−iω[i] ◦ f

= (f∗ ◦ Uλ)ω.

Hence, we get for P ∈ Diff(M,ΛT ∗M)

(U ♯
λ ◦ f♯)(P ) = Uλ ◦ f∗ ◦ P ◦ f∗ ◦ U−1

λ = f∗ ◦ Uλ ◦ P ◦ U−1
λ ◦ f∗ = (f♯ ◦ U ♯

λ)(P ).

Now, for Q = φθ(P ), we deduce the statement by using the fact that f♯ and U ♯
λ

both commute with φθ. This finishes the proof. □

We now have:
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Lemma 2.6. For any differential operator P ∈ Diff(M,ΛT ∗M) of Agmon angle θ
and order m, we have for Q = φθ(P ) that

(34) σm−j(U
♯
λQ)(x, ξ) = U ♯

λ(σm−j(Q) (x, ξ)) ,

for any (x, ξ) ∈ T ∗U and j ≥ 0.

Proof. Using Equation (13) for the symbol, we have that

σm−j(U
♯
λφθ(P )) = σm−j(φθ(U

♯
λP ))(x, ξ)

=
i

2π

∫
Γθ

φθ(λ) (σm−j(U
♯
λP )− λ)∗−1 dλ

=
i

2π

∫
Γθ

φθ(λ) (U
♯
λσm−j(P )− λ)∗−1 dλ

= U ♯
λ(σm−j(φθ(P )).

This finishes the proof. □

As a direct consequence of Equation (34), we get the following

Proposition 2.7. For any differential operator P ∈ Diff(M,ΛT ∗M) of Agmon
angle θ, we have for Q = φθ(P ) that for any λ > 0.

(35) ωRes
U♯

λQ
= ωRes

Q , ω̃Res
U♯

λQ
= λ−nω̃Res

Q and ω̃Res
f♯λQ

= λnω̃Res
Q ◦ fλ.

In particular, we get

(36) ω̃Res

U♯
λ f

♯

λ
Q
= ω̃Res

Q ◦ fλ.

Proof. For any λ > 0, we write

(2π)nωRes
U♯

λQ
(x) =

(∫
|ξ|=1

trΛT∗M
(
σ−n(U

♯
λQ) (x, ξ)

)
dSξ

)
dx1 ∧ . . . ∧ dxn

(34)
=

(∫
|ξ|=1

trΛT∗M
(
U ♯
λ (σ−n(Q) (x, ξ))

)
dSξ

)
dx1 ∧ . . . ∧ dxn

=

(∫
|ξ|=1

trΛT∗M
(
Uλ σ−n(Q) (x, ξ)U−1

λ

)
dSξ

)
dx1 ∧ . . . ∧ dxn

=

(∫
|ξ|=1

trΛT∗M (σ−n(Q) (x, ξ)) dSξ

)
dx1 ∧ . . . ∧ dxn

= (2π)nωRes
Q (x).
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To prove the two other equalities, we also compute

(2π)n ω̃Res
U♯

λQ
(x) =

∫
|ξ|=1

[(
σ−n(U

♯
λQ) (x, ξ)

)
1x

]
[n]

dSξ

(34)
=

∫
|ξ|=1

[(
U ♯
λ(σ−n(Q) (x, ξ))

)
1x

]
[n]

dSξ

=

∫
|ξ|=1

[Uλ(σ−n(Q) (x, ξ)1x)][n] dSξ

=

∫
|ξ|=1

n∑
i=0

[
Uλ [σ−n(Q)(x, ·)1x][i]

]
[n]

dSξ

=

∫
|ξ|=1

n∑
i=0

[
λ−i [σ−n(Q)(x, ·)1x][i]

]
[n]

dSξ

= λ−n

∫
|ξ|=1

[σ−n(Q)(x, ·)1x][n] dSξ

= λ−n(2π)n ω̃Res
Q (x).

To prove the last equality in (35), we use Equality (11) to write

(2π)n ω̃Res
f♯λQ

(x) =

∫
|ξ|=1

[
σ−n(f

♯
λQ)(x, ξ)1x

]
[n]

dSξ

=

∫
|ξ|=1

[(
σ−n(Q)

(
fλ(x), (f

∗
λ)

t(ξ)
))

1x

]
[n]

dSξ

=

∫
|ξ|=1

[(
σ−n(Q)

(
fλ(x), λ

−1ξ
))

1x

]
[n]

dSξ

= λn(2π)n ω̃Res
Q (x).

Finally, Equality (36) is obtained by combining the last two identities in (35). This
gives the statement.

□

2.3. The Wodzicki residue density versus a local Berezin type density. In
this paragraph, we enhance the well-known algebraic identity (26) to a lesser known
identity of local densities on spin manifolds. Let now (Mn, g) be a spin manifold
of even dimension and let ΣM be its spinor bundle. The morphism cg defined in
(25) induces on a differential operator P =

∑
|γ|≤m Pγ D

γ in Diff(M,ΣM) of order

m, the operator cg(P ) given by

(37) cg(P ) :=
∑

|γ|≤m

cg (Pγ)D
γ ∈ Diff(M,ΛT ∗M).

Clearly, the operator cg(P ) has the same order as P and,

(38) σm−j(c
g(P ))(x, ξ) = cg(σm−j(P )(x, ξ)),

for any (x, ξ) ∈ T ∗U \ {0}. In order to find the relation between ω̃Res and ωRes, we
need the following lemma:

Lemma 2.8. For any differential operator P ∈ Diff(M,ΣM) of Agmon angle θ
and order m, the operator cg(P ) has also an Agmon angle θ. Also, we have that

σ−j(logθc
g(P ))(x, ξ) = cg(σ−j(logθP )(x, ξ)),
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for j ≥ 0.

Proof. We shall prove that the set of eigenvalues of cg(σL(P )(x, ξ)) is a subset of
the one of σL(P )(x, ξ). Thus, as the eigenvalues of σL(P )(x, ξ) do not meet a neigh-
borhood of the ray Lθ, then neither do the eigenvalues of cg(σL(P )(x, ξ)). Indeed,
if λ is an eigenvalue of cg(σL(P )(x, ξ)), then cg(σL(P )(x, ξ))− λId is non injective.
Hence cg(σL(P )(x, ξ)−λId) is non injective and, therefore, σL(P )(x, ξ)−λId is non
injective since cg is injective, meaning that λ is an eigenvalue of σL(P )(x, ξ). In the
same way, we can prove that the set of eigenvalues of cg(P ) is a subset of the one
of P . To prove the second part, we first have for all j that σmz−j(c

g(P )zθ)(x, ξ) =
cg(σmz−j(P

z
θ )(x, ξ)). Indeed, using Equation (14), we compute

σmz−j(c
g(P )zθ)(x, ξ) =

i

2π

∫
Γθ

λzσ−m−j

(
(cg(P )− λ)−1

)
(x, ξ)dλ

=
i

2π

∫
Γθ

λzσ−m−j

(
cg((P − λId)−1)

)
(x, ξ)dλ

(38)
=

i

2π

∫
Γθ

λzcg
(
σ−m−j((P − λId)−1)(x, ξ)

)
dλ

(14)
= cg (σmz−j(P

z
θ )(x, ξ)) .

Now, using Equation (16), we write

σ−j(logθc
g(P ))(x, ξ) = |ξ|−j

(
∂z

(
σmz−j(c

g(P )zθ)(x,
ξ

|ξ|
)

))
z=0

= |ξ|−j

(
∂z

(
cg
(
σmz−j(P

z
θ )(x,

ξ

|ξ|
)

)))
z=0

(16)
= cg(σ−j(logθP )(x, ξ)).

This ends the proof. □

By choosing a = σ−n(logθ P )(x, ξ) in Equation (26), for any differential operator
P ∈ Diff(M,ΣM) which is Z2-grading, we get that

Proposition 2.9. For any differential operator P ∈ Diff(M,ΣM) with Agmon
angle θ, which is even for the Z2-grading ΣM = Σ+M ⊕ Σ−M , we have

ω̃Res
logθ cg(P )(x) = jg(x)(−2i)−n/2ωsRes

logθ P (x),

where jg(x) =
√

det(gij(x)).
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Proof. Using Lemma 2.8 for j = n, we compute

ω̃Res
logθ cg(P )(x) =

1

(2π)n

∫
|ξ|=1

[σ−n(logθ c
g(P ))(x, ξ)1x][n] dSξ

=
1

(2π)n

∫
|ξ|=1

[cg(σ−n(logθ P )(x, ξ))1x][n] dSξ

=
1

(2π)n

∫
|ξ|=1

[sg(σ−n(logθ P )(x, ξ))][n] dSξ

=
1

(2π)n

∫
|ξ|=1

(T ◦ sg)(σ−n(logθ P )(x, ξ)) e1 ∧ . . . ∧ en dSξ

(26)
=

jg(x)(−2i)−n/2

(2π)n

(∫
|ξ|=1

str (σ−n(logθ P )(x, ξ)) dSξ

)
dx1 ∧ . . . ∧ dxn

= jg(x)(−2i)−n/2ωsRes
logθ P (x).

Here, we use the fact that P is Z2-graded, meaning that σ−j(logθP )(x, ξ) is in
End(Σ±

x M) ≃ Cℓ(TxM)+ ⊗ C and, thus, Equation (26) is applied. □

Remark 2.10. As a consequence of Proposition 2.9, for a differential operator
P ∈ Ψcl(M,ΣM) with Agmon angle θ, ω̃Res

logθ cg(P ) does define a global density since

ωsRes
logθ P does.

Corollary 2.11. For any differential operator P ∈ Diff(M,ΣM) of Agmon angle
θ and order m which is even for the Z2-grading ΣM = Σ+M ⊕ Σ−M , we have

ω̃Res

logθU
♯
λ f

♯

λ
(cg(P )))

= (jg ◦ fλ)(−2i)−n/2ωsRes
logθP

◦ fλ.

Proof. We take Q = logθc
g(P ) ∈ Ψcl(M,ΛT ∗M) in Proposition 2.7 (i.e. φθ = logθ)

to get after, using f♯λlogθ = logθf
♯
λ (see Subsection 1.4) and U ♯

λlogθ = logθU
♯
λ by

Definition (33), that

ω̃Res
logθc

g(P ) ◦ fλ = ω̃Res

logθ(U
♯
λ f

♯

λ
(cg(P ))

.

Now we use Proposition 2.9 at the point fλ(·) to deduce the result. □

3. The geometric set-up

In this section, we review the geometric set up underlying Getzler rescaling. Specif-
ically, in the language of [DS1, Paragraph 1.1], we deform the manifold M to a man-
ifold M via a deformation to the normal cone to a given point p, and pull back the
Riemannian metric g on the manifold under the canonical projection π̂ : M → M
to a family {gλ}λ>0 of dilated metrics (see (42)). This family will play a crucial
role when deforming operators.

3.1. Deformation to the normal cone to a point. For an embedding M0 ↪→ M
of two manifolds, the deformation to the normal cone is defined as

D(M0,M) := (M × R+) ∪ (NM0 × {0}),
where NM0 is the total space of the normal bundle to M0 in M . The deformation
to the normal cone extended to the embedding of the base of a groupoid into the
groupoid gives rise to the tangent groupoid introduced by Connes [C] which proves
useful in the context of manifolds with singularities. Here, choosing a reference
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point p ∈ M fixed throughout the paper, we take M0 = {p} so that NM0 = TpM ,
in which case the deformation amounts to replacing M by the deformed manifold
around p defined as

M := (M × R+) ∪ (TpM × {0}).
The gluing of the two parts, namely M ×R+ and TpM ×{0} is carried out via the
local diffeomorphism fλ described in (6). Now, we build the map (denoted by Θ in
[DS2, Paragraph 3.1], but here we adopt the notations of [vEY])

Expp : T(p,•)M ⊃ Bp,r −→ M

defined on

Bp,r :=
(
{(x, λ) ∈ TpM × R+, x ∈ Br/λ}

)
∪ (TpM × {0}) ⊂ T(p,•)M

by the identity map on TpM × {0} and on the remaining part of Bp,r as follows

Expp : {(x, λ) ∈ TpM × R+, x ∈ Br/λ} −→ Up × R+ ⊂ M
(x, λ) 7−→ (expp(λx), λ) for λ > 0.(39)

We consider the open set in M ([DS1, Paragraph 1.1.])

Wp := (Up × R+) ∪ (TpM × {0}) ⊂ M.

The deformed manifold M is endowed with the smooth (coarsest) structure for
which the map Expp : Bp,r −→ Wp is a diffeomorphism (we refer the reader to
[H, Above Lemma 4.3] for further details). Via Expp the point (x = expp(x), λ)
is identified with the point fλ(x) = expp(λx) and the point p is identified with
x. We refer to the coordinates given by (39) as the λ-rescaled exponential
coordinates. To recover the manifold M from the deformed manifold M, we
consider the projection map

π̂ : M p1−→ M × R≥0
π−→ M

(x, λ) 7−→ (x, λ) 7−→ x if λ > 0
(x, 0) 7−→ (p, 0) 7−→ p.

With M endowed with the smooth structure described above, the map π̂ is smooth
allowing to pull-back the geometry on M to M. For any section s of a vector bundle
E over M , its pull-back is a section of the pull-back bundle E := π̂∗E ⊂ M × E
over M given by

(π̂∗s)(x, λ) = s(x) for small enoughλ > 0 , ∀x ∈ M

and

(π̂∗s)(x, 0) = s(p), ∀x ∈ TpM.

In particular, the tangent bundle TM → M is pulled back to

π̂∗TM = {(x, λ, y, u) ∈ M×R+×TM | x = y}∪{(x, 0, y, u) ∈ TpM×{0}×TM | p = y}

which is clearly isomorphic to TM ×R. Also the local diffeomorphism (39) induces
the isomorphsim of vector bundles (see [DS2, Remark 3.4 (e)], [F, p.67-68])

TM × R −→ TM
(x, u, λ) 7−→ (x, λ u = hλ(u), λ) if λ > 0

(p,x, 0) 7−→ (p,x) ∈ TpM.
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Now, in the local exponential chart (39) of M, the pull-back of a section s on E is
the map π̂∗s ◦Expp : Bp,r −→ E that can be read as

(π̂∗s ◦Expp)(x, λ) = (s ◦ π̂)(expp(λx), λ) = s(expp(λx)) = (s ◦ fλ)(expp(x))

for any λ > 0 and x ∈ Br/λ. Also on the remaining part of Bp,r, we have

(π̂∗s ◦Expp)(x, 0) = (s ◦ π̂)(x, 0) = s(p) = (s ◦ f0)(expp(x)).

Therefore, by identifying the vector x with the point x := expp(x), we write that

(π̂∗s)(x, λ)
Expp
= (s ◦ fλ)(x) for small enoughλ ≥ 0.

3.2. Tensor bundles pulled back by π̂. Coming back to the deformation to
the normal cone, the tensor bundle T q

rM := TM⊗q ⊗ T ∗M⊗r is pulled back to
π̂∗T q

rM −→ M and a tensor t written in a normal geodesic coordinates chart with
coordinates X at a point x as

(40) t(x) =
∑

t
i1...iq
j1...jr

∂

∂xi1
⊗ . . .⊗ ∂

∂xiq
⊗ dxj1 ⊗ . . .⊗ dxjr |x

is pulled back to

(π̂∗t)(x, λ)
Expp
= t ◦ fλ(x)

=
∑

(t
i1...iq
j1...jr

◦ fλ)
(

∂

∂xi1
◦ fλ
)

⊗ . . .⊗
(

∂

∂xiq
◦ fλ
)
⊗ (dxj1 ◦ fλ) ⊗ . . .⊗ (dxjr ◦ fλ)|x,

for small enough λ ≥ 0. Combining (9) with (27), we deduce that

(π̂∗t)(x, λ)
Expp
= λq−r(f∗λt)(x) = Uλ(f

∗
λt)(x),

for any small enough λ > 0 and (π̂∗t)(x, 0)
Expp
= t(p), for λ = 0. Specialising to

q = 0 and r = 2, yields that the local description of the pull-back of the metric g
on M , viewed as a covariant two tensor:

(41) (π̂∗g)(x, λ)
Expp
= λ−2 (f∗λg)(x)= Uλ(f

∗
λg)(x)

for small enough λ > 0 and it is g(p) for λ = 0. It is therefore natural to introduce

(42) gλ := λ−2f∗λg= Uλ f
∗
λg,

so that at any point in Up

(gλ)ij (x) = (f∗λg)ij (y) = gij(fλ(x)).

As a consequence of the last identity and with the help of the Koszul formula,

the Christoffel symbols Γk
ij(·, g) := g

(
∇ ∂

∂xi

∂
∂xj ,

∂
∂xk

)
satisfy for any small enough

positive λ

Γk
ij(·, gλ) = λΓk

ij(fλ(·), g).

Similarly, the Christoffel symbols Γ̃t
ls(·, g) := g(∇eles, et) read in an orthonormal

frame obtained by parallel transport along the geodesic curves, satisfy

(43) Γ̃t
ls(·, gλ) = λ Γ̃t

ls(fλ(·), g).
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4. Geometric Differential operators

In this section, we define the notion of geometric polynomials with respect to a
given metric, as smooth sections (Definition 4.5) of a given vector bundle in terms
of the corresponding vielbeins (see Appendix 6). To these polynomials, we assign
an order called Gilkey order, inspired by Gilkey’s “order of jets” in the context of
his invariance theory [G, Par. 2.4], see also [MP, Section 3], both of which use
jets of metrics. Whereas geometric sections are defined in terms of the jets of the
vielbein and hence metric tensor, the Gilkey order does not depend on the choice of
metric. We then define geometric differential operators to be differential operators
which take geometric sections to geometric sections with respect to some metric
with an additive condition on the Gilkey order (Definition 4.10). In Proposition
4.14, we show that a geometric polynomial w.r.t. g transforms under a dilation
fλ to a geometric polynomial w.r.t. gλ. In Proposition 4.15, we show a similar
property for a geometric differential operator.

4.1. Polynomial expressions in the jets of the vielbeins. Let us recall some
basic facts on the jets of a vector bundle. Given any vector bundle (E, π,M) where
π : E → M is the orthogonal projection, we let Γ(E) be the vector space of sections
of E and Γp(E) be the stalk 2 of local sections at a point p. Two local sections s
and s′ in Γp(E) have the same r-jet (r ∈ Z+) at p if

(Dγs)
∣∣
p
= (Dγs′)

∣∣
p

for any multiindex γ such that 0 ≤ |γ| ≤ r. The relation

s ∼ s′ ⇐⇒ s and s′ have the same r-jet at p

defines an equivalence relation and we denote by jrps the equivalence class of s. The
integer r is called the order of the jet. The set

Jr(E) := {jrps| p ∈ M, s ∈ Γp(E)},

is a manifold, called the r-th jet manifold of π. The triple (Jr(E), πr,M) is a fiber
bundle where πr : Jr(E) → M ; jrps → p and, in local coordinates,

jrps = (s(p), Dγs|p; 1 ≤ |γ| ≤ r)

which can be locally represented by the polynomial
∑

|γ|≤r D
|γ|s|pXγ (here in the

variable X). Inspired by Gilkey [G], we define the Gilkey order3 (at a point p) of
Dγs of any local section s in Γp(E)

ordGi
p (Dγs) := ord(j|γ|p s) = |γ|.

Note that whereas Dγs|p depends on the choice of local coordinates, its Gilkey
order does not as it takes into account the maximal order of derivation.

Remark 4.1. Clearly, the notion of Gilkey order is attached to a choice of vector
bundle E but we do not emphasize this fact in the notation for the sake of simplicity.

2Let SU denote the set of local sections of E defined on an open subset U of M containing p.

The stalk of local sections at the point p is the set of ∼ equivalence classes where for two elements

sU in SU and sV in SV , sU ∼ sV if and only sU and sV coincide in some neighborhood of p.
3relative to the vector bundle E.
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In the sequel, we shall repeatedly use the additivity of the Gilkey order on products.
For two local sections s1, s2 of the endomorphism bundle End(E), we have

ordGi
p (Dγ1s1 D

γ2s2) = ordGi
p (Dγ1s1) + ordGi

p (Dγ2s2) .

Remark 4.2. If E = JkF is the jet bundle of a vector bundle F , then a section
s of E evaluated at the point p is of the form s(p) = jkp t where t lies in Γp(F ). In
this case, the Gilkey order of s at point p with respect to F is k added to its Gilkey
order with respect to E.

The reference vector bundle E will often be implicit only when needed shall we
mention it.

Definition 4.3. Given a normal geodesic coordinate system X = (x1, . . . , xn) at a
point p and for a non negative integer r, the r-valuation of a local section s ∈ Γp(E)
is defined by

valrX,p(s) = min{|γ| ≤ r, Dγ
Xs
∣∣
p
̸= 0}

with the notation of (19) provided such a minimum exists. Otherwise, following the
usual convention we set valrX,p(s) = +∞. Correspondingly, we define the valuation
of s as being

(44) valX,p(s) = minr∈Z≥0
valrX,p(s) = min{|γ|| Dγs

∣∣
p
̸= 0} ∈ [0,+∞].

Since we have fixed the point p, for simplicity, we henceforth omit the subscript p
in the Gilkey order, abusively writing ordGi(Dγs) = |γ|.

Example 4.4. We choose E = T ∗M⊗T ∗M , and view g as a section of E trivialised
above Up by means of normal geodesic coordinates on Up. In that trivialisation,
the expansion of the metric around a point p is given by

(45) gij(x) = δij −
1

3
Riklj |p xkxl − 1

6
Riklj;m|p xkxlxm +O(|x|4),

where Riklj;m = (∇R)miklj . Therefore, in this trivialisation, the valuation of g− Id
is at least 2. In contrast, in the trivialisation of E obtained by parallel transport,
the valuation of g − Id is +∞.

Similarly the expansion of the inverse is given by

(46) gij(x) = δij +
1

3
Riklj |p xkxl +

1

6
Rg

iklj;t|p x
kxlxt +O(|x|4),

so that, in these coordinates and with a slight abuse of notation, the valuation of
g−1 − Id is at least 2. Combining Equations (60) with (45) (resp. (59) with (46))
yields the following expansions [AGHM, Eq. (11)]

ali(x, g) = δil −
1

6
Rijkl(p)x

jxk − 1

12
∇tRijklx

jxkxt +O(|x|4),

and

bil(x, g) = δil +
1

6
Rljki(p)x

jxk +
1

12
∇tRljkix

jxkxt +O(|x|4).

Hence, in the same way as before, the valuation of A−Id (resp. B−Id see Appendix
6) is at least 2 as well.
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Finally, using the Koszul formula combining with (45) and the properties of the

curvature operator, the Christoffel symbols Γk
ij(·, g) = g

(
∇ ∂

∂xi

∂
∂xj ,

∂
∂xk

)
have the

following Taylor expansion at point p in the normal geodesic coordinates

Γk
ij(x, g) =

1

3
(Riklj(p) +Rilkj(p))x

l +O(|x|2).

Also the Christoffel symbols in an orthonormal frame Γ̃t
ls(·, g) = g(∇eles, et) have

a similar Taylor expansion:

(47) Γ̃t
ls(x, g) = −1

2
Rlist(p)x

i +O(|x|2),

which shows that both Christoffel symbols have valuation at least 1.

4.2. Geometric polynomials. We consider a rank k vector bundle E → M
equipped with an affine connection. We trivialise the bundle E over an exponential
neighborhood Up of p using geodesic normal coordinates (x1, . . . , xn) at a point x
in Up by identifying the fibre Ex above x = expp(x) ∈ Up with the fibre Ep at point
p via the parallel transport along geodesics c(t) = expp(tx), x ∈ Vp ⊂ TpM . We fix
a basis (s1(p), . . . , sk(p)) of Ep, which is then transported to (s1(x, g), . . . , sk(x, g)).
In this trivialisation, sections of E may be viewed as smooth functions on Up with
valued in the fixed fibre Ep.

Definition 4.5. We call a local section s of E over Up a geometric mononomial
(resp. polynomial) or simply geometric section with respect to some metric g, if

when s =
∑k

j=1 αj sj is written in the local trivialisation sj(·, g), j = 1, . . . , k of

E above Up, the coordinates αj(·, g) are monomials (resp. polynomials) in the
jets of vielbein Ap(·, g) and Bp(·, g) for the metric g (resp. linear combinations of
monomials) with the same Gilkey order which we refer to as the Gilkey order of s.
Explicitly, the αj(·, g) are (resp. linear combinations of) expressions of the form

(48)

Sj∏
s=1

Dβj
s ((aj)

ts
is
(·, g))Dγj

s ((bj)
ls
ns
(·, g)),

all of which have the same Gilkey order
∑Sj

s=1 |βj
s |+ |γj

s | independent of j. In this
case, we shall write s(·, g).

One observes that the notion of geometric polynomial is invariant under transfor-
mations g 7→ f∗(eφg) of the metric g, where f is a diffeomorphism on M and φ is
a smooth function on M .

Remark 4.6. When E is a subbundle of the tensor bundle, we can alternatively
trivialise it over the exponential neighborhood Up of p using geodesic normal coor-

dinates (x1, . . . , xn) at a point in Up. By (58), we have ∂
∂xi =

∑n
ℓ=1 a

ℓ
i(·, g) eℓ(·, g)

and dxi =
∑n

m=1 b
i
l(·, g) el(·, g), where (e1(·, g), . . . , en(·, g)) is the basis of TM ob-

tained by parallel transport of some (fixed) orthonormal basis of TpM . Inserting
these relations in (40) yields an expression of

t(·) =
∑

t
i1...iq
j1...jr

P
ℓ1...ℓq
i1...iq

Qj1...jq
m1...mr

eℓ1(·, g)⊗ . . .⊗ eℓq (·, g)⊗ em1(·, g)⊗ . . .⊗ emr (·, g),

where P
ℓ1...ℓq
i1...iq

and Q
j1...jq
m1...mr are linear combinations of expressions of the form (48).

Thus, the coordinates t
i1...iq
j1...jr

of t in (40) are linear combinations of expressions of

the form (48) if and only if its coordinates t̃
ℓ1...ℓq
m1...mr in the basis eℓ1(·, g) ⊗ . . . ⊗
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eℓq (·, g) ⊗ em1(·, g) ⊗ . . . ⊗ emr (·, g) are also linear combinations of expressions of
the form (48). Consequently, we can use either trivialisation in this case.

Here are first examples of geometric polynomials.

Example 4.7. (1) Take E = T ∗M ⊗s T
∗M . The metric g, which is a local

section of E, is a geometric monomial with respect to the metric g of Gilkey
order zero since its coordinates in the basis dxi ⊗ dxj induced by the nor-
mal geodesic coordinates x1, . . . , xn read gij(·) =

∑n
l=1 a

l
i(·, g) alj(·, g) (see

Equation (59)). So is its inverse g−1 a geometric monomial of Gilkey order

zero since gij(·) =
∑n

l=1 b
i
l(·, g) b

j
l (·, g) (see Equation (60)).

(2) Take E = T ∗M ⊗ T ∗M ⊗ TM . The Christoffel symbol which is a local
section of E, is a geometric polynomial with respect to the metric g since
its coordinates Γk

ij(·, g) in the basis dxi ⊗ dxj ⊗ d
dxk induced by the normal

geodesic coordinates x1, . . . , xn read by Koszul’s formula:

(49) Γk
ij(·, g) =

n∑
l=1

gkl(·) (∂xi(gjl(·)) + ∂xj (gil(·))− ∂xl(gij(·))) ,

is a polynomial in the jets of vielbeins of Gilkey order one.
(3) Similarly, the Christoffel symbols Γ̃t

ls(·, g) = g(∇eles, et) written in the
orthonormal frame (e1(·, g), . . . , ek(·, g)) obtained by parallel transport as
in Remark 4.6 read as (use Einstein convention)

(50) Γ̃t
ls(·, g) = bil(·, g) b

j
t (·, g) bks(·, g) Γ

j
ik(·, g) + bil(·, g) b

j
t (·, g) ∂xi

(bkt (·, g)) gkj(·).
are polynomials in the jets of the vielbeins of Gilkey order one.

Remark 4.8. Since jets are compatible with composition and differentiation, geo-
metric mononomials form an algebra stable under differentiation.

Remark 4.9. Due to Equations (59) and (60) which relate the metric to the
vielbein, the class of polynomials we single out in Example 4.7, is consistent with
the classes of polynomials in the jets of the metric considered in [ABP], [E, Theorem
1.2] and [G, Eq. 2.4.3]. There, the polynomials depend on the metric tensor, its
inverse (or [ABP], see formula in item 1) on p. 282) its inverse determinant) and
the derivatives of the metric tensor.

4.3. Geometric operators. In this subsection, we are going to define geometric
differential operators on vector bundles based on the definition of geometric sections.

Definition 4.10. Let E be a vector bundle over M of rank k equipped with an affine
connection. We call a differential operator P =

∑
|γ|≤m Pγ D

γ in Diff(M,E) of

order m geometric with respect to a metric g if for any geometric polynomial local
section s ∈ Γ(E) with respect to g as in Definition 4.5, the section Ps is a geometric
polynomial local section of E with respect to g such that

ordGi(Ps) = ord(P ) + ordGi(s).

In other words, and by using the local expression of Ps in Equation (21), a geometric
operator P with respect to the metric g is equivalent to saying that Pγ = (Pγ)ij(x) ∈
End(Ex), written in the basis obtained by parallel transport of some fixed basis of
Ep, are polynomials in the jets at x of vielbeins in a way that

(51) ordGi ((Pγ)ij(x)) = ord(P )− |γ|,
for all γ.



26 GEORGES HABIB AND SYLVIE PAYCHA

Remark 4.11. As for geometric sections, when E is a subbundle of the tensor
bundle, we can alternatively trivialise it over the exponential neighborhood Up of
p using geodesic normal coordinates (x1, . . . , xn) at a point in Up.

Example 4.12. For E = ΛT ∗M , resp. E = ΣM , for any X ∈ TM , the covariant
differentiation ∇X defines a geometric operator with respect to g of order 1.

(1) When E = ΛT ∗M , we express the covariant derivative on a differential
form α =

∑
I αI dx

I of degree k in normal geodesic coordinates (x1, . . . , xn)
around p ∈ M as follows (here I = {i1 < . . . < ik})

∇ ∂

∂xi
α =

∑
I

(
∂

∂xi
αI

)
dxI

+
∑
t,I

αI

 n∑
s,l=1

g
(
∇ ∂

∂xi
dxis , dxl

)
gtl(·)

 dxi1 ∧ . . . ∧ dxt︸︷︷︸
sth−slot

∧ . . . ∧ dxik .

This shows that∇ ∂

∂xi
is a geometric differential operator with respect to the

metric g of order 1 whose zero-th order part
∑n

m,l=1 g
(
∇ ∂

∂xi
dxis , dxl

)
gtl(·)

has coefficients given by linear combinations of monomials (48) with Gilkey
order 1.

(2) When E = ΣM is equipped with the spin connection induced by the Levi-
Civita connection, the corresponding End(ΣpM)-valued functions(

ei·g : σ 7→ ei ·g σ, i = 1, . . . , n
)

on Up are constant along the geodesics and hence in the trivialisation in-
duced by parallel transport [BGV, Lemma 4.14]. Using the normal geo-
desic coordinates x1, . . . , xn on Up, the spinorial connection ∇ ∂

∂xi
acting on

smooth functions from Up to Ep reads

(52) ∇ ∂

∂xi
=

∂

∂xi
+

1

4

∑
s,t

g(∇ ∂

∂xi
es, et)︸ ︷︷ ︸

Γ̃t
is(·,g)

es ·g et·g

and therefore defines a geometric differential operator with respect to g of

order 1. Indeed, the coefficients Γ̃t
is(·, g) are smooth real functions from Up

and, by (50), are polynomials in the jets of the vielbeins of Gilkey order 1.

In the following, we consider again a vector bundle E over M of rank k equipped
with a connection ∇. We consider the pull-back bundle f∗λE over Uλ

p which we

equip with the following connection: For any local section s ∈ Γ(E) and X ∈ TUλ
p

(53) ∇f∗λE
X (f∗λ(s)) := f∗λ(∇E

(fλ)∗X
s).

Lemma 4.13. Let E be a vector bundle over M of rank k and let s(p) ∈ Ep, for
some fixed p ∈ M . We denote by s(·, g) the section in Γ(E) obtained by parallel
transport of s(p) along the exponential curve c(t) = expp(tx) corresponding to the
metric g with x ∈ Br ⊂ TpM . We also denote by s(·, gλ) the section in Γ(f∗λE)
obtained by parallel transport of s(p) along the exponential curve γ(t) corresponding
to the metric gλ. Then, we have

s(·, gλ) = s(fλ(·), g).
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Proof. First, we notice that if c(t) = expp(tx) is the exponential curve correspond-

ing to the metric g with x ∈ Br ⊂ TpM , then the curve γ : I → Uλ
p given by

γ(t) := f−1
λ ◦ c(t) = expp(tλ

−1x)

is the exponential curve associated with the metric f∗λg as well for the metric gλ. The
section s(·, g) ◦ fλ in Γ(f∗λE) is parallel along the curve γ(t) as a direct consequence
from Equation (53) and the fact that s(·, g) is parallel on E along the curve c(t).
Now the initial condition and the uniqueness of the parallel transport allow to
deduce the result. □

Proposition 4.14. Let E be a vector bundle over M of rank k. Let s be a local
section of E which is a geometric monomial (resp. polynomial) with respect to the

metric g of Gilkey order ordGi(s). The local section f∗λs in the bundle f∗λE is a
geometric monomial (resp. polynomial) with respect to the metric gλ of the same

Gilkey order ordGi(s).

Proof. Since the local section s is a geometric monomial with respect to the metric g,

it can be written as s(·, g) =
∑k

j=1 αj(·, g)sj(·, g) where αj(·, g) is a monomial in the

jets of the vielbeins. The section f∗λs is equal to f∗λs =
∑k

j=1 αj(fλ(·), g)sj(fλ(·), g).
In order to express f∗λs in terms of the metric gλ, we first differentiate the relations
from Lemma 6.2 in the Appendix,

ali(·, gλ) = ali(fλ(·), g) and bil(·, gλ) = bil(fλ(·), g),

to get that αj(·, gλ) = λordGi(s)αj(fλ(·), g). On the other hand, by Lemma 4.13, we
have that sj(·, gλ) = sj(fλ(·), g) for all j. Therefore, we deduce that

f∗λs = λ−ordGi(s)
k∑

j=1

αj(·, gλ)sj(·, gλ).

That mainly means f∗λs is a geometric monomial with respect to the metric gλ and
that s and f∗λs have the same Gilkey order. □

As a direct consequence, we get the following result on geometric differential oper-
ators.

Proposition 4.15. Let E be a vector bundle over M of rank k equipped with
an affine connection. Let P be a differential operator in Diff(M,E) of order m

geometric with respect to the metric g. The differential operator f♯λP in Diff(M, f∗λE)
of order m is geometric with respect to the metric gλ.

Proof. Let s be a local section of E which is a geometric polynomial with respect
to the metric g. As P is a geometric differential operator with respect to g, the
local section Ps is geometric with respect to the same metric. By Proposition 4.14,
the section f∗λ(Ps) = Ps ◦ fλ is geometric with respect to the metric gλ. Now the

relation (f♯λP )(s ◦ fλ) = Ps ◦ fλ which can be proven straightforwardly allows to

deduce that (f♯λP )(s ◦ fλ) is geometric with respect to the metric gλ. We just need
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now to show the equality with the Gilkey orders. Indeed, we compute

ordGi
(
(f♯λP )(s ◦ fλ)

)
= ordGi(f∗λ(Ps))

Prop.4.14
= ordGi(Ps)

P geom.
= m+ ordGi(s)

Prop.4.14
= m+ ordGi(f∗λs).

Recall here that the operator f♯λP has the same order as P . This ends the proof. □

5. Getzler rescaled geometric differential operators

In this section, we focus on geometric differential operators P in Diff(M,E) for
E = ΣM , resp. E = ΛT ∗M given in Definition 4.10. We study their behaviour
under the combined action of a dilation fλ and the map Uλ defined in (28) as well
as the limit as λ tends to zero of the resulting operator. For that purpose we in-

troduce the operators P̃Ge|(·,λ) in (54), resp. (55), where the superscript Ge stands

for Getzler. We call P rescalable if P̃Ge|(·,λ) admits a limit P̃lim when λ tends to
zero. In Proposition 5.6 in the case E = ΛT ∗M , resp. in Proposition 5.9 in the
case E = ΣM , we give a necessary and sufficient condition for P to be rescalable

and show that the coefficients of the limit operator P̃lim are polynomials in the jets
of the curvature tensor on M . For P in Diff(M,ΛT ∗M), resp. in Diff(M,ΣM), we
give in Theorem 5.7, resp. Corollary 5.10 (for an even order operator) a localisation
formula similar to the one in Proposition 1.5. This time instead of the local residue
form ωRes

logθ P̃lim
, our localisation formula involves the local n-form ω̃Res

logθ P̃lim
.

In the same spirit as (22) and (23), we set for P ∈ Diff(M,ΛT ∗M) of order m

(54) PGe|(·,λ) := λm U ♯
λP |(·), and P̃Ge

λ := f♯λP
Ge,

resp. for P ∈ Diff(M,ΣM)

(55) PGe|(·,λ) := λm
(
U ♯
λ ◦ cg (P )

)
|(·), and P̃Ge

λ := f♯λ P
Ge.

where U ♯
λP and cg(P ) are given in Equations (32) and (37) respectively.

Definition 5.1. We call a differential operator P in Diff(M,E) with E = ΛT ∗M ,

resp. E = ΣM rescalable at a point p if and only if P̃Ge
λ |Up

introduced in (54) and

(55) admits a limit P̃lim when λ goes to zero.

Remark 5.2. Note that rescalability is a local notion valid at a point, and is
defined via a local normal geodesic coordinates.

Proposition 5.3. Rescalable operators in Diff(M,E) at point p for E = ΛT ∗M ,
resp. E = ΣM , form a subalgebra.

Proof. Let P1, P2 be two operators in Diff(M,ΛT ∗M) of order m1 and m2 respec-
tively. Since the order is additive on products of operators and the degree is also
additive on wedge products of forms, we have

λm1+m2 f♯λU
♯
λ(P1P2) =

(
λm1 f♯λU

♯
λ(P1)

) (
λm2 f♯λU

♯
λ(P2)

)
.

If P1 and P2 are rescalable, the limits as λ → 0 exist on the r.h.s., and hence so do

they on the l.h.s., which shows that the product P1P2 is rescalable. Replacing U ♯
λ
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by U ♯
λ ◦ cg and using the fact that cg is an algebra morphism yields the result for

E = ΣM . □

The following technical lemma will be useful:

Lemma 5.4. In local normal geodesic coordinates X, and with the notations of
(44), let q := valX,p(h) be the valuation of a local section h ∈ Γp(E) around p,
where E is the trivial bundle E := M × R → M and p ∈ M .

(1) For any real number θ, as λ tends to zero, the expression λ−θDγ(h ◦ fλ)
• converges if and only if θ ≤ max(|γ|, q);
• if θ < max(|γ|, q), it converges to zero.

(2) If θ = max(|γ|, q), the expression λ−θDγ(h ◦ fλ) converges to the coefficient
of order θ − |γ| in the Taylor expansion of h at point p.

Proof. The proof is based on the fact that λ−θDγ(h ◦ fλ) = λ|γ|−θ(Dγh) ◦ fλ.
By definition of q, we have h = O(|x|q) so that for q ≥ |γ|, we have (Dγh) ◦ fλ =
λq−|γ|O(|x|q−|γ|). If, q < |γ|, we have (Dγh)◦fλ = O(1), which ends the proof of (1)
and (2) observing that in the convergent case, the limit corresponds to the θ − |γ|
coefficient in the Taylor expansion. □

We now specialise to a monomial in the jets of the vielbeins as in (48) written in
normal geodesic coordinates. We set

ΘX,p
(x,g) :=

∑
s

max(|αs|, valX,p(a
ts
is
(x, g)) + max(|βs|, valX,p(b

ls
ns
(x, g)).

In the following, we shall often drop the explicit mention of X, p, x, g.

Example 5.5. (1) Recall that gij(x) =
∑

l a
l
i(x, g)a

l
j(x, g). We have Θgij = 0

if i = j = l and it is larger than 2 otherwise.
(2) Using the Koszul formula (49), the Christoffel symbols Γk

ij(x, g) can be

written Γk
ij(x, g) =

∑
l P

l
i,j,k(x, g) with ΘP l

i,j,k
= 1 for l = i = j = k and

larger than 2 otherwise.
(3) Similarly, by relation (50) the Christoffel symbols Γ̃t

ls(x, g) can be written

Γ̃t
ls(x, g) =

∑
k

P k
l,s,t(x, g)

with ΘPk
l,s,t

≥ 2. Notice here that ΘPk
l,s,t

cannot be equal to 1, since this

corresponds to l = s = t = k which would imply Γ̃t
ls(x, g) = Γ̃s

ls(x, g) = 0
and hence would yield a contradiction.

Proposition 5.6. Let P ∈ Diff(M,ΛT ∗M) be a geometric differential operator
with respect to a metric g of order m. In a local trivialisation around a point p of
ΛT ∗M induced by normal geodesic coordinates (x1, . . . , xn) on Up, the operator P
applied to a section s =

∑
I αIdx

I (dxI := dxi1 ∧ . . . ∧ dxi|I| for I = {i1, . . . , i|I|})
reads

P

(∑
I⊂N

αI dx
I

)
=
∑

|γ|≤m

∑
I,J⊂N

(Pγ)IJ (·, g)Dγ(αI)dx
J .

where (Pγ)IJ(·, g) are polynomials as in (48). The operator P is rescalable at a
point p if and only if |J | − |I| ≤ Θ(Pγ)IJ . In this case, the limit rescaled operator
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reads

P̃lim =
∑

|γ|≤m

∑
|J|−|I|=Θ(Pγ )IJ

(Pγ)
lim
IJ (p, g) ((dxI)∗ ⊗ dxJ)Dγ

where

(Pγ)
lim
IJ (p, g) = lim

λ→0

(
λ|I|−|J| (Pγ)IJ (·, gλ)

)
is a polynomial expression in the jets of the Riemannian curvature tensor.

Proof. The local expression of P in the theorem results from Remark 4.6, Equations

(21) and (40). Hence, from the definition of U ♯
λP = UλPU−1

λ , we get

(U ♯
λP )

(∑
I⊂N

αI dx
I

)
=
∑

|γ|≤m

∑
I,J⊂N

λ|I|−|J| (Pγ)IJ (·, g)Dγ(αI) dx
J .

Since P is a geometric differential operator, the coefficients (Pγ)IJ(·, g) are in the

jets of the vielbeins as in (48) with ordGi((Pγ)IJ) + |γ| = m. Now, we write

P̃Ge
λ (s ◦ fλ) = λm(f♯λU

♯
λP )(s ◦ fλ)

= λm(U ♯
λP )(s) ◦ fλ

=
∑

|γ|≤m

∑
I,J⊂N

λm+|I|−|J| (Pγ)IJ (fλ(·), g)Dγ(αI)dx
J |fλ(·)

=
∑

|γ|≤m

∑
I,J⊂N

λ|γ|+|I|−|J| (Pγ)IJ (·, gλ)λ−|γ|Dγ(αI ◦ fλ) dxJ ◦ fλ.

In the last equality, we use the fact that (Pγ)IJ(·, gλ) = λordGi((Pγ)IJ )(Pγ)IJ(fλ(·), g).
Hence, we deduce that

P̃Ge
λ =

∑
|γ|≤m

∑
I,J⊂N

λ|I|−|J| (Pγ)IJ (·, gλ) ((dxI)∗ ⊗ dxJ)|fλDγ .

Now by Lemma 6.2 in the Appendix, we write for (Pγ)IJ(·, gλ)
S∏

s=1

Dαs(atsis (·, gλ))D
βs(blsns

(·, gλ)) =
S∏

s=1

Dαs
(
atsis (·, g) ◦ fλ

)
Dβs

(
blsns

(·, g) ◦ fλ
)
.

For convenience, we have dropped the explicit mention of the indices I and J . Ap-
plying Lemma 5.4 to ha := atsis (·, g) and hb := blsns

(·, g) with both θa and θb non nega-

tive integers such that θa+θb = |J |−|I|, it tells us that the expression λ−θaDγ(f∗λha)

converges if and only if θa ≤ max(|αs|, qa), with qa := valX,p(a
ts
is
(x, g)) and that

the limit vanishes if we have a strict inequality. If θa = max(|αs|, qa), the limit is
a polynomial in the jets of the curvature tensor. Similarly for hb and θb. Hence,
the only non zero terms which survive in the limit of (56) as λ → 0, correspond
to θa = max(|αs|, qa) and θb = max(|βs|, qb) and hence Θ(Pγ)IJ

= |J | − |I|. This
yields the statement of the theorem. □

We prove a localisation formula for the local form ω̃Res
logθ P when E = ΛT ∗M .

Theorem 5.7. Let P in Diff(M,ΛT ∗M) be a geometric differential operator with
respect to the metric g of Agmon angle θ. If P is rescalable, then

ω̃Res
logθ P (p) = ω̃Res

logθ(P̃lim)
(x), ∀x ∈ Up,
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where P̃lim := lim
λ→0

P̃Ge
λ .

Proof. Formula (36) applied to Q = logθ P (φθ = logθ) combined with the fact that

the logarithm commutes with f♯λ and U ♯
λ yields

ω̃Res
logθ P (fλ(x)) = ω̃Res

logθ U♯
λ(f

♯
λP )

(x) = ω̃Res
logθ(P̃Ge

λ )
(x).

By Proposition 5.6, the limit P̃lim := lim
λ→0

P̃Ge
λ exists, from which we deduce the

statement of the theorem by letting λ tend to zero in the above identities. □

Example 5.8. The exterior differential d : ΛT ∗M → ΛT ∗M (as well as its L2-
adjoint δ) is not a rescalable operator. Indeed, by writing d =

∑n
j=1 dx

j∧∇ ∂

∂xj
and

using the local expression of ∇ ∂

∂xj
in Example 4.12, we have for any α =

∑
I αIdx

I

that

d

(∑
I

αIdx
I

)
=
∑
j,I

(
∂

∂xj
αI

)
dxj ∧ dxI

+
∑
t,I

αI

 n∑
s,l=1

g
(
∇ ∂

∂xj
dxis , dxl

)
gtl(·)

 dxj ∧ dxi1 ∧ . . . ∧ dxt︸︷︷︸
sth−slot

∧ . . . ∧ dxik .

Hence for the j’s that do not belong to I in the first sum of the r.h.s., we have
|J | − |I| = 1 and the corresponding Θ = 0. Therefore the condition in Proposition
5.6 is not fulfilled. However, the Hodge operator ∆ = dδ + δd is a geometric
rescalable operator. This results from the Bochner-Weitzenböck formula on k-
forms: ∆ = ∇∗∇+W [k], where ∇∗∇ is given by

∇∗∇ = −gij(·)
(
∇ ∂

∂xi
∇ ∂

∂xj
− Γk

ij(·, g)∇ ∂

∂xk

)
and W [k] =

∑n
i,j=1 e

∗
j ∧ (ei⌟R(ei, ej)) is the Bochner operator. Here R is the

curvature operator of the manifold M . Indeed, by replacing ∇ ∂

∂xi
by its expression

and performing some computations, one can easily see that ∆ (we use Einstein
convention) has the form

∆
(
αIdx

I
)

= −gij
∂

∂xi

∂

∂xj
(αI)dx

I − gij
∂

∂xj
(αI)Γ

k
iisgtkdx

i1 ∧ . . . ∧ dxt︸︷︷︸
sth−slot

∧ . . . ∧ dxik

+ . . . .

Since the Laplacian preserves the degree, then |J | − |I| = 0 ≤ Θ is always satisfied.
The limit of the rescaled operator corresponds to polynomials with Θ = 0. Hence
by the computation of Θ in Example 5.5, we get that

P̃lim

(∑
I

αIdx
I

)
= −

∑
i,I

∂2αI

(∂xi)
2 dx

I .

Therefore the localisation formula in Theorem 5.7 can be applied for the Hodge
Laplacian and we get

ω̃Res
logθ ∆(p) = ω̃Res

logθ(P̃lim)
(x), ∀x ∈ Up.
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Proposition 5.9. Let P ∈ Diff(M,ΣM) be a geometric differential operator with
respect to the metric g of order m. In the trivialisation {e1, . . . , en} induced by
parallel transport, the operator reads

(56) P =
∑

|γ|≤m

∑
I

(Pγ)I(·, g)eI ·g Dγ ,

where (Pγ)I(·, g) are polynomials as in (48) and eI = ei1 ·g . . .·geik with i1 < . . . < ik
and |I| = i1 + . . .+ ik. The operator P is rescalable if and only if |I| ≤ Θ(Pγ)I . In
this case, the limit rescaled operator in (55) reads

P̃lim =
∑

|γ|≤m

∑
|I|=Θ(Pγ )I

(Pγ)
lim
I (p, g) eI ∧Dγ

where

(Pγ)
lim
I (p, g) := lim

λ→0

(
λ−|I| (Pγ)I (·, gλ)

)
is a polynomial expression in the jets of the Riemannian curvature tensor.

Proof. In any local trivialization of ΣM , the operator P can be written as P =∑
|γ|≤m Pγ(·, g)Dγ , where Pγ(·, g) ∈ End(ΣM) ≃ Cℓ(TM). In the local trivialisa-

tion above a normal geodesic chart induced by parallel transport, we write

Pγ(·, g) =
∑
I

(Pγ)I(·, g)eI ,

Recall here that the End(ΣpM)-valued functions ei·g : σ 7→ ei ·g σ for each i =
1, . . . , n on Up are constant along the geodesics and hence in this trivialisation
[BGV, Lemma 4.14]. Now, as P is geometric, we get that (Pγ)I(·, g) are in the jets
of the vielbeins as in (48). Hence, we get (56). In particular, we deduce that

cg(P ) =
∑

|γ|≤m

∑
I

(Pγ)I(·, g)cg(eI)Dγ .

Now, we apply Equation (55) to a section s to get

P̃Ge
λ (s ◦ fλ) = λm(f♯λU

♯
λc

g(P ))(s ◦ fλ)
= λm(U ♯

λc
g(P )s) ◦ fλ

=
∑

|γ|≤m

∑
I⊂N

λm (Pγ)I (fλ(·), g)U
♯
λ(c

g(eI))(Dγs)|fλ(·).

=
∑

|γ|≤m

∑
I⊂N

λm−|I| (Pγ)I (fλ(·), g)λ
|I|U ♯

λ(c
g(eI))λ−|γ|Dγ(s ◦ fλ)

=
∑

|γ|≤m

∑
I⊂N

λ−|I| (Pγ)I (·, gλ)λ
|I|U ♯

λ(c
g(eI))Dγ(s ◦ fλ).

Here, we use the fact that (Pγ)I (·, gλ) = λordGi((Pγ)I) (Pγ)I (fλ(·), g) and that

ordGi((Pγ)I)+ |γ| = m, since (Pγ)I (·, g) are in the jets of the vielbeins. Therefore,
we deduce that

P̃Ge
λ =

∑
|γ|≤m

∑
I⊂N

λ−|I| (Pγ)I (·, gλ)λ
|I|U ♯

λ(c
g(eI))Dγ .
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Now, using (30), we have that λ|I|U ♯
λ(c

g(eI)) converges to eI∧ as λ → 0. Also by

Lemma 5.4, the term λ−|I|(Pγ)I(·, gλ) converges if and only if |I| ≤ Θ(Pγ)I . Thus,
the operator P is rescalable if and only if |I| ≤ Θ(Pγ)I . The limit rescaled operator
follows then easily. □

We prove a localisation formula for the local form ω̃Res
logθ P when E = ΛΣM .

Corollary 5.10. Let P in Diff(M,ΣM) be a geometric differential operator with
respect to the metric g, of Agmon angle θ which is even for the Z2-grading ΣM =
Σ+M ⊕ Σ−M . If P is rescalable, then we have

ω̃Res
logθ(P̃lim)

(x) = (−2i)−n/2ωsRes
logθ P (p), ∀x ∈ Up,

where P̃lim := lim
λ→0

P̃Ge
λ .

Proof. Using the relation in Corollary 2.11, the fact that P is rescalable and that
jg ◦ fλ → 1 as λ → 0 yield the result. □

6. The rescaled square of the Dirac operator

In this paragraph, we show that whereas the Dirac operator (which is a geometric
operator and hence so is its square) is not rescalable, its square is. We then apply

the results of the previous section to P = /D and compute P̃lim with the help of

Proposition 5.9. This allows to find the expression of P̃lim in terms of the curvautre
operator of M as in [Ge]. We then derive from Corollary 5.10 a localisation formula

(57) for the graded residue of the logarithm of /D
2
.

We recall that the Dirac operator on a spin manifold (Mn, g) is the differential
operator of order one given by (using Einstein’s summation convention)

/D :=

n∑
i=1

ei ·g ∇ei ,

where ∇ei is the spinorial Levi-Civita covariant derivative in the direction of ei.
Using the expression (52), the Dirac operator reads

/D =

n∑
i=1

ei ·g ∇ei

=
∑
i=l

ali(·, g)ei ·g ∂xl +
∑
i̸=l

ali(·, g)ei ·g ∂xl

+
1

4

n∑
i,l,s,t=1

Γ̃t
ls(·, g)ali(·, g)ei ·g es ·g et·g

The operator /D is geometric. Indeed, the above expression involves a sum of three
terms, each of which is expressed in terms of jets of vielbeins (see Example 4.7 for

Γ̃) and satisfies Condition (51). Yet it is not rescalable. Indeed, with the notations
of Proposition 5.9 with P = /D, the condition |I| ≤ Θ(Pγ)I

is not satisfied in the

first of the three sums since |I| = 1 and ΘPγ
= 0. Recall that the valuation of

ali(·, g) is zero if l = i and at least 2 otherwise.
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Proposition 6.1. The square of the Dirac operator /D
2
is a rescalable geometric

differential operator. Setting P := /D
2
, the operator P̃Ge

λ in (55), read in a local
trivialisation of ΣM at point x in Up obtained by parallel transport along geodesics,
converges to

−(∂xi − 1

8
Rijst(p)x

jes ∧ et∧)2,

where {e1(p), . . . , en(p)} is an orthonormal frame TpM .

Proof. Since /D is geometric so is its square /D
2
. We now show it is rescalable. Since

the action by Clifford multiplication ei·g of the vectors of an orthonormal frame of
TxM obtained from {e1(p), . . . , en(p)} by parallel transport is constant in x, in the
following we will simply write {e1, . . . , en}. We use the Schrödinger-Lichnerowicz
formula [LM] to write (we use the Einstein convention in the sequel)

/D
2|x = −gij(x)

(
∇xi∇xj − Γk

ij(x, g)∇xk

)
+

1

4
Scal(x)

= −gij(x)

(
∂xi +

1

4
Γ̃l
ik(x, g)e

k ·g el·g
)(

∂xj +
1

4
Γ̃t
js(x, g)e

s ·g et·g
)

+gij(x)Γk
ij(x, g)

(
∂xk +

1

4
Γ̃t
ks(x, g)e

s ·g et·g
)
+

1

4
Scal(x)

= −gij(x)∂2
xixj︸ ︷︷ ︸

(I)

− 1

4
gij(x)∂xi(Γ̃t

js(x, g))e
s ·g et·g︸ ︷︷ ︸

(II)

− 1

2
gij(x)Γ̃t

js(x, g)e
s ·g et ·g ∂xi︸ ︷︷ ︸

(III)

− 1

16

∑
k ̸=l, s̸=t

gij(x)Γ̃l
ik(x, g)Γ̃

t
js(x, g)e

k ·g el ·g es ·g et·g︸ ︷︷ ︸
(IV )

+ gij(x)Γk
ij(x, g)

(
∂xk +

1

4
Γ̃t
ks(x, g)e

s ·g et·g
)

︸ ︷︷ ︸
(V )

+
1

4
Scal(x),

where Scal is the scalar curvature of the metric g. Combining Equations (59) and

(50) with the Koszul formula, we can express /D
2
in terms of the vielbeins. To avoid

lenghty computations, we only sketch the computation for the third term in the
above equation to show that the relation |I| ≤ (ΘPγ

)I holds. Thus, the operator
is rescalable. To show the above inequality, we first observe that |I| equals 2.
According to Examples 5.5, the coefficient in (III) can be written as a sum of
polynomials of the vielbeins such that the corresponding Θ is at least 2 (since the

one corresponding to Γ̃l
im(x, g) is at least 2). With the help of (43) and (47), the

limit of the rescaled operator of (III) is equal to

lim
λ→0

λ−2
∑

gijλ (x)Γ̃t
js(x, gλ)(e

s ∧ et∧)∂xi = −1

2

∑
δijRjkst(p)x

k(es ∧ et∧)∂xi .

The same thing can be done for the first term (I) which converges to −
∑

i ∂
2
xi . The

second term (II) converges to 1
8

∑
i,j,s,t δ

ijRijst(p)e
s ∧ et ∧ . The fourth term (IV)

tends to

− 1

64

∑
δijRiqkl(p)Rjlst(p)x

qxlek ∧ el ∧ es ∧ et ∧ .
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The other terms converge to 0. Therefore, we deduce that

lim
λ→0

P̃Ge
λ = −

∑
i

∂2
xi +

1

8

∑
i,j,s,t

δijRijst(p)e
s ∧ et

+
1

4

∑
δijRjkst(p)x

k(es ∧ et∧)∂xi

− 1

64

∑
δijRiqkl(p)Rjlst(p)x

qxlek ∧ el ∧ es ∧ et ∧

= −
∑
i

(∂xi − 1

8
Rijst(p)x

jes ∧ et∧)2,

which confirms the fact, which we checked by hand in the previous tedious compu-
tations, that the operator is rescalable. □

We can apply Corollary 5.10 to the square of the Dirac operator P = /D
2
. Since

the operator /D
2
is non negative self-adjoint, it has a well defined logarithm logθ /D

2

(here θ = π). Hence, we have that

(57) ω̃Res
logθ(P̃lim)

(x) = (−2i)−n/2ωsRes
logθ

/D2(p),

for any x ∈ Up. The computation of the Wodzicki residue on the r.h.s is tedious.

In [Sc], it is derived from the heat-kernel asymptotics of P̃lim.

Appendix: vielbein

Let (Mn, g) be a Riemannian manifold. Let Fp(·, g) := { ∂
∂x1 , . . . ,

∂
∂xn } be the carte-

sian frame on Up built from the geodesic coordinates around p defined in (8). From
a given orthonormal basis e1(p), . . . , en(p) of TpM at p ∈ M , we build a local or-
thonormal frame Op(·, g) := {e1(·, g), . . . , en(·, g)}, of TM obtained by the parallel
transport along small geodesics as in (7).

A linear map Ap(·, g) : TM → TM (resp. its inverse Bp(·, g)) which takes the basis
Fp(·, g) to Op(·, g) (resp. Op(·, g) to Fp(·, g)) can be represented by a n× n matrix
A = (ali(·, g)) (resp. B = (bil(·, g))) with
(58)

∂

∂xi
=

n∑
l=1

ali(·, g) el(·, g), ∀i ∈ [[1, n]] and el(·, g) =
n∑

j=1

bjl (·, g)
∂

∂xj
, ∀l ∈ [[1, n]].

Also, we have that

dxi =

n∑
m=1

bil(·, g) el(·, g), ∀i ∈ [[1, n]] and el(·, g) =
n∑

j=1

alj(·, g) dxj , ∀l ∈ [[1, n]].

With these conventions, and dropping the explicit mention of p whenever this does
not lead to confusion, we write A(·, g) = (ali(·, g))i,l and we have that

(59)

n∑
l=1

ali(·, g) alj(·, g) = gij(·) or equivalently AAt = G

where G has entries gij(·). Similarly, we have

(60)

n∑
l=1

bil(·, g) b
j
l (·, g) = gij(·) or equivalently Bt B = G−1.
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Taking the scalar product of the first equation in (58) with em yields after inserting
the second equation

(61) ali(·, g) =
n∑

j=1

gij(·) bjl (·, g) and bjl (·, g) =
n∑

i=1

gij(·) ali(·, g).

The second equation in (61) is also derived by multiplying by the inverse of the
metric.

Lemma 6.2. At any point in Up and λ > 0, we have

ali(·, gλ) = ali(fλ(·), g) and bil(·, gλ) = bil(fλ(·), g).

Proof. To prove the equality ali(·, gλ) = ali(fλ(·), g), we let {ē1(·, gλ), . . . , ēn(·, gλ)}
the orthonormal frame obtained by parallel transport from {e1(p), . . . , en(p)} with
respect to the metric gλ. We know from Lemma 4.13 that

ēi(·, gλ) = ei(fλ(·), g).
Using (58), we write with respect to the metric gλ that

∂

∂xi
◦ fλ =

n∑
l=1

ali(·, gλ)ēl(·, gλ).

Also, (58) applied to the point fλ(·) gives that

∂

∂xi
◦ fλ =

n∑
l=1

ali(fλ(·), g)el(fλ(·), g).

Comparing both equations yields the results. The second equality can be proven
in the same way. □
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